1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/ModuleUtils.h" 46 47 using namespace mlir; 48 using namespace mlir::LLVM; 49 using namespace mlir::LLVM::detail; 50 51 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 52 53 /// Builds a constant of a sequential LLVM type `type`, potentially containing 54 /// other sequential types recursively, from the individual constant values 55 /// provided in `constants`. `shape` contains the number of elements in nested 56 /// sequential types. Reports errors at `loc` and returns nullptr on error. 57 static llvm::Constant * 58 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 59 ArrayRef<int64_t> shape, llvm::Type *type, 60 Location loc) { 61 if (shape.empty()) { 62 llvm::Constant *result = constants.front(); 63 constants = constants.drop_front(); 64 return result; 65 } 66 67 llvm::Type *elementType; 68 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 69 elementType = arrayTy->getElementType(); 70 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 71 elementType = vectorTy->getElementType(); 72 } else { 73 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 74 return nullptr; 75 } 76 77 SmallVector<llvm::Constant *, 8> nested; 78 nested.reserve(shape.front()); 79 for (int64_t i = 0; i < shape.front(); ++i) { 80 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 81 elementType, loc)); 82 if (!nested.back()) 83 return nullptr; 84 } 85 86 if (shape.size() == 1 && type->isVectorTy()) 87 return llvm::ConstantVector::get(nested); 88 return llvm::ConstantArray::get( 89 llvm::ArrayType::get(elementType, shape.front()), nested); 90 } 91 92 /// Returns the first non-sequential type nested in sequential types. 93 static llvm::Type *getInnermostElementType(llvm::Type *type) { 94 do { 95 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 96 type = arrayTy->getElementType(); 97 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 98 type = vectorTy->getElementType(); 99 } else { 100 return type; 101 } 102 } while (true); 103 } 104 105 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 106 /// storage if possible. This supports elements attributes of tensor or vector 107 /// type and avoids constructing separate objects for individual values of the 108 /// innermost dimension. Constants for other dimensions are still constructed 109 /// recursively. Returns null if constructing from raw data is not supported for 110 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 111 /// other errors at `loc`. 112 static llvm::Constant * 113 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 114 llvm::Type *llvmType, 115 const ModuleTranslation &moduleTranslation) { 116 if (!denseElementsAttr) 117 return nullptr; 118 119 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 120 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 121 return nullptr; 122 123 ShapedType type = denseElementsAttr.getType(); 124 if (type.getNumElements() == 0) 125 return nullptr; 126 127 // Compute the shape of all dimensions but the innermost. Note that the 128 // innermost dimension may be that of the vector element type. 129 bool hasVectorElementType = type.getElementType().isa<VectorType>(); 130 unsigned numAggregates = 131 denseElementsAttr.getNumElements() / 132 (hasVectorElementType ? 1 133 : denseElementsAttr.getType().getShape().back()); 134 ArrayRef<int64_t> outerShape = type.getShape(); 135 if (!hasVectorElementType) 136 outerShape = outerShape.drop_back(); 137 138 // Handle the case of vector splat, LLVM has special support for it. 139 if (denseElementsAttr.isSplat() && 140 (type.isa<VectorType>() || hasVectorElementType)) { 141 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 142 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, 143 moduleTranslation, /*isTopLevel=*/false); 144 llvm::Constant *splatVector = 145 llvm::ConstantDataVector::getSplat(0, splatValue); 146 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 147 ArrayRef<llvm::Constant *> constantsRef = constants; 148 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 149 } 150 if (denseElementsAttr.isSplat()) 151 return nullptr; 152 153 // In case of non-splat, create a constructor for the innermost constant from 154 // a piece of raw data. 155 std::function<llvm::Constant *(StringRef)> buildCstData; 156 if (type.isa<TensorType>()) { 157 auto vectorElementType = type.getElementType().dyn_cast<VectorType>(); 158 if (vectorElementType && vectorElementType.getRank() == 1) { 159 buildCstData = [&](StringRef data) { 160 return llvm::ConstantDataVector::getRaw( 161 data, vectorElementType.getShape().back(), innermostLLVMType); 162 }; 163 } else if (!vectorElementType) { 164 buildCstData = [&](StringRef data) { 165 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 166 innermostLLVMType); 167 }; 168 } 169 } else if (type.isa<VectorType>()) { 170 buildCstData = [&](StringRef data) { 171 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 172 innermostLLVMType); 173 }; 174 } 175 if (!buildCstData) 176 return nullptr; 177 178 // Create innermost constants and defer to the default constant creation 179 // mechanism for other dimensions. 180 SmallVector<llvm::Constant *> constants; 181 unsigned aggregateSize = denseElementsAttr.getType().getShape().back() * 182 (innermostLLVMType->getScalarSizeInBits() / 8); 183 constants.reserve(numAggregates); 184 for (unsigned i = 0; i < numAggregates; ++i) { 185 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 186 aggregateSize); 187 constants.push_back(buildCstData(data)); 188 } 189 190 ArrayRef<llvm::Constant *> constantsRef = constants; 191 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 192 } 193 194 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 195 /// This currently supports integer, floating point, splat and dense element 196 /// attributes and combinations thereof. Also, an array attribute with two 197 /// elements is supported to represent a complex constant. In case of error, 198 /// report it to `loc` and return nullptr. 199 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 200 llvm::Type *llvmType, Attribute attr, Location loc, 201 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 202 if (!attr) 203 return llvm::UndefValue::get(llvmType); 204 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 205 if (!isTopLevel) { 206 emitError(loc, "nested struct types are not supported in constants"); 207 return nullptr; 208 } 209 auto arrayAttr = attr.cast<ArrayAttr>(); 210 llvm::Type *elementType = structType->getElementType(0); 211 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 212 moduleTranslation, false); 213 if (!real) 214 return nullptr; 215 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 216 moduleTranslation, false); 217 if (!imag) 218 return nullptr; 219 return llvm::ConstantStruct::get(structType, {real, imag}); 220 } 221 // For integer types, we allow a mismatch in sizes as the index type in 222 // MLIR might have a different size than the index type in the LLVM module. 223 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 224 return llvm::ConstantInt::get( 225 llvmType, 226 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 227 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 228 if (llvmType != 229 llvm::Type::getFloatingPointTy(llvmType->getContext(), 230 floatAttr.getValue().getSemantics())) { 231 emitError(loc, "FloatAttr does not match expected type of the constant"); 232 return nullptr; 233 } 234 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 235 } 236 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 237 return llvm::ConstantExpr::getBitCast( 238 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 239 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 240 llvm::Type *elementType; 241 uint64_t numElements; 242 bool isScalable = false; 243 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 244 elementType = arrayTy->getElementType(); 245 numElements = arrayTy->getNumElements(); 246 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { 247 elementType = fVectorTy->getElementType(); 248 numElements = fVectorTy->getNumElements(); 249 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { 250 elementType = sVectorTy->getElementType(); 251 numElements = sVectorTy->getMinNumElements(); 252 isScalable = true; 253 } else { 254 llvm_unreachable("unrecognized constant vector type"); 255 } 256 // Splat value is a scalar. Extract it only if the element type is not 257 // another sequence type. The recursion terminates because each step removes 258 // one outer sequential type. 259 bool elementTypeSequential = 260 isa<llvm::ArrayType, llvm::VectorType>(elementType); 261 llvm::Constant *child = getLLVMConstant( 262 elementType, 263 elementTypeSequential ? splatAttr 264 : splatAttr.getSplatValue<Attribute>(), 265 loc, moduleTranslation, false); 266 if (!child) 267 return nullptr; 268 if (llvmType->isVectorTy()) 269 return llvm::ConstantVector::getSplat( 270 llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child); 271 if (llvmType->isArrayTy()) { 272 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 273 SmallVector<llvm::Constant *, 8> constants(numElements, child); 274 return llvm::ConstantArray::get(arrayType, constants); 275 } 276 } 277 278 // Try using raw elements data if possible. 279 if (llvm::Constant *result = 280 convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(), 281 llvmType, moduleTranslation)) { 282 return result; 283 } 284 285 // Fall back to element-by-element construction otherwise. 286 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 287 assert(elementsAttr.getType().hasStaticShape()); 288 assert(!elementsAttr.getType().getShape().empty() && 289 "unexpected empty elements attribute shape"); 290 291 SmallVector<llvm::Constant *, 8> constants; 292 constants.reserve(elementsAttr.getNumElements()); 293 llvm::Type *innermostType = getInnermostElementType(llvmType); 294 for (auto n : elementsAttr.getValues<Attribute>()) { 295 constants.push_back( 296 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 297 if (!constants.back()) 298 return nullptr; 299 } 300 ArrayRef<llvm::Constant *> constantsRef = constants; 301 llvm::Constant *result = buildSequentialConstant( 302 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 303 assert(constantsRef.empty() && "did not consume all elemental constants"); 304 return result; 305 } 306 307 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 308 return llvm::ConstantDataArray::get( 309 moduleTranslation.getLLVMContext(), 310 ArrayRef<char>{stringAttr.getValue().data(), 311 stringAttr.getValue().size()}); 312 } 313 emitError(loc, "unsupported constant value"); 314 return nullptr; 315 } 316 317 ModuleTranslation::ModuleTranslation(Operation *module, 318 std::unique_ptr<llvm::Module> llvmModule) 319 : mlirModule(module), llvmModule(std::move(llvmModule)), 320 debugTranslation( 321 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 322 typeTranslator(this->llvmModule->getContext()), 323 iface(module->getContext()) { 324 assert(satisfiesLLVMModule(mlirModule) && 325 "mlirModule should honor LLVM's module semantics."); 326 } 327 ModuleTranslation::~ModuleTranslation() { 328 if (ompBuilder) 329 ompBuilder->finalize(); 330 } 331 332 void ModuleTranslation::forgetMapping(Region ®ion) { 333 SmallVector<Region *> toProcess; 334 toProcess.push_back(®ion); 335 while (!toProcess.empty()) { 336 Region *current = toProcess.pop_back_val(); 337 for (Block &block : *current) { 338 blockMapping.erase(&block); 339 for (Value arg : block.getArguments()) 340 valueMapping.erase(arg); 341 for (Operation &op : block) { 342 for (Value value : op.getResults()) 343 valueMapping.erase(value); 344 if (op.hasSuccessors()) 345 branchMapping.erase(&op); 346 if (isa<LLVM::GlobalOp>(op)) 347 globalsMapping.erase(&op); 348 accessGroupMetadataMapping.erase(&op); 349 llvm::append_range( 350 toProcess, 351 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 352 } 353 } 354 } 355 } 356 357 /// Get the SSA value passed to the current block from the terminator operation 358 /// of its predecessor. 359 static Value getPHISourceValue(Block *current, Block *pred, 360 unsigned numArguments, unsigned index) { 361 Operation &terminator = *pred->getTerminator(); 362 if (isa<LLVM::BrOp>(terminator)) 363 return terminator.getOperand(index); 364 365 #ifndef NDEBUG 366 llvm::SmallPtrSet<Block *, 4> seenSuccessors; 367 for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) { 368 Block *successor = terminator.getSuccessor(i); 369 auto branch = cast<BranchOpInterface>(terminator); 370 Optional<OperandRange> successorOperands = branch.getSuccessorOperands(i); 371 assert( 372 (!seenSuccessors.contains(successor) || 373 (successorOperands && successorOperands->empty())) && 374 "successors with arguments in LLVM branches must be different blocks"); 375 seenSuccessors.insert(successor); 376 } 377 #endif 378 379 // For instructions that branch based on a condition value, we need to take 380 // the operands for the branch that was taken. 381 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 382 // For conditional branches, we take the operands from either the "true" or 383 // the "false" branch. 384 return condBranchOp.getSuccessor(0) == current 385 ? condBranchOp.getTrueDestOperands()[index] 386 : condBranchOp.getFalseDestOperands()[index]; 387 } 388 389 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 390 // For switches, we take the operands from either the default case, or from 391 // the case branch that was taken. 392 if (switchOp.getDefaultDestination() == current) 393 return switchOp.getDefaultOperands()[index]; 394 for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations())) 395 if (i.value() == current) 396 return switchOp.getCaseOperands(i.index())[index]; 397 } 398 399 if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) { 400 return invokeOp.getNormalDest() == current 401 ? invokeOp.getNormalDestOperands()[index] 402 : invokeOp.getUnwindDestOperands()[index]; 403 } 404 405 llvm_unreachable( 406 "only branch, switch or invoke operations can be terminators " 407 "of a block that has successors"); 408 } 409 410 /// Connect the PHI nodes to the results of preceding blocks. 411 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 412 const ModuleTranslation &state) { 413 // Skip the first block, it cannot be branched to and its arguments correspond 414 // to the arguments of the LLVM function. 415 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 416 ++it) { 417 Block *bb = &*it; 418 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 419 auto phis = llvmBB->phis(); 420 auto numArguments = bb->getNumArguments(); 421 assert(numArguments == std::distance(phis.begin(), phis.end())); 422 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 423 auto &phiNode = numberedPhiNode.value(); 424 unsigned index = numberedPhiNode.index(); 425 for (auto *pred : bb->getPredecessors()) { 426 // Find the LLVM IR block that contains the converted terminator 427 // instruction and use it in the PHI node. Note that this block is not 428 // necessarily the same as state.lookupBlock(pred), some operations 429 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 430 // split the blocks. 431 llvm::Instruction *terminator = 432 state.lookupBranch(pred->getTerminator()); 433 assert(terminator && "missing the mapping for a terminator"); 434 phiNode.addIncoming( 435 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 436 terminator->getParent()); 437 } 438 } 439 } 440 } 441 442 /// Sort function blocks topologically. 443 SetVector<Block *> 444 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 445 // For each block that has not been visited yet (i.e. that has no 446 // predecessors), add it to the list as well as its successors. 447 SetVector<Block *> blocks; 448 for (Block &b : region) { 449 if (blocks.count(&b) == 0) { 450 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 451 blocks.insert(traversal.begin(), traversal.end()); 452 } 453 } 454 assert(blocks.size() == region.getBlocks().size() && 455 "some blocks are not sorted"); 456 457 return blocks; 458 } 459 460 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 461 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 462 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 463 llvm::Module *module = builder.GetInsertBlock()->getModule(); 464 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 465 return builder.CreateCall(fn, args); 466 } 467 468 /// Given a single MLIR operation, create the corresponding LLVM IR operation 469 /// using the `builder`. 470 LogicalResult 471 ModuleTranslation::convertOperation(Operation &op, 472 llvm::IRBuilderBase &builder) { 473 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 474 if (!opIface) 475 return op.emitError("cannot be converted to LLVM IR: missing " 476 "`LLVMTranslationDialectInterface` registration for " 477 "dialect for op: ") 478 << op.getName(); 479 480 if (failed(opIface->convertOperation(&op, builder, *this))) 481 return op.emitError("LLVM Translation failed for operation: ") 482 << op.getName(); 483 484 return convertDialectAttributes(&op); 485 } 486 487 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 488 /// to define values corresponding to the MLIR block arguments. These nodes 489 /// are not connected to the source basic blocks, which may not exist yet. Uses 490 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 491 /// been created for `bb` and included in the block mapping. Inserts new 492 /// instructions at the end of the block and leaves `builder` in a state 493 /// suitable for further insertion into the end of the block. 494 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 495 llvm::IRBuilderBase &builder) { 496 builder.SetInsertPoint(lookupBlock(&bb)); 497 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 498 499 // Before traversing operations, make block arguments available through 500 // value remapping and PHI nodes, but do not add incoming edges for the PHI 501 // nodes just yet: those values may be defined by this or following blocks. 502 // This step is omitted if "ignoreArguments" is set. The arguments of the 503 // first block have been already made available through the remapping of 504 // LLVM function arguments. 505 if (!ignoreArguments) { 506 auto predecessors = bb.getPredecessors(); 507 unsigned numPredecessors = 508 std::distance(predecessors.begin(), predecessors.end()); 509 for (auto arg : bb.getArguments()) { 510 auto wrappedType = arg.getType(); 511 if (!isCompatibleType(wrappedType)) 512 return emitError(bb.front().getLoc(), 513 "block argument does not have an LLVM type"); 514 llvm::Type *type = convertType(wrappedType); 515 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 516 mapValue(arg, phi); 517 } 518 } 519 520 // Traverse operations. 521 for (auto &op : bb) { 522 // Set the current debug location within the builder. 523 builder.SetCurrentDebugLocation( 524 debugTranslation->translateLoc(op.getLoc(), subprogram)); 525 526 if (failed(convertOperation(op, builder))) 527 return failure(); 528 } 529 530 return success(); 531 } 532 533 /// A helper method to get the single Block in an operation honoring LLVM's 534 /// module requirements. 535 static Block &getModuleBody(Operation *module) { 536 return module->getRegion(0).front(); 537 } 538 539 /// A helper method to decide if a constant must not be set as a global variable 540 /// initializer. For an external linkage variable, the variable with an 541 /// initializer is considered externally visible and defined in this module, the 542 /// variable without an initializer is externally available and is defined 543 /// elsewhere. 544 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 545 llvm::Constant *cst) { 546 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 547 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 548 } 549 550 /// Sets the runtime preemption specifier of `gv` to dso_local if 551 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 552 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 553 llvm::GlobalValue *gv) { 554 if (dsoLocalRequested) 555 gv->setDSOLocal(true); 556 } 557 558 /// Create named global variables that correspond to llvm.mlir.global 559 /// definitions. Convert llvm.global_ctors and global_dtors ops. 560 LogicalResult ModuleTranslation::convertGlobals() { 561 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 562 llvm::Type *type = convertType(op.getType()); 563 llvm::Constant *cst = nullptr; 564 if (op.getValueOrNull()) { 565 // String attributes are treated separately because they cannot appear as 566 // in-function constants and are thus not supported by getLLVMConstant. 567 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 568 cst = llvm::ConstantDataArray::getString( 569 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 570 type = cst->getType(); 571 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 572 *this))) { 573 return failure(); 574 } 575 } 576 577 auto linkage = convertLinkageToLLVM(op.getLinkage()); 578 auto addrSpace = op.getAddrSpace(); 579 580 // LLVM IR requires constant with linkage other than external or weak 581 // external to have initializers. If MLIR does not provide an initializer, 582 // default to undef. 583 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 584 if (!dropInitializer && !cst) 585 cst = llvm::UndefValue::get(type); 586 else if (dropInitializer && cst) 587 cst = nullptr; 588 589 auto *var = new llvm::GlobalVariable( 590 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 591 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 592 593 if (op.getUnnamedAddr().hasValue()) 594 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 595 596 if (op.getSection().hasValue()) 597 var->setSection(*op.getSection()); 598 599 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 600 601 Optional<uint64_t> alignment = op.getAlignment(); 602 if (alignment.hasValue()) 603 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 604 605 globalsMapping.try_emplace(op, var); 606 } 607 608 // Convert global variable bodies. This is done after all global variables 609 // have been created in LLVM IR because a global body may refer to another 610 // global or itself. So all global variables need to be mapped first. 611 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 612 if (Block *initializer = op.getInitializerBlock()) { 613 llvm::IRBuilder<> builder(llvmModule->getContext()); 614 for (auto &op : initializer->without_terminator()) { 615 if (failed(convertOperation(op, builder)) || 616 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 617 return emitError(op.getLoc(), "unemittable constant value"); 618 } 619 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 620 llvm::Constant *cst = 621 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 622 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 623 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 624 global->setInitializer(cst); 625 } 626 } 627 628 // Convert llvm.mlir.global_ctors and dtors. 629 for (Operation &op : getModuleBody(mlirModule)) { 630 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 631 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 632 if (!ctorOp && !dtorOp) 633 continue; 634 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) 635 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); 636 auto appendGlobalFn = 637 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 638 for (auto symbolAndPriority : range) { 639 llvm::Function *f = lookupFunction( 640 std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue()); 641 appendGlobalFn( 642 *llvmModule, f, 643 std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(), 644 /*Data=*/nullptr); 645 } 646 } 647 648 return success(); 649 } 650 651 /// Attempts to add an attribute identified by `key`, optionally with the given 652 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 653 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 654 /// otherwise keep it as a string attribute. Performs additional checks for 655 /// attributes known to have or not have a value in order to avoid assertions 656 /// inside LLVM upon construction. 657 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 658 llvm::Function *llvmFunc, 659 StringRef key, 660 StringRef value = StringRef()) { 661 auto kind = llvm::Attribute::getAttrKindFromName(key); 662 if (kind == llvm::Attribute::None) { 663 llvmFunc->addFnAttr(key, value); 664 return success(); 665 } 666 667 if (llvm::Attribute::isIntAttrKind(kind)) { 668 if (value.empty()) 669 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 670 671 int result; 672 if (!value.getAsInteger(/*Radix=*/0, result)) 673 llvmFunc->addFnAttr( 674 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 675 else 676 llvmFunc->addFnAttr(key, value); 677 return success(); 678 } 679 680 if (!value.empty()) 681 return emitError(loc) << "LLVM attribute '" << key 682 << "' does not expect a value, found '" << value 683 << "'"; 684 685 llvmFunc->addFnAttr(kind); 686 return success(); 687 } 688 689 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 690 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 691 /// to be an array attribute containing either string attributes, treated as 692 /// value-less LLVM attributes, or array attributes containing two string 693 /// attributes, with the first string being the name of the corresponding LLVM 694 /// attribute and the second string beings its value. Note that even integer 695 /// attributes are expected to have their values expressed as strings. 696 static LogicalResult 697 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 698 llvm::Function *llvmFunc) { 699 if (!attributes) 700 return success(); 701 702 for (Attribute attr : *attributes) { 703 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 704 if (failed( 705 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 706 return failure(); 707 continue; 708 } 709 710 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 711 if (!arrayAttr || arrayAttr.size() != 2) 712 return emitError(loc) 713 << "expected 'passthrough' to contain string or array attributes"; 714 715 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 716 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 717 if (!keyAttr || !valueAttr) 718 return emitError(loc) 719 << "expected arrays within 'passthrough' to contain two strings"; 720 721 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 722 valueAttr.getValue()))) 723 return failure(); 724 } 725 return success(); 726 } 727 728 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 729 // Clear the block, branch value mappings, they are only relevant within one 730 // function. 731 blockMapping.clear(); 732 valueMapping.clear(); 733 branchMapping.clear(); 734 llvm::Function *llvmFunc = lookupFunction(func.getName()); 735 736 // Translate the debug information for this function. 737 debugTranslation->translate(func, *llvmFunc); 738 739 // Add function arguments to the value remapping table. 740 // If there was noalias info then we decorate each argument accordingly. 741 unsigned int argIdx = 0; 742 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 743 llvm::Argument &llvmArg = std::get<1>(kvp); 744 BlockArgument mlirArg = std::get<0>(kvp); 745 746 if (auto attr = func.getArgAttrOfType<UnitAttr>( 747 argIdx, LLVMDialect::getNoAliasAttrName())) { 748 // NB: Attribute already verified to be boolean, so check if we can indeed 749 // attach the attribute to this argument, based on its type. 750 auto argTy = mlirArg.getType(); 751 if (!argTy.isa<LLVM::LLVMPointerType>()) 752 return func.emitError( 753 "llvm.noalias attribute attached to LLVM non-pointer argument"); 754 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 755 } 756 757 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 758 argIdx, LLVMDialect::getAlignAttrName())) { 759 // NB: Attribute already verified to be int, so check if we can indeed 760 // attach the attribute to this argument, based on its type. 761 auto argTy = mlirArg.getType(); 762 if (!argTy.isa<LLVM::LLVMPointerType>()) 763 return func.emitError( 764 "llvm.align attribute attached to LLVM non-pointer argument"); 765 llvmArg.addAttrs( 766 llvm::AttrBuilder(llvmArg.getContext()).addAlignmentAttr(llvm::Align(attr.getInt()))); 767 } 768 769 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 770 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMPointerType>(); 771 if (!argTy) 772 return func.emitError( 773 "llvm.sret attribute attached to LLVM non-pointer argument"); 774 llvmArg.addAttrs( 775 llvm::AttrBuilder(llvmArg.getContext()) 776 .addStructRetAttr(convertType(argTy.getElementType()))); 777 } 778 779 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 780 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMPointerType>(); 781 if (!argTy) 782 return func.emitError( 783 "llvm.byval attribute attached to LLVM non-pointer argument"); 784 llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext()) 785 .addByValAttr(convertType(argTy.getElementType()))); 786 } 787 788 mapValue(mlirArg, &llvmArg); 789 argIdx++; 790 } 791 792 // Check the personality and set it. 793 if (func.getPersonality().hasValue()) { 794 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 795 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 796 func.getLoc(), *this)) 797 llvmFunc->setPersonalityFn(pfunc); 798 } 799 800 if (auto gc = func.getGarbageCollector()) 801 llvmFunc->setGC(gc->str()); 802 803 // First, create all blocks so we can jump to them. 804 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 805 for (auto &bb : func) { 806 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 807 llvmBB->insertInto(llvmFunc); 808 mapBlock(&bb, llvmBB); 809 } 810 811 // Then, convert blocks one by one in topological order to ensure defs are 812 // converted before uses. 813 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 814 for (Block *bb : blocks) { 815 llvm::IRBuilder<> builder(llvmContext); 816 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 817 return failure(); 818 } 819 820 // After all blocks have been traversed and values mapped, connect the PHI 821 // nodes to the results of preceding blocks. 822 detail::connectPHINodes(func.getBody(), *this); 823 824 // Finally, convert dialect attributes attached to the function. 825 return convertDialectAttributes(func); 826 } 827 828 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 829 for (NamedAttribute attribute : op->getDialectAttrs()) 830 if (failed(iface.amendOperation(op, attribute, *this))) 831 return failure(); 832 return success(); 833 } 834 835 LogicalResult ModuleTranslation::convertFunctionSignatures() { 836 // Declare all functions first because there may be function calls that form a 837 // call graph with cycles, or global initializers that reference functions. 838 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 839 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 840 function.getName(), 841 cast<llvm::FunctionType>(convertType(function.getType()))); 842 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 843 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 844 mapFunction(function.getName(), llvmFunc); 845 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 846 847 // Forward the pass-through attributes to LLVM. 848 if (failed(forwardPassthroughAttributes( 849 function.getLoc(), function.getPassthrough(), llvmFunc))) 850 return failure(); 851 } 852 853 return success(); 854 } 855 856 LogicalResult ModuleTranslation::convertFunctions() { 857 // Convert functions. 858 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 859 // Ignore external functions. 860 if (function.isExternal()) 861 continue; 862 863 if (failed(convertOneFunction(function))) 864 return failure(); 865 } 866 867 return success(); 868 } 869 870 llvm::MDNode * 871 ModuleTranslation::getAccessGroup(Operation &opInst, 872 SymbolRefAttr accessGroupRef) const { 873 auto metadataName = accessGroupRef.getRootReference(); 874 auto accessGroupName = accessGroupRef.getLeafReference(); 875 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 876 opInst.getParentOp(), metadataName); 877 auto *accessGroupOp = 878 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 879 return accessGroupMetadataMapping.lookup(accessGroupOp); 880 } 881 882 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 883 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 884 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 885 llvm::LLVMContext &ctx = llvmModule->getContext(); 886 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 887 accessGroupMetadataMapping.insert({op, accessGroup}); 888 }); 889 }); 890 return success(); 891 } 892 893 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 894 llvm::Instruction *inst) { 895 auto accessGroups = 896 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 897 if (accessGroups && !accessGroups.empty()) { 898 llvm::Module *module = inst->getModule(); 899 SmallVector<llvm::Metadata *> metadatas; 900 for (SymbolRefAttr accessGroupRef : 901 accessGroups.getAsRange<SymbolRefAttr>()) 902 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 903 904 llvm::MDNode *unionMD = nullptr; 905 if (metadatas.size() == 1) 906 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 907 else if (metadatas.size() >= 2) 908 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 909 910 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 911 } 912 } 913 914 LogicalResult ModuleTranslation::createAliasScopeMetadata() { 915 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 916 // Create the domains first, so they can be reference below in the scopes. 917 DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping; 918 metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) { 919 llvm::LLVMContext &ctx = llvmModule->getContext(); 920 llvm::SmallVector<llvm::Metadata *, 2> operands; 921 operands.push_back({}); // Placeholder for self-reference 922 if (Optional<StringRef> description = op.getDescription()) 923 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 924 llvm::MDNode *domain = llvm::MDNode::get(ctx, operands); 925 domain->replaceOperandWith(0, domain); // Self-reference for uniqueness 926 aliasScopeDomainMetadataMapping.insert({op, domain}); 927 }); 928 929 // Now create the scopes, referencing the domains created above. 930 metadatas.walk([&](LLVM::AliasScopeMetadataOp op) { 931 llvm::LLVMContext &ctx = llvmModule->getContext(); 932 assert(isa<LLVM::MetadataOp>(op->getParentOp())); 933 auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp()); 934 Operation *domainOp = 935 SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr()); 936 llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp); 937 assert(domain && "Scope's domain should already be valid"); 938 llvm::SmallVector<llvm::Metadata *, 3> operands; 939 operands.push_back({}); // Placeholder for self-reference 940 operands.push_back(domain); 941 if (Optional<StringRef> description = op.getDescription()) 942 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 943 llvm::MDNode *scope = llvm::MDNode::get(ctx, operands); 944 scope->replaceOperandWith(0, scope); // Self-reference for uniqueness 945 aliasScopeMetadataMapping.insert({op, scope}); 946 }); 947 }); 948 return success(); 949 } 950 951 llvm::MDNode * 952 ModuleTranslation::getAliasScope(Operation &opInst, 953 SymbolRefAttr aliasScopeRef) const { 954 StringAttr metadataName = aliasScopeRef.getRootReference(); 955 StringAttr scopeName = aliasScopeRef.getLeafReference(); 956 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 957 opInst.getParentOp(), metadataName); 958 Operation *aliasScopeOp = 959 SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName); 960 return aliasScopeMetadataMapping.lookup(aliasScopeOp); 961 } 962 963 void ModuleTranslation::setAliasScopeMetadata(Operation *op, 964 llvm::Instruction *inst) { 965 auto populateScopeMetadata = [this, op, inst](StringRef attrName, 966 StringRef llvmMetadataName) { 967 auto scopes = op->getAttrOfType<ArrayAttr>(attrName); 968 if (!scopes || scopes.empty()) 969 return; 970 llvm::Module *module = inst->getModule(); 971 SmallVector<llvm::Metadata *> scopeMDs; 972 for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>()) 973 scopeMDs.push_back(getAliasScope(*op, scopeRef)); 974 llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs); 975 inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD); 976 }; 977 978 populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope"); 979 populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias"); 980 } 981 982 llvm::Type *ModuleTranslation::convertType(Type type) { 983 return typeTranslator.translateType(type); 984 } 985 986 /// A helper to look up remapped operands in the value remapping table. 987 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 988 SmallVector<llvm::Value *> remapped; 989 remapped.reserve(values.size()); 990 for (Value v : values) 991 remapped.push_back(lookupValue(v)); 992 return remapped; 993 } 994 995 const llvm::DILocation * 996 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 997 return debugTranslation->translateLoc(loc, scope); 998 } 999 1000 llvm::NamedMDNode * 1001 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 1002 return llvmModule->getOrInsertNamedMetadata(name); 1003 } 1004 1005 void ModuleTranslation::StackFrame::anchor() {} 1006 1007 static std::unique_ptr<llvm::Module> 1008 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 1009 StringRef name) { 1010 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 1011 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 1012 if (auto dataLayoutAttr = 1013 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 1014 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 1015 if (auto targetTripleAttr = 1016 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 1017 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 1018 1019 // Inject declarations for `malloc` and `free` functions that can be used in 1020 // memref allocation/deallocation coming from standard ops lowering. 1021 llvm::IRBuilder<> builder(llvmContext); 1022 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 1023 builder.getInt64Ty()); 1024 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 1025 builder.getInt8PtrTy()); 1026 1027 return llvmModule; 1028 } 1029 1030 std::unique_ptr<llvm::Module> 1031 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1032 StringRef name) { 1033 if (!satisfiesLLVMModule(module)) 1034 return nullptr; 1035 std::unique_ptr<llvm::Module> llvmModule = 1036 prepareLLVMModule(module, llvmContext, name); 1037 1038 LLVM::ensureDistinctSuccessors(module); 1039 1040 ModuleTranslation translator(module, std::move(llvmModule)); 1041 if (failed(translator.convertFunctionSignatures())) 1042 return nullptr; 1043 if (failed(translator.convertGlobals())) 1044 return nullptr; 1045 if (failed(translator.createAccessGroupMetadata())) 1046 return nullptr; 1047 if (failed(translator.createAliasScopeMetadata())) 1048 return nullptr; 1049 if (failed(translator.convertFunctions())) 1050 return nullptr; 1051 1052 // Convert other top-level operations if possible. 1053 llvm::IRBuilder<> llvmBuilder(llvmContext); 1054 for (Operation &o : getModuleBody(module).getOperations()) { 1055 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1056 LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) && 1057 !o.hasTrait<OpTrait::IsTerminator>() && 1058 failed(translator.convertOperation(o, llvmBuilder))) { 1059 return nullptr; 1060 } 1061 } 1062 1063 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1064 return nullptr; 1065 1066 return std::move(translator.llvmModule); 1067 } 1068