1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 17 #include "mlir/IR/Attributes.h" 18 #include "mlir/IR/Module.h" 19 #include "mlir/IR/StandardTypes.h" 20 #include "mlir/Support/LLVM.h" 21 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Transforms/Utils/Cloning.h" 30 31 using namespace mlir; 32 using namespace mlir::LLVM; 33 34 static llvm::Constant * 35 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 36 ArrayRef<int64_t> shape, llvm::Type *type, 37 Location loc) { 38 if (shape.empty()) { 39 llvm::Constant *result = constants.front(); 40 constants = constants.drop_front(); 41 return result; 42 } 43 44 if (!isa<llvm::SequentialType>(type)) { 45 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 46 return nullptr; 47 } 48 49 llvm::Type *elementType = type->getSequentialElementType(); 50 SmallVector<llvm::Constant *, 8> nested; 51 nested.reserve(shape.front()); 52 for (int64_t i = 0; i < shape.front(); ++i) { 53 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 54 elementType, loc)); 55 if (!nested.back()) 56 return nullptr; 57 } 58 59 if (shape.size() == 1 && type->isVectorTy()) 60 return llvm::ConstantVector::get(nested); 61 return llvm::ConstantArray::get( 62 llvm::ArrayType::get(elementType, shape.front()), nested); 63 } 64 65 static llvm::Type *getInnermostElementType(llvm::Type *type) { 66 while (isa<llvm::SequentialType>(type)) 67 type = type->getSequentialElementType(); 68 return type; 69 } 70 71 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 72 /// This currently supports integer, floating point, splat and dense element 73 /// attributes and combinations thereof. In case of error, report it to `loc` 74 /// and return nullptr. 75 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 76 Attribute attr, 77 Location loc) { 78 if (!attr) 79 return llvm::UndefValue::get(llvmType); 80 if (llvmType->isStructTy()) { 81 emitError(loc, "struct types are not supported in constants"); 82 return nullptr; 83 } 84 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 85 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 86 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 87 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 88 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 89 return functionMapping.lookup(funcAttr.getValue()); 90 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 91 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 92 auto elementType = sequentialType->getElementType(); 93 uint64_t numElements = sequentialType->getNumElements(); 94 // Splat value is a scalar. Extract it only if the element type is not 95 // another sequence type. The recursion terminates because each step removes 96 // one outer sequential type. 97 llvm::Constant *child = getLLVMConstant( 98 elementType, 99 isa<llvm::SequentialType>(elementType) ? splatAttr 100 : splatAttr.getSplatValue(), 101 loc); 102 if (!child) 103 return nullptr; 104 if (llvmType->isVectorTy()) 105 return llvm::ConstantVector::getSplat(numElements, child); 106 if (llvmType->isArrayTy()) { 107 auto arrayType = llvm::ArrayType::get(elementType, numElements); 108 SmallVector<llvm::Constant *, 8> constants(numElements, child); 109 return llvm::ConstantArray::get(arrayType, constants); 110 } 111 } 112 113 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 114 assert(elementsAttr.getType().hasStaticShape()); 115 assert(elementsAttr.getNumElements() != 0 && 116 "unexpected empty elements attribute"); 117 assert(!elementsAttr.getType().getShape().empty() && 118 "unexpected empty elements attribute shape"); 119 120 SmallVector<llvm::Constant *, 8> constants; 121 constants.reserve(elementsAttr.getNumElements()); 122 llvm::Type *innermostType = getInnermostElementType(llvmType); 123 for (auto n : elementsAttr.getValues<Attribute>()) { 124 constants.push_back(getLLVMConstant(innermostType, n, loc)); 125 if (!constants.back()) 126 return nullptr; 127 } 128 ArrayRef<llvm::Constant *> constantsRef = constants; 129 llvm::Constant *result = buildSequentialConstant( 130 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 131 assert(constantsRef.empty() && "did not consume all elemental constants"); 132 return result; 133 } 134 135 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 136 return llvm::ConstantDataArray::get( 137 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 138 stringAttr.getValue().size()}); 139 } 140 emitError(loc, "unsupported constant value"); 141 return nullptr; 142 } 143 144 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 145 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 146 switch (p) { 147 case LLVM::ICmpPredicate::eq: 148 return llvm::CmpInst::Predicate::ICMP_EQ; 149 case LLVM::ICmpPredicate::ne: 150 return llvm::CmpInst::Predicate::ICMP_NE; 151 case LLVM::ICmpPredicate::slt: 152 return llvm::CmpInst::Predicate::ICMP_SLT; 153 case LLVM::ICmpPredicate::sle: 154 return llvm::CmpInst::Predicate::ICMP_SLE; 155 case LLVM::ICmpPredicate::sgt: 156 return llvm::CmpInst::Predicate::ICMP_SGT; 157 case LLVM::ICmpPredicate::sge: 158 return llvm::CmpInst::Predicate::ICMP_SGE; 159 case LLVM::ICmpPredicate::ult: 160 return llvm::CmpInst::Predicate::ICMP_ULT; 161 case LLVM::ICmpPredicate::ule: 162 return llvm::CmpInst::Predicate::ICMP_ULE; 163 case LLVM::ICmpPredicate::ugt: 164 return llvm::CmpInst::Predicate::ICMP_UGT; 165 case LLVM::ICmpPredicate::uge: 166 return llvm::CmpInst::Predicate::ICMP_UGE; 167 } 168 llvm_unreachable("incorrect comparison predicate"); 169 } 170 171 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 172 switch (p) { 173 case LLVM::FCmpPredicate::_false: 174 return llvm::CmpInst::Predicate::FCMP_FALSE; 175 case LLVM::FCmpPredicate::oeq: 176 return llvm::CmpInst::Predicate::FCMP_OEQ; 177 case LLVM::FCmpPredicate::ogt: 178 return llvm::CmpInst::Predicate::FCMP_OGT; 179 case LLVM::FCmpPredicate::oge: 180 return llvm::CmpInst::Predicate::FCMP_OGE; 181 case LLVM::FCmpPredicate::olt: 182 return llvm::CmpInst::Predicate::FCMP_OLT; 183 case LLVM::FCmpPredicate::ole: 184 return llvm::CmpInst::Predicate::FCMP_OLE; 185 case LLVM::FCmpPredicate::one: 186 return llvm::CmpInst::Predicate::FCMP_ONE; 187 case LLVM::FCmpPredicate::ord: 188 return llvm::CmpInst::Predicate::FCMP_ORD; 189 case LLVM::FCmpPredicate::ueq: 190 return llvm::CmpInst::Predicate::FCMP_UEQ; 191 case LLVM::FCmpPredicate::ugt: 192 return llvm::CmpInst::Predicate::FCMP_UGT; 193 case LLVM::FCmpPredicate::uge: 194 return llvm::CmpInst::Predicate::FCMP_UGE; 195 case LLVM::FCmpPredicate::ult: 196 return llvm::CmpInst::Predicate::FCMP_ULT; 197 case LLVM::FCmpPredicate::ule: 198 return llvm::CmpInst::Predicate::FCMP_ULE; 199 case LLVM::FCmpPredicate::une: 200 return llvm::CmpInst::Predicate::FCMP_UNE; 201 case LLVM::FCmpPredicate::uno: 202 return llvm::CmpInst::Predicate::FCMP_UNO; 203 case LLVM::FCmpPredicate::_true: 204 return llvm::CmpInst::Predicate::FCMP_TRUE; 205 } 206 llvm_unreachable("incorrect comparison predicate"); 207 } 208 209 /// Given a single MLIR operation, create the corresponding LLVM IR operation 210 /// using the `builder`. LLVM IR Builder does not have a generic interface so 211 /// this has to be a long chain of `if`s calling different functions with a 212 /// different number of arguments. 213 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 214 llvm::IRBuilder<> &builder) { 215 auto extractPosition = [](ArrayAttr attr) { 216 SmallVector<unsigned, 4> position; 217 position.reserve(attr.size()); 218 for (Attribute v : attr) 219 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 220 return position; 221 }; 222 223 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 224 225 // Emit function calls. If the "callee" attribute is present, this is a 226 // direct function call and we also need to look up the remapped function 227 // itself. Otherwise, this is an indirect call and the callee is the first 228 // operand, look it up as a normal value. Return the llvm::Value representing 229 // the function result, which may be of llvm::VoidTy type. 230 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 231 auto operands = lookupValues(op.getOperands()); 232 ArrayRef<llvm::Value *> operandsRef(operands); 233 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 234 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 235 operandsRef); 236 } else { 237 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 238 } 239 }; 240 241 // Emit calls. If the called function has a result, remap the corresponding 242 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 243 if (isa<LLVM::CallOp>(opInst)) { 244 llvm::Value *result = convertCall(opInst); 245 if (opInst.getNumResults() != 0) { 246 valueMapping[opInst.getResult(0)] = result; 247 return success(); 248 } 249 // Check that LLVM call returns void for 0-result functions. 250 return success(result->getType()->isVoidTy()); 251 } 252 253 // Emit branches. We need to look up the remapped blocks and ignore the block 254 // arguments that were transformed into PHI nodes. 255 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 256 builder.CreateBr(blockMapping[brOp.getSuccessor(0)]); 257 return success(); 258 } 259 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 260 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 261 blockMapping[condbrOp.getSuccessor(0)], 262 blockMapping[condbrOp.getSuccessor(1)]); 263 return success(); 264 } 265 266 // Emit addressof. We need to look up the global value referenced by the 267 // operation and store it in the MLIR-to-LLVM value mapping. This does not 268 // emit any LLVM instruction. 269 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 270 LLVM::GlobalOp global = addressOfOp.getGlobal(); 271 // The verifier should not have allowed this. 272 assert(global && "referencing an undefined global"); 273 274 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 275 return success(); 276 } 277 278 return opInst.emitError("unsupported or non-LLVM operation: ") 279 << opInst.getName(); 280 } 281 282 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 283 /// to define values corresponding to the MLIR block arguments. These nodes 284 /// are not connected to the source basic blocks, which may not exist yet. 285 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 286 llvm::IRBuilder<> builder(blockMapping[&bb]); 287 288 // Before traversing operations, make block arguments available through 289 // value remapping and PHI nodes, but do not add incoming edges for the PHI 290 // nodes just yet: those values may be defined by this or following blocks. 291 // This step is omitted if "ignoreArguments" is set. The arguments of the 292 // first block have been already made available through the remapping of 293 // LLVM function arguments. 294 if (!ignoreArguments) { 295 auto predecessors = bb.getPredecessors(); 296 unsigned numPredecessors = 297 std::distance(predecessors.begin(), predecessors.end()); 298 for (auto arg : bb.getArguments()) { 299 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 300 if (!wrappedType) 301 return emitError(bb.front().getLoc(), 302 "block argument does not have an LLVM type"); 303 llvm::Type *type = wrappedType.getUnderlyingType(); 304 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 305 valueMapping[arg] = phi; 306 } 307 } 308 309 // Traverse operations. 310 for (auto &op : bb) { 311 if (failed(convertOperation(op, builder))) 312 return failure(); 313 } 314 315 return success(); 316 } 317 318 /// Convert the LLVM dialect linkage type to LLVM IR linkage type. 319 llvm::GlobalVariable::LinkageTypes convertLinkageType(LLVM::Linkage linkage) { 320 switch (linkage) { 321 case LLVM::Linkage::Private: 322 return llvm::GlobalValue::PrivateLinkage; 323 case LLVM::Linkage::Internal: 324 return llvm::GlobalValue::InternalLinkage; 325 case LLVM::Linkage::AvailableExternally: 326 return llvm::GlobalValue::AvailableExternallyLinkage; 327 case LLVM::Linkage::Linkonce: 328 return llvm::GlobalValue::LinkOnceAnyLinkage; 329 case LLVM::Linkage::Weak: 330 return llvm::GlobalValue::WeakAnyLinkage; 331 case LLVM::Linkage::Common: 332 return llvm::GlobalValue::CommonLinkage; 333 case LLVM::Linkage::Appending: 334 return llvm::GlobalValue::AppendingLinkage; 335 case LLVM::Linkage::ExternWeak: 336 return llvm::GlobalValue::ExternalWeakLinkage; 337 case LLVM::Linkage::LinkonceODR: 338 return llvm::GlobalValue::LinkOnceODRLinkage; 339 case LLVM::Linkage::WeakODR: 340 return llvm::GlobalValue::WeakODRLinkage; 341 case LLVM::Linkage::External: 342 return llvm::GlobalValue::ExternalLinkage; 343 } 344 llvm_unreachable("unknown linkage type"); 345 } 346 347 /// Create named global variables that correspond to llvm.mlir.global 348 /// definitions. 349 void ModuleTranslation::convertGlobals() { 350 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 351 llvm::Type *type = op.getType().getUnderlyingType(); 352 llvm::Constant *cst = llvm::UndefValue::get(type); 353 if (op.getValueOrNull()) { 354 // String attributes are treated separately because they cannot appear as 355 // in-function constants and are thus not supported by getLLVMConstant. 356 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 357 cst = llvm::ConstantDataArray::getString( 358 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 359 type = cst->getType(); 360 } else { 361 cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc()); 362 } 363 } else if (Block *initializer = op.getInitializerBlock()) { 364 llvm::IRBuilder<> builder(llvmModule->getContext()); 365 for (auto &op : initializer->without_terminator()) { 366 if (failed(convertOperation(op, builder)) || 367 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) { 368 emitError(op.getLoc(), "unemittable constant value"); 369 return; 370 } 371 } 372 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 373 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 374 } 375 376 auto linkage = convertLinkageType(op.linkage()); 377 bool anyExternalLinkage = 378 (linkage == llvm::GlobalVariable::ExternalLinkage || 379 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 380 auto addrSpace = op.addr_space().getLimitedValue(); 381 auto *var = new llvm::GlobalVariable( 382 *llvmModule, type, op.constant(), linkage, 383 anyExternalLinkage ? nullptr : cst, op.sym_name(), 384 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 385 386 globalsMapping.try_emplace(op, var); 387 } 388 } 389 390 /// Get the SSA value passed to the current block from the terminator operation 391 /// of its predecessor. 392 static Value getPHISourceValue(Block *current, Block *pred, 393 unsigned numArguments, unsigned index) { 394 auto &terminator = *pred->getTerminator(); 395 if (isa<LLVM::BrOp>(terminator)) { 396 return terminator.getOperand(index); 397 } 398 399 // For conditional branches, we need to check if the current block is reached 400 // through the "true" or the "false" branch and take the relevant operands. 401 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 402 assert(condBranchOp && 403 "only branch operations can be terminators of a block that " 404 "has successors"); 405 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 406 "successors with arguments in LLVM conditional branches must be " 407 "different blocks"); 408 409 return condBranchOp.getSuccessor(0) == current 410 ? terminator.getSuccessorOperand(0, index) 411 : terminator.getSuccessorOperand(1, index); 412 } 413 414 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 415 // Skip the first block, it cannot be branched to and its arguments correspond 416 // to the arguments of the LLVM function. 417 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 418 Block *bb = &*it; 419 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 420 auto phis = llvmBB->phis(); 421 auto numArguments = bb->getNumArguments(); 422 assert(numArguments == std::distance(phis.begin(), phis.end())); 423 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 424 auto &phiNode = numberedPhiNode.value(); 425 unsigned index = numberedPhiNode.index(); 426 for (auto *pred : bb->getPredecessors()) { 427 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 428 bb, pred, numArguments, index)), 429 blockMapping.lookup(pred)); 430 } 431 } 432 } 433 } 434 435 // TODO(mlir-team): implement an iterative version 436 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 437 blocks.insert(b); 438 for (Block *bb : b->getSuccessors()) { 439 if (blocks.count(bb) == 0) 440 topologicalSortImpl(blocks, bb); 441 } 442 } 443 444 /// Sort function blocks topologically. 445 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 446 // For each blocks that has not been visited yet (i.e. that has no 447 // predecessors), add it to the list and traverse its successors in DFS 448 // preorder. 449 llvm::SetVector<Block *> blocks; 450 for (Block &b : f.getBlocks()) { 451 if (blocks.count(&b) == 0) 452 topologicalSortImpl(blocks, &b); 453 } 454 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 455 456 return blocks; 457 } 458 459 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 460 // Clear the block and value mappings, they are only relevant within one 461 // function. 462 blockMapping.clear(); 463 valueMapping.clear(); 464 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 465 // Add function arguments to the value remapping table. 466 // If there was noalias info then we decorate each argument accordingly. 467 unsigned int argIdx = 0; 468 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 469 llvm::Argument &llvmArg = std::get<1>(kvp); 470 BlockArgument mlirArg = std::get<0>(kvp); 471 472 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 473 // NB: Attribute already verified to be boolean, so check if we can indeed 474 // attach the attribute to this argument, based on its type. 475 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 476 if (!argTy.getUnderlyingType()->isPointerTy()) 477 return func.emitError( 478 "llvm.noalias attribute attached to LLVM non-pointer argument"); 479 if (attr.getValue()) 480 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 481 } 482 valueMapping[mlirArg] = &llvmArg; 483 argIdx++; 484 } 485 486 // First, create all blocks so we can jump to them. 487 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 488 for (auto &bb : func) { 489 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 490 llvmBB->insertInto(llvmFunc); 491 blockMapping[&bb] = llvmBB; 492 } 493 494 // Then, convert blocks one by one in topological order to ensure defs are 495 // converted before uses. 496 auto blocks = topologicalSort(func); 497 for (auto indexedBB : llvm::enumerate(blocks)) { 498 auto *bb = indexedBB.value(); 499 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 500 return failure(); 501 } 502 503 // Finally, after all blocks have been traversed and values mapped, connect 504 // the PHI nodes to the results of preceding blocks. 505 connectPHINodes(func); 506 return success(); 507 } 508 509 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 510 for (Operation &o : getModuleBody(m).getOperations()) 511 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 512 !o.isKnownTerminator()) 513 return o.emitOpError("unsupported module-level operation"); 514 return success(); 515 } 516 517 LogicalResult ModuleTranslation::convertFunctions() { 518 // Declare all functions first because there may be function calls that form a 519 // call graph with cycles. 520 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 521 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 522 function.getName(), 523 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 524 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 525 functionMapping[function.getName()] = 526 cast<llvm::Function>(llvmFuncCst.getCallee()); 527 } 528 529 // Convert functions. 530 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 531 // Ignore external functions. 532 if (function.isExternal()) 533 continue; 534 535 if (failed(convertOneFunction(function))) 536 return failure(); 537 } 538 539 return success(); 540 } 541 542 /// A helper to look up remapped operands in the value remapping table.` 543 SmallVector<llvm::Value *, 8> 544 ModuleTranslation::lookupValues(ValueRange values) { 545 SmallVector<llvm::Value *, 8> remapped; 546 remapped.reserve(values.size()); 547 for (Value v : values) 548 remapped.push_back(valueMapping.lookup(v)); 549 return remapped; 550 } 551 552 std::unique_ptr<llvm::Module> 553 ModuleTranslation::prepareLLVMModule(Operation *m) { 554 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 555 assert(dialect && "LLVM dialect must be registered"); 556 557 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 558 if (!llvmModule) 559 return nullptr; 560 561 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 562 llvm::IRBuilder<> builder(llvmContext); 563 564 // Inject declarations for `malloc` and `free` functions that can be used in 565 // memref allocation/deallocation coming from standard ops lowering. 566 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 567 builder.getInt64Ty()); 568 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 569 builder.getInt8PtrTy()); 570 571 return llvmModule; 572 } 573