1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 46 using namespace mlir; 47 using namespace mlir::LLVM; 48 using namespace mlir::LLVM::detail; 49 50 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 51 52 /// Builds a constant of a sequential LLVM type `type`, potentially containing 53 /// other sequential types recursively, from the individual constant values 54 /// provided in `constants`. `shape` contains the number of elements in nested 55 /// sequential types. Reports errors at `loc` and returns nullptr on error. 56 static llvm::Constant * 57 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 58 ArrayRef<int64_t> shape, llvm::Type *type, 59 Location loc) { 60 if (shape.empty()) { 61 llvm::Constant *result = constants.front(); 62 constants = constants.drop_front(); 63 return result; 64 } 65 66 llvm::Type *elementType; 67 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 68 elementType = arrayTy->getElementType(); 69 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 70 elementType = vectorTy->getElementType(); 71 } else { 72 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 73 return nullptr; 74 } 75 76 SmallVector<llvm::Constant *, 8> nested; 77 nested.reserve(shape.front()); 78 for (int64_t i = 0; i < shape.front(); ++i) { 79 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 80 elementType, loc)); 81 if (!nested.back()) 82 return nullptr; 83 } 84 85 if (shape.size() == 1 && type->isVectorTy()) 86 return llvm::ConstantVector::get(nested); 87 return llvm::ConstantArray::get( 88 llvm::ArrayType::get(elementType, shape.front()), nested); 89 } 90 91 /// Returns the first non-sequential type nested in sequential types. 92 static llvm::Type *getInnermostElementType(llvm::Type *type) { 93 do { 94 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 95 type = arrayTy->getElementType(); 96 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 97 type = vectorTy->getElementType(); 98 } else { 99 return type; 100 } 101 } while (true); 102 } 103 104 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 105 /// storage if possible. This supports elements attributes of tensor or vector 106 /// type and avoids constructing separate objects for individual values of the 107 /// innermost dimension. Constants for other dimensions are still constructed 108 /// recursively. Returns null if constructing from raw data is not supported for 109 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 110 /// other errors at `loc`. 111 static llvm::Constant * 112 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 113 llvm::Type *llvmType, 114 const ModuleTranslation &moduleTranslation) { 115 if (!denseElementsAttr) 116 return nullptr; 117 118 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 119 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 120 return nullptr; 121 122 ShapedType type = denseElementsAttr.getType(); 123 if (type.getNumElements() == 0) 124 return nullptr; 125 126 // Compute the shape of all dimensions but the innermost. Note that the 127 // innermost dimension may be that of the vector element type. 128 bool hasVectorElementType = type.getElementType().isa<VectorType>(); 129 unsigned numAggregates = 130 denseElementsAttr.getNumElements() / 131 (hasVectorElementType ? 1 132 : denseElementsAttr.getType().getShape().back()); 133 ArrayRef<int64_t> outerShape = type.getShape(); 134 if (!hasVectorElementType) 135 outerShape = outerShape.drop_back(); 136 137 // Handle the case of vector splat, LLVM has special support for it. 138 if (denseElementsAttr.isSplat() && 139 (type.isa<VectorType>() || hasVectorElementType)) { 140 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 141 innermostLLVMType, denseElementsAttr.getSplatValue(), loc, 142 moduleTranslation, /*isTopLevel=*/false); 143 llvm::Constant *splatVector = 144 llvm::ConstantDataVector::getSplat(0, splatValue); 145 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 146 ArrayRef<llvm::Constant *> constantsRef = constants; 147 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 148 } 149 if (denseElementsAttr.isSplat()) 150 return nullptr; 151 152 // In case of non-splat, create a constructor for the innermost constant from 153 // a piece of raw data. 154 std::function<llvm::Constant *(StringRef)> buildCstData; 155 if (type.isa<TensorType>()) { 156 auto vectorElementType = type.getElementType().dyn_cast<VectorType>(); 157 if (vectorElementType && vectorElementType.getRank() == 1) { 158 buildCstData = [&](StringRef data) { 159 return llvm::ConstantDataVector::getRaw( 160 data, vectorElementType.getShape().back(), innermostLLVMType); 161 }; 162 } else if (!vectorElementType) { 163 buildCstData = [&](StringRef data) { 164 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 165 innermostLLVMType); 166 }; 167 } 168 } else if (type.isa<VectorType>()) { 169 buildCstData = [&](StringRef data) { 170 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 171 innermostLLVMType); 172 }; 173 } 174 if (!buildCstData) 175 return nullptr; 176 177 // Create innermost constants and defer to the default constant creation 178 // mechanism for other dimensions. 179 SmallVector<llvm::Constant *> constants; 180 unsigned aggregateSize = denseElementsAttr.getType().getShape().back() * 181 (innermostLLVMType->getScalarSizeInBits() / 8); 182 constants.reserve(numAggregates); 183 for (unsigned i = 0; i < numAggregates; ++i) { 184 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 185 aggregateSize); 186 constants.push_back(buildCstData(data)); 187 } 188 189 ArrayRef<llvm::Constant *> constantsRef = constants; 190 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 191 } 192 193 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 194 /// This currently supports integer, floating point, splat and dense element 195 /// attributes and combinations thereof. Also, an array attribute with two 196 /// elements is supported to represent a complex constant. In case of error, 197 /// report it to `loc` and return nullptr. 198 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 199 llvm::Type *llvmType, Attribute attr, Location loc, 200 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 201 if (!attr) 202 return llvm::UndefValue::get(llvmType); 203 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 204 if (!isTopLevel) { 205 emitError(loc, "nested struct types are not supported in constants"); 206 return nullptr; 207 } 208 auto arrayAttr = attr.cast<ArrayAttr>(); 209 llvm::Type *elementType = structType->getElementType(0); 210 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 211 moduleTranslation, false); 212 if (!real) 213 return nullptr; 214 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 215 moduleTranslation, false); 216 if (!imag) 217 return nullptr; 218 return llvm::ConstantStruct::get(structType, {real, imag}); 219 } 220 // For integer types, we allow a mismatch in sizes as the index type in 221 // MLIR might have a different size than the index type in the LLVM module. 222 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 223 return llvm::ConstantInt::get( 224 llvmType, 225 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 226 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 227 if (llvmType != 228 llvm::Type::getFloatingPointTy(llvmType->getContext(), 229 floatAttr.getValue().getSemantics())) { 230 emitError(loc, "FloatAttr does not match expected type of the constant"); 231 return nullptr; 232 } 233 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 234 } 235 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 236 return llvm::ConstantExpr::getBitCast( 237 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 238 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 239 llvm::Type *elementType; 240 uint64_t numElements; 241 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 242 elementType = arrayTy->getElementType(); 243 numElements = arrayTy->getNumElements(); 244 } else { 245 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 246 elementType = vectorTy->getElementType(); 247 numElements = vectorTy->getNumElements(); 248 } 249 // Splat value is a scalar. Extract it only if the element type is not 250 // another sequence type. The recursion terminates because each step removes 251 // one outer sequential type. 252 bool elementTypeSequential = 253 isa<llvm::ArrayType, llvm::VectorType>(elementType); 254 llvm::Constant *child = getLLVMConstant( 255 elementType, 256 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc, 257 moduleTranslation, false); 258 if (!child) 259 return nullptr; 260 if (llvmType->isVectorTy()) 261 return llvm::ConstantVector::getSplat( 262 llvm::ElementCount::get(numElements, /*Scalable=*/false), child); 263 if (llvmType->isArrayTy()) { 264 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 265 SmallVector<llvm::Constant *, 8> constants(numElements, child); 266 return llvm::ConstantArray::get(arrayType, constants); 267 } 268 } 269 270 // Try using raw elements data if possible. 271 if (llvm::Constant *result = 272 convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(), 273 llvmType, moduleTranslation)) { 274 return result; 275 } 276 277 // Fall back to element-by-element construction otherwise. 278 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 279 assert(elementsAttr.getType().hasStaticShape()); 280 assert(!elementsAttr.getType().getShape().empty() && 281 "unexpected empty elements attribute shape"); 282 283 SmallVector<llvm::Constant *, 8> constants; 284 constants.reserve(elementsAttr.getNumElements()); 285 llvm::Type *innermostType = getInnermostElementType(llvmType); 286 for (auto n : elementsAttr.getValues<Attribute>()) { 287 constants.push_back( 288 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 289 if (!constants.back()) 290 return nullptr; 291 } 292 ArrayRef<llvm::Constant *> constantsRef = constants; 293 llvm::Constant *result = buildSequentialConstant( 294 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 295 assert(constantsRef.empty() && "did not consume all elemental constants"); 296 return result; 297 } 298 299 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 300 return llvm::ConstantDataArray::get( 301 moduleTranslation.getLLVMContext(), 302 ArrayRef<char>{stringAttr.getValue().data(), 303 stringAttr.getValue().size()}); 304 } 305 emitError(loc, "unsupported constant value"); 306 return nullptr; 307 } 308 309 ModuleTranslation::ModuleTranslation(Operation *module, 310 std::unique_ptr<llvm::Module> llvmModule) 311 : mlirModule(module), llvmModule(std::move(llvmModule)), 312 debugTranslation( 313 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 314 typeTranslator(this->llvmModule->getContext()), 315 iface(module->getContext()) { 316 assert(satisfiesLLVMModule(mlirModule) && 317 "mlirModule should honor LLVM's module semantics."); 318 } 319 ModuleTranslation::~ModuleTranslation() { 320 if (ompBuilder) 321 ompBuilder->finalize(); 322 } 323 324 void ModuleTranslation::forgetMapping(Region ®ion) { 325 SmallVector<Region *> toProcess; 326 toProcess.push_back(®ion); 327 while (!toProcess.empty()) { 328 Region *current = toProcess.pop_back_val(); 329 for (Block &block : *current) { 330 blockMapping.erase(&block); 331 for (Value arg : block.getArguments()) 332 valueMapping.erase(arg); 333 for (Operation &op : block) { 334 for (Value value : op.getResults()) 335 valueMapping.erase(value); 336 if (op.hasSuccessors()) 337 branchMapping.erase(&op); 338 if (isa<LLVM::GlobalOp>(op)) 339 globalsMapping.erase(&op); 340 accessGroupMetadataMapping.erase(&op); 341 llvm::append_range( 342 toProcess, 343 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 344 } 345 } 346 } 347 } 348 349 /// Get the SSA value passed to the current block from the terminator operation 350 /// of its predecessor. 351 static Value getPHISourceValue(Block *current, Block *pred, 352 unsigned numArguments, unsigned index) { 353 Operation &terminator = *pred->getTerminator(); 354 if (isa<LLVM::BrOp>(terminator)) 355 return terminator.getOperand(index); 356 357 SuccessorRange successors = terminator.getSuccessors(); 358 assert(std::adjacent_find(successors.begin(), successors.end()) == 359 successors.end() && 360 "successors with arguments in LLVM branches must be different blocks"); 361 (void)successors; 362 363 // For instructions that branch based on a condition value, we need to take 364 // the operands for the branch that was taken. 365 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 366 // For conditional branches, we take the operands from either the "true" or 367 // the "false" branch. 368 return condBranchOp.getSuccessor(0) == current 369 ? condBranchOp.getTrueDestOperands()[index] 370 : condBranchOp.getFalseDestOperands()[index]; 371 } 372 373 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 374 // For switches, we take the operands from either the default case, or from 375 // the case branch that was taken. 376 if (switchOp.defaultDestination() == current) 377 return switchOp.defaultOperands()[index]; 378 for (auto i : llvm::enumerate(switchOp.caseDestinations())) 379 if (i.value() == current) 380 return switchOp.getCaseOperands(i.index())[index]; 381 } 382 383 llvm_unreachable("only branch or switch operations can be terminators of a " 384 "block that has successors"); 385 } 386 387 /// Connect the PHI nodes to the results of preceding blocks. 388 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 389 const ModuleTranslation &state) { 390 // Skip the first block, it cannot be branched to and its arguments correspond 391 // to the arguments of the LLVM function. 392 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 393 ++it) { 394 Block *bb = &*it; 395 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 396 auto phis = llvmBB->phis(); 397 auto numArguments = bb->getNumArguments(); 398 assert(numArguments == std::distance(phis.begin(), phis.end())); 399 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 400 auto &phiNode = numberedPhiNode.value(); 401 unsigned index = numberedPhiNode.index(); 402 for (auto *pred : bb->getPredecessors()) { 403 // Find the LLVM IR block that contains the converted terminator 404 // instruction and use it in the PHI node. Note that this block is not 405 // necessarily the same as state.lookupBlock(pred), some operations 406 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 407 // split the blocks. 408 llvm::Instruction *terminator = 409 state.lookupBranch(pred->getTerminator()); 410 assert(terminator && "missing the mapping for a terminator"); 411 phiNode.addIncoming( 412 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 413 terminator->getParent()); 414 } 415 } 416 } 417 } 418 419 /// Sort function blocks topologically. 420 SetVector<Block *> 421 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 422 // For each block that has not been visited yet (i.e. that has no 423 // predecessors), add it to the list as well as its successors. 424 SetVector<Block *> blocks; 425 for (Block &b : region) { 426 if (blocks.count(&b) == 0) { 427 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 428 blocks.insert(traversal.begin(), traversal.end()); 429 } 430 } 431 assert(blocks.size() == region.getBlocks().size() && 432 "some blocks are not sorted"); 433 434 return blocks; 435 } 436 437 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 438 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 439 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 440 llvm::Module *module = builder.GetInsertBlock()->getModule(); 441 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 442 return builder.CreateCall(fn, args); 443 } 444 445 llvm::Value * 446 mlir::LLVM::detail::createNvvmIntrinsicCall(llvm::IRBuilderBase &builder, 447 llvm::Intrinsic::ID intrinsic, 448 ArrayRef<llvm::Value *> args) { 449 llvm::Module *module = builder.GetInsertBlock()->getModule(); 450 llvm::Function *fn; 451 if (llvm::Intrinsic::isOverloaded(intrinsic)) { 452 if (intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f16_f16 && 453 intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f32_f32) { 454 // NVVM load and store instrinsic names are overloaded on the 455 // source/destination pointer type. Pointer is the first argument in the 456 // corresponding NVVM Op. 457 fn = llvm::Intrinsic::getDeclaration(module, intrinsic, 458 {args[0]->getType()}); 459 } else { 460 fn = llvm::Intrinsic::getDeclaration(module, intrinsic, {}); 461 } 462 } else { 463 fn = llvm::Intrinsic::getDeclaration(module, intrinsic); 464 } 465 return builder.CreateCall(fn, args); 466 } 467 468 /// Given a single MLIR operation, create the corresponding LLVM IR operation 469 /// using the `builder`. 470 LogicalResult 471 ModuleTranslation::convertOperation(Operation &op, 472 llvm::IRBuilderBase &builder) { 473 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 474 if (!opIface) 475 return op.emitError("cannot be converted to LLVM IR: missing " 476 "`LLVMTranslationDialectInterface` registration for " 477 "dialect for op: ") 478 << op.getName(); 479 480 if (failed(opIface->convertOperation(&op, builder, *this))) 481 return op.emitError("LLVM Translation failed for operation: ") 482 << op.getName(); 483 484 return convertDialectAttributes(&op); 485 } 486 487 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 488 /// to define values corresponding to the MLIR block arguments. These nodes 489 /// are not connected to the source basic blocks, which may not exist yet. Uses 490 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 491 /// been created for `bb` and included in the block mapping. Inserts new 492 /// instructions at the end of the block and leaves `builder` in a state 493 /// suitable for further insertion into the end of the block. 494 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 495 llvm::IRBuilderBase &builder) { 496 builder.SetInsertPoint(lookupBlock(&bb)); 497 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 498 499 // Before traversing operations, make block arguments available through 500 // value remapping and PHI nodes, but do not add incoming edges for the PHI 501 // nodes just yet: those values may be defined by this or following blocks. 502 // This step is omitted if "ignoreArguments" is set. The arguments of the 503 // first block have been already made available through the remapping of 504 // LLVM function arguments. 505 if (!ignoreArguments) { 506 auto predecessors = bb.getPredecessors(); 507 unsigned numPredecessors = 508 std::distance(predecessors.begin(), predecessors.end()); 509 for (auto arg : bb.getArguments()) { 510 auto wrappedType = arg.getType(); 511 if (!isCompatibleType(wrappedType)) 512 return emitError(bb.front().getLoc(), 513 "block argument does not have an LLVM type"); 514 llvm::Type *type = convertType(wrappedType); 515 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 516 mapValue(arg, phi); 517 } 518 } 519 520 // Traverse operations. 521 for (auto &op : bb) { 522 // Set the current debug location within the builder. 523 builder.SetCurrentDebugLocation( 524 debugTranslation->translateLoc(op.getLoc(), subprogram)); 525 526 if (failed(convertOperation(op, builder))) 527 return failure(); 528 } 529 530 return success(); 531 } 532 533 /// A helper method to get the single Block in an operation honoring LLVM's 534 /// module requirements. 535 static Block &getModuleBody(Operation *module) { 536 return module->getRegion(0).front(); 537 } 538 539 /// A helper method to decide if a constant must not be set as a global variable 540 /// initializer. For an external linkage variable, the variable with an 541 /// initializer is considered externally visible and defined in this module, the 542 /// variable without an initializer is externally available and is defined 543 /// elsewhere. 544 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 545 llvm::Constant *cst) { 546 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 547 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 548 } 549 550 /// Sets the runtime preemption specifier of `gv` to dso_local if 551 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 552 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 553 llvm::GlobalValue *gv) { 554 if (dsoLocalRequested) 555 gv->setDSOLocal(true); 556 } 557 558 /// Create named global variables that correspond to llvm.mlir.global 559 /// definitions. 560 LogicalResult ModuleTranslation::convertGlobals() { 561 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 562 llvm::Type *type = convertType(op.getType()); 563 llvm::Constant *cst = nullptr; 564 if (op.getValueOrNull()) { 565 // String attributes are treated separately because they cannot appear as 566 // in-function constants and are thus not supported by getLLVMConstant. 567 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 568 cst = llvm::ConstantDataArray::getString( 569 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 570 type = cst->getType(); 571 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 572 *this))) { 573 return failure(); 574 } 575 } 576 577 auto linkage = convertLinkageToLLVM(op.getLinkage()); 578 auto addrSpace = op.getAddrSpace(); 579 580 // LLVM IR requires constant with linkage other than external or weak 581 // external to have initializers. If MLIR does not provide an initializer, 582 // default to undef. 583 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 584 if (!dropInitializer && !cst) 585 cst = llvm::UndefValue::get(type); 586 else if (dropInitializer && cst) 587 cst = nullptr; 588 589 auto *var = new llvm::GlobalVariable( 590 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 591 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 592 593 if (op.getUnnamedAddr().hasValue()) 594 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 595 596 if (op.getSection().hasValue()) 597 var->setSection(*op.getSection()); 598 599 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 600 601 Optional<uint64_t> alignment = op.getAlignment(); 602 if (alignment.hasValue()) 603 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 604 605 globalsMapping.try_emplace(op, var); 606 } 607 608 // Convert global variable bodies. This is done after all global variables 609 // have been created in LLVM IR because a global body may refer to another 610 // global or itself. So all global variables need to be mapped first. 611 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 612 if (Block *initializer = op.getInitializerBlock()) { 613 llvm::IRBuilder<> builder(llvmModule->getContext()); 614 for (auto &op : initializer->without_terminator()) { 615 if (failed(convertOperation(op, builder)) || 616 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 617 return emitError(op.getLoc(), "unemittable constant value"); 618 } 619 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 620 llvm::Constant *cst = 621 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 622 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 623 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 624 global->setInitializer(cst); 625 } 626 } 627 628 return success(); 629 } 630 631 /// Attempts to add an attribute identified by `key`, optionally with the given 632 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 633 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 634 /// otherwise keep it as a string attribute. Performs additional checks for 635 /// attributes known to have or not have a value in order to avoid assertions 636 /// inside LLVM upon construction. 637 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 638 llvm::Function *llvmFunc, 639 StringRef key, 640 StringRef value = StringRef()) { 641 auto kind = llvm::Attribute::getAttrKindFromName(key); 642 if (kind == llvm::Attribute::None) { 643 llvmFunc->addFnAttr(key, value); 644 return success(); 645 } 646 647 if (llvm::Attribute::isIntAttrKind(kind)) { 648 if (value.empty()) 649 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 650 651 int result; 652 if (!value.getAsInteger(/*Radix=*/0, result)) 653 llvmFunc->addFnAttr( 654 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 655 else 656 llvmFunc->addFnAttr(key, value); 657 return success(); 658 } 659 660 if (!value.empty()) 661 return emitError(loc) << "LLVM attribute '" << key 662 << "' does not expect a value, found '" << value 663 << "'"; 664 665 llvmFunc->addFnAttr(kind); 666 return success(); 667 } 668 669 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 670 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 671 /// to be an array attribute containing either string attributes, treated as 672 /// value-less LLVM attributes, or array attributes containing two string 673 /// attributes, with the first string being the name of the corresponding LLVM 674 /// attribute and the second string beings its value. Note that even integer 675 /// attributes are expected to have their values expressed as strings. 676 static LogicalResult 677 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 678 llvm::Function *llvmFunc) { 679 if (!attributes) 680 return success(); 681 682 for (Attribute attr : *attributes) { 683 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 684 if (failed( 685 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 686 return failure(); 687 continue; 688 } 689 690 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 691 if (!arrayAttr || arrayAttr.size() != 2) 692 return emitError(loc) 693 << "expected 'passthrough' to contain string or array attributes"; 694 695 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 696 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 697 if (!keyAttr || !valueAttr) 698 return emitError(loc) 699 << "expected arrays within 'passthrough' to contain two strings"; 700 701 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 702 valueAttr.getValue()))) 703 return failure(); 704 } 705 return success(); 706 } 707 708 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 709 // Clear the block, branch value mappings, they are only relevant within one 710 // function. 711 blockMapping.clear(); 712 valueMapping.clear(); 713 branchMapping.clear(); 714 llvm::Function *llvmFunc = lookupFunction(func.getName()); 715 716 // Translate the debug information for this function. 717 debugTranslation->translate(func, *llvmFunc); 718 719 // Add function arguments to the value remapping table. 720 // If there was noalias info then we decorate each argument accordingly. 721 unsigned int argIdx = 0; 722 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 723 llvm::Argument &llvmArg = std::get<1>(kvp); 724 BlockArgument mlirArg = std::get<0>(kvp); 725 726 if (auto attr = func.getArgAttrOfType<UnitAttr>( 727 argIdx, LLVMDialect::getNoAliasAttrName())) { 728 // NB: Attribute already verified to be boolean, so check if we can indeed 729 // attach the attribute to this argument, based on its type. 730 auto argTy = mlirArg.getType(); 731 if (!argTy.isa<LLVM::LLVMPointerType>()) 732 return func.emitError( 733 "llvm.noalias attribute attached to LLVM non-pointer argument"); 734 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 735 } 736 737 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 738 argIdx, LLVMDialect::getAlignAttrName())) { 739 // NB: Attribute already verified to be int, so check if we can indeed 740 // attach the attribute to this argument, based on its type. 741 auto argTy = mlirArg.getType(); 742 if (!argTy.isa<LLVM::LLVMPointerType>()) 743 return func.emitError( 744 "llvm.align attribute attached to LLVM non-pointer argument"); 745 llvmArg.addAttrs( 746 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 747 } 748 749 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 750 auto argTy = mlirArg.getType(); 751 if (!argTy.isa<LLVM::LLVMPointerType>()) 752 return func.emitError( 753 "llvm.sret attribute attached to LLVM non-pointer argument"); 754 llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr( 755 llvmArg.getType()->getPointerElementType())); 756 } 757 758 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 759 auto argTy = mlirArg.getType(); 760 if (!argTy.isa<LLVM::LLVMPointerType>()) 761 return func.emitError( 762 "llvm.byval attribute attached to LLVM non-pointer argument"); 763 llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr( 764 llvmArg.getType()->getPointerElementType())); 765 } 766 767 mapValue(mlirArg, &llvmArg); 768 argIdx++; 769 } 770 771 // Check the personality and set it. 772 if (func.personality().hasValue()) { 773 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 774 if (llvm::Constant *pfunc = 775 getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this)) 776 llvmFunc->setPersonalityFn(pfunc); 777 } 778 779 // First, create all blocks so we can jump to them. 780 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 781 for (auto &bb : func) { 782 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 783 llvmBB->insertInto(llvmFunc); 784 mapBlock(&bb, llvmBB); 785 } 786 787 // Then, convert blocks one by one in topological order to ensure defs are 788 // converted before uses. 789 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 790 for (Block *bb : blocks) { 791 llvm::IRBuilder<> builder(llvmContext); 792 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 793 return failure(); 794 } 795 796 // After all blocks have been traversed and values mapped, connect the PHI 797 // nodes to the results of preceding blocks. 798 detail::connectPHINodes(func.getBody(), *this); 799 800 // Finally, convert dialect attributes attached to the function. 801 return convertDialectAttributes(func); 802 } 803 804 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 805 for (NamedAttribute attribute : op->getDialectAttrs()) 806 if (failed(iface.amendOperation(op, attribute, *this))) 807 return failure(); 808 return success(); 809 } 810 811 LogicalResult ModuleTranslation::convertFunctionSignatures() { 812 // Declare all functions first because there may be function calls that form a 813 // call graph with cycles, or global initializers that reference functions. 814 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 815 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 816 function.getName(), 817 cast<llvm::FunctionType>(convertType(function.getType()))); 818 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 819 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage())); 820 mapFunction(function.getName(), llvmFunc); 821 addRuntimePreemptionSpecifier(function.dso_local(), llvmFunc); 822 823 // Forward the pass-through attributes to LLVM. 824 if (failed(forwardPassthroughAttributes(function.getLoc(), 825 function.passthrough(), llvmFunc))) 826 return failure(); 827 } 828 829 return success(); 830 } 831 832 LogicalResult ModuleTranslation::convertFunctions() { 833 // Convert functions. 834 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 835 // Ignore external functions. 836 if (function.isExternal()) 837 continue; 838 839 if (failed(convertOneFunction(function))) 840 return failure(); 841 } 842 843 return success(); 844 } 845 846 llvm::MDNode * 847 ModuleTranslation::getAccessGroup(Operation &opInst, 848 SymbolRefAttr accessGroupRef) const { 849 auto metadataName = accessGroupRef.getRootReference(); 850 auto accessGroupName = accessGroupRef.getLeafReference(); 851 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 852 opInst.getParentOp(), metadataName); 853 auto *accessGroupOp = 854 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 855 return accessGroupMetadataMapping.lookup(accessGroupOp); 856 } 857 858 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 859 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 860 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 861 llvm::LLVMContext &ctx = llvmModule->getContext(); 862 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 863 accessGroupMetadataMapping.insert({op, accessGroup}); 864 }); 865 }); 866 return success(); 867 } 868 869 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 870 llvm::Instruction *inst) { 871 auto accessGroups = 872 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 873 if (accessGroups && !accessGroups.empty()) { 874 llvm::Module *module = inst->getModule(); 875 SmallVector<llvm::Metadata *> metadatas; 876 for (SymbolRefAttr accessGroupRef : 877 accessGroups.getAsRange<SymbolRefAttr>()) 878 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 879 880 llvm::MDNode *unionMD = nullptr; 881 if (metadatas.size() == 1) 882 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 883 else if (metadatas.size() >= 2) 884 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 885 886 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 887 } 888 } 889 890 LogicalResult ModuleTranslation::createAliasScopeMetadata() { 891 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 892 // Create the domains first, so they can be reference below in the scopes. 893 DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping; 894 metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) { 895 llvm::LLVMContext &ctx = llvmModule->getContext(); 896 llvm::SmallVector<llvm::Metadata *, 2> operands; 897 operands.push_back({}); // Placeholder for self-reference 898 if (Optional<StringRef> description = op.getDescription()) 899 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 900 llvm::MDNode *domain = llvm::MDNode::get(ctx, operands); 901 domain->replaceOperandWith(0, domain); // Self-reference for uniqueness 902 aliasScopeDomainMetadataMapping.insert({op, domain}); 903 }); 904 905 // Now create the scopes, referencing the domains created above. 906 metadatas.walk([&](LLVM::AliasScopeMetadataOp op) { 907 llvm::LLVMContext &ctx = llvmModule->getContext(); 908 assert(isa<LLVM::MetadataOp>(op->getParentOp())); 909 auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp()); 910 Operation *domainOp = 911 SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr()); 912 llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp); 913 assert(domain && "Scope's domain should already be valid"); 914 llvm::SmallVector<llvm::Metadata *, 3> operands; 915 operands.push_back({}); // Placeholder for self-reference 916 operands.push_back(domain); 917 if (Optional<StringRef> description = op.getDescription()) 918 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 919 llvm::MDNode *scope = llvm::MDNode::get(ctx, operands); 920 scope->replaceOperandWith(0, scope); // Self-reference for uniqueness 921 aliasScopeMetadataMapping.insert({op, scope}); 922 }); 923 }); 924 return success(); 925 } 926 927 llvm::MDNode * 928 ModuleTranslation::getAliasScope(Operation &opInst, 929 SymbolRefAttr aliasScopeRef) const { 930 StringAttr metadataName = aliasScopeRef.getRootReference(); 931 StringAttr scopeName = aliasScopeRef.getLeafReference(); 932 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 933 opInst.getParentOp(), metadataName); 934 Operation *aliasScopeOp = 935 SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName); 936 return aliasScopeMetadataMapping.lookup(aliasScopeOp); 937 } 938 939 void ModuleTranslation::setAliasScopeMetadata(Operation *op, 940 llvm::Instruction *inst) { 941 auto populateScopeMetadata = [this, op, inst](StringRef attrName, 942 StringRef llvmMetadataName) { 943 auto scopes = op->getAttrOfType<ArrayAttr>(attrName); 944 if (!scopes || scopes.empty()) 945 return; 946 llvm::Module *module = inst->getModule(); 947 SmallVector<llvm::Metadata *> scopeMDs; 948 for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>()) 949 scopeMDs.push_back(getAliasScope(*op, scopeRef)); 950 llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs); 951 inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD); 952 }; 953 954 populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope"); 955 populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias"); 956 } 957 958 llvm::Type *ModuleTranslation::convertType(Type type) { 959 return typeTranslator.translateType(type); 960 } 961 962 /// A helper to look up remapped operands in the value remapping table. 963 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 964 SmallVector<llvm::Value *> remapped; 965 remapped.reserve(values.size()); 966 for (Value v : values) 967 remapped.push_back(lookupValue(v)); 968 return remapped; 969 } 970 971 const llvm::DILocation * 972 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 973 return debugTranslation->translateLoc(loc, scope); 974 } 975 976 llvm::NamedMDNode * 977 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 978 return llvmModule->getOrInsertNamedMetadata(name); 979 } 980 981 void ModuleTranslation::StackFrame::anchor() {} 982 983 static std::unique_ptr<llvm::Module> 984 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 985 StringRef name) { 986 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 987 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 988 if (auto dataLayoutAttr = 989 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 990 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 991 if (auto targetTripleAttr = 992 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 993 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 994 995 // Inject declarations for `malloc` and `free` functions that can be used in 996 // memref allocation/deallocation coming from standard ops lowering. 997 llvm::IRBuilder<> builder(llvmContext); 998 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 999 builder.getInt64Ty()); 1000 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 1001 builder.getInt8PtrTy()); 1002 1003 return llvmModule; 1004 } 1005 1006 std::unique_ptr<llvm::Module> 1007 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1008 StringRef name) { 1009 if (!satisfiesLLVMModule(module)) 1010 return nullptr; 1011 std::unique_ptr<llvm::Module> llvmModule = 1012 prepareLLVMModule(module, llvmContext, name); 1013 1014 LLVM::ensureDistinctSuccessors(module); 1015 1016 ModuleTranslation translator(module, std::move(llvmModule)); 1017 if (failed(translator.convertFunctionSignatures())) 1018 return nullptr; 1019 if (failed(translator.convertGlobals())) 1020 return nullptr; 1021 if (failed(translator.createAccessGroupMetadata())) 1022 return nullptr; 1023 if (failed(translator.createAliasScopeMetadata())) 1024 return nullptr; 1025 if (failed(translator.convertFunctions())) 1026 return nullptr; 1027 1028 // Convert other top-level operations if possible. 1029 llvm::IRBuilder<> llvmBuilder(llvmContext); 1030 for (Operation &o : getModuleBody(module).getOperations()) { 1031 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) && 1032 !o.hasTrait<OpTrait::IsTerminator>() && 1033 failed(translator.convertOperation(o, llvmBuilder))) { 1034 return nullptr; 1035 } 1036 } 1037 1038 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1039 return nullptr; 1040 1041 return std::move(translator.llvmModule); 1042 } 1043