1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 46 using namespace mlir; 47 using namespace mlir::LLVM; 48 using namespace mlir::LLVM::detail; 49 50 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 51 52 /// Builds a constant of a sequential LLVM type `type`, potentially containing 53 /// other sequential types recursively, from the individual constant values 54 /// provided in `constants`. `shape` contains the number of elements in nested 55 /// sequential types. Reports errors at `loc` and returns nullptr on error. 56 static llvm::Constant * 57 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 58 ArrayRef<int64_t> shape, llvm::Type *type, 59 Location loc) { 60 if (shape.empty()) { 61 llvm::Constant *result = constants.front(); 62 constants = constants.drop_front(); 63 return result; 64 } 65 66 llvm::Type *elementType; 67 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 68 elementType = arrayTy->getElementType(); 69 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 70 elementType = vectorTy->getElementType(); 71 } else { 72 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 73 return nullptr; 74 } 75 76 SmallVector<llvm::Constant *, 8> nested; 77 nested.reserve(shape.front()); 78 for (int64_t i = 0; i < shape.front(); ++i) { 79 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 80 elementType, loc)); 81 if (!nested.back()) 82 return nullptr; 83 } 84 85 if (shape.size() == 1 && type->isVectorTy()) 86 return llvm::ConstantVector::get(nested); 87 return llvm::ConstantArray::get( 88 llvm::ArrayType::get(elementType, shape.front()), nested); 89 } 90 91 /// Returns the first non-sequential type nested in sequential types. 92 static llvm::Type *getInnermostElementType(llvm::Type *type) { 93 do { 94 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 95 type = arrayTy->getElementType(); 96 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 97 type = vectorTy->getElementType(); 98 } else { 99 return type; 100 } 101 } while (true); 102 } 103 104 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 105 /// This currently supports integer, floating point, splat and dense element 106 /// attributes and combinations thereof. Also, an array attribute with two 107 /// elements is supported to represent a complex constant. In case of error, 108 /// report it to `loc` and return nullptr. 109 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 110 llvm::Type *llvmType, Attribute attr, Location loc, 111 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 112 if (!attr) 113 return llvm::UndefValue::get(llvmType); 114 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 115 if (!isTopLevel) { 116 emitError(loc, "nested struct types are not supported in constants"); 117 return nullptr; 118 } 119 auto arrayAttr = attr.cast<ArrayAttr>(); 120 llvm::Type *elementType = structType->getElementType(0); 121 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 122 moduleTranslation, false); 123 if (!real) 124 return nullptr; 125 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 126 moduleTranslation, false); 127 if (!imag) 128 return nullptr; 129 return llvm::ConstantStruct::get(structType, {real, imag}); 130 } 131 // For integer types, we allow a mismatch in sizes as the index type in 132 // MLIR might have a different size than the index type in the LLVM module. 133 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 134 return llvm::ConstantInt::get( 135 llvmType, 136 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 137 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 138 if (llvmType != 139 llvm::Type::getFloatingPointTy(llvmType->getContext(), 140 floatAttr.getValue().getSemantics())) { 141 emitError(loc, "FloatAttr does not match expected type of the constant"); 142 return nullptr; 143 } 144 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 145 } 146 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 147 return llvm::ConstantExpr::getBitCast( 148 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 149 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 150 llvm::Type *elementType; 151 uint64_t numElements; 152 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 153 elementType = arrayTy->getElementType(); 154 numElements = arrayTy->getNumElements(); 155 } else { 156 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 157 elementType = vectorTy->getElementType(); 158 numElements = vectorTy->getNumElements(); 159 } 160 // Splat value is a scalar. Extract it only if the element type is not 161 // another sequence type. The recursion terminates because each step removes 162 // one outer sequential type. 163 bool elementTypeSequential = 164 isa<llvm::ArrayType, llvm::VectorType>(elementType); 165 llvm::Constant *child = getLLVMConstant( 166 elementType, 167 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc, 168 moduleTranslation, false); 169 if (!child) 170 return nullptr; 171 if (llvmType->isVectorTy()) 172 return llvm::ConstantVector::getSplat( 173 llvm::ElementCount::get(numElements, /*Scalable=*/false), child); 174 if (llvmType->isArrayTy()) { 175 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 176 SmallVector<llvm::Constant *, 8> constants(numElements, child); 177 return llvm::ConstantArray::get(arrayType, constants); 178 } 179 } 180 181 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 182 assert(elementsAttr.getType().hasStaticShape()); 183 assert(elementsAttr.getNumElements() != 0 && 184 "unexpected empty elements attribute"); 185 assert(!elementsAttr.getType().getShape().empty() && 186 "unexpected empty elements attribute shape"); 187 188 SmallVector<llvm::Constant *, 8> constants; 189 constants.reserve(elementsAttr.getNumElements()); 190 llvm::Type *innermostType = getInnermostElementType(llvmType); 191 for (auto n : elementsAttr.getValues<Attribute>()) { 192 constants.push_back( 193 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 194 if (!constants.back()) 195 return nullptr; 196 } 197 ArrayRef<llvm::Constant *> constantsRef = constants; 198 llvm::Constant *result = buildSequentialConstant( 199 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 200 assert(constantsRef.empty() && "did not consume all elemental constants"); 201 return result; 202 } 203 204 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 205 return llvm::ConstantDataArray::get( 206 moduleTranslation.getLLVMContext(), 207 ArrayRef<char>{stringAttr.getValue().data(), 208 stringAttr.getValue().size()}); 209 } 210 emitError(loc, "unsupported constant value"); 211 return nullptr; 212 } 213 214 ModuleTranslation::ModuleTranslation(Operation *module, 215 std::unique_ptr<llvm::Module> llvmModule) 216 : mlirModule(module), llvmModule(std::move(llvmModule)), 217 debugTranslation( 218 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 219 typeTranslator(this->llvmModule->getContext()), 220 iface(module->getContext()) { 221 assert(satisfiesLLVMModule(mlirModule) && 222 "mlirModule should honor LLVM's module semantics."); 223 } 224 ModuleTranslation::~ModuleTranslation() { 225 if (ompBuilder) 226 ompBuilder->finalize(); 227 } 228 229 /// Get the SSA value passed to the current block from the terminator operation 230 /// of its predecessor. 231 static Value getPHISourceValue(Block *current, Block *pred, 232 unsigned numArguments, unsigned index) { 233 Operation &terminator = *pred->getTerminator(); 234 if (isa<LLVM::BrOp>(terminator)) 235 return terminator.getOperand(index); 236 237 SuccessorRange successors = terminator.getSuccessors(); 238 assert(std::adjacent_find(successors.begin(), successors.end()) == 239 successors.end() && 240 "successors with arguments in LLVM branches must be different blocks"); 241 (void)successors; 242 243 // For instructions that branch based on a condition value, we need to take 244 // the operands for the branch that was taken. 245 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 246 // For conditional branches, we take the operands from either the "true" or 247 // the "false" branch. 248 return condBranchOp.getSuccessor(0) == current 249 ? condBranchOp.trueDestOperands()[index] 250 : condBranchOp.falseDestOperands()[index]; 251 } 252 253 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 254 // For switches, we take the operands from either the default case, or from 255 // the case branch that was taken. 256 if (switchOp.defaultDestination() == current) 257 return switchOp.defaultOperands()[index]; 258 for (auto i : llvm::enumerate(switchOp.caseDestinations())) 259 if (i.value() == current) 260 return switchOp.getCaseOperands(i.index())[index]; 261 } 262 263 llvm_unreachable("only branch or switch operations can be terminators of a " 264 "block that has successors"); 265 } 266 267 /// Connect the PHI nodes to the results of preceding blocks. 268 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 269 const ModuleTranslation &state) { 270 // Skip the first block, it cannot be branched to and its arguments correspond 271 // to the arguments of the LLVM function. 272 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 273 ++it) { 274 Block *bb = &*it; 275 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 276 auto phis = llvmBB->phis(); 277 auto numArguments = bb->getNumArguments(); 278 assert(numArguments == std::distance(phis.begin(), phis.end())); 279 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 280 auto &phiNode = numberedPhiNode.value(); 281 unsigned index = numberedPhiNode.index(); 282 for (auto *pred : bb->getPredecessors()) { 283 // Find the LLVM IR block that contains the converted terminator 284 // instruction and use it in the PHI node. Note that this block is not 285 // necessarily the same as state.lookupBlock(pred), some operations 286 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 287 // split the blocks. 288 llvm::Instruction *terminator = 289 state.lookupBranch(pred->getTerminator()); 290 assert(terminator && "missing the mapping for a terminator"); 291 phiNode.addIncoming( 292 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 293 terminator->getParent()); 294 } 295 } 296 } 297 } 298 299 /// Sort function blocks topologically. 300 SetVector<Block *> 301 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 302 // For each block that has not been visited yet (i.e. that has no 303 // predecessors), add it to the list as well as its successors. 304 SetVector<Block *> blocks; 305 for (Block &b : region) { 306 if (blocks.count(&b) == 0) { 307 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 308 blocks.insert(traversal.begin(), traversal.end()); 309 } 310 } 311 assert(blocks.size() == region.getBlocks().size() && 312 "some blocks are not sorted"); 313 314 return blocks; 315 } 316 317 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 318 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 319 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 320 llvm::Module *module = builder.GetInsertBlock()->getModule(); 321 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 322 return builder.CreateCall(fn, args); 323 } 324 325 llvm::Value * 326 mlir::LLVM::detail::createNvvmIntrinsicCall(llvm::IRBuilderBase &builder, 327 llvm::Intrinsic::ID intrinsic, 328 ArrayRef<llvm::Value *> args) { 329 llvm::Module *module = builder.GetInsertBlock()->getModule(); 330 llvm::Function *fn; 331 if (llvm::Intrinsic::isOverloaded(intrinsic)) { 332 if (intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f16_f16 && 333 intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f32_f32) { 334 // NVVM load and store instrinsic names are overloaded on the 335 // source/destination pointer type. Pointer is the first argument in the 336 // corresponding NVVM Op. 337 fn = llvm::Intrinsic::getDeclaration(module, intrinsic, 338 {args[0]->getType()}); 339 } else { 340 fn = llvm::Intrinsic::getDeclaration(module, intrinsic, {}); 341 } 342 } else { 343 fn = llvm::Intrinsic::getDeclaration(module, intrinsic); 344 } 345 return builder.CreateCall(fn, args); 346 } 347 348 /// Given a single MLIR operation, create the corresponding LLVM IR operation 349 /// using the `builder`. 350 LogicalResult 351 ModuleTranslation::convertOperation(Operation &op, 352 llvm::IRBuilderBase &builder) { 353 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 354 if (!opIface) 355 return op.emitError("cannot be converted to LLVM IR: missing " 356 "`LLVMTranslationDialectInterface` registration for " 357 "dialect for op: ") 358 << op.getName(); 359 360 if (failed(opIface->convertOperation(&op, builder, *this))) 361 return op.emitError("LLVM Translation failed for operation: ") 362 << op.getName(); 363 364 return convertDialectAttributes(&op); 365 } 366 367 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 368 /// to define values corresponding to the MLIR block arguments. These nodes 369 /// are not connected to the source basic blocks, which may not exist yet. Uses 370 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 371 /// been created for `bb` and included in the block mapping. Inserts new 372 /// instructions at the end of the block and leaves `builder` in a state 373 /// suitable for further insertion into the end of the block. 374 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 375 llvm::IRBuilderBase &builder) { 376 builder.SetInsertPoint(lookupBlock(&bb)); 377 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 378 379 // Before traversing operations, make block arguments available through 380 // value remapping and PHI nodes, but do not add incoming edges for the PHI 381 // nodes just yet: those values may be defined by this or following blocks. 382 // This step is omitted if "ignoreArguments" is set. The arguments of the 383 // first block have been already made available through the remapping of 384 // LLVM function arguments. 385 if (!ignoreArguments) { 386 auto predecessors = bb.getPredecessors(); 387 unsigned numPredecessors = 388 std::distance(predecessors.begin(), predecessors.end()); 389 for (auto arg : bb.getArguments()) { 390 auto wrappedType = arg.getType(); 391 if (!isCompatibleType(wrappedType)) 392 return emitError(bb.front().getLoc(), 393 "block argument does not have an LLVM type"); 394 llvm::Type *type = convertType(wrappedType); 395 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 396 mapValue(arg, phi); 397 } 398 } 399 400 // Traverse operations. 401 for (auto &op : bb) { 402 // Set the current debug location within the builder. 403 builder.SetCurrentDebugLocation( 404 debugTranslation->translateLoc(op.getLoc(), subprogram)); 405 406 if (failed(convertOperation(op, builder))) 407 return failure(); 408 } 409 410 return success(); 411 } 412 413 /// A helper method to get the single Block in an operation honoring LLVM's 414 /// module requirements. 415 static Block &getModuleBody(Operation *module) { 416 return module->getRegion(0).front(); 417 } 418 419 /// A helper method to decide if a constant must not be set as a global variable 420 /// initializer. 421 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 422 llvm::Constant *cst) { 423 return (linkage == llvm::GlobalVariable::ExternalLinkage && 424 isa<llvm::UndefValue>(cst)) || 425 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 426 } 427 428 /// Create named global variables that correspond to llvm.mlir.global 429 /// definitions. 430 LogicalResult ModuleTranslation::convertGlobals() { 431 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 432 llvm::Type *type = convertType(op.getType()); 433 llvm::Constant *cst = llvm::UndefValue::get(type); 434 if (op.getValueOrNull()) { 435 // String attributes are treated separately because they cannot appear as 436 // in-function constants and are thus not supported by getLLVMConstant. 437 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 438 cst = llvm::ConstantDataArray::getString( 439 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 440 type = cst->getType(); 441 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 442 *this))) { 443 return failure(); 444 } 445 } 446 447 auto linkage = convertLinkageToLLVM(op.linkage()); 448 auto addrSpace = op.addr_space(); 449 auto *var = new llvm::GlobalVariable( 450 *llvmModule, type, op.constant(), linkage, 451 shouldDropGlobalInitializer(linkage, cst) ? nullptr : cst, 452 op.sym_name(), 453 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 454 455 if (op.unnamed_addr().hasValue()) 456 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.unnamed_addr())); 457 458 if (op.section().hasValue()) 459 var->setSection(*op.section()); 460 461 Optional<uint64_t> alignment = op.alignment(); 462 if (alignment.hasValue()) 463 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 464 465 globalsMapping.try_emplace(op, var); 466 } 467 468 // Convert global variable bodies. This is done after all global variables 469 // have been created in LLVM IR because a global body may refer to another 470 // global or itself. So all global variables need to be mapped first. 471 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 472 if (Block *initializer = op.getInitializerBlock()) { 473 llvm::IRBuilder<> builder(llvmModule->getContext()); 474 for (auto &op : initializer->without_terminator()) { 475 if (failed(convertOperation(op, builder)) || 476 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 477 return emitError(op.getLoc(), "unemittable constant value"); 478 } 479 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 480 llvm::Constant *cst = 481 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 482 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 483 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 484 global->setInitializer(cst); 485 } 486 } 487 488 return success(); 489 } 490 491 /// Attempts to add an attribute identified by `key`, optionally with the given 492 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 493 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 494 /// otherwise keep it as a string attribute. Performs additional checks for 495 /// attributes known to have or not have a value in order to avoid assertions 496 /// inside LLVM upon construction. 497 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 498 llvm::Function *llvmFunc, 499 StringRef key, 500 StringRef value = StringRef()) { 501 auto kind = llvm::Attribute::getAttrKindFromName(key); 502 if (kind == llvm::Attribute::None) { 503 llvmFunc->addFnAttr(key, value); 504 return success(); 505 } 506 507 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) { 508 if (value.empty()) 509 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 510 511 int result; 512 if (!value.getAsInteger(/*Radix=*/0, result)) 513 llvmFunc->addFnAttr( 514 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 515 else 516 llvmFunc->addFnAttr(key, value); 517 return success(); 518 } 519 520 if (!value.empty()) 521 return emitError(loc) << "LLVM attribute '" << key 522 << "' does not expect a value, found '" << value 523 << "'"; 524 525 llvmFunc->addFnAttr(kind); 526 return success(); 527 } 528 529 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 530 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 531 /// to be an array attribute containing either string attributes, treated as 532 /// value-less LLVM attributes, or array attributes containing two string 533 /// attributes, with the first string being the name of the corresponding LLVM 534 /// attribute and the second string beings its value. Note that even integer 535 /// attributes are expected to have their values expressed as strings. 536 static LogicalResult 537 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 538 llvm::Function *llvmFunc) { 539 if (!attributes) 540 return success(); 541 542 for (Attribute attr : *attributes) { 543 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 544 if (failed( 545 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 546 return failure(); 547 continue; 548 } 549 550 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 551 if (!arrayAttr || arrayAttr.size() != 2) 552 return emitError(loc) 553 << "expected 'passthrough' to contain string or array attributes"; 554 555 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 556 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 557 if (!keyAttr || !valueAttr) 558 return emitError(loc) 559 << "expected arrays within 'passthrough' to contain two strings"; 560 561 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 562 valueAttr.getValue()))) 563 return failure(); 564 } 565 return success(); 566 } 567 568 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 569 // Clear the block, branch value mappings, they are only relevant within one 570 // function. 571 blockMapping.clear(); 572 valueMapping.clear(); 573 branchMapping.clear(); 574 llvm::Function *llvmFunc = lookupFunction(func.getName()); 575 576 // Translate the debug information for this function. 577 debugTranslation->translate(func, *llvmFunc); 578 579 // Add function arguments to the value remapping table. 580 // If there was noalias info then we decorate each argument accordingly. 581 unsigned int argIdx = 0; 582 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 583 llvm::Argument &llvmArg = std::get<1>(kvp); 584 BlockArgument mlirArg = std::get<0>(kvp); 585 586 if (auto attr = func.getArgAttrOfType<UnitAttr>( 587 argIdx, LLVMDialect::getNoAliasAttrName())) { 588 // NB: Attribute already verified to be boolean, so check if we can indeed 589 // attach the attribute to this argument, based on its type. 590 auto argTy = mlirArg.getType(); 591 if (!argTy.isa<LLVM::LLVMPointerType>()) 592 return func.emitError( 593 "llvm.noalias attribute attached to LLVM non-pointer argument"); 594 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 595 } 596 597 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 598 argIdx, LLVMDialect::getAlignAttrName())) { 599 // NB: Attribute already verified to be int, so check if we can indeed 600 // attach the attribute to this argument, based on its type. 601 auto argTy = mlirArg.getType(); 602 if (!argTy.isa<LLVM::LLVMPointerType>()) 603 return func.emitError( 604 "llvm.align attribute attached to LLVM non-pointer argument"); 605 llvmArg.addAttrs( 606 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 607 } 608 609 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 610 auto argTy = mlirArg.getType(); 611 if (!argTy.isa<LLVM::LLVMPointerType>()) 612 return func.emitError( 613 "llvm.sret attribute attached to LLVM non-pointer argument"); 614 llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr( 615 llvmArg.getType()->getPointerElementType())); 616 } 617 618 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 619 auto argTy = mlirArg.getType(); 620 if (!argTy.isa<LLVM::LLVMPointerType>()) 621 return func.emitError( 622 "llvm.byval attribute attached to LLVM non-pointer argument"); 623 llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr( 624 llvmArg.getType()->getPointerElementType())); 625 } 626 627 mapValue(mlirArg, &llvmArg); 628 argIdx++; 629 } 630 631 // Check the personality and set it. 632 if (func.personality().hasValue()) { 633 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 634 if (llvm::Constant *pfunc = 635 getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this)) 636 llvmFunc->setPersonalityFn(pfunc); 637 } 638 639 // First, create all blocks so we can jump to them. 640 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 641 for (auto &bb : func) { 642 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 643 llvmBB->insertInto(llvmFunc); 644 mapBlock(&bb, llvmBB); 645 } 646 647 // Then, convert blocks one by one in topological order to ensure defs are 648 // converted before uses. 649 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 650 for (Block *bb : blocks) { 651 llvm::IRBuilder<> builder(llvmContext); 652 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 653 return failure(); 654 } 655 656 // After all blocks have been traversed and values mapped, connect the PHI 657 // nodes to the results of preceding blocks. 658 detail::connectPHINodes(func.getBody(), *this); 659 660 // Finally, convert dialect attributes attached to the function. 661 return convertDialectAttributes(func); 662 } 663 664 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 665 for (NamedAttribute attribute : op->getDialectAttrs()) 666 if (failed(iface.amendOperation(op, attribute, *this))) 667 return failure(); 668 return success(); 669 } 670 671 /// Check whether the module contains only supported ops directly in its body. 672 static LogicalResult checkSupportedModuleOps(Operation *m) { 673 for (Operation &o : getModuleBody(m).getOperations()) 674 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) && 675 !o.hasTrait<OpTrait::IsTerminator>()) 676 return o.emitOpError("unsupported module-level operation"); 677 return success(); 678 } 679 680 LogicalResult ModuleTranslation::convertFunctionSignatures() { 681 // Declare all functions first because there may be function calls that form a 682 // call graph with cycles, or global initializers that reference functions. 683 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 684 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 685 function.getName(), 686 cast<llvm::FunctionType>(convertType(function.getType()))); 687 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 688 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage())); 689 mapFunction(function.getName(), llvmFunc); 690 691 // Forward the pass-through attributes to LLVM. 692 if (failed(forwardPassthroughAttributes(function.getLoc(), 693 function.passthrough(), llvmFunc))) 694 return failure(); 695 } 696 697 return success(); 698 } 699 700 LogicalResult ModuleTranslation::convertFunctions() { 701 // Convert functions. 702 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 703 // Ignore external functions. 704 if (function.isExternal()) 705 continue; 706 707 if (failed(convertOneFunction(function))) 708 return failure(); 709 } 710 711 return success(); 712 } 713 714 llvm::MDNode * 715 ModuleTranslation::getAccessGroup(Operation &opInst, 716 SymbolRefAttr accessGroupRef) const { 717 auto metadataName = accessGroupRef.getRootReference(); 718 auto accessGroupName = accessGroupRef.getLeafReference(); 719 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 720 opInst.getParentOp(), metadataName); 721 auto *accessGroupOp = 722 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 723 return accessGroupMetadataMapping.lookup(accessGroupOp); 724 } 725 726 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 727 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 728 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 729 llvm::LLVMContext &ctx = llvmModule->getContext(); 730 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 731 accessGroupMetadataMapping.insert({op, accessGroup}); 732 }); 733 }); 734 return success(); 735 } 736 737 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 738 llvm::Instruction *inst) { 739 auto accessGroups = 740 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 741 if (accessGroups && !accessGroups.empty()) { 742 llvm::Module *module = inst->getModule(); 743 SmallVector<llvm::Metadata *> metadatas; 744 for (SymbolRefAttr accessGroupRef : 745 accessGroups.getAsRange<SymbolRefAttr>()) 746 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 747 748 llvm::MDNode *unionMD = nullptr; 749 if (metadatas.size() == 1) 750 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 751 else if (metadatas.size() >= 2) 752 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 753 754 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 755 } 756 } 757 758 llvm::Type *ModuleTranslation::convertType(Type type) { 759 return typeTranslator.translateType(type); 760 } 761 762 /// A helper to look up remapped operands in the value remapping table.` 763 SmallVector<llvm::Value *, 8> 764 ModuleTranslation::lookupValues(ValueRange values) { 765 SmallVector<llvm::Value *, 8> remapped; 766 remapped.reserve(values.size()); 767 for (Value v : values) 768 remapped.push_back(lookupValue(v)); 769 return remapped; 770 } 771 772 const llvm::DILocation * 773 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 774 return debugTranslation->translateLoc(loc, scope); 775 } 776 777 llvm::NamedMDNode * 778 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 779 return llvmModule->getOrInsertNamedMetadata(name); 780 } 781 782 void ModuleTranslation::StackFrame::anchor() {} 783 784 static std::unique_ptr<llvm::Module> 785 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 786 StringRef name) { 787 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 788 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 789 if (auto dataLayoutAttr = 790 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 791 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 792 if (auto targetTripleAttr = 793 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 794 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 795 796 // Inject declarations for `malloc` and `free` functions that can be used in 797 // memref allocation/deallocation coming from standard ops lowering. 798 llvm::IRBuilder<> builder(llvmContext); 799 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 800 builder.getInt64Ty()); 801 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 802 builder.getInt8PtrTy()); 803 804 return llvmModule; 805 } 806 807 std::unique_ptr<llvm::Module> 808 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 809 StringRef name) { 810 if (!satisfiesLLVMModule(module)) 811 return nullptr; 812 if (failed(checkSupportedModuleOps(module))) 813 return nullptr; 814 std::unique_ptr<llvm::Module> llvmModule = 815 prepareLLVMModule(module, llvmContext, name); 816 817 LLVM::ensureDistinctSuccessors(module); 818 819 ModuleTranslation translator(module, std::move(llvmModule)); 820 if (failed(translator.convertFunctionSignatures())) 821 return nullptr; 822 if (failed(translator.convertGlobals())) 823 return nullptr; 824 if (failed(translator.createAccessGroupMetadata())) 825 return nullptr; 826 if (failed(translator.convertFunctions())) 827 return nullptr; 828 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 829 return nullptr; 830 831 return std::move(translator.llvmModule); 832 } 833