1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
20 #include "mlir/IR/Attributes.h"
21 #include "mlir/IR/BuiltinOps.h"
22 #include "mlir/IR/BuiltinTypes.h"
23 #include "mlir/IR/RegionGraphTraits.h"
24 #include "mlir/Support/LLVM.h"
25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
26 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
27 #include "llvm/ADT/TypeSwitch.h"
28 
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicsNVPTX.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Verifier.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/Cloning.h"
45 #include "llvm/Transforms/Utils/ModuleUtils.h"
46 
47 using namespace mlir;
48 using namespace mlir::LLVM;
49 using namespace mlir::LLVM::detail;
50 
51 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
52 
53 /// Builds a constant of a sequential LLVM type `type`, potentially containing
54 /// other sequential types recursively, from the individual constant values
55 /// provided in `constants`. `shape` contains the number of elements in nested
56 /// sequential types. Reports errors at `loc` and returns nullptr on error.
57 static llvm::Constant *
58 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
59                         ArrayRef<int64_t> shape, llvm::Type *type,
60                         Location loc) {
61   if (shape.empty()) {
62     llvm::Constant *result = constants.front();
63     constants = constants.drop_front();
64     return result;
65   }
66 
67   llvm::Type *elementType;
68   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
69     elementType = arrayTy->getElementType();
70   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
71     elementType = vectorTy->getElementType();
72   } else {
73     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
74     return nullptr;
75   }
76 
77   SmallVector<llvm::Constant *, 8> nested;
78   nested.reserve(shape.front());
79   for (int64_t i = 0; i < shape.front(); ++i) {
80     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
81                                              elementType, loc));
82     if (!nested.back())
83       return nullptr;
84   }
85 
86   if (shape.size() == 1 && type->isVectorTy())
87     return llvm::ConstantVector::get(nested);
88   return llvm::ConstantArray::get(
89       llvm::ArrayType::get(elementType, shape.front()), nested);
90 }
91 
92 /// Returns the first non-sequential type nested in sequential types.
93 static llvm::Type *getInnermostElementType(llvm::Type *type) {
94   do {
95     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
96       type = arrayTy->getElementType();
97     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
98       type = vectorTy->getElementType();
99     } else {
100       return type;
101     }
102   } while (true);
103 }
104 
105 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
106 /// storage if possible. This supports elements attributes of tensor or vector
107 /// type and avoids constructing separate objects for individual values of the
108 /// innermost dimension. Constants for other dimensions are still constructed
109 /// recursively. Returns null if constructing from raw data is not supported for
110 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
111 /// other errors at `loc`.
112 static llvm::Constant *
113 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
114                          llvm::Type *llvmType,
115                          const ModuleTranslation &moduleTranslation) {
116   if (!denseElementsAttr)
117     return nullptr;
118 
119   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
120   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
121     return nullptr;
122 
123   ShapedType type = denseElementsAttr.getType();
124   if (type.getNumElements() == 0)
125     return nullptr;
126 
127   // Compute the shape of all dimensions but the innermost. Note that the
128   // innermost dimension may be that of the vector element type.
129   bool hasVectorElementType = type.getElementType().isa<VectorType>();
130   unsigned numAggregates =
131       denseElementsAttr.getNumElements() /
132       (hasVectorElementType ? 1
133                             : denseElementsAttr.getType().getShape().back());
134   ArrayRef<int64_t> outerShape = type.getShape();
135   if (!hasVectorElementType)
136     outerShape = outerShape.drop_back();
137 
138   // Handle the case of vector splat, LLVM has special support for it.
139   if (denseElementsAttr.isSplat() &&
140       (type.isa<VectorType>() || hasVectorElementType)) {
141     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
142         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
143         moduleTranslation, /*isTopLevel=*/false);
144     llvm::Constant *splatVector =
145         llvm::ConstantDataVector::getSplat(0, splatValue);
146     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
147     ArrayRef<llvm::Constant *> constantsRef = constants;
148     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
149   }
150   if (denseElementsAttr.isSplat())
151     return nullptr;
152 
153   // In case of non-splat, create a constructor for the innermost constant from
154   // a piece of raw data.
155   std::function<llvm::Constant *(StringRef)> buildCstData;
156   if (type.isa<TensorType>()) {
157     auto vectorElementType = type.getElementType().dyn_cast<VectorType>();
158     if (vectorElementType && vectorElementType.getRank() == 1) {
159       buildCstData = [&](StringRef data) {
160         return llvm::ConstantDataVector::getRaw(
161             data, vectorElementType.getShape().back(), innermostLLVMType);
162       };
163     } else if (!vectorElementType) {
164       buildCstData = [&](StringRef data) {
165         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
166                                                innermostLLVMType);
167       };
168     }
169   } else if (type.isa<VectorType>()) {
170     buildCstData = [&](StringRef data) {
171       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
172                                               innermostLLVMType);
173     };
174   }
175   if (!buildCstData)
176     return nullptr;
177 
178   // Create innermost constants and defer to the default constant creation
179   // mechanism for other dimensions.
180   SmallVector<llvm::Constant *> constants;
181   unsigned aggregateSize = denseElementsAttr.getType().getShape().back() *
182                            (innermostLLVMType->getScalarSizeInBits() / 8);
183   constants.reserve(numAggregates);
184   for (unsigned i = 0; i < numAggregates; ++i) {
185     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
186                    aggregateSize);
187     constants.push_back(buildCstData(data));
188   }
189 
190   ArrayRef<llvm::Constant *> constantsRef = constants;
191   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
192 }
193 
194 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
195 /// This currently supports integer, floating point, splat and dense element
196 /// attributes and combinations thereof. Also, an array attribute with two
197 /// elements is supported to represent a complex constant.  In case of error,
198 /// report it to `loc` and return nullptr.
199 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
200     llvm::Type *llvmType, Attribute attr, Location loc,
201     const ModuleTranslation &moduleTranslation, bool isTopLevel) {
202   if (!attr)
203     return llvm::UndefValue::get(llvmType);
204   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
205     if (!isTopLevel) {
206       emitError(loc, "nested struct types are not supported in constants");
207       return nullptr;
208     }
209     auto arrayAttr = attr.cast<ArrayAttr>();
210     llvm::Type *elementType = structType->getElementType(0);
211     llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc,
212                                            moduleTranslation, false);
213     if (!real)
214       return nullptr;
215     llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc,
216                                            moduleTranslation, false);
217     if (!imag)
218       return nullptr;
219     return llvm::ConstantStruct::get(structType, {real, imag});
220   }
221   // For integer types, we allow a mismatch in sizes as the index type in
222   // MLIR might have a different size than the index type in the LLVM module.
223   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
224     return llvm::ConstantInt::get(
225         llvmType,
226         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
227   if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
228     if (llvmType !=
229         llvm::Type::getFloatingPointTy(llvmType->getContext(),
230                                        floatAttr.getValue().getSemantics())) {
231       emitError(loc, "FloatAttr does not match expected type of the constant");
232       return nullptr;
233     }
234     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
235   }
236   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
237     return llvm::ConstantExpr::getBitCast(
238         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
239   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
240     llvm::Type *elementType;
241     uint64_t numElements;
242     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
243       elementType = arrayTy->getElementType();
244       numElements = arrayTy->getNumElements();
245     } else {
246       auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
247       elementType = vectorTy->getElementType();
248       numElements = vectorTy->getNumElements();
249     }
250     // Splat value is a scalar. Extract it only if the element type is not
251     // another sequence type. The recursion terminates because each step removes
252     // one outer sequential type.
253     bool elementTypeSequential =
254         isa<llvm::ArrayType, llvm::VectorType>(elementType);
255     llvm::Constant *child = getLLVMConstant(
256         elementType,
257         elementTypeSequential ? splatAttr
258                               : splatAttr.getSplatValue<Attribute>(),
259         loc, moduleTranslation, false);
260     if (!child)
261       return nullptr;
262     if (llvmType->isVectorTy())
263       return llvm::ConstantVector::getSplat(
264           llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
265     if (llvmType->isArrayTy()) {
266       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
267       SmallVector<llvm::Constant *, 8> constants(numElements, child);
268       return llvm::ConstantArray::get(arrayType, constants);
269     }
270   }
271 
272   // Try using raw elements data if possible.
273   if (llvm::Constant *result =
274           convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(),
275                                    llvmType, moduleTranslation)) {
276     return result;
277   }
278 
279   // Fall back to element-by-element construction otherwise.
280   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
281     assert(elementsAttr.getType().hasStaticShape());
282     assert(!elementsAttr.getType().getShape().empty() &&
283            "unexpected empty elements attribute shape");
284 
285     SmallVector<llvm::Constant *, 8> constants;
286     constants.reserve(elementsAttr.getNumElements());
287     llvm::Type *innermostType = getInnermostElementType(llvmType);
288     for (auto n : elementsAttr.getValues<Attribute>()) {
289       constants.push_back(
290           getLLVMConstant(innermostType, n, loc, moduleTranslation, false));
291       if (!constants.back())
292         return nullptr;
293     }
294     ArrayRef<llvm::Constant *> constantsRef = constants;
295     llvm::Constant *result = buildSequentialConstant(
296         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
297     assert(constantsRef.empty() && "did not consume all elemental constants");
298     return result;
299   }
300 
301   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
302     return llvm::ConstantDataArray::get(
303         moduleTranslation.getLLVMContext(),
304         ArrayRef<char>{stringAttr.getValue().data(),
305                        stringAttr.getValue().size()});
306   }
307   emitError(loc, "unsupported constant value");
308   return nullptr;
309 }
310 
311 ModuleTranslation::ModuleTranslation(Operation *module,
312                                      std::unique_ptr<llvm::Module> llvmModule)
313     : mlirModule(module), llvmModule(std::move(llvmModule)),
314       debugTranslation(
315           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
316       typeTranslator(this->llvmModule->getContext()),
317       iface(module->getContext()) {
318   assert(satisfiesLLVMModule(mlirModule) &&
319          "mlirModule should honor LLVM's module semantics.");
320 }
321 ModuleTranslation::~ModuleTranslation() {
322   if (ompBuilder)
323     ompBuilder->finalize();
324 }
325 
326 void ModuleTranslation::forgetMapping(Region &region) {
327   SmallVector<Region *> toProcess;
328   toProcess.push_back(&region);
329   while (!toProcess.empty()) {
330     Region *current = toProcess.pop_back_val();
331     for (Block &block : *current) {
332       blockMapping.erase(&block);
333       for (Value arg : block.getArguments())
334         valueMapping.erase(arg);
335       for (Operation &op : block) {
336         for (Value value : op.getResults())
337           valueMapping.erase(value);
338         if (op.hasSuccessors())
339           branchMapping.erase(&op);
340         if (isa<LLVM::GlobalOp>(op))
341           globalsMapping.erase(&op);
342         accessGroupMetadataMapping.erase(&op);
343         llvm::append_range(
344             toProcess,
345             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
346       }
347     }
348   }
349 }
350 
351 /// Get the SSA value passed to the current block from the terminator operation
352 /// of its predecessor.
353 static Value getPHISourceValue(Block *current, Block *pred,
354                                unsigned numArguments, unsigned index) {
355   Operation &terminator = *pred->getTerminator();
356   if (isa<LLVM::BrOp>(terminator))
357     return terminator.getOperand(index);
358 
359   SuccessorRange successors = terminator.getSuccessors();
360   assert(std::adjacent_find(successors.begin(), successors.end()) ==
361              successors.end() &&
362          "successors with arguments in LLVM branches must be different blocks");
363   (void)successors;
364 
365   // For instructions that branch based on a condition value, we need to take
366   // the operands for the branch that was taken.
367   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
368     // For conditional branches, we take the operands from either the "true" or
369     // the "false" branch.
370     return condBranchOp.getSuccessor(0) == current
371                ? condBranchOp.getTrueDestOperands()[index]
372                : condBranchOp.getFalseDestOperands()[index];
373   }
374 
375   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
376     // For switches, we take the operands from either the default case, or from
377     // the case branch that was taken.
378     if (switchOp.getDefaultDestination() == current)
379       return switchOp.getDefaultOperands()[index];
380     for (auto i : llvm::enumerate(switchOp.getCaseDestinations()))
381       if (i.value() == current)
382         return switchOp.getCaseOperands(i.index())[index];
383   }
384 
385   llvm_unreachable("only branch or switch operations can be terminators of a "
386                    "block that has successors");
387 }
388 
389 /// Connect the PHI nodes to the results of preceding blocks.
390 void mlir::LLVM::detail::connectPHINodes(Region &region,
391                                          const ModuleTranslation &state) {
392   // Skip the first block, it cannot be branched to and its arguments correspond
393   // to the arguments of the LLVM function.
394   for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
395        ++it) {
396     Block *bb = &*it;
397     llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
398     auto phis = llvmBB->phis();
399     auto numArguments = bb->getNumArguments();
400     assert(numArguments == std::distance(phis.begin(), phis.end()));
401     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
402       auto &phiNode = numberedPhiNode.value();
403       unsigned index = numberedPhiNode.index();
404       for (auto *pred : bb->getPredecessors()) {
405         // Find the LLVM IR block that contains the converted terminator
406         // instruction and use it in the PHI node. Note that this block is not
407         // necessarily the same as state.lookupBlock(pred), some operations
408         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
409         // split the blocks.
410         llvm::Instruction *terminator =
411             state.lookupBranch(pred->getTerminator());
412         assert(terminator && "missing the mapping for a terminator");
413         phiNode.addIncoming(
414             state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
415             terminator->getParent());
416       }
417     }
418   }
419 }
420 
421 /// Sort function blocks topologically.
422 SetVector<Block *>
423 mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
424   // For each block that has not been visited yet (i.e. that has no
425   // predecessors), add it to the list as well as its successors.
426   SetVector<Block *> blocks;
427   for (Block &b : region) {
428     if (blocks.count(&b) == 0) {
429       llvm::ReversePostOrderTraversal<Block *> traversal(&b);
430       blocks.insert(traversal.begin(), traversal.end());
431     }
432   }
433   assert(blocks.size() == region.getBlocks().size() &&
434          "some blocks are not sorted");
435 
436   return blocks;
437 }
438 
439 llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
440     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
441     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
442   llvm::Module *module = builder.GetInsertBlock()->getModule();
443   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
444   return builder.CreateCall(fn, args);
445 }
446 
447 /// Given a single MLIR operation, create the corresponding LLVM IR operation
448 /// using the `builder`.
449 LogicalResult
450 ModuleTranslation::convertOperation(Operation &op,
451                                     llvm::IRBuilderBase &builder) {
452   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
453   if (!opIface)
454     return op.emitError("cannot be converted to LLVM IR: missing "
455                         "`LLVMTranslationDialectInterface` registration for "
456                         "dialect for op: ")
457            << op.getName();
458 
459   if (failed(opIface->convertOperation(&op, builder, *this)))
460     return op.emitError("LLVM Translation failed for operation: ")
461            << op.getName();
462 
463   return convertDialectAttributes(&op);
464 }
465 
466 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
467 /// to define values corresponding to the MLIR block arguments.  These nodes
468 /// are not connected to the source basic blocks, which may not exist yet.  Uses
469 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
470 /// been created for `bb` and included in the block mapping.  Inserts new
471 /// instructions at the end of the block and leaves `builder` in a state
472 /// suitable for further insertion into the end of the block.
473 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
474                                               llvm::IRBuilderBase &builder) {
475   builder.SetInsertPoint(lookupBlock(&bb));
476   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
477 
478   // Before traversing operations, make block arguments available through
479   // value remapping and PHI nodes, but do not add incoming edges for the PHI
480   // nodes just yet: those values may be defined by this or following blocks.
481   // This step is omitted if "ignoreArguments" is set.  The arguments of the
482   // first block have been already made available through the remapping of
483   // LLVM function arguments.
484   if (!ignoreArguments) {
485     auto predecessors = bb.getPredecessors();
486     unsigned numPredecessors =
487         std::distance(predecessors.begin(), predecessors.end());
488     for (auto arg : bb.getArguments()) {
489       auto wrappedType = arg.getType();
490       if (!isCompatibleType(wrappedType))
491         return emitError(bb.front().getLoc(),
492                          "block argument does not have an LLVM type");
493       llvm::Type *type = convertType(wrappedType);
494       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
495       mapValue(arg, phi);
496     }
497   }
498 
499   // Traverse operations.
500   for (auto &op : bb) {
501     // Set the current debug location within the builder.
502     builder.SetCurrentDebugLocation(
503         debugTranslation->translateLoc(op.getLoc(), subprogram));
504 
505     if (failed(convertOperation(op, builder)))
506       return failure();
507   }
508 
509   return success();
510 }
511 
512 /// A helper method to get the single Block in an operation honoring LLVM's
513 /// module requirements.
514 static Block &getModuleBody(Operation *module) {
515   return module->getRegion(0).front();
516 }
517 
518 /// A helper method to decide if a constant must not be set as a global variable
519 /// initializer. For an external linkage variable, the variable with an
520 /// initializer is considered externally visible and defined in this module, the
521 /// variable without an initializer is externally available and is defined
522 /// elsewhere.
523 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
524                                         llvm::Constant *cst) {
525   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
526          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
527 }
528 
529 /// Sets the runtime preemption specifier of `gv` to dso_local if
530 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
531 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
532                                           llvm::GlobalValue *gv) {
533   if (dsoLocalRequested)
534     gv->setDSOLocal(true);
535 }
536 
537 /// Create named global variables that correspond to llvm.mlir.global
538 /// definitions. Convert llvm.global_ctors and global_dtors ops.
539 LogicalResult ModuleTranslation::convertGlobals() {
540   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
541     llvm::Type *type = convertType(op.getType());
542     llvm::Constant *cst = nullptr;
543     if (op.getValueOrNull()) {
544       // String attributes are treated separately because they cannot appear as
545       // in-function constants and are thus not supported by getLLVMConstant.
546       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
547         cst = llvm::ConstantDataArray::getString(
548             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
549         type = cst->getType();
550       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
551                                          *this))) {
552         return failure();
553       }
554     }
555 
556     auto linkage = convertLinkageToLLVM(op.getLinkage());
557     auto addrSpace = op.getAddrSpace();
558 
559     // LLVM IR requires constant with linkage other than external or weak
560     // external to have initializers. If MLIR does not provide an initializer,
561     // default to undef.
562     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
563     if (!dropInitializer && !cst)
564       cst = llvm::UndefValue::get(type);
565     else if (dropInitializer && cst)
566       cst = nullptr;
567 
568     auto *var = new llvm::GlobalVariable(
569         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
570         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
571 
572     if (op.getUnnamedAddr().hasValue())
573       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
574 
575     if (op.getSection().hasValue())
576       var->setSection(*op.getSection());
577 
578     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
579 
580     Optional<uint64_t> alignment = op.getAlignment();
581     if (alignment.hasValue())
582       var->setAlignment(llvm::MaybeAlign(alignment.getValue()));
583 
584     globalsMapping.try_emplace(op, var);
585   }
586 
587   // Convert global variable bodies. This is done after all global variables
588   // have been created in LLVM IR because a global body may refer to another
589   // global or itself. So all global variables need to be mapped first.
590   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
591     if (Block *initializer = op.getInitializerBlock()) {
592       llvm::IRBuilder<> builder(llvmModule->getContext());
593       for (auto &op : initializer->without_terminator()) {
594         if (failed(convertOperation(op, builder)) ||
595             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
596           return emitError(op.getLoc(), "unemittable constant value");
597       }
598       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
599       llvm::Constant *cst =
600           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
601       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
602       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
603         global->setInitializer(cst);
604     }
605   }
606 
607   // Convert llvm.mlir.global_ctors and dtors.
608   for (Operation &op : getModuleBody(mlirModule)) {
609     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
610     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
611     if (!ctorOp && !dtorOp)
612       continue;
613     auto range = ctorOp ? llvm::zip(ctorOp.ctors(), ctorOp.priorities())
614                         : llvm::zip(dtorOp.dtors(), dtorOp.priorities());
615     auto appendGlobalFn =
616         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
617     for (auto symbolAndPriority : range) {
618       llvm::Function *f = lookupFunction(
619           std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue());
620       appendGlobalFn(
621           *llvmModule.get(), f,
622           std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(),
623           /*Data=*/nullptr);
624     }
625   }
626 
627   return success();
628 }
629 
630 /// Attempts to add an attribute identified by `key`, optionally with the given
631 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
632 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
633 /// otherwise keep it as a string attribute. Performs additional checks for
634 /// attributes known to have or not have a value in order to avoid assertions
635 /// inside LLVM upon construction.
636 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
637                                                llvm::Function *llvmFunc,
638                                                StringRef key,
639                                                StringRef value = StringRef()) {
640   auto kind = llvm::Attribute::getAttrKindFromName(key);
641   if (kind == llvm::Attribute::None) {
642     llvmFunc->addFnAttr(key, value);
643     return success();
644   }
645 
646   if (llvm::Attribute::isIntAttrKind(kind)) {
647     if (value.empty())
648       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
649 
650     int result;
651     if (!value.getAsInteger(/*Radix=*/0, result))
652       llvmFunc->addFnAttr(
653           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
654     else
655       llvmFunc->addFnAttr(key, value);
656     return success();
657   }
658 
659   if (!value.empty())
660     return emitError(loc) << "LLVM attribute '" << key
661                           << "' does not expect a value, found '" << value
662                           << "'";
663 
664   llvmFunc->addFnAttr(kind);
665   return success();
666 }
667 
668 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
669 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
670 /// to be an array attribute containing either string attributes, treated as
671 /// value-less LLVM attributes, or array attributes containing two string
672 /// attributes, with the first string being the name of the corresponding LLVM
673 /// attribute and the second string beings its value. Note that even integer
674 /// attributes are expected to have their values expressed as strings.
675 static LogicalResult
676 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
677                              llvm::Function *llvmFunc) {
678   if (!attributes)
679     return success();
680 
681   for (Attribute attr : *attributes) {
682     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
683       if (failed(
684               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
685         return failure();
686       continue;
687     }
688 
689     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
690     if (!arrayAttr || arrayAttr.size() != 2)
691       return emitError(loc)
692              << "expected 'passthrough' to contain string or array attributes";
693 
694     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
695     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
696     if (!keyAttr || !valueAttr)
697       return emitError(loc)
698              << "expected arrays within 'passthrough' to contain two strings";
699 
700     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
701                                          valueAttr.getValue())))
702       return failure();
703   }
704   return success();
705 }
706 
707 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
708   // Clear the block, branch value mappings, they are only relevant within one
709   // function.
710   blockMapping.clear();
711   valueMapping.clear();
712   branchMapping.clear();
713   llvm::Function *llvmFunc = lookupFunction(func.getName());
714 
715   // Translate the debug information for this function.
716   debugTranslation->translate(func, *llvmFunc);
717 
718   // Add function arguments to the value remapping table.
719   // If there was noalias info then we decorate each argument accordingly.
720   unsigned int argIdx = 0;
721   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
722     llvm::Argument &llvmArg = std::get<1>(kvp);
723     BlockArgument mlirArg = std::get<0>(kvp);
724 
725     if (auto attr = func.getArgAttrOfType<UnitAttr>(
726             argIdx, LLVMDialect::getNoAliasAttrName())) {
727       // NB: Attribute already verified to be boolean, so check if we can indeed
728       // attach the attribute to this argument, based on its type.
729       auto argTy = mlirArg.getType();
730       if (!argTy.isa<LLVM::LLVMPointerType>())
731         return func.emitError(
732             "llvm.noalias attribute attached to LLVM non-pointer argument");
733       llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
734     }
735 
736     if (auto attr = func.getArgAttrOfType<IntegerAttr>(
737             argIdx, LLVMDialect::getAlignAttrName())) {
738       // NB: Attribute already verified to be int, so check if we can indeed
739       // attach the attribute to this argument, based on its type.
740       auto argTy = mlirArg.getType();
741       if (!argTy.isa<LLVM::LLVMPointerType>())
742         return func.emitError(
743             "llvm.align attribute attached to LLVM non-pointer argument");
744       llvmArg.addAttrs(
745           llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
746     }
747 
748     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
749       auto argTy = mlirArg.getType();
750       if (!argTy.isa<LLVM::LLVMPointerType>())
751         return func.emitError(
752             "llvm.sret attribute attached to LLVM non-pointer argument");
753       llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr(
754           llvmArg.getType()->getPointerElementType()));
755     }
756 
757     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
758       auto argTy = mlirArg.getType();
759       if (!argTy.isa<LLVM::LLVMPointerType>())
760         return func.emitError(
761             "llvm.byval attribute attached to LLVM non-pointer argument");
762       llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr(
763           llvmArg.getType()->getPointerElementType()));
764     }
765 
766     mapValue(mlirArg, &llvmArg);
767     argIdx++;
768   }
769 
770   // Check the personality and set it.
771   if (func.getPersonality().hasValue()) {
772     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
773     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
774                                                 func.getLoc(), *this))
775       llvmFunc->setPersonalityFn(pfunc);
776   }
777 
778   // First, create all blocks so we can jump to them.
779   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
780   for (auto &bb : func) {
781     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
782     llvmBB->insertInto(llvmFunc);
783     mapBlock(&bb, llvmBB);
784   }
785 
786   // Then, convert blocks one by one in topological order to ensure defs are
787   // converted before uses.
788   auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
789   for (Block *bb : blocks) {
790     llvm::IRBuilder<> builder(llvmContext);
791     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
792       return failure();
793   }
794 
795   // After all blocks have been traversed and values mapped, connect the PHI
796   // nodes to the results of preceding blocks.
797   detail::connectPHINodes(func.getBody(), *this);
798 
799   // Finally, convert dialect attributes attached to the function.
800   return convertDialectAttributes(func);
801 }
802 
803 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
804   for (NamedAttribute attribute : op->getDialectAttrs())
805     if (failed(iface.amendOperation(op, attribute, *this)))
806       return failure();
807   return success();
808 }
809 
810 LogicalResult ModuleTranslation::convertFunctionSignatures() {
811   // Declare all functions first because there may be function calls that form a
812   // call graph with cycles, or global initializers that reference functions.
813   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
814     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
815         function.getName(),
816         cast<llvm::FunctionType>(convertType(function.getType())));
817     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
818     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
819     mapFunction(function.getName(), llvmFunc);
820     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
821 
822     // Forward the pass-through attributes to LLVM.
823     if (failed(forwardPassthroughAttributes(
824             function.getLoc(), function.getPassthrough(), llvmFunc)))
825       return failure();
826   }
827 
828   return success();
829 }
830 
831 LogicalResult ModuleTranslation::convertFunctions() {
832   // Convert functions.
833   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
834     // Ignore external functions.
835     if (function.isExternal())
836       continue;
837 
838     if (failed(convertOneFunction(function)))
839       return failure();
840   }
841 
842   return success();
843 }
844 
845 llvm::MDNode *
846 ModuleTranslation::getAccessGroup(Operation &opInst,
847                                   SymbolRefAttr accessGroupRef) const {
848   auto metadataName = accessGroupRef.getRootReference();
849   auto accessGroupName = accessGroupRef.getLeafReference();
850   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
851       opInst.getParentOp(), metadataName);
852   auto *accessGroupOp =
853       SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
854   return accessGroupMetadataMapping.lookup(accessGroupOp);
855 }
856 
857 LogicalResult ModuleTranslation::createAccessGroupMetadata() {
858   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
859     metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
860       llvm::LLVMContext &ctx = llvmModule->getContext();
861       llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
862       accessGroupMetadataMapping.insert({op, accessGroup});
863     });
864   });
865   return success();
866 }
867 
868 void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
869                                                 llvm::Instruction *inst) {
870   auto accessGroups =
871       op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
872   if (accessGroups && !accessGroups.empty()) {
873     llvm::Module *module = inst->getModule();
874     SmallVector<llvm::Metadata *> metadatas;
875     for (SymbolRefAttr accessGroupRef :
876          accessGroups.getAsRange<SymbolRefAttr>())
877       metadatas.push_back(getAccessGroup(*op, accessGroupRef));
878 
879     llvm::MDNode *unionMD = nullptr;
880     if (metadatas.size() == 1)
881       unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
882     else if (metadatas.size() >= 2)
883       unionMD = llvm::MDNode::get(module->getContext(), metadatas);
884 
885     inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
886   }
887 }
888 
889 LogicalResult ModuleTranslation::createAliasScopeMetadata() {
890   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
891     // Create the domains first, so they can be reference below in the scopes.
892     DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping;
893     metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) {
894       llvm::LLVMContext &ctx = llvmModule->getContext();
895       llvm::SmallVector<llvm::Metadata *, 2> operands;
896       operands.push_back({}); // Placeholder for self-reference
897       if (Optional<StringRef> description = op.getDescription())
898         operands.push_back(llvm::MDString::get(ctx, description.getValue()));
899       llvm::MDNode *domain = llvm::MDNode::get(ctx, operands);
900       domain->replaceOperandWith(0, domain); // Self-reference for uniqueness
901       aliasScopeDomainMetadataMapping.insert({op, domain});
902     });
903 
904     // Now create the scopes, referencing the domains created above.
905     metadatas.walk([&](LLVM::AliasScopeMetadataOp op) {
906       llvm::LLVMContext &ctx = llvmModule->getContext();
907       assert(isa<LLVM::MetadataOp>(op->getParentOp()));
908       auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp());
909       Operation *domainOp =
910           SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr());
911       llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp);
912       assert(domain && "Scope's domain should already be valid");
913       llvm::SmallVector<llvm::Metadata *, 3> operands;
914       operands.push_back({}); // Placeholder for self-reference
915       operands.push_back(domain);
916       if (Optional<StringRef> description = op.getDescription())
917         operands.push_back(llvm::MDString::get(ctx, description.getValue()));
918       llvm::MDNode *scope = llvm::MDNode::get(ctx, operands);
919       scope->replaceOperandWith(0, scope); // Self-reference for uniqueness
920       aliasScopeMetadataMapping.insert({op, scope});
921     });
922   });
923   return success();
924 }
925 
926 llvm::MDNode *
927 ModuleTranslation::getAliasScope(Operation &opInst,
928                                  SymbolRefAttr aliasScopeRef) const {
929   StringAttr metadataName = aliasScopeRef.getRootReference();
930   StringAttr scopeName = aliasScopeRef.getLeafReference();
931   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
932       opInst.getParentOp(), metadataName);
933   Operation *aliasScopeOp =
934       SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName);
935   return aliasScopeMetadataMapping.lookup(aliasScopeOp);
936 }
937 
938 void ModuleTranslation::setAliasScopeMetadata(Operation *op,
939                                               llvm::Instruction *inst) {
940   auto populateScopeMetadata = [this, op, inst](StringRef attrName,
941                                                 StringRef llvmMetadataName) {
942     auto scopes = op->getAttrOfType<ArrayAttr>(attrName);
943     if (!scopes || scopes.empty())
944       return;
945     llvm::Module *module = inst->getModule();
946     SmallVector<llvm::Metadata *> scopeMDs;
947     for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>())
948       scopeMDs.push_back(getAliasScope(*op, scopeRef));
949     llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs);
950     inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD);
951   };
952 
953   populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope");
954   populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias");
955 }
956 
957 llvm::Type *ModuleTranslation::convertType(Type type) {
958   return typeTranslator.translateType(type);
959 }
960 
961 /// A helper to look up remapped operands in the value remapping table.
962 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
963   SmallVector<llvm::Value *> remapped;
964   remapped.reserve(values.size());
965   for (Value v : values)
966     remapped.push_back(lookupValue(v));
967   return remapped;
968 }
969 
970 const llvm::DILocation *
971 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
972   return debugTranslation->translateLoc(loc, scope);
973 }
974 
975 llvm::NamedMDNode *
976 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
977   return llvmModule->getOrInsertNamedMetadata(name);
978 }
979 
980 void ModuleTranslation::StackFrame::anchor() {}
981 
982 static std::unique_ptr<llvm::Module>
983 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
984                   StringRef name) {
985   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
986   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
987   if (auto dataLayoutAttr =
988           m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
989     llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
990   if (auto targetTripleAttr =
991           m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
992     llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
993 
994   // Inject declarations for `malloc` and `free` functions that can be used in
995   // memref allocation/deallocation coming from standard ops lowering.
996   llvm::IRBuilder<> builder(llvmContext);
997   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
998                                   builder.getInt64Ty());
999   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
1000                                   builder.getInt8PtrTy());
1001 
1002   return llvmModule;
1003 }
1004 
1005 std::unique_ptr<llvm::Module>
1006 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1007                               StringRef name) {
1008   if (!satisfiesLLVMModule(module))
1009     return nullptr;
1010   std::unique_ptr<llvm::Module> llvmModule =
1011       prepareLLVMModule(module, llvmContext, name);
1012 
1013   LLVM::ensureDistinctSuccessors(module);
1014 
1015   ModuleTranslation translator(module, std::move(llvmModule));
1016   if (failed(translator.convertFunctionSignatures()))
1017     return nullptr;
1018   if (failed(translator.convertGlobals()))
1019     return nullptr;
1020   if (failed(translator.createAccessGroupMetadata()))
1021     return nullptr;
1022   if (failed(translator.createAliasScopeMetadata()))
1023     return nullptr;
1024   if (failed(translator.convertFunctions()))
1025     return nullptr;
1026 
1027   // Convert other top-level operations if possible.
1028   llvm::IRBuilder<> llvmBuilder(llvmContext);
1029   for (Operation &o : getModuleBody(module).getOperations()) {
1030     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1031              LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) &&
1032         !o.hasTrait<OpTrait::IsTerminator>() &&
1033         failed(translator.convertOperation(o, llvmBuilder))) {
1034       return nullptr;
1035     }
1036   }
1037 
1038   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
1039     return nullptr;
1040 
1041   return std::move(translator.llvmModule);
1042 }
1043