1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/RegionGraphTraits.h" 22 #include "mlir/IR/StandardTypes.h" 23 #include "mlir/Support/LLVM.h" 24 #include "mlir/Target/LLVMIR/TypeTranslation.h" 25 #include "llvm/ADT/TypeSwitch.h" 26 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CFG.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 41 using namespace mlir; 42 using namespace mlir::LLVM; 43 using namespace mlir::LLVM::detail; 44 45 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 46 47 /// Builds a constant of a sequential LLVM type `type`, potentially containing 48 /// other sequential types recursively, from the individual constant values 49 /// provided in `constants`. `shape` contains the number of elements in nested 50 /// sequential types. Reports errors at `loc` and returns nullptr on error. 51 static llvm::Constant * 52 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 53 ArrayRef<int64_t> shape, llvm::Type *type, 54 Location loc) { 55 if (shape.empty()) { 56 llvm::Constant *result = constants.front(); 57 constants = constants.drop_front(); 58 return result; 59 } 60 61 llvm::Type *elementType; 62 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 63 elementType = arrayTy->getElementType(); 64 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 65 elementType = vectorTy->getElementType(); 66 } else { 67 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 68 return nullptr; 69 } 70 71 SmallVector<llvm::Constant *, 8> nested; 72 nested.reserve(shape.front()); 73 for (int64_t i = 0; i < shape.front(); ++i) { 74 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 75 elementType, loc)); 76 if (!nested.back()) 77 return nullptr; 78 } 79 80 if (shape.size() == 1 && type->isVectorTy()) 81 return llvm::ConstantVector::get(nested); 82 return llvm::ConstantArray::get( 83 llvm::ArrayType::get(elementType, shape.front()), nested); 84 } 85 86 /// Returns the first non-sequential type nested in sequential types. 87 static llvm::Type *getInnermostElementType(llvm::Type *type) { 88 do { 89 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 90 type = arrayTy->getElementType(); 91 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 92 type = vectorTy->getElementType(); 93 } else { 94 return type; 95 } 96 } while (1); 97 } 98 99 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 100 /// This currently supports integer, floating point, splat and dense element 101 /// attributes and combinations thereof. In case of error, report it to `loc` 102 /// and return nullptr. 103 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 104 Attribute attr, 105 Location loc) { 106 if (!attr) 107 return llvm::UndefValue::get(llvmType); 108 if (llvmType->isStructTy()) { 109 emitError(loc, "struct types are not supported in constants"); 110 return nullptr; 111 } 112 // For integer types, we allow a mismatch in sizes as the index type in 113 // MLIR might have a different size than the index type in the LLVM module. 114 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 115 return llvm::ConstantInt::get( 116 llvmType, 117 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 118 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 119 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 120 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 121 return llvm::ConstantExpr::getBitCast( 122 functionMapping.lookup(funcAttr.getValue()), llvmType); 123 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 124 llvm::Type *elementType; 125 uint64_t numElements; 126 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 127 elementType = arrayTy->getElementType(); 128 numElements = arrayTy->getNumElements(); 129 } else { 130 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 131 elementType = vectorTy->getElementType(); 132 numElements = vectorTy->getNumElements(); 133 } 134 // Splat value is a scalar. Extract it only if the element type is not 135 // another sequence type. The recursion terminates because each step removes 136 // one outer sequential type. 137 bool elementTypeSequential = 138 isa<llvm::ArrayType, llvm::VectorType>(elementType); 139 llvm::Constant *child = getLLVMConstant( 140 elementType, 141 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc); 142 if (!child) 143 return nullptr; 144 if (llvmType->isVectorTy()) 145 return llvm::ConstantVector::getSplat( 146 llvm::ElementCount::get(numElements, /*Scalable=*/false), child); 147 if (llvmType->isArrayTy()) { 148 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 149 SmallVector<llvm::Constant *, 8> constants(numElements, child); 150 return llvm::ConstantArray::get(arrayType, constants); 151 } 152 } 153 154 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 155 assert(elementsAttr.getType().hasStaticShape()); 156 assert(elementsAttr.getNumElements() != 0 && 157 "unexpected empty elements attribute"); 158 assert(!elementsAttr.getType().getShape().empty() && 159 "unexpected empty elements attribute shape"); 160 161 SmallVector<llvm::Constant *, 8> constants; 162 constants.reserve(elementsAttr.getNumElements()); 163 llvm::Type *innermostType = getInnermostElementType(llvmType); 164 for (auto n : elementsAttr.getValues<Attribute>()) { 165 constants.push_back(getLLVMConstant(innermostType, n, loc)); 166 if (!constants.back()) 167 return nullptr; 168 } 169 ArrayRef<llvm::Constant *> constantsRef = constants; 170 llvm::Constant *result = buildSequentialConstant( 171 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 172 assert(constantsRef.empty() && "did not consume all elemental constants"); 173 return result; 174 } 175 176 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 177 return llvm::ConstantDataArray::get( 178 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 179 stringAttr.getValue().size()}); 180 } 181 emitError(loc, "unsupported constant value"); 182 return nullptr; 183 } 184 185 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 186 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 187 switch (p) { 188 case LLVM::ICmpPredicate::eq: 189 return llvm::CmpInst::Predicate::ICMP_EQ; 190 case LLVM::ICmpPredicate::ne: 191 return llvm::CmpInst::Predicate::ICMP_NE; 192 case LLVM::ICmpPredicate::slt: 193 return llvm::CmpInst::Predicate::ICMP_SLT; 194 case LLVM::ICmpPredicate::sle: 195 return llvm::CmpInst::Predicate::ICMP_SLE; 196 case LLVM::ICmpPredicate::sgt: 197 return llvm::CmpInst::Predicate::ICMP_SGT; 198 case LLVM::ICmpPredicate::sge: 199 return llvm::CmpInst::Predicate::ICMP_SGE; 200 case LLVM::ICmpPredicate::ult: 201 return llvm::CmpInst::Predicate::ICMP_ULT; 202 case LLVM::ICmpPredicate::ule: 203 return llvm::CmpInst::Predicate::ICMP_ULE; 204 case LLVM::ICmpPredicate::ugt: 205 return llvm::CmpInst::Predicate::ICMP_UGT; 206 case LLVM::ICmpPredicate::uge: 207 return llvm::CmpInst::Predicate::ICMP_UGE; 208 } 209 llvm_unreachable("incorrect comparison predicate"); 210 } 211 212 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 213 switch (p) { 214 case LLVM::FCmpPredicate::_false: 215 return llvm::CmpInst::Predicate::FCMP_FALSE; 216 case LLVM::FCmpPredicate::oeq: 217 return llvm::CmpInst::Predicate::FCMP_OEQ; 218 case LLVM::FCmpPredicate::ogt: 219 return llvm::CmpInst::Predicate::FCMP_OGT; 220 case LLVM::FCmpPredicate::oge: 221 return llvm::CmpInst::Predicate::FCMP_OGE; 222 case LLVM::FCmpPredicate::olt: 223 return llvm::CmpInst::Predicate::FCMP_OLT; 224 case LLVM::FCmpPredicate::ole: 225 return llvm::CmpInst::Predicate::FCMP_OLE; 226 case LLVM::FCmpPredicate::one: 227 return llvm::CmpInst::Predicate::FCMP_ONE; 228 case LLVM::FCmpPredicate::ord: 229 return llvm::CmpInst::Predicate::FCMP_ORD; 230 case LLVM::FCmpPredicate::ueq: 231 return llvm::CmpInst::Predicate::FCMP_UEQ; 232 case LLVM::FCmpPredicate::ugt: 233 return llvm::CmpInst::Predicate::FCMP_UGT; 234 case LLVM::FCmpPredicate::uge: 235 return llvm::CmpInst::Predicate::FCMP_UGE; 236 case LLVM::FCmpPredicate::ult: 237 return llvm::CmpInst::Predicate::FCMP_ULT; 238 case LLVM::FCmpPredicate::ule: 239 return llvm::CmpInst::Predicate::FCMP_ULE; 240 case LLVM::FCmpPredicate::une: 241 return llvm::CmpInst::Predicate::FCMP_UNE; 242 case LLVM::FCmpPredicate::uno: 243 return llvm::CmpInst::Predicate::FCMP_UNO; 244 case LLVM::FCmpPredicate::_true: 245 return llvm::CmpInst::Predicate::FCMP_TRUE; 246 } 247 llvm_unreachable("incorrect comparison predicate"); 248 } 249 250 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 251 switch (op) { 252 case LLVM::AtomicBinOp::xchg: 253 return llvm::AtomicRMWInst::BinOp::Xchg; 254 case LLVM::AtomicBinOp::add: 255 return llvm::AtomicRMWInst::BinOp::Add; 256 case LLVM::AtomicBinOp::sub: 257 return llvm::AtomicRMWInst::BinOp::Sub; 258 case LLVM::AtomicBinOp::_and: 259 return llvm::AtomicRMWInst::BinOp::And; 260 case LLVM::AtomicBinOp::nand: 261 return llvm::AtomicRMWInst::BinOp::Nand; 262 case LLVM::AtomicBinOp::_or: 263 return llvm::AtomicRMWInst::BinOp::Or; 264 case LLVM::AtomicBinOp::_xor: 265 return llvm::AtomicRMWInst::BinOp::Xor; 266 case LLVM::AtomicBinOp::max: 267 return llvm::AtomicRMWInst::BinOp::Max; 268 case LLVM::AtomicBinOp::min: 269 return llvm::AtomicRMWInst::BinOp::Min; 270 case LLVM::AtomicBinOp::umax: 271 return llvm::AtomicRMWInst::BinOp::UMax; 272 case LLVM::AtomicBinOp::umin: 273 return llvm::AtomicRMWInst::BinOp::UMin; 274 case LLVM::AtomicBinOp::fadd: 275 return llvm::AtomicRMWInst::BinOp::FAdd; 276 case LLVM::AtomicBinOp::fsub: 277 return llvm::AtomicRMWInst::BinOp::FSub; 278 } 279 llvm_unreachable("incorrect atomic binary operator"); 280 } 281 282 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 283 switch (ordering) { 284 case LLVM::AtomicOrdering::not_atomic: 285 return llvm::AtomicOrdering::NotAtomic; 286 case LLVM::AtomicOrdering::unordered: 287 return llvm::AtomicOrdering::Unordered; 288 case LLVM::AtomicOrdering::monotonic: 289 return llvm::AtomicOrdering::Monotonic; 290 case LLVM::AtomicOrdering::acquire: 291 return llvm::AtomicOrdering::Acquire; 292 case LLVM::AtomicOrdering::release: 293 return llvm::AtomicOrdering::Release; 294 case LLVM::AtomicOrdering::acq_rel: 295 return llvm::AtomicOrdering::AcquireRelease; 296 case LLVM::AtomicOrdering::seq_cst: 297 return llvm::AtomicOrdering::SequentiallyConsistent; 298 } 299 llvm_unreachable("incorrect atomic ordering"); 300 } 301 302 ModuleTranslation::ModuleTranslation(Operation *module, 303 std::unique_ptr<llvm::Module> llvmModule) 304 : mlirModule(module), llvmModule(std::move(llvmModule)), 305 debugTranslation( 306 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 307 ompDialect(module->getContext()->getLoadedDialect("omp")), 308 typeTranslator(this->llvmModule->getContext()) { 309 assert(satisfiesLLVMModule(mlirModule) && 310 "mlirModule should honor LLVM's module semantics."); 311 } 312 ModuleTranslation::~ModuleTranslation() { 313 if (ompBuilder) 314 ompBuilder->finalize(); 315 } 316 317 /// Get the SSA value passed to the current block from the terminator operation 318 /// of its predecessor. 319 static Value getPHISourceValue(Block *current, Block *pred, 320 unsigned numArguments, unsigned index) { 321 Operation &terminator = *pred->getTerminator(); 322 if (isa<LLVM::BrOp>(terminator)) 323 return terminator.getOperand(index); 324 325 // For conditional branches, we need to check if the current block is reached 326 // through the "true" or the "false" branch and take the relevant operands. 327 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 328 assert(condBranchOp && 329 "only branch operations can be terminators of a block that " 330 "has successors"); 331 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 332 "successors with arguments in LLVM conditional branches must be " 333 "different blocks"); 334 335 return condBranchOp.getSuccessor(0) == current 336 ? condBranchOp.trueDestOperands()[index] 337 : condBranchOp.falseDestOperands()[index]; 338 } 339 340 /// Connect the PHI nodes to the results of preceding blocks. 341 template <typename T> 342 static void 343 connectPHINodes(T &func, const DenseMap<Value, llvm::Value *> &valueMapping, 344 const DenseMap<Block *, llvm::BasicBlock *> &blockMapping) { 345 // Skip the first block, it cannot be branched to and its arguments correspond 346 // to the arguments of the LLVM function. 347 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 348 Block *bb = &*it; 349 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 350 auto phis = llvmBB->phis(); 351 auto numArguments = bb->getNumArguments(); 352 assert(numArguments == std::distance(phis.begin(), phis.end())); 353 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 354 auto &phiNode = numberedPhiNode.value(); 355 unsigned index = numberedPhiNode.index(); 356 for (auto *pred : bb->getPredecessors()) { 357 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 358 bb, pred, numArguments, index)), 359 blockMapping.lookup(pred)); 360 } 361 } 362 } 363 } 364 365 /// Sort function blocks topologically. 366 template <typename T> 367 static llvm::SetVector<Block *> topologicalSort(T &f) { 368 // For each block that has not been visited yet (i.e. that has no 369 // predecessors), add it to the list as well as its successors. 370 llvm::SetVector<Block *> blocks; 371 for (Block &b : f) { 372 if (blocks.count(&b) == 0) { 373 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 374 blocks.insert(traversal.begin(), traversal.end()); 375 } 376 } 377 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 378 379 return blocks; 380 } 381 382 /// Convert the OpenMP parallel Operation to LLVM IR. 383 LogicalResult 384 ModuleTranslation::convertOmpParallel(Operation &opInst, 385 llvm::IRBuilder<> &builder) { 386 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 387 388 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, 389 llvm::BasicBlock &continuationIP) { 390 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 391 392 llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock(); 393 llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator(); 394 ompContinuationIPStack.push_back(&continuationIP); 395 396 // ParallelOp has only `1` region associated with it. 397 auto ®ion = cast<omp::ParallelOp>(opInst).getRegion(); 398 for (auto &bb : region) { 399 auto *llvmBB = llvm::BasicBlock::Create( 400 llvmContext, "omp.par.region", codeGenIP.getBlock()->getParent()); 401 blockMapping[&bb] = llvmBB; 402 } 403 404 // Then, convert blocks one by one in topological order to ensure 405 // defs are converted before uses. 406 llvm::SetVector<Block *> blocks = topologicalSort(region); 407 for (auto indexedBB : llvm::enumerate(blocks)) { 408 Block *bb = indexedBB.value(); 409 llvm::BasicBlock *curLLVMBB = blockMapping[bb]; 410 if (bb->isEntryBlock()) { 411 assert(codeGenIPBBTI->getNumSuccessors() == 1 && 412 "OpenMPIRBuilder provided entry block has multiple successors"); 413 assert(codeGenIPBBTI->getSuccessor(0) == &continuationIP && 414 "ContinuationIP is not the successor of OpenMPIRBuilder " 415 "provided entry block"); 416 codeGenIPBBTI->setSuccessor(0, curLLVMBB); 417 } 418 419 // TODO: Error not returned up the hierarchy 420 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 421 return; 422 } 423 424 ompContinuationIPStack.pop_back(); 425 426 // Finally, after all blocks have been traversed and values mapped, 427 // connect the PHI nodes to the results of preceding blocks. 428 connectPHINodes(region, valueMapping, blockMapping); 429 }; 430 431 // TODO: Perform appropriate actions according to the data-sharing 432 // attribute (shared, private, firstprivate, ...) of variables. 433 // Currently defaults to shared. 434 auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, 435 llvm::Value &vPtr, 436 llvm::Value *&replacementValue) -> InsertPointTy { 437 replacementValue = &vPtr; 438 439 return codeGenIP; 440 }; 441 442 // TODO: Perform finalization actions for variables. This has to be 443 // called for variables which have destructors/finalizers. 444 auto finiCB = [&](InsertPointTy codeGenIP) {}; 445 446 llvm::Value *ifCond = nullptr; 447 if (auto ifExprVar = cast<omp::ParallelOp>(opInst).if_expr_var()) 448 ifCond = valueMapping.lookup(ifExprVar); 449 llvm::Value *numThreads = nullptr; 450 if (auto numThreadsVar = cast<omp::ParallelOp>(opInst).num_threads_var()) 451 numThreads = valueMapping.lookup(numThreadsVar); 452 llvm::omp::ProcBindKind pbKind = llvm::omp::OMP_PROC_BIND_default; 453 if (auto bind = cast<omp::ParallelOp>(opInst).proc_bind_val()) 454 pbKind = llvm::omp::getProcBindKind(bind.getValue()); 455 // TODO: Is the Parallel construct cancellable? 456 bool isCancellable = false; 457 // TODO: Determine the actual alloca insertion point, e.g., the function 458 // entry or the alloca insertion point as provided by the body callback 459 // above. 460 llvm::OpenMPIRBuilder::InsertPointTy allocaIP(builder.saveIP()); 461 builder.restoreIP( 462 ompBuilder->createParallel(builder, allocaIP, bodyGenCB, privCB, finiCB, 463 ifCond, numThreads, pbKind, isCancellable)); 464 return success(); 465 } 466 467 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR 468 /// (including OpenMP runtime calls). 469 LogicalResult 470 ModuleTranslation::convertOmpOperation(Operation &opInst, 471 llvm::IRBuilder<> &builder) { 472 if (!ompBuilder) { 473 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 474 ompBuilder->initialize(); 475 } 476 return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst) 477 .Case([&](omp::BarrierOp) { 478 ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 479 return success(); 480 }) 481 .Case([&](omp::TaskwaitOp) { 482 ompBuilder->createTaskwait(builder.saveIP()); 483 return success(); 484 }) 485 .Case([&](omp::TaskyieldOp) { 486 ompBuilder->createTaskyield(builder.saveIP()); 487 return success(); 488 }) 489 .Case([&](omp::FlushOp) { 490 // No support in Openmp runtime function (__kmpc_flush) to accept 491 // the argument list. 492 // OpenMP standard states the following: 493 // "An implementation may implement a flush with a list by ignoring 494 // the list, and treating it the same as a flush without a list." 495 // 496 // The argument list is discarded so that, flush with a list is treated 497 // same as a flush without a list. 498 ompBuilder->createFlush(builder.saveIP()); 499 return success(); 500 }) 501 .Case([&](omp::TerminatorOp) { 502 builder.CreateBr(ompContinuationIPStack.back()); 503 return success(); 504 }) 505 .Case( 506 [&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); }) 507 .Default([&](Operation *inst) { 508 return inst->emitError("unsupported OpenMP operation: ") 509 << inst->getName(); 510 }); 511 } 512 513 /// Given a single MLIR operation, create the corresponding LLVM IR operation 514 /// using the `builder`. LLVM IR Builder does not have a generic interface so 515 /// this has to be a long chain of `if`s calling different functions with a 516 /// different number of arguments. 517 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 518 llvm::IRBuilder<> &builder) { 519 auto extractPosition = [](ArrayAttr attr) { 520 SmallVector<unsigned, 4> position; 521 position.reserve(attr.size()); 522 for (Attribute v : attr) 523 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 524 return position; 525 }; 526 527 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 528 529 // Emit function calls. If the "callee" attribute is present, this is a 530 // direct function call and we also need to look up the remapped function 531 // itself. Otherwise, this is an indirect call and the callee is the first 532 // operand, look it up as a normal value. Return the llvm::Value representing 533 // the function result, which may be of llvm::VoidTy type. 534 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 535 auto operands = lookupValues(op.getOperands()); 536 ArrayRef<llvm::Value *> operandsRef(operands); 537 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 538 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 539 operandsRef); 540 } else { 541 auto *calleePtrType = 542 cast<llvm::PointerType>(operandsRef.front()->getType()); 543 auto *calleeType = 544 cast<llvm::FunctionType>(calleePtrType->getElementType()); 545 return builder.CreateCall(calleeType, operandsRef.front(), 546 operandsRef.drop_front()); 547 } 548 }; 549 550 // Emit calls. If the called function has a result, remap the corresponding 551 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 552 if (isa<LLVM::CallOp>(opInst)) { 553 llvm::Value *result = convertCall(opInst); 554 if (opInst.getNumResults() != 0) { 555 valueMapping[opInst.getResult(0)] = result; 556 return success(); 557 } 558 // Check that LLVM call returns void for 0-result functions. 559 return success(result->getType()->isVoidTy()); 560 } 561 562 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 563 auto operands = lookupValues(opInst.getOperands()); 564 ArrayRef<llvm::Value *> operandsRef(operands); 565 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) { 566 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 567 blockMapping[invOp.getSuccessor(0)], 568 blockMapping[invOp.getSuccessor(1)], operandsRef); 569 } else { 570 auto *calleePtrType = 571 cast<llvm::PointerType>(operandsRef.front()->getType()); 572 auto *calleeType = 573 cast<llvm::FunctionType>(calleePtrType->getElementType()); 574 builder.CreateInvoke( 575 calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 576 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 577 } 578 return success(); 579 } 580 581 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 582 llvm::Type *ty = convertType(lpOp.getType().cast<LLVMType>()); 583 llvm::LandingPadInst *lpi = 584 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 585 586 // Add clauses 587 for (auto operand : lookupValues(lpOp.getOperands())) { 588 // All operands should be constant - checked by verifier 589 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 590 lpi->addClause(constOperand); 591 } 592 valueMapping[lpOp.getResult()] = lpi; 593 return success(); 594 } 595 596 // Emit branches. We need to look up the remapped blocks and ignore the block 597 // arguments that were transformed into PHI nodes. 598 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 599 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 600 return success(); 601 } 602 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 603 auto weights = condbrOp.branch_weights(); 604 llvm::MDNode *branchWeights = nullptr; 605 if (weights) { 606 // Map weight attributes to LLVM metadata. 607 auto trueWeight = 608 weights.getValue().getValue(0).cast<IntegerAttr>().getInt(); 609 auto falseWeight = 610 weights.getValue().getValue(1).cast<IntegerAttr>().getInt(); 611 branchWeights = 612 llvm::MDBuilder(llvmModule->getContext()) 613 .createBranchWeights(static_cast<uint32_t>(trueWeight), 614 static_cast<uint32_t>(falseWeight)); 615 } 616 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 617 blockMapping[condbrOp.getSuccessor(0)], 618 blockMapping[condbrOp.getSuccessor(1)], branchWeights); 619 return success(); 620 } 621 622 // Emit addressof. We need to look up the global value referenced by the 623 // operation and store it in the MLIR-to-LLVM value mapping. This does not 624 // emit any LLVM instruction. 625 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 626 LLVM::GlobalOp global = addressOfOp.getGlobal(); 627 LLVM::LLVMFuncOp function = addressOfOp.getFunction(); 628 629 // The verifier should not have allowed this. 630 assert((global || function) && 631 "referencing an undefined global or function"); 632 633 valueMapping[addressOfOp.getResult()] = 634 global ? globalsMapping.lookup(global) 635 : functionMapping.lookup(function.getName()); 636 return success(); 637 } 638 639 if (ompDialect && opInst.getDialect() == ompDialect) 640 return convertOmpOperation(opInst, builder); 641 642 return opInst.emitError("unsupported or non-LLVM operation: ") 643 << opInst.getName(); 644 } 645 646 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 647 /// to define values corresponding to the MLIR block arguments. These nodes 648 /// are not connected to the source basic blocks, which may not exist yet. 649 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 650 llvm::IRBuilder<> builder(blockMapping[&bb]); 651 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 652 653 // Before traversing operations, make block arguments available through 654 // value remapping and PHI nodes, but do not add incoming edges for the PHI 655 // nodes just yet: those values may be defined by this or following blocks. 656 // This step is omitted if "ignoreArguments" is set. The arguments of the 657 // first block have been already made available through the remapping of 658 // LLVM function arguments. 659 if (!ignoreArguments) { 660 auto predecessors = bb.getPredecessors(); 661 unsigned numPredecessors = 662 std::distance(predecessors.begin(), predecessors.end()); 663 for (auto arg : bb.getArguments()) { 664 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 665 if (!wrappedType) 666 return emitError(bb.front().getLoc(), 667 "block argument does not have an LLVM type"); 668 llvm::Type *type = convertType(wrappedType); 669 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 670 valueMapping[arg] = phi; 671 } 672 } 673 674 // Traverse operations. 675 for (auto &op : bb) { 676 // Set the current debug location within the builder. 677 builder.SetCurrentDebugLocation( 678 debugTranslation->translateLoc(op.getLoc(), subprogram)); 679 680 if (failed(convertOperation(op, builder))) 681 return failure(); 682 } 683 684 return success(); 685 } 686 687 /// Create named global variables that correspond to llvm.mlir.global 688 /// definitions. 689 LogicalResult ModuleTranslation::convertGlobals() { 690 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 691 llvm::Type *type = convertType(op.getType()); 692 llvm::Constant *cst = llvm::UndefValue::get(type); 693 if (op.getValueOrNull()) { 694 // String attributes are treated separately because they cannot appear as 695 // in-function constants and are thus not supported by getLLVMConstant. 696 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 697 cst = llvm::ConstantDataArray::getString( 698 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 699 type = cst->getType(); 700 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 701 op.getLoc()))) { 702 return failure(); 703 } 704 } else if (Block *initializer = op.getInitializerBlock()) { 705 llvm::IRBuilder<> builder(llvmModule->getContext()); 706 for (auto &op : initializer->without_terminator()) { 707 if (failed(convertOperation(op, builder)) || 708 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 709 return emitError(op.getLoc(), "unemittable constant value"); 710 } 711 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 712 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 713 } 714 715 auto linkage = convertLinkageToLLVM(op.linkage()); 716 bool anyExternalLinkage = 717 ((linkage == llvm::GlobalVariable::ExternalLinkage && 718 isa<llvm::UndefValue>(cst)) || 719 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 720 auto addrSpace = op.addr_space(); 721 auto *var = new llvm::GlobalVariable( 722 *llvmModule, type, op.constant(), linkage, 723 anyExternalLinkage ? nullptr : cst, op.sym_name(), 724 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 725 726 globalsMapping.try_emplace(op, var); 727 } 728 729 return success(); 730 } 731 732 /// Attempts to add an attribute identified by `key`, optionally with the given 733 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 734 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 735 /// otherwise keep it as a string attribute. Performs additional checks for 736 /// attributes known to have or not have a value in order to avoid assertions 737 /// inside LLVM upon construction. 738 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 739 llvm::Function *llvmFunc, 740 StringRef key, 741 StringRef value = StringRef()) { 742 auto kind = llvm::Attribute::getAttrKindFromName(key); 743 if (kind == llvm::Attribute::None) { 744 llvmFunc->addFnAttr(key, value); 745 return success(); 746 } 747 748 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) { 749 if (value.empty()) 750 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 751 752 int result; 753 if (!value.getAsInteger(/*Radix=*/0, result)) 754 llvmFunc->addFnAttr( 755 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 756 else 757 llvmFunc->addFnAttr(key, value); 758 return success(); 759 } 760 761 if (!value.empty()) 762 return emitError(loc) << "LLVM attribute '" << key 763 << "' does not expect a value, found '" << value 764 << "'"; 765 766 llvmFunc->addFnAttr(kind); 767 return success(); 768 } 769 770 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 771 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 772 /// to be an array attribute containing either string attributes, treated as 773 /// value-less LLVM attributes, or array attributes containing two string 774 /// attributes, with the first string being the name of the corresponding LLVM 775 /// attribute and the second string beings its value. Note that even integer 776 /// attributes are expected to have their values expressed as strings. 777 static LogicalResult 778 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 779 llvm::Function *llvmFunc) { 780 if (!attributes) 781 return success(); 782 783 for (Attribute attr : *attributes) { 784 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 785 if (failed( 786 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 787 return failure(); 788 continue; 789 } 790 791 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 792 if (!arrayAttr || arrayAttr.size() != 2) 793 return emitError(loc) 794 << "expected 'passthrough' to contain string or array attributes"; 795 796 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 797 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 798 if (!keyAttr || !valueAttr) 799 return emitError(loc) 800 << "expected arrays within 'passthrough' to contain two strings"; 801 802 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 803 valueAttr.getValue()))) 804 return failure(); 805 } 806 return success(); 807 } 808 809 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 810 // Clear the block and value mappings, they are only relevant within one 811 // function. 812 blockMapping.clear(); 813 valueMapping.clear(); 814 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 815 816 // Translate the debug information for this function. 817 debugTranslation->translate(func, *llvmFunc); 818 819 // Add function arguments to the value remapping table. 820 // If there was noalias info then we decorate each argument accordingly. 821 unsigned int argIdx = 0; 822 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 823 llvm::Argument &llvmArg = std::get<1>(kvp); 824 BlockArgument mlirArg = std::get<0>(kvp); 825 826 if (auto attr = func.getArgAttrOfType<BoolAttr>( 827 argIdx, LLVMDialect::getNoAliasAttrName())) { 828 // NB: Attribute already verified to be boolean, so check if we can indeed 829 // attach the attribute to this argument, based on its type. 830 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 831 if (!argTy.isPointerTy()) 832 return func.emitError( 833 "llvm.noalias attribute attached to LLVM non-pointer argument"); 834 if (attr.getValue()) 835 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 836 } 837 838 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 839 argIdx, LLVMDialect::getAlignAttrName())) { 840 // NB: Attribute already verified to be int, so check if we can indeed 841 // attach the attribute to this argument, based on its type. 842 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 843 if (!argTy.isPointerTy()) 844 return func.emitError( 845 "llvm.align attribute attached to LLVM non-pointer argument"); 846 llvmArg.addAttrs( 847 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 848 } 849 850 valueMapping[mlirArg] = &llvmArg; 851 argIdx++; 852 } 853 854 // Check the personality and set it. 855 if (func.personality().hasValue()) { 856 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 857 if (llvm::Constant *pfunc = 858 getLLVMConstant(ty, func.personalityAttr(), func.getLoc())) 859 llvmFunc->setPersonalityFn(pfunc); 860 } 861 862 // First, create all blocks so we can jump to them. 863 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 864 for (auto &bb : func) { 865 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 866 llvmBB->insertInto(llvmFunc); 867 blockMapping[&bb] = llvmBB; 868 } 869 870 // Then, convert blocks one by one in topological order to ensure defs are 871 // converted before uses. 872 auto blocks = topologicalSort(func); 873 for (auto indexedBB : llvm::enumerate(blocks)) { 874 auto *bb = indexedBB.value(); 875 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 876 return failure(); 877 } 878 879 // Finally, after all blocks have been traversed and values mapped, connect 880 // the PHI nodes to the results of preceding blocks. 881 connectPHINodes(func, valueMapping, blockMapping); 882 return success(); 883 } 884 885 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 886 for (Operation &o : getModuleBody(m).getOperations()) 887 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator()) 888 return o.emitOpError("unsupported module-level operation"); 889 return success(); 890 } 891 892 LogicalResult ModuleTranslation::convertFunctionSignatures() { 893 // Declare all functions first because there may be function calls that form a 894 // call graph with cycles, or global initializers that reference functions. 895 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 896 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 897 function.getName(), 898 cast<llvm::FunctionType>(convertType(function.getType()))); 899 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 900 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage())); 901 functionMapping[function.getName()] = llvmFunc; 902 903 // Forward the pass-through attributes to LLVM. 904 if (failed(forwardPassthroughAttributes(function.getLoc(), 905 function.passthrough(), llvmFunc))) 906 return failure(); 907 } 908 909 return success(); 910 } 911 912 LogicalResult ModuleTranslation::convertFunctions() { 913 // Convert functions. 914 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 915 // Ignore external functions. 916 if (function.isExternal()) 917 continue; 918 919 if (failed(convertOneFunction(function))) 920 return failure(); 921 } 922 923 return success(); 924 } 925 926 llvm::Type *ModuleTranslation::convertType(LLVMType type) { 927 return typeTranslator.translateType(type); 928 } 929 930 /// A helper to look up remapped operands in the value remapping table.` 931 SmallVector<llvm::Value *, 8> 932 ModuleTranslation::lookupValues(ValueRange values) { 933 SmallVector<llvm::Value *, 8> remapped; 934 remapped.reserve(values.size()); 935 for (Value v : values) { 936 assert(valueMapping.count(v) && "referencing undefined value"); 937 remapped.push_back(valueMapping.lookup(v)); 938 } 939 return remapped; 940 } 941 942 std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule( 943 Operation *m, llvm::LLVMContext &llvmContext, StringRef name) { 944 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 945 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 946 if (auto dataLayoutAttr = 947 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 948 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 949 950 // Inject declarations for `malloc` and `free` functions that can be used in 951 // memref allocation/deallocation coming from standard ops lowering. 952 llvm::IRBuilder<> builder(llvmContext); 953 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 954 builder.getInt64Ty()); 955 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 956 builder.getInt8PtrTy()); 957 958 return llvmModule; 959 } 960