1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Module.h" 20 #include "mlir/IR/StandardTypes.h" 21 #include "mlir/Support/LLVM.h" 22 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Transforms/Utils/Cloning.h" 31 32 using namespace mlir; 33 using namespace mlir::LLVM; 34 using namespace mlir::LLVM::detail; 35 36 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 37 38 /// Builds a constant of a sequential LLVM type `type`, potentially containing 39 /// other sequential types recursively, from the individual constant values 40 /// provided in `constants`. `shape` contains the number of elements in nested 41 /// sequential types. Reports errors at `loc` and returns nullptr on error. 42 static llvm::Constant * 43 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 44 ArrayRef<int64_t> shape, llvm::Type *type, 45 Location loc) { 46 if (shape.empty()) { 47 llvm::Constant *result = constants.front(); 48 constants = constants.drop_front(); 49 return result; 50 } 51 52 if (!isa<llvm::SequentialType>(type)) { 53 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 54 return nullptr; 55 } 56 57 llvm::Type *elementType = type->getSequentialElementType(); 58 SmallVector<llvm::Constant *, 8> nested; 59 nested.reserve(shape.front()); 60 for (int64_t i = 0; i < shape.front(); ++i) { 61 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 62 elementType, loc)); 63 if (!nested.back()) 64 return nullptr; 65 } 66 67 if (shape.size() == 1 && type->isVectorTy()) 68 return llvm::ConstantVector::get(nested); 69 return llvm::ConstantArray::get( 70 llvm::ArrayType::get(elementType, shape.front()), nested); 71 } 72 73 /// Returns the first non-sequential type nested in sequential types. 74 static llvm::Type *getInnermostElementType(llvm::Type *type) { 75 while (isa<llvm::SequentialType>(type)) 76 type = type->getSequentialElementType(); 77 return type; 78 } 79 80 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 81 /// This currently supports integer, floating point, splat and dense element 82 /// attributes and combinations thereof. In case of error, report it to `loc` 83 /// and return nullptr. 84 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 85 Attribute attr, 86 Location loc) { 87 if (!attr) 88 return llvm::UndefValue::get(llvmType); 89 if (llvmType->isStructTy()) { 90 emitError(loc, "struct types are not supported in constants"); 91 return nullptr; 92 } 93 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 94 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 95 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 96 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 97 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 98 return functionMapping.lookup(funcAttr.getValue()); 99 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 100 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 101 auto elementType = sequentialType->getElementType(); 102 uint64_t numElements = sequentialType->getNumElements(); 103 // Splat value is a scalar. Extract it only if the element type is not 104 // another sequence type. The recursion terminates because each step removes 105 // one outer sequential type. 106 llvm::Constant *child = getLLVMConstant( 107 elementType, 108 isa<llvm::SequentialType>(elementType) ? splatAttr 109 : splatAttr.getSplatValue(), 110 loc); 111 if (!child) 112 return nullptr; 113 if (llvmType->isVectorTy()) 114 return llvm::ConstantVector::getSplat(numElements, child); 115 if (llvmType->isArrayTy()) { 116 auto arrayType = llvm::ArrayType::get(elementType, numElements); 117 SmallVector<llvm::Constant *, 8> constants(numElements, child); 118 return llvm::ConstantArray::get(arrayType, constants); 119 } 120 } 121 122 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 123 assert(elementsAttr.getType().hasStaticShape()); 124 assert(elementsAttr.getNumElements() != 0 && 125 "unexpected empty elements attribute"); 126 assert(!elementsAttr.getType().getShape().empty() && 127 "unexpected empty elements attribute shape"); 128 129 SmallVector<llvm::Constant *, 8> constants; 130 constants.reserve(elementsAttr.getNumElements()); 131 llvm::Type *innermostType = getInnermostElementType(llvmType); 132 for (auto n : elementsAttr.getValues<Attribute>()) { 133 constants.push_back(getLLVMConstant(innermostType, n, loc)); 134 if (!constants.back()) 135 return nullptr; 136 } 137 ArrayRef<llvm::Constant *> constantsRef = constants; 138 llvm::Constant *result = buildSequentialConstant( 139 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 140 assert(constantsRef.empty() && "did not consume all elemental constants"); 141 return result; 142 } 143 144 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 145 return llvm::ConstantDataArray::get( 146 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 147 stringAttr.getValue().size()}); 148 } 149 emitError(loc, "unsupported constant value"); 150 return nullptr; 151 } 152 153 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 154 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 155 switch (p) { 156 case LLVM::ICmpPredicate::eq: 157 return llvm::CmpInst::Predicate::ICMP_EQ; 158 case LLVM::ICmpPredicate::ne: 159 return llvm::CmpInst::Predicate::ICMP_NE; 160 case LLVM::ICmpPredicate::slt: 161 return llvm::CmpInst::Predicate::ICMP_SLT; 162 case LLVM::ICmpPredicate::sle: 163 return llvm::CmpInst::Predicate::ICMP_SLE; 164 case LLVM::ICmpPredicate::sgt: 165 return llvm::CmpInst::Predicate::ICMP_SGT; 166 case LLVM::ICmpPredicate::sge: 167 return llvm::CmpInst::Predicate::ICMP_SGE; 168 case LLVM::ICmpPredicate::ult: 169 return llvm::CmpInst::Predicate::ICMP_ULT; 170 case LLVM::ICmpPredicate::ule: 171 return llvm::CmpInst::Predicate::ICMP_ULE; 172 case LLVM::ICmpPredicate::ugt: 173 return llvm::CmpInst::Predicate::ICMP_UGT; 174 case LLVM::ICmpPredicate::uge: 175 return llvm::CmpInst::Predicate::ICMP_UGE; 176 } 177 llvm_unreachable("incorrect comparison predicate"); 178 } 179 180 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 181 switch (p) { 182 case LLVM::FCmpPredicate::_false: 183 return llvm::CmpInst::Predicate::FCMP_FALSE; 184 case LLVM::FCmpPredicate::oeq: 185 return llvm::CmpInst::Predicate::FCMP_OEQ; 186 case LLVM::FCmpPredicate::ogt: 187 return llvm::CmpInst::Predicate::FCMP_OGT; 188 case LLVM::FCmpPredicate::oge: 189 return llvm::CmpInst::Predicate::FCMP_OGE; 190 case LLVM::FCmpPredicate::olt: 191 return llvm::CmpInst::Predicate::FCMP_OLT; 192 case LLVM::FCmpPredicate::ole: 193 return llvm::CmpInst::Predicate::FCMP_OLE; 194 case LLVM::FCmpPredicate::one: 195 return llvm::CmpInst::Predicate::FCMP_ONE; 196 case LLVM::FCmpPredicate::ord: 197 return llvm::CmpInst::Predicate::FCMP_ORD; 198 case LLVM::FCmpPredicate::ueq: 199 return llvm::CmpInst::Predicate::FCMP_UEQ; 200 case LLVM::FCmpPredicate::ugt: 201 return llvm::CmpInst::Predicate::FCMP_UGT; 202 case LLVM::FCmpPredicate::uge: 203 return llvm::CmpInst::Predicate::FCMP_UGE; 204 case LLVM::FCmpPredicate::ult: 205 return llvm::CmpInst::Predicate::FCMP_ULT; 206 case LLVM::FCmpPredicate::ule: 207 return llvm::CmpInst::Predicate::FCMP_ULE; 208 case LLVM::FCmpPredicate::une: 209 return llvm::CmpInst::Predicate::FCMP_UNE; 210 case LLVM::FCmpPredicate::uno: 211 return llvm::CmpInst::Predicate::FCMP_UNO; 212 case LLVM::FCmpPredicate::_true: 213 return llvm::CmpInst::Predicate::FCMP_TRUE; 214 } 215 llvm_unreachable("incorrect comparison predicate"); 216 } 217 218 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 219 switch (op) { 220 case LLVM::AtomicBinOp::xchg: 221 return llvm::AtomicRMWInst::BinOp::Xchg; 222 case LLVM::AtomicBinOp::add: 223 return llvm::AtomicRMWInst::BinOp::Add; 224 case LLVM::AtomicBinOp::sub: 225 return llvm::AtomicRMWInst::BinOp::Sub; 226 case LLVM::AtomicBinOp::_and: 227 return llvm::AtomicRMWInst::BinOp::And; 228 case LLVM::AtomicBinOp::nand: 229 return llvm::AtomicRMWInst::BinOp::Nand; 230 case LLVM::AtomicBinOp::_or: 231 return llvm::AtomicRMWInst::BinOp::Or; 232 case LLVM::AtomicBinOp::_xor: 233 return llvm::AtomicRMWInst::BinOp::Xor; 234 case LLVM::AtomicBinOp::max: 235 return llvm::AtomicRMWInst::BinOp::Max; 236 case LLVM::AtomicBinOp::min: 237 return llvm::AtomicRMWInst::BinOp::Min; 238 case LLVM::AtomicBinOp::umax: 239 return llvm::AtomicRMWInst::BinOp::UMax; 240 case LLVM::AtomicBinOp::umin: 241 return llvm::AtomicRMWInst::BinOp::UMin; 242 case LLVM::AtomicBinOp::fadd: 243 return llvm::AtomicRMWInst::BinOp::FAdd; 244 case LLVM::AtomicBinOp::fsub: 245 return llvm::AtomicRMWInst::BinOp::FSub; 246 } 247 llvm_unreachable("incorrect atomic binary operator"); 248 } 249 250 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 251 switch (ordering) { 252 case LLVM::AtomicOrdering::not_atomic: 253 return llvm::AtomicOrdering::NotAtomic; 254 case LLVM::AtomicOrdering::unordered: 255 return llvm::AtomicOrdering::Unordered; 256 case LLVM::AtomicOrdering::monotonic: 257 return llvm::AtomicOrdering::Monotonic; 258 case LLVM::AtomicOrdering::acquire: 259 return llvm::AtomicOrdering::Acquire; 260 case LLVM::AtomicOrdering::release: 261 return llvm::AtomicOrdering::Release; 262 case LLVM::AtomicOrdering::acq_rel: 263 return llvm::AtomicOrdering::AcquireRelease; 264 case LLVM::AtomicOrdering::seq_cst: 265 return llvm::AtomicOrdering::SequentiallyConsistent; 266 } 267 llvm_unreachable("incorrect atomic ordering"); 268 } 269 270 ModuleTranslation::ModuleTranslation(Operation *module, 271 std::unique_ptr<llvm::Module> llvmModule) 272 : mlirModule(module), llvmModule(std::move(llvmModule)), 273 debugTranslation( 274 std::make_unique<DebugTranslation>(module, *this->llvmModule)) { 275 assert(satisfiesLLVMModule(mlirModule) && 276 "mlirModule should honor LLVM's module semantics."); 277 } 278 ModuleTranslation::~ModuleTranslation() {} 279 280 /// Given a single MLIR operation, create the corresponding LLVM IR operation 281 /// using the `builder`. LLVM IR Builder does not have a generic interface so 282 /// this has to be a long chain of `if`s calling different functions with a 283 /// different number of arguments. 284 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 285 llvm::IRBuilder<> &builder) { 286 auto extractPosition = [](ArrayAttr attr) { 287 SmallVector<unsigned, 4> position; 288 position.reserve(attr.size()); 289 for (Attribute v : attr) 290 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 291 return position; 292 }; 293 294 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 295 296 // Emit function calls. If the "callee" attribute is present, this is a 297 // direct function call and we also need to look up the remapped function 298 // itself. Otherwise, this is an indirect call and the callee is the first 299 // operand, look it up as a normal value. Return the llvm::Value representing 300 // the function result, which may be of llvm::VoidTy type. 301 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 302 auto operands = lookupValues(op.getOperands()); 303 ArrayRef<llvm::Value *> operandsRef(operands); 304 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 305 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 306 operandsRef); 307 } else { 308 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 309 } 310 }; 311 312 // Emit calls. If the called function has a result, remap the corresponding 313 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 314 if (isa<LLVM::CallOp>(opInst)) { 315 llvm::Value *result = convertCall(opInst); 316 if (opInst.getNumResults() != 0) { 317 valueMapping[opInst.getResult(0)] = result; 318 return success(); 319 } 320 // Check that LLVM call returns void for 0-result functions. 321 return success(result->getType()->isVoidTy()); 322 } 323 324 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 325 auto operands = lookupValues(opInst.getOperands()); 326 ArrayRef<llvm::Value *> operandsRef(operands); 327 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) 328 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 329 blockMapping[invOp.getSuccessor(0)], 330 blockMapping[invOp.getSuccessor(1)], operandsRef); 331 else 332 builder.CreateInvoke( 333 operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 334 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 335 return success(); 336 } 337 338 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 339 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 340 llvm::LandingPadInst *lpi = 341 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 342 343 // Add clauses 344 for (auto operand : lookupValues(lpOp.getOperands())) { 345 // All operands should be constant - checked by verifier 346 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 347 lpi->addClause(constOperand); 348 } 349 return success(); 350 } 351 352 // Emit branches. We need to look up the remapped blocks and ignore the block 353 // arguments that were transformed into PHI nodes. 354 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 355 builder.CreateBr(blockMapping[brOp.getSuccessor(0)]); 356 return success(); 357 } 358 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 359 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 360 blockMapping[condbrOp.getSuccessor(0)], 361 blockMapping[condbrOp.getSuccessor(1)]); 362 return success(); 363 } 364 365 // Emit addressof. We need to look up the global value referenced by the 366 // operation and store it in the MLIR-to-LLVM value mapping. This does not 367 // emit any LLVM instruction. 368 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 369 LLVM::GlobalOp global = addressOfOp.getGlobal(); 370 // The verifier should not have allowed this. 371 assert(global && "referencing an undefined global"); 372 373 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 374 return success(); 375 } 376 377 return opInst.emitError("unsupported or non-LLVM operation: ") 378 << opInst.getName(); 379 } 380 381 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 382 /// to define values corresponding to the MLIR block arguments. These nodes 383 /// are not connected to the source basic blocks, which may not exist yet. 384 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 385 llvm::IRBuilder<> builder(blockMapping[&bb]); 386 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 387 388 // Before traversing operations, make block arguments available through 389 // value remapping and PHI nodes, but do not add incoming edges for the PHI 390 // nodes just yet: those values may be defined by this or following blocks. 391 // This step is omitted if "ignoreArguments" is set. The arguments of the 392 // first block have been already made available through the remapping of 393 // LLVM function arguments. 394 if (!ignoreArguments) { 395 auto predecessors = bb.getPredecessors(); 396 unsigned numPredecessors = 397 std::distance(predecessors.begin(), predecessors.end()); 398 for (auto arg : bb.getArguments()) { 399 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 400 if (!wrappedType) 401 return emitError(bb.front().getLoc(), 402 "block argument does not have an LLVM type"); 403 llvm::Type *type = wrappedType.getUnderlyingType(); 404 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 405 valueMapping[arg] = phi; 406 } 407 } 408 409 // Traverse operations. 410 for (auto &op : bb) { 411 // Set the current debug location within the builder. 412 builder.SetCurrentDebugLocation( 413 debugTranslation->translateLoc(op.getLoc(), subprogram)); 414 415 if (failed(convertOperation(op, builder))) 416 return failure(); 417 } 418 419 return success(); 420 } 421 422 /// Create named global variables that correspond to llvm.mlir.global 423 /// definitions. 424 LogicalResult ModuleTranslation::convertGlobals() { 425 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 426 llvm::Type *type = op.getType().getUnderlyingType(); 427 llvm::Constant *cst = llvm::UndefValue::get(type); 428 if (op.getValueOrNull()) { 429 // String attributes are treated separately because they cannot appear as 430 // in-function constants and are thus not supported by getLLVMConstant. 431 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 432 cst = llvm::ConstantDataArray::getString( 433 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 434 type = cst->getType(); 435 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 436 op.getLoc()))) { 437 return failure(); 438 } 439 } else if (Block *initializer = op.getInitializerBlock()) { 440 llvm::IRBuilder<> builder(llvmModule->getContext()); 441 for (auto &op : initializer->without_terminator()) { 442 if (failed(convertOperation(op, builder)) || 443 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 444 return emitError(op.getLoc(), "unemittable constant value"); 445 } 446 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 447 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 448 } 449 450 auto linkage = convertLinkageToLLVM(op.linkage()); 451 bool anyExternalLinkage = 452 (linkage == llvm::GlobalVariable::ExternalLinkage || 453 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 454 auto addrSpace = op.addr_space().getLimitedValue(); 455 auto *var = new llvm::GlobalVariable( 456 *llvmModule, type, op.constant(), linkage, 457 anyExternalLinkage ? nullptr : cst, op.sym_name(), 458 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 459 460 globalsMapping.try_emplace(op, var); 461 } 462 463 return success(); 464 } 465 466 /// Get the SSA value passed to the current block from the terminator operation 467 /// of its predecessor. 468 static Value getPHISourceValue(Block *current, Block *pred, 469 unsigned numArguments, unsigned index) { 470 auto &terminator = *pred->getTerminator(); 471 if (isa<LLVM::BrOp>(terminator)) { 472 return terminator.getOperand(index); 473 } 474 475 // For conditional branches, we need to check if the current block is reached 476 // through the "true" or the "false" branch and take the relevant operands. 477 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 478 assert(condBranchOp && 479 "only branch operations can be terminators of a block that " 480 "has successors"); 481 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 482 "successors with arguments in LLVM conditional branches must be " 483 "different blocks"); 484 485 return condBranchOp.getSuccessor(0) == current 486 ? terminator.getSuccessorOperand(0, index) 487 : terminator.getSuccessorOperand(1, index); 488 } 489 490 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 491 // Skip the first block, it cannot be branched to and its arguments correspond 492 // to the arguments of the LLVM function. 493 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 494 Block *bb = &*it; 495 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 496 auto phis = llvmBB->phis(); 497 auto numArguments = bb->getNumArguments(); 498 assert(numArguments == std::distance(phis.begin(), phis.end())); 499 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 500 auto &phiNode = numberedPhiNode.value(); 501 unsigned index = numberedPhiNode.index(); 502 for (auto *pred : bb->getPredecessors()) { 503 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 504 bb, pred, numArguments, index)), 505 blockMapping.lookup(pred)); 506 } 507 } 508 } 509 } 510 511 // TODO(mlir-team): implement an iterative version 512 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 513 blocks.insert(b); 514 for (Block *bb : b->getSuccessors()) { 515 if (blocks.count(bb) == 0) 516 topologicalSortImpl(blocks, bb); 517 } 518 } 519 520 /// Sort function blocks topologically. 521 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 522 // For each blocks that has not been visited yet (i.e. that has no 523 // predecessors), add it to the list and traverse its successors in DFS 524 // preorder. 525 llvm::SetVector<Block *> blocks; 526 for (Block &b : f.getBlocks()) { 527 if (blocks.count(&b) == 0) 528 topologicalSortImpl(blocks, &b); 529 } 530 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 531 532 return blocks; 533 } 534 535 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 536 // Clear the block and value mappings, they are only relevant within one 537 // function. 538 blockMapping.clear(); 539 valueMapping.clear(); 540 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 541 542 // Translate the debug information for this function. 543 debugTranslation->translate(func, *llvmFunc); 544 545 // Add function arguments to the value remapping table. 546 // If there was noalias info then we decorate each argument accordingly. 547 unsigned int argIdx = 0; 548 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 549 llvm::Argument &llvmArg = std::get<1>(kvp); 550 BlockArgument mlirArg = std::get<0>(kvp); 551 552 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 553 // NB: Attribute already verified to be boolean, so check if we can indeed 554 // attach the attribute to this argument, based on its type. 555 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 556 if (!argTy.getUnderlyingType()->isPointerTy()) 557 return func.emitError( 558 "llvm.noalias attribute attached to LLVM non-pointer argument"); 559 if (attr.getValue()) 560 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 561 } 562 valueMapping[mlirArg] = &llvmArg; 563 argIdx++; 564 } 565 566 // First, create all blocks so we can jump to them. 567 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 568 for (auto &bb : func) { 569 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 570 llvmBB->insertInto(llvmFunc); 571 blockMapping[&bb] = llvmBB; 572 } 573 574 // Then, convert blocks one by one in topological order to ensure defs are 575 // converted before uses. 576 auto blocks = topologicalSort(func); 577 for (auto indexedBB : llvm::enumerate(blocks)) { 578 auto *bb = indexedBB.value(); 579 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 580 return failure(); 581 } 582 583 // Finally, after all blocks have been traversed and values mapped, connect 584 // the PHI nodes to the results of preceding blocks. 585 connectPHINodes(func); 586 return success(); 587 } 588 589 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 590 for (Operation &o : getModuleBody(m).getOperations()) 591 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 592 !o.isKnownTerminator()) 593 return o.emitOpError("unsupported module-level operation"); 594 return success(); 595 } 596 597 LogicalResult ModuleTranslation::convertFunctions() { 598 // Declare all functions first because there may be function calls that form a 599 // call graph with cycles. 600 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 601 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 602 function.getName(), 603 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 604 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 605 functionMapping[function.getName()] = 606 cast<llvm::Function>(llvmFuncCst.getCallee()); 607 } 608 609 // Convert functions. 610 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 611 // Ignore external functions. 612 if (function.isExternal()) 613 continue; 614 615 if (failed(convertOneFunction(function))) 616 return failure(); 617 } 618 619 return success(); 620 } 621 622 /// A helper to look up remapped operands in the value remapping table.` 623 SmallVector<llvm::Value *, 8> 624 ModuleTranslation::lookupValues(ValueRange values) { 625 SmallVector<llvm::Value *, 8> remapped; 626 remapped.reserve(values.size()); 627 for (Value v : values) 628 remapped.push_back(valueMapping.lookup(v)); 629 return remapped; 630 } 631 632 std::unique_ptr<llvm::Module> 633 ModuleTranslation::prepareLLVMModule(Operation *m) { 634 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 635 assert(dialect && "LLVM dialect must be registered"); 636 637 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 638 if (!llvmModule) 639 return nullptr; 640 641 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 642 llvm::IRBuilder<> builder(llvmContext); 643 644 // Inject declarations for `malloc` and `free` functions that can be used in 645 // memref allocation/deallocation coming from standard ops lowering. 646 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 647 builder.getInt64Ty()); 648 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 649 builder.getInt8PtrTy()); 650 651 return llvmModule; 652 } 653