1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Copyright 2019 The MLIR Authors. 4 // 5 // Licensed under the Apache License, Version 2.0 (the "License"); 6 // you may not use this file except in compliance with the License. 7 // You may obtain a copy of the License at 8 // 9 // http://www.apache.org/licenses/LICENSE-2.0 10 // 11 // Unless required by applicable law or agreed to in writing, software 12 // distributed under the License is distributed on an "AS IS" BASIS, 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 // See the License for the specific language governing permissions and 15 // limitations under the License. 16 // ============================================================================= 17 // 18 // This file implements the translation between an MLIR LLVM dialect module and 19 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 24 25 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 26 #include "mlir/IR/Attributes.h" 27 #include "mlir/IR/Module.h" 28 #include "mlir/Support/LLVM.h" 29 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 39 namespace mlir { 40 namespace LLVM { 41 42 // Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 43 // This currently supports integer, floating point, splat and dense element 44 // attributes and combinations thereof. In case of error, report it to `loc` 45 // and return nullptr. 46 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 47 Attribute attr, 48 Location loc) { 49 if (!attr) 50 return llvm::UndefValue::get(llvmType); 51 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 52 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 53 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 54 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 55 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 56 return functionMapping.lookup(funcAttr.getValue()); 57 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 58 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 59 auto elementType = sequentialType->getElementType(); 60 uint64_t numElements = sequentialType->getNumElements(); 61 auto *child = getLLVMConstant(elementType, splatAttr.getSplatValue(), loc); 62 if (llvmType->isVectorTy()) 63 return llvm::ConstantVector::getSplat(numElements, child); 64 if (llvmType->isArrayTy()) { 65 auto arrayType = llvm::ArrayType::get(elementType, numElements); 66 SmallVector<llvm::Constant *, 8> constants(numElements, child); 67 return llvm::ConstantArray::get(arrayType, constants); 68 } 69 } 70 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 71 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 72 auto elementType = sequentialType->getElementType(); 73 uint64_t numElements = sequentialType->getNumElements(); 74 SmallVector<llvm::Constant *, 8> constants; 75 constants.reserve(numElements); 76 for (auto n : elementsAttr.getValues<Attribute>()) { 77 constants.push_back(getLLVMConstant(elementType, n, loc)); 78 if (!constants.back()) 79 return nullptr; 80 } 81 if (llvmType->isVectorTy()) 82 return llvm::ConstantVector::get(constants); 83 if (llvmType->isArrayTy()) { 84 auto arrayType = llvm::ArrayType::get(elementType, numElements); 85 return llvm::ConstantArray::get(arrayType, constants); 86 } 87 } 88 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 89 return llvm::ConstantDataArray::get( 90 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 91 stringAttr.getValue().size()}); 92 } 93 emitError(loc, "unsupported constant value"); 94 return nullptr; 95 } 96 97 // Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 98 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 99 switch (p) { 100 case LLVM::ICmpPredicate::eq: 101 return llvm::CmpInst::Predicate::ICMP_EQ; 102 case LLVM::ICmpPredicate::ne: 103 return llvm::CmpInst::Predicate::ICMP_NE; 104 case LLVM::ICmpPredicate::slt: 105 return llvm::CmpInst::Predicate::ICMP_SLT; 106 case LLVM::ICmpPredicate::sle: 107 return llvm::CmpInst::Predicate::ICMP_SLE; 108 case LLVM::ICmpPredicate::sgt: 109 return llvm::CmpInst::Predicate::ICMP_SGT; 110 case LLVM::ICmpPredicate::sge: 111 return llvm::CmpInst::Predicate::ICMP_SGE; 112 case LLVM::ICmpPredicate::ult: 113 return llvm::CmpInst::Predicate::ICMP_ULT; 114 case LLVM::ICmpPredicate::ule: 115 return llvm::CmpInst::Predicate::ICMP_ULE; 116 case LLVM::ICmpPredicate::ugt: 117 return llvm::CmpInst::Predicate::ICMP_UGT; 118 case LLVM::ICmpPredicate::uge: 119 return llvm::CmpInst::Predicate::ICMP_UGE; 120 } 121 llvm_unreachable("incorrect comparison predicate"); 122 } 123 124 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 125 switch (p) { 126 case LLVM::FCmpPredicate::_false: 127 return llvm::CmpInst::Predicate::FCMP_FALSE; 128 case LLVM::FCmpPredicate::oeq: 129 return llvm::CmpInst::Predicate::FCMP_OEQ; 130 case LLVM::FCmpPredicate::ogt: 131 return llvm::CmpInst::Predicate::FCMP_OGT; 132 case LLVM::FCmpPredicate::oge: 133 return llvm::CmpInst::Predicate::FCMP_OGE; 134 case LLVM::FCmpPredicate::olt: 135 return llvm::CmpInst::Predicate::FCMP_OLT; 136 case LLVM::FCmpPredicate::ole: 137 return llvm::CmpInst::Predicate::FCMP_OLE; 138 case LLVM::FCmpPredicate::one: 139 return llvm::CmpInst::Predicate::FCMP_ONE; 140 case LLVM::FCmpPredicate::ord: 141 return llvm::CmpInst::Predicate::FCMP_ORD; 142 case LLVM::FCmpPredicate::ueq: 143 return llvm::CmpInst::Predicate::FCMP_UEQ; 144 case LLVM::FCmpPredicate::ugt: 145 return llvm::CmpInst::Predicate::FCMP_UGT; 146 case LLVM::FCmpPredicate::uge: 147 return llvm::CmpInst::Predicate::FCMP_UGE; 148 case LLVM::FCmpPredicate::ult: 149 return llvm::CmpInst::Predicate::FCMP_ULT; 150 case LLVM::FCmpPredicate::ule: 151 return llvm::CmpInst::Predicate::FCMP_ULE; 152 case LLVM::FCmpPredicate::une: 153 return llvm::CmpInst::Predicate::FCMP_UNE; 154 case LLVM::FCmpPredicate::uno: 155 return llvm::CmpInst::Predicate::FCMP_UNO; 156 case LLVM::FCmpPredicate::_true: 157 return llvm::CmpInst::Predicate::FCMP_TRUE; 158 } 159 llvm_unreachable("incorrect comparison predicate"); 160 } 161 162 // A helper to look up remapped operands in the value remapping table. 163 template <typename Range> 164 SmallVector<llvm::Value *, 8> ModuleTranslation::lookupValues(Range &&values) { 165 SmallVector<llvm::Value *, 8> remapped; 166 remapped.reserve(llvm::size(values)); 167 for (Value *v : values) { 168 remapped.push_back(valueMapping.lookup(v)); 169 } 170 return remapped; 171 } 172 173 // Given a single MLIR operation, create the corresponding LLVM IR operation 174 // using the `builder`. LLVM IR Builder does not have a generic interface so 175 // this has to be a long chain of `if`s calling different functions with a 176 // different number of arguments. 177 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 178 llvm::IRBuilder<> &builder) { 179 auto extractPosition = [](ArrayAttr attr) { 180 SmallVector<unsigned, 4> position; 181 position.reserve(attr.size()); 182 for (Attribute v : attr) 183 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 184 return position; 185 }; 186 187 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 188 189 // Emit function calls. If the "callee" attribute is present, this is a 190 // direct function call and we also need to look up the remapped function 191 // itself. Otherwise, this is an indirect call and the callee is the first 192 // operand, look it up as a normal value. Return the llvm::Value representing 193 // the function result, which may be of llvm::VoidTy type. 194 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 195 auto operands = lookupValues(op.getOperands()); 196 ArrayRef<llvm::Value *> operandsRef(operands); 197 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 198 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 199 operandsRef); 200 } else { 201 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 202 } 203 }; 204 205 // Emit calls. If the called function has a result, remap the corresponding 206 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 207 if (isa<LLVM::CallOp>(opInst)) { 208 llvm::Value *result = convertCall(opInst); 209 if (opInst.getNumResults() != 0) { 210 valueMapping[opInst.getResult(0)] = result; 211 return success(); 212 } 213 // Check that LLVM call returns void for 0-result functions. 214 return success(result->getType()->isVoidTy()); 215 } 216 217 // Emit branches. We need to look up the remapped blocks and ignore the block 218 // arguments that were transformed into PHI nodes. 219 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 220 builder.CreateBr(blockMapping[brOp.getSuccessor(0)]); 221 return success(); 222 } 223 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 224 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 225 blockMapping[condbrOp.getSuccessor(0)], 226 blockMapping[condbrOp.getSuccessor(1)]); 227 return success(); 228 } 229 230 // Emit addressof. We need to look up the global value referenced by the 231 // operation and store it in the MLIR-to-LLVM value mapping. This does not 232 // emit any LLVM instruction. 233 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 234 LLVM::GlobalOp global = addressOfOp.getGlobal(); 235 // The verifier should not have allowed this. 236 assert(global && "referencing an undefined global"); 237 238 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 239 return success(); 240 } 241 242 return opInst.emitError("unsupported or non-LLVM operation: ") 243 << opInst.getName(); 244 } 245 246 // Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 247 // to define values corresponding to the MLIR block arguments. These nodes 248 // are not connected to the source basic blocks, which may not exist yet. 249 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 250 llvm::IRBuilder<> builder(blockMapping[&bb]); 251 252 // Before traversing operations, make block arguments available through 253 // value remapping and PHI nodes, but do not add incoming edges for the PHI 254 // nodes just yet: those values may be defined by this or following blocks. 255 // This step is omitted if "ignoreArguments" is set. The arguments of the 256 // first block have been already made available through the remapping of 257 // LLVM function arguments. 258 if (!ignoreArguments) { 259 auto predecessors = bb.getPredecessors(); 260 unsigned numPredecessors = 261 std::distance(predecessors.begin(), predecessors.end()); 262 for (auto *arg : bb.getArguments()) { 263 auto wrappedType = arg->getType().dyn_cast<LLVM::LLVMType>(); 264 if (!wrappedType) 265 return emitError(bb.front().getLoc(), 266 "block argument does not have an LLVM type"); 267 llvm::Type *type = wrappedType.getUnderlyingType(); 268 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 269 valueMapping[arg] = phi; 270 } 271 } 272 273 // Traverse operations. 274 for (auto &op : bb) { 275 if (failed(convertOperation(op, builder))) 276 return failure(); 277 } 278 279 return success(); 280 } 281 282 // Convert the LLVM dialect linkage type to LLVM IR linkage type. 283 llvm::GlobalVariable::LinkageTypes convertLinkageType(LLVM::Linkage linkage) { 284 switch (linkage) { 285 case LLVM::Linkage::Private: 286 return llvm::GlobalValue::PrivateLinkage; 287 case LLVM::Linkage::Internal: 288 return llvm::GlobalValue::InternalLinkage; 289 case LLVM::Linkage::AvailableExternally: 290 return llvm::GlobalValue::AvailableExternallyLinkage; 291 case LLVM::Linkage::Linkonce: 292 return llvm::GlobalValue::LinkOnceAnyLinkage; 293 case LLVM::Linkage::Weak: 294 return llvm::GlobalValue::WeakAnyLinkage; 295 case LLVM::Linkage::Common: 296 return llvm::GlobalValue::CommonLinkage; 297 case LLVM::Linkage::Appending: 298 return llvm::GlobalValue::AppendingLinkage; 299 case LLVM::Linkage::ExternWeak: 300 return llvm::GlobalValue::ExternalWeakLinkage; 301 case LLVM::Linkage::LinkonceODR: 302 return llvm::GlobalValue::LinkOnceODRLinkage; 303 case LLVM::Linkage::WeakODR: 304 return llvm::GlobalValue::WeakODRLinkage; 305 case LLVM::Linkage::External: 306 return llvm::GlobalValue::ExternalLinkage; 307 } 308 llvm_unreachable("unknown linkage type"); 309 } 310 311 // Create named global variables that correspond to llvm.mlir.global 312 // definitions. 313 void ModuleTranslation::convertGlobals() { 314 for (auto op : mlirModule.getOps<LLVM::GlobalOp>()) { 315 llvm::Type *type = op.getType().getUnderlyingType(); 316 llvm::Constant *cst = llvm::UndefValue::get(type); 317 if (op.getValueOrNull()) { 318 // String attributes are treated separately because they cannot appear as 319 // in-function constants and are thus not supported by getLLVMConstant. 320 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 321 cst = llvm::ConstantDataArray::getString( 322 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 323 type = cst->getType(); 324 } else { 325 cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc()); 326 } 327 } else if (Block *initializer = op.getInitializerBlock()) { 328 llvm::IRBuilder<> builder(llvmModule->getContext()); 329 for (auto &op : initializer->without_terminator()) { 330 if (failed(convertOperation(op, builder)) || 331 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) { 332 emitError(op.getLoc(), "unemittable constant value"); 333 return; 334 } 335 } 336 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 337 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 338 } 339 340 auto linkage = convertLinkageType(op.linkage()); 341 bool anyExternalLinkage = 342 (linkage == llvm::GlobalVariable::ExternalLinkage || 343 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 344 auto addrSpace = op.addr_space().getLimitedValue(); 345 auto *var = new llvm::GlobalVariable( 346 *llvmModule, type, op.constant(), linkage, 347 anyExternalLinkage ? nullptr : cst, op.sym_name(), 348 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 349 350 globalsMapping.try_emplace(op, var); 351 } 352 } 353 354 // Get the SSA value passed to the current block from the terminator operation 355 // of its predecessor. 356 static Value *getPHISourceValue(Block *current, Block *pred, 357 unsigned numArguments, unsigned index) { 358 auto &terminator = *pred->getTerminator(); 359 if (isa<LLVM::BrOp>(terminator)) { 360 return terminator.getOperand(index); 361 } 362 363 // For conditional branches, we need to check if the current block is reached 364 // through the "true" or the "false" branch and take the relevant operands. 365 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 366 assert(condBranchOp && 367 "only branch operations can be terminators of a block that " 368 "has successors"); 369 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 370 "successors with arguments in LLVM conditional branches must be " 371 "different blocks"); 372 373 return condBranchOp.getSuccessor(0) == current 374 ? terminator.getSuccessorOperand(0, index) 375 : terminator.getSuccessorOperand(1, index); 376 } 377 378 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 379 // Skip the first block, it cannot be branched to and its arguments correspond 380 // to the arguments of the LLVM function. 381 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 382 Block *bb = &*it; 383 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 384 auto phis = llvmBB->phis(); 385 auto numArguments = bb->getNumArguments(); 386 assert(numArguments == std::distance(phis.begin(), phis.end())); 387 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 388 auto &phiNode = numberedPhiNode.value(); 389 unsigned index = numberedPhiNode.index(); 390 for (auto *pred : bb->getPredecessors()) { 391 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 392 bb, pred, numArguments, index)), 393 blockMapping.lookup(pred)); 394 } 395 } 396 } 397 } 398 399 // TODO(mlir-team): implement an iterative version 400 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 401 blocks.insert(b); 402 for (Block *bb : b->getSuccessors()) { 403 if (blocks.count(bb) == 0) 404 topologicalSortImpl(blocks, bb); 405 } 406 } 407 408 // Sort function blocks topologically. 409 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 410 // For each blocks that has not been visited yet (i.e. that has no 411 // predecessors), add it to the list and traverse its successors in DFS 412 // preorder. 413 llvm::SetVector<Block *> blocks; 414 for (Block &b : f.getBlocks()) { 415 if (blocks.count(&b) == 0) 416 topologicalSortImpl(blocks, &b); 417 } 418 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 419 420 return blocks; 421 } 422 423 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 424 // Clear the block and value mappings, they are only relevant within one 425 // function. 426 blockMapping.clear(); 427 valueMapping.clear(); 428 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 429 // Add function arguments to the value remapping table. 430 // If there was noalias info then we decorate each argument accordingly. 431 unsigned int argIdx = 0; 432 for (const auto &kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 433 llvm::Argument &llvmArg = std::get<1>(kvp); 434 BlockArgument *mlirArg = std::get<0>(kvp); 435 436 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 437 // NB: Attribute already verified to be boolean, so check if we can indeed 438 // attach the attribute to this argument, based on its type. 439 auto argTy = mlirArg->getType().dyn_cast<LLVM::LLVMType>(); 440 if (!argTy.getUnderlyingType()->isPointerTy()) 441 return func.emitError( 442 "llvm.noalias attribute attached to LLVM non-pointer argument"); 443 if (attr.getValue()) 444 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 445 } 446 valueMapping[mlirArg] = &llvmArg; 447 argIdx++; 448 } 449 450 // First, create all blocks so we can jump to them. 451 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 452 for (auto &bb : func) { 453 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 454 llvmBB->insertInto(llvmFunc); 455 blockMapping[&bb] = llvmBB; 456 } 457 458 // Then, convert blocks one by one in topological order to ensure defs are 459 // converted before uses. 460 auto blocks = topologicalSort(func); 461 for (auto indexedBB : llvm::enumerate(blocks)) { 462 auto *bb = indexedBB.value(); 463 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 464 return failure(); 465 } 466 467 // Finally, after all blocks have been traversed and values mapped, connect 468 // the PHI nodes to the results of preceding blocks. 469 connectPHINodes(func); 470 return success(); 471 } 472 473 LogicalResult ModuleTranslation::checkSupportedModuleOps(ModuleOp m) { 474 for (Operation &o : m.getBody()->getOperations()) 475 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 476 !isa<ModuleTerminatorOp>(&o)) 477 return o.emitOpError("unsupported module-level operation"); 478 return success(); 479 } 480 481 LogicalResult ModuleTranslation::convertFunctions() { 482 // Declare all functions first because there may be function calls that form a 483 // call graph with cycles. 484 for (auto function : mlirModule.getOps<LLVMFuncOp>()) { 485 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 486 function.getName(), 487 llvm::cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 488 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 489 functionMapping[function.getName()] = 490 cast<llvm::Function>(llvmFuncCst.getCallee()); 491 } 492 493 // Convert functions. 494 for (auto function : mlirModule.getOps<LLVMFuncOp>()) { 495 // Ignore external functions. 496 if (function.isExternal()) 497 continue; 498 499 if (failed(convertOneFunction(function))) 500 return failure(); 501 } 502 503 return success(); 504 } 505 506 std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(ModuleOp m) { 507 auto *dialect = m.getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 508 assert(dialect && "LLVM dialect must be registered"); 509 510 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 511 if (!llvmModule) 512 return nullptr; 513 514 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 515 llvm::IRBuilder<> builder(llvmContext); 516 517 // Inject declarations for `malloc` and `free` functions that can be used in 518 // memref allocation/deallocation coming from standard ops lowering. 519 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 520 builder.getInt64Ty()); 521 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 522 builder.getInt8PtrTy()); 523 524 return llvmModule; 525 } 526 527 } // namespace LLVM 528 } // namespace mlir 529