1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/ModuleUtils.h" 46 47 using namespace mlir; 48 using namespace mlir::LLVM; 49 using namespace mlir::LLVM::detail; 50 51 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 52 53 /// Builds a constant of a sequential LLVM type `type`, potentially containing 54 /// other sequential types recursively, from the individual constant values 55 /// provided in `constants`. `shape` contains the number of elements in nested 56 /// sequential types. Reports errors at `loc` and returns nullptr on error. 57 static llvm::Constant * 58 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 59 ArrayRef<int64_t> shape, llvm::Type *type, 60 Location loc) { 61 if (shape.empty()) { 62 llvm::Constant *result = constants.front(); 63 constants = constants.drop_front(); 64 return result; 65 } 66 67 llvm::Type *elementType; 68 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 69 elementType = arrayTy->getElementType(); 70 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 71 elementType = vectorTy->getElementType(); 72 } else { 73 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 74 return nullptr; 75 } 76 77 SmallVector<llvm::Constant *, 8> nested; 78 nested.reserve(shape.front()); 79 for (int64_t i = 0; i < shape.front(); ++i) { 80 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 81 elementType, loc)); 82 if (!nested.back()) 83 return nullptr; 84 } 85 86 if (shape.size() == 1 && type->isVectorTy()) 87 return llvm::ConstantVector::get(nested); 88 return llvm::ConstantArray::get( 89 llvm::ArrayType::get(elementType, shape.front()), nested); 90 } 91 92 /// Returns the first non-sequential type nested in sequential types. 93 static llvm::Type *getInnermostElementType(llvm::Type *type) { 94 do { 95 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 96 type = arrayTy->getElementType(); 97 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 98 type = vectorTy->getElementType(); 99 } else { 100 return type; 101 } 102 } while (true); 103 } 104 105 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 106 /// storage if possible. This supports elements attributes of tensor or vector 107 /// type and avoids constructing separate objects for individual values of the 108 /// innermost dimension. Constants for other dimensions are still constructed 109 /// recursively. Returns null if constructing from raw data is not supported for 110 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 111 /// other errors at `loc`. 112 static llvm::Constant * 113 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 114 llvm::Type *llvmType, 115 const ModuleTranslation &moduleTranslation) { 116 if (!denseElementsAttr) 117 return nullptr; 118 119 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 120 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 121 return nullptr; 122 123 ShapedType type = denseElementsAttr.getType(); 124 if (type.getNumElements() == 0) 125 return nullptr; 126 127 // Compute the shape of all dimensions but the innermost. Note that the 128 // innermost dimension may be that of the vector element type. 129 bool hasVectorElementType = type.getElementType().isa<VectorType>(); 130 unsigned numAggregates = 131 denseElementsAttr.getNumElements() / 132 (hasVectorElementType ? 1 133 : denseElementsAttr.getType().getShape().back()); 134 ArrayRef<int64_t> outerShape = type.getShape(); 135 if (!hasVectorElementType) 136 outerShape = outerShape.drop_back(); 137 138 // Handle the case of vector splat, LLVM has special support for it. 139 if (denseElementsAttr.isSplat() && 140 (type.isa<VectorType>() || hasVectorElementType)) { 141 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 142 innermostLLVMType, denseElementsAttr.getSplatValue(), loc, 143 moduleTranslation, /*isTopLevel=*/false); 144 llvm::Constant *splatVector = 145 llvm::ConstantDataVector::getSplat(0, splatValue); 146 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 147 ArrayRef<llvm::Constant *> constantsRef = constants; 148 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 149 } 150 if (denseElementsAttr.isSplat()) 151 return nullptr; 152 153 // In case of non-splat, create a constructor for the innermost constant from 154 // a piece of raw data. 155 std::function<llvm::Constant *(StringRef)> buildCstData; 156 if (type.isa<TensorType>()) { 157 auto vectorElementType = type.getElementType().dyn_cast<VectorType>(); 158 if (vectorElementType && vectorElementType.getRank() == 1) { 159 buildCstData = [&](StringRef data) { 160 return llvm::ConstantDataVector::getRaw( 161 data, vectorElementType.getShape().back(), innermostLLVMType); 162 }; 163 } else if (!vectorElementType) { 164 buildCstData = [&](StringRef data) { 165 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 166 innermostLLVMType); 167 }; 168 } 169 } else if (type.isa<VectorType>()) { 170 buildCstData = [&](StringRef data) { 171 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 172 innermostLLVMType); 173 }; 174 } 175 if (!buildCstData) 176 return nullptr; 177 178 // Create innermost constants and defer to the default constant creation 179 // mechanism for other dimensions. 180 SmallVector<llvm::Constant *> constants; 181 unsigned aggregateSize = denseElementsAttr.getType().getShape().back() * 182 (innermostLLVMType->getScalarSizeInBits() / 8); 183 constants.reserve(numAggregates); 184 for (unsigned i = 0; i < numAggregates; ++i) { 185 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 186 aggregateSize); 187 constants.push_back(buildCstData(data)); 188 } 189 190 ArrayRef<llvm::Constant *> constantsRef = constants; 191 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 192 } 193 194 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 195 /// This currently supports integer, floating point, splat and dense element 196 /// attributes and combinations thereof. Also, an array attribute with two 197 /// elements is supported to represent a complex constant. In case of error, 198 /// report it to `loc` and return nullptr. 199 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 200 llvm::Type *llvmType, Attribute attr, Location loc, 201 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 202 if (!attr) 203 return llvm::UndefValue::get(llvmType); 204 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 205 if (!isTopLevel) { 206 emitError(loc, "nested struct types are not supported in constants"); 207 return nullptr; 208 } 209 auto arrayAttr = attr.cast<ArrayAttr>(); 210 llvm::Type *elementType = structType->getElementType(0); 211 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 212 moduleTranslation, false); 213 if (!real) 214 return nullptr; 215 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 216 moduleTranslation, false); 217 if (!imag) 218 return nullptr; 219 return llvm::ConstantStruct::get(structType, {real, imag}); 220 } 221 // For integer types, we allow a mismatch in sizes as the index type in 222 // MLIR might have a different size than the index type in the LLVM module. 223 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 224 return llvm::ConstantInt::get( 225 llvmType, 226 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 227 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 228 if (llvmType != 229 llvm::Type::getFloatingPointTy(llvmType->getContext(), 230 floatAttr.getValue().getSemantics())) { 231 emitError(loc, "FloatAttr does not match expected type of the constant"); 232 return nullptr; 233 } 234 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 235 } 236 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 237 return llvm::ConstantExpr::getBitCast( 238 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 239 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 240 llvm::Type *elementType; 241 uint64_t numElements; 242 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 243 elementType = arrayTy->getElementType(); 244 numElements = arrayTy->getNumElements(); 245 } else { 246 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 247 elementType = vectorTy->getElementType(); 248 numElements = vectorTy->getNumElements(); 249 } 250 // Splat value is a scalar. Extract it only if the element type is not 251 // another sequence type. The recursion terminates because each step removes 252 // one outer sequential type. 253 bool elementTypeSequential = 254 isa<llvm::ArrayType, llvm::VectorType>(elementType); 255 llvm::Constant *child = getLLVMConstant( 256 elementType, 257 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc, 258 moduleTranslation, false); 259 if (!child) 260 return nullptr; 261 if (llvmType->isVectorTy()) 262 return llvm::ConstantVector::getSplat( 263 llvm::ElementCount::get(numElements, /*Scalable=*/false), child); 264 if (llvmType->isArrayTy()) { 265 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 266 SmallVector<llvm::Constant *, 8> constants(numElements, child); 267 return llvm::ConstantArray::get(arrayType, constants); 268 } 269 } 270 271 // Try using raw elements data if possible. 272 if (llvm::Constant *result = 273 convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(), 274 llvmType, moduleTranslation)) { 275 return result; 276 } 277 278 // Fall back to element-by-element construction otherwise. 279 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 280 assert(elementsAttr.getType().hasStaticShape()); 281 assert(!elementsAttr.getType().getShape().empty() && 282 "unexpected empty elements attribute shape"); 283 284 SmallVector<llvm::Constant *, 8> constants; 285 constants.reserve(elementsAttr.getNumElements()); 286 llvm::Type *innermostType = getInnermostElementType(llvmType); 287 for (auto n : elementsAttr.getValues<Attribute>()) { 288 constants.push_back( 289 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 290 if (!constants.back()) 291 return nullptr; 292 } 293 ArrayRef<llvm::Constant *> constantsRef = constants; 294 llvm::Constant *result = buildSequentialConstant( 295 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 296 assert(constantsRef.empty() && "did not consume all elemental constants"); 297 return result; 298 } 299 300 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 301 return llvm::ConstantDataArray::get( 302 moduleTranslation.getLLVMContext(), 303 ArrayRef<char>{stringAttr.getValue().data(), 304 stringAttr.getValue().size()}); 305 } 306 emitError(loc, "unsupported constant value"); 307 return nullptr; 308 } 309 310 ModuleTranslation::ModuleTranslation(Operation *module, 311 std::unique_ptr<llvm::Module> llvmModule) 312 : mlirModule(module), llvmModule(std::move(llvmModule)), 313 debugTranslation( 314 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 315 typeTranslator(this->llvmModule->getContext()), 316 iface(module->getContext()) { 317 assert(satisfiesLLVMModule(mlirModule) && 318 "mlirModule should honor LLVM's module semantics."); 319 } 320 ModuleTranslation::~ModuleTranslation() { 321 if (ompBuilder) 322 ompBuilder->finalize(); 323 } 324 325 void ModuleTranslation::forgetMapping(Region ®ion) { 326 SmallVector<Region *> toProcess; 327 toProcess.push_back(®ion); 328 while (!toProcess.empty()) { 329 Region *current = toProcess.pop_back_val(); 330 for (Block &block : *current) { 331 blockMapping.erase(&block); 332 for (Value arg : block.getArguments()) 333 valueMapping.erase(arg); 334 for (Operation &op : block) { 335 for (Value value : op.getResults()) 336 valueMapping.erase(value); 337 if (op.hasSuccessors()) 338 branchMapping.erase(&op); 339 if (isa<LLVM::GlobalOp>(op)) 340 globalsMapping.erase(&op); 341 accessGroupMetadataMapping.erase(&op); 342 llvm::append_range( 343 toProcess, 344 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 345 } 346 } 347 } 348 } 349 350 /// Get the SSA value passed to the current block from the terminator operation 351 /// of its predecessor. 352 static Value getPHISourceValue(Block *current, Block *pred, 353 unsigned numArguments, unsigned index) { 354 Operation &terminator = *pred->getTerminator(); 355 if (isa<LLVM::BrOp>(terminator)) 356 return terminator.getOperand(index); 357 358 SuccessorRange successors = terminator.getSuccessors(); 359 assert(std::adjacent_find(successors.begin(), successors.end()) == 360 successors.end() && 361 "successors with arguments in LLVM branches must be different blocks"); 362 (void)successors; 363 364 // For instructions that branch based on a condition value, we need to take 365 // the operands for the branch that was taken. 366 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 367 // For conditional branches, we take the operands from either the "true" or 368 // the "false" branch. 369 return condBranchOp.getSuccessor(0) == current 370 ? condBranchOp.getTrueDestOperands()[index] 371 : condBranchOp.getFalseDestOperands()[index]; 372 } 373 374 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 375 // For switches, we take the operands from either the default case, or from 376 // the case branch that was taken. 377 if (switchOp.getDefaultDestination() == current) 378 return switchOp.getDefaultOperands()[index]; 379 for (auto i : llvm::enumerate(switchOp.getCaseDestinations())) 380 if (i.value() == current) 381 return switchOp.getCaseOperands(i.index())[index]; 382 } 383 384 llvm_unreachable("only branch or switch operations can be terminators of a " 385 "block that has successors"); 386 } 387 388 /// Connect the PHI nodes to the results of preceding blocks. 389 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 390 const ModuleTranslation &state) { 391 // Skip the first block, it cannot be branched to and its arguments correspond 392 // to the arguments of the LLVM function. 393 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 394 ++it) { 395 Block *bb = &*it; 396 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 397 auto phis = llvmBB->phis(); 398 auto numArguments = bb->getNumArguments(); 399 assert(numArguments == std::distance(phis.begin(), phis.end())); 400 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 401 auto &phiNode = numberedPhiNode.value(); 402 unsigned index = numberedPhiNode.index(); 403 for (auto *pred : bb->getPredecessors()) { 404 // Find the LLVM IR block that contains the converted terminator 405 // instruction and use it in the PHI node. Note that this block is not 406 // necessarily the same as state.lookupBlock(pred), some operations 407 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 408 // split the blocks. 409 llvm::Instruction *terminator = 410 state.lookupBranch(pred->getTerminator()); 411 assert(terminator && "missing the mapping for a terminator"); 412 phiNode.addIncoming( 413 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 414 terminator->getParent()); 415 } 416 } 417 } 418 } 419 420 /// Sort function blocks topologically. 421 SetVector<Block *> 422 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 423 // For each block that has not been visited yet (i.e. that has no 424 // predecessors), add it to the list as well as its successors. 425 SetVector<Block *> blocks; 426 for (Block &b : region) { 427 if (blocks.count(&b) == 0) { 428 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 429 blocks.insert(traversal.begin(), traversal.end()); 430 } 431 } 432 assert(blocks.size() == region.getBlocks().size() && 433 "some blocks are not sorted"); 434 435 return blocks; 436 } 437 438 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 439 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 440 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 441 llvm::Module *module = builder.GetInsertBlock()->getModule(); 442 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 443 return builder.CreateCall(fn, args); 444 } 445 446 /// Given a single MLIR operation, create the corresponding LLVM IR operation 447 /// using the `builder`. 448 LogicalResult 449 ModuleTranslation::convertOperation(Operation &op, 450 llvm::IRBuilderBase &builder) { 451 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 452 if (!opIface) 453 return op.emitError("cannot be converted to LLVM IR: missing " 454 "`LLVMTranslationDialectInterface` registration for " 455 "dialect for op: ") 456 << op.getName(); 457 458 if (failed(opIface->convertOperation(&op, builder, *this))) 459 return op.emitError("LLVM Translation failed for operation: ") 460 << op.getName(); 461 462 return convertDialectAttributes(&op); 463 } 464 465 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 466 /// to define values corresponding to the MLIR block arguments. These nodes 467 /// are not connected to the source basic blocks, which may not exist yet. Uses 468 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 469 /// been created for `bb` and included in the block mapping. Inserts new 470 /// instructions at the end of the block and leaves `builder` in a state 471 /// suitable for further insertion into the end of the block. 472 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 473 llvm::IRBuilderBase &builder) { 474 builder.SetInsertPoint(lookupBlock(&bb)); 475 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 476 477 // Before traversing operations, make block arguments available through 478 // value remapping and PHI nodes, but do not add incoming edges for the PHI 479 // nodes just yet: those values may be defined by this or following blocks. 480 // This step is omitted if "ignoreArguments" is set. The arguments of the 481 // first block have been already made available through the remapping of 482 // LLVM function arguments. 483 if (!ignoreArguments) { 484 auto predecessors = bb.getPredecessors(); 485 unsigned numPredecessors = 486 std::distance(predecessors.begin(), predecessors.end()); 487 for (auto arg : bb.getArguments()) { 488 auto wrappedType = arg.getType(); 489 if (!isCompatibleType(wrappedType)) 490 return emitError(bb.front().getLoc(), 491 "block argument does not have an LLVM type"); 492 llvm::Type *type = convertType(wrappedType); 493 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 494 mapValue(arg, phi); 495 } 496 } 497 498 // Traverse operations. 499 for (auto &op : bb) { 500 // Set the current debug location within the builder. 501 builder.SetCurrentDebugLocation( 502 debugTranslation->translateLoc(op.getLoc(), subprogram)); 503 504 if (failed(convertOperation(op, builder))) 505 return failure(); 506 } 507 508 return success(); 509 } 510 511 /// A helper method to get the single Block in an operation honoring LLVM's 512 /// module requirements. 513 static Block &getModuleBody(Operation *module) { 514 return module->getRegion(0).front(); 515 } 516 517 /// A helper method to decide if a constant must not be set as a global variable 518 /// initializer. For an external linkage variable, the variable with an 519 /// initializer is considered externally visible and defined in this module, the 520 /// variable without an initializer is externally available and is defined 521 /// elsewhere. 522 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 523 llvm::Constant *cst) { 524 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 525 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 526 } 527 528 /// Sets the runtime preemption specifier of `gv` to dso_local if 529 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 530 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 531 llvm::GlobalValue *gv) { 532 if (dsoLocalRequested) 533 gv->setDSOLocal(true); 534 } 535 536 /// Create named global variables that correspond to llvm.mlir.global 537 /// definitions. Convert llvm.global_ctors and global_dtors ops. 538 LogicalResult ModuleTranslation::convertGlobals() { 539 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 540 llvm::Type *type = convertType(op.getType()); 541 llvm::Constant *cst = nullptr; 542 if (op.getValueOrNull()) { 543 // String attributes are treated separately because they cannot appear as 544 // in-function constants and are thus not supported by getLLVMConstant. 545 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 546 cst = llvm::ConstantDataArray::getString( 547 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 548 type = cst->getType(); 549 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 550 *this))) { 551 return failure(); 552 } 553 } 554 555 auto linkage = convertLinkageToLLVM(op.getLinkage()); 556 auto addrSpace = op.getAddrSpace(); 557 558 // LLVM IR requires constant with linkage other than external or weak 559 // external to have initializers. If MLIR does not provide an initializer, 560 // default to undef. 561 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 562 if (!dropInitializer && !cst) 563 cst = llvm::UndefValue::get(type); 564 else if (dropInitializer && cst) 565 cst = nullptr; 566 567 auto *var = new llvm::GlobalVariable( 568 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 569 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 570 571 if (op.getUnnamedAddr().hasValue()) 572 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 573 574 if (op.getSection().hasValue()) 575 var->setSection(*op.getSection()); 576 577 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 578 579 Optional<uint64_t> alignment = op.getAlignment(); 580 if (alignment.hasValue()) 581 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 582 583 globalsMapping.try_emplace(op, var); 584 } 585 586 // Convert global variable bodies. This is done after all global variables 587 // have been created in LLVM IR because a global body may refer to another 588 // global or itself. So all global variables need to be mapped first. 589 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 590 if (Block *initializer = op.getInitializerBlock()) { 591 llvm::IRBuilder<> builder(llvmModule->getContext()); 592 for (auto &op : initializer->without_terminator()) { 593 if (failed(convertOperation(op, builder)) || 594 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 595 return emitError(op.getLoc(), "unemittable constant value"); 596 } 597 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 598 llvm::Constant *cst = 599 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 600 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 601 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 602 global->setInitializer(cst); 603 } 604 } 605 606 // Convert llvm.mlir.global_ctors and dtors. 607 for (Operation &op : getModuleBody(mlirModule)) { 608 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 609 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 610 if (!ctorOp && !dtorOp) 611 continue; 612 auto range = ctorOp ? llvm::zip(ctorOp.ctors(), ctorOp.priorities()) 613 : llvm::zip(dtorOp.dtors(), dtorOp.priorities()); 614 auto appendGlobalFn = 615 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 616 for (auto symbolAndPriority : range) { 617 llvm::Function *f = lookupFunction( 618 std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue()); 619 appendGlobalFn( 620 *llvmModule.get(), f, 621 std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(), 622 /*Data=*/nullptr); 623 } 624 } 625 626 return success(); 627 } 628 629 /// Attempts to add an attribute identified by `key`, optionally with the given 630 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 631 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 632 /// otherwise keep it as a string attribute. Performs additional checks for 633 /// attributes known to have or not have a value in order to avoid assertions 634 /// inside LLVM upon construction. 635 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 636 llvm::Function *llvmFunc, 637 StringRef key, 638 StringRef value = StringRef()) { 639 auto kind = llvm::Attribute::getAttrKindFromName(key); 640 if (kind == llvm::Attribute::None) { 641 llvmFunc->addFnAttr(key, value); 642 return success(); 643 } 644 645 if (llvm::Attribute::isIntAttrKind(kind)) { 646 if (value.empty()) 647 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 648 649 int result; 650 if (!value.getAsInteger(/*Radix=*/0, result)) 651 llvmFunc->addFnAttr( 652 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 653 else 654 llvmFunc->addFnAttr(key, value); 655 return success(); 656 } 657 658 if (!value.empty()) 659 return emitError(loc) << "LLVM attribute '" << key 660 << "' does not expect a value, found '" << value 661 << "'"; 662 663 llvmFunc->addFnAttr(kind); 664 return success(); 665 } 666 667 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 668 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 669 /// to be an array attribute containing either string attributes, treated as 670 /// value-less LLVM attributes, or array attributes containing two string 671 /// attributes, with the first string being the name of the corresponding LLVM 672 /// attribute and the second string beings its value. Note that even integer 673 /// attributes are expected to have their values expressed as strings. 674 static LogicalResult 675 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 676 llvm::Function *llvmFunc) { 677 if (!attributes) 678 return success(); 679 680 for (Attribute attr : *attributes) { 681 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 682 if (failed( 683 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 684 return failure(); 685 continue; 686 } 687 688 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 689 if (!arrayAttr || arrayAttr.size() != 2) 690 return emitError(loc) 691 << "expected 'passthrough' to contain string or array attributes"; 692 693 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 694 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 695 if (!keyAttr || !valueAttr) 696 return emitError(loc) 697 << "expected arrays within 'passthrough' to contain two strings"; 698 699 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 700 valueAttr.getValue()))) 701 return failure(); 702 } 703 return success(); 704 } 705 706 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 707 // Clear the block, branch value mappings, they are only relevant within one 708 // function. 709 blockMapping.clear(); 710 valueMapping.clear(); 711 branchMapping.clear(); 712 llvm::Function *llvmFunc = lookupFunction(func.getName()); 713 714 // Translate the debug information for this function. 715 debugTranslation->translate(func, *llvmFunc); 716 717 // Add function arguments to the value remapping table. 718 // If there was noalias info then we decorate each argument accordingly. 719 unsigned int argIdx = 0; 720 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 721 llvm::Argument &llvmArg = std::get<1>(kvp); 722 BlockArgument mlirArg = std::get<0>(kvp); 723 724 if (auto attr = func.getArgAttrOfType<UnitAttr>( 725 argIdx, LLVMDialect::getNoAliasAttrName())) { 726 // NB: Attribute already verified to be boolean, so check if we can indeed 727 // attach the attribute to this argument, based on its type. 728 auto argTy = mlirArg.getType(); 729 if (!argTy.isa<LLVM::LLVMPointerType>()) 730 return func.emitError( 731 "llvm.noalias attribute attached to LLVM non-pointer argument"); 732 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 733 } 734 735 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 736 argIdx, LLVMDialect::getAlignAttrName())) { 737 // NB: Attribute already verified to be int, so check if we can indeed 738 // attach the attribute to this argument, based on its type. 739 auto argTy = mlirArg.getType(); 740 if (!argTy.isa<LLVM::LLVMPointerType>()) 741 return func.emitError( 742 "llvm.align attribute attached to LLVM non-pointer argument"); 743 llvmArg.addAttrs( 744 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 745 } 746 747 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 748 auto argTy = mlirArg.getType(); 749 if (!argTy.isa<LLVM::LLVMPointerType>()) 750 return func.emitError( 751 "llvm.sret attribute attached to LLVM non-pointer argument"); 752 llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr( 753 llvmArg.getType()->getPointerElementType())); 754 } 755 756 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 757 auto argTy = mlirArg.getType(); 758 if (!argTy.isa<LLVM::LLVMPointerType>()) 759 return func.emitError( 760 "llvm.byval attribute attached to LLVM non-pointer argument"); 761 llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr( 762 llvmArg.getType()->getPointerElementType())); 763 } 764 765 mapValue(mlirArg, &llvmArg); 766 argIdx++; 767 } 768 769 // Check the personality and set it. 770 if (func.getPersonality().hasValue()) { 771 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 772 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 773 func.getLoc(), *this)) 774 llvmFunc->setPersonalityFn(pfunc); 775 } 776 777 // First, create all blocks so we can jump to them. 778 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 779 for (auto &bb : func) { 780 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 781 llvmBB->insertInto(llvmFunc); 782 mapBlock(&bb, llvmBB); 783 } 784 785 // Then, convert blocks one by one in topological order to ensure defs are 786 // converted before uses. 787 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 788 for (Block *bb : blocks) { 789 llvm::IRBuilder<> builder(llvmContext); 790 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 791 return failure(); 792 } 793 794 // After all blocks have been traversed and values mapped, connect the PHI 795 // nodes to the results of preceding blocks. 796 detail::connectPHINodes(func.getBody(), *this); 797 798 // Finally, convert dialect attributes attached to the function. 799 return convertDialectAttributes(func); 800 } 801 802 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 803 for (NamedAttribute attribute : op->getDialectAttrs()) 804 if (failed(iface.amendOperation(op, attribute, *this))) 805 return failure(); 806 return success(); 807 } 808 809 LogicalResult ModuleTranslation::convertFunctionSignatures() { 810 // Declare all functions first because there may be function calls that form a 811 // call graph with cycles, or global initializers that reference functions. 812 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 813 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 814 function.getName(), 815 cast<llvm::FunctionType>(convertType(function.getType()))); 816 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 817 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 818 mapFunction(function.getName(), llvmFunc); 819 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 820 821 // Forward the pass-through attributes to LLVM. 822 if (failed(forwardPassthroughAttributes( 823 function.getLoc(), function.getPassthrough(), llvmFunc))) 824 return failure(); 825 } 826 827 return success(); 828 } 829 830 LogicalResult ModuleTranslation::convertFunctions() { 831 // Convert functions. 832 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 833 // Ignore external functions. 834 if (function.isExternal()) 835 continue; 836 837 if (failed(convertOneFunction(function))) 838 return failure(); 839 } 840 841 return success(); 842 } 843 844 llvm::MDNode * 845 ModuleTranslation::getAccessGroup(Operation &opInst, 846 SymbolRefAttr accessGroupRef) const { 847 auto metadataName = accessGroupRef.getRootReference(); 848 auto accessGroupName = accessGroupRef.getLeafReference(); 849 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 850 opInst.getParentOp(), metadataName); 851 auto *accessGroupOp = 852 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 853 return accessGroupMetadataMapping.lookup(accessGroupOp); 854 } 855 856 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 857 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 858 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 859 llvm::LLVMContext &ctx = llvmModule->getContext(); 860 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 861 accessGroupMetadataMapping.insert({op, accessGroup}); 862 }); 863 }); 864 return success(); 865 } 866 867 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 868 llvm::Instruction *inst) { 869 auto accessGroups = 870 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 871 if (accessGroups && !accessGroups.empty()) { 872 llvm::Module *module = inst->getModule(); 873 SmallVector<llvm::Metadata *> metadatas; 874 for (SymbolRefAttr accessGroupRef : 875 accessGroups.getAsRange<SymbolRefAttr>()) 876 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 877 878 llvm::MDNode *unionMD = nullptr; 879 if (metadatas.size() == 1) 880 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 881 else if (metadatas.size() >= 2) 882 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 883 884 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 885 } 886 } 887 888 LogicalResult ModuleTranslation::createAliasScopeMetadata() { 889 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 890 // Create the domains first, so they can be reference below in the scopes. 891 DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping; 892 metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) { 893 llvm::LLVMContext &ctx = llvmModule->getContext(); 894 llvm::SmallVector<llvm::Metadata *, 2> operands; 895 operands.push_back({}); // Placeholder for self-reference 896 if (Optional<StringRef> description = op.getDescription()) 897 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 898 llvm::MDNode *domain = llvm::MDNode::get(ctx, operands); 899 domain->replaceOperandWith(0, domain); // Self-reference for uniqueness 900 aliasScopeDomainMetadataMapping.insert({op, domain}); 901 }); 902 903 // Now create the scopes, referencing the domains created above. 904 metadatas.walk([&](LLVM::AliasScopeMetadataOp op) { 905 llvm::LLVMContext &ctx = llvmModule->getContext(); 906 assert(isa<LLVM::MetadataOp>(op->getParentOp())); 907 auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp()); 908 Operation *domainOp = 909 SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr()); 910 llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp); 911 assert(domain && "Scope's domain should already be valid"); 912 llvm::SmallVector<llvm::Metadata *, 3> operands; 913 operands.push_back({}); // Placeholder for self-reference 914 operands.push_back(domain); 915 if (Optional<StringRef> description = op.getDescription()) 916 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 917 llvm::MDNode *scope = llvm::MDNode::get(ctx, operands); 918 scope->replaceOperandWith(0, scope); // Self-reference for uniqueness 919 aliasScopeMetadataMapping.insert({op, scope}); 920 }); 921 }); 922 return success(); 923 } 924 925 llvm::MDNode * 926 ModuleTranslation::getAliasScope(Operation &opInst, 927 SymbolRefAttr aliasScopeRef) const { 928 StringAttr metadataName = aliasScopeRef.getRootReference(); 929 StringAttr scopeName = aliasScopeRef.getLeafReference(); 930 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 931 opInst.getParentOp(), metadataName); 932 Operation *aliasScopeOp = 933 SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName); 934 return aliasScopeMetadataMapping.lookup(aliasScopeOp); 935 } 936 937 void ModuleTranslation::setAliasScopeMetadata(Operation *op, 938 llvm::Instruction *inst) { 939 auto populateScopeMetadata = [this, op, inst](StringRef attrName, 940 StringRef llvmMetadataName) { 941 auto scopes = op->getAttrOfType<ArrayAttr>(attrName); 942 if (!scopes || scopes.empty()) 943 return; 944 llvm::Module *module = inst->getModule(); 945 SmallVector<llvm::Metadata *> scopeMDs; 946 for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>()) 947 scopeMDs.push_back(getAliasScope(*op, scopeRef)); 948 llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs); 949 inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD); 950 }; 951 952 populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope"); 953 populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias"); 954 } 955 956 llvm::Type *ModuleTranslation::convertType(Type type) { 957 return typeTranslator.translateType(type); 958 } 959 960 /// A helper to look up remapped operands in the value remapping table. 961 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 962 SmallVector<llvm::Value *> remapped; 963 remapped.reserve(values.size()); 964 for (Value v : values) 965 remapped.push_back(lookupValue(v)); 966 return remapped; 967 } 968 969 const llvm::DILocation * 970 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 971 return debugTranslation->translateLoc(loc, scope); 972 } 973 974 llvm::NamedMDNode * 975 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 976 return llvmModule->getOrInsertNamedMetadata(name); 977 } 978 979 void ModuleTranslation::StackFrame::anchor() {} 980 981 static std::unique_ptr<llvm::Module> 982 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 983 StringRef name) { 984 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 985 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 986 if (auto dataLayoutAttr = 987 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 988 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 989 if (auto targetTripleAttr = 990 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 991 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 992 993 // Inject declarations for `malloc` and `free` functions that can be used in 994 // memref allocation/deallocation coming from standard ops lowering. 995 llvm::IRBuilder<> builder(llvmContext); 996 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 997 builder.getInt64Ty()); 998 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 999 builder.getInt8PtrTy()); 1000 1001 return llvmModule; 1002 } 1003 1004 std::unique_ptr<llvm::Module> 1005 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1006 StringRef name) { 1007 if (!satisfiesLLVMModule(module)) 1008 return nullptr; 1009 std::unique_ptr<llvm::Module> llvmModule = 1010 prepareLLVMModule(module, llvmContext, name); 1011 1012 LLVM::ensureDistinctSuccessors(module); 1013 1014 ModuleTranslation translator(module, std::move(llvmModule)); 1015 if (failed(translator.convertFunctionSignatures())) 1016 return nullptr; 1017 if (failed(translator.convertGlobals())) 1018 return nullptr; 1019 if (failed(translator.createAccessGroupMetadata())) 1020 return nullptr; 1021 if (failed(translator.createAliasScopeMetadata())) 1022 return nullptr; 1023 if (failed(translator.convertFunctions())) 1024 return nullptr; 1025 1026 // Convert other top-level operations if possible. 1027 llvm::IRBuilder<> llvmBuilder(llvmContext); 1028 for (Operation &o : getModuleBody(module).getOperations()) { 1029 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1030 LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) && 1031 !o.hasTrait<OpTrait::IsTerminator>() && 1032 failed(translator.convertOperation(o, llvmBuilder))) { 1033 return nullptr; 1034 } 1035 } 1036 1037 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1038 return nullptr; 1039 1040 return std::move(translator.llvmModule); 1041 } 1042