1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 34 using namespace mlir; 35 using namespace mlir::LLVM; 36 using namespace mlir::LLVM::detail; 37 38 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 39 40 /// Builds a constant of a sequential LLVM type `type`, potentially containing 41 /// other sequential types recursively, from the individual constant values 42 /// provided in `constants`. `shape` contains the number of elements in nested 43 /// sequential types. Reports errors at `loc` and returns nullptr on error. 44 static llvm::Constant * 45 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 46 ArrayRef<int64_t> shape, llvm::Type *type, 47 Location loc) { 48 if (shape.empty()) { 49 llvm::Constant *result = constants.front(); 50 constants = constants.drop_front(); 51 return result; 52 } 53 54 if (!isa<llvm::SequentialType>(type)) { 55 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 56 return nullptr; 57 } 58 59 llvm::Type *elementType = type->getSequentialElementType(); 60 SmallVector<llvm::Constant *, 8> nested; 61 nested.reserve(shape.front()); 62 for (int64_t i = 0; i < shape.front(); ++i) { 63 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 64 elementType, loc)); 65 if (!nested.back()) 66 return nullptr; 67 } 68 69 if (shape.size() == 1 && type->isVectorTy()) 70 return llvm::ConstantVector::get(nested); 71 return llvm::ConstantArray::get( 72 llvm::ArrayType::get(elementType, shape.front()), nested); 73 } 74 75 /// Returns the first non-sequential type nested in sequential types. 76 static llvm::Type *getInnermostElementType(llvm::Type *type) { 77 while (isa<llvm::SequentialType>(type)) 78 type = type->getSequentialElementType(); 79 return type; 80 } 81 82 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 83 /// This currently supports integer, floating point, splat and dense element 84 /// attributes and combinations thereof. In case of error, report it to `loc` 85 /// and return nullptr. 86 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 87 Attribute attr, 88 Location loc) { 89 if (!attr) 90 return llvm::UndefValue::get(llvmType); 91 if (llvmType->isStructTy()) { 92 emitError(loc, "struct types are not supported in constants"); 93 return nullptr; 94 } 95 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 96 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 97 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 98 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 99 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 100 return functionMapping.lookup(funcAttr.getValue()); 101 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 102 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 103 auto elementType = sequentialType->getElementType(); 104 uint64_t numElements = sequentialType->getNumElements(); 105 // Splat value is a scalar. Extract it only if the element type is not 106 // another sequence type. The recursion terminates because each step removes 107 // one outer sequential type. 108 llvm::Constant *child = getLLVMConstant( 109 elementType, 110 isa<llvm::SequentialType>(elementType) ? splatAttr 111 : splatAttr.getSplatValue(), 112 loc); 113 if (!child) 114 return nullptr; 115 if (llvmType->isVectorTy()) 116 return llvm::ConstantVector::getSplat(numElements, child); 117 if (llvmType->isArrayTy()) { 118 auto arrayType = llvm::ArrayType::get(elementType, numElements); 119 SmallVector<llvm::Constant *, 8> constants(numElements, child); 120 return llvm::ConstantArray::get(arrayType, constants); 121 } 122 } 123 124 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 125 assert(elementsAttr.getType().hasStaticShape()); 126 assert(elementsAttr.getNumElements() != 0 && 127 "unexpected empty elements attribute"); 128 assert(!elementsAttr.getType().getShape().empty() && 129 "unexpected empty elements attribute shape"); 130 131 SmallVector<llvm::Constant *, 8> constants; 132 constants.reserve(elementsAttr.getNumElements()); 133 llvm::Type *innermostType = getInnermostElementType(llvmType); 134 for (auto n : elementsAttr.getValues<Attribute>()) { 135 constants.push_back(getLLVMConstant(innermostType, n, loc)); 136 if (!constants.back()) 137 return nullptr; 138 } 139 ArrayRef<llvm::Constant *> constantsRef = constants; 140 llvm::Constant *result = buildSequentialConstant( 141 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 142 assert(constantsRef.empty() && "did not consume all elemental constants"); 143 return result; 144 } 145 146 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 147 return llvm::ConstantDataArray::get( 148 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 149 stringAttr.getValue().size()}); 150 } 151 emitError(loc, "unsupported constant value"); 152 return nullptr; 153 } 154 155 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 156 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 157 switch (p) { 158 case LLVM::ICmpPredicate::eq: 159 return llvm::CmpInst::Predicate::ICMP_EQ; 160 case LLVM::ICmpPredicate::ne: 161 return llvm::CmpInst::Predicate::ICMP_NE; 162 case LLVM::ICmpPredicate::slt: 163 return llvm::CmpInst::Predicate::ICMP_SLT; 164 case LLVM::ICmpPredicate::sle: 165 return llvm::CmpInst::Predicate::ICMP_SLE; 166 case LLVM::ICmpPredicate::sgt: 167 return llvm::CmpInst::Predicate::ICMP_SGT; 168 case LLVM::ICmpPredicate::sge: 169 return llvm::CmpInst::Predicate::ICMP_SGE; 170 case LLVM::ICmpPredicate::ult: 171 return llvm::CmpInst::Predicate::ICMP_ULT; 172 case LLVM::ICmpPredicate::ule: 173 return llvm::CmpInst::Predicate::ICMP_ULE; 174 case LLVM::ICmpPredicate::ugt: 175 return llvm::CmpInst::Predicate::ICMP_UGT; 176 case LLVM::ICmpPredicate::uge: 177 return llvm::CmpInst::Predicate::ICMP_UGE; 178 } 179 llvm_unreachable("incorrect comparison predicate"); 180 } 181 182 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 183 switch (p) { 184 case LLVM::FCmpPredicate::_false: 185 return llvm::CmpInst::Predicate::FCMP_FALSE; 186 case LLVM::FCmpPredicate::oeq: 187 return llvm::CmpInst::Predicate::FCMP_OEQ; 188 case LLVM::FCmpPredicate::ogt: 189 return llvm::CmpInst::Predicate::FCMP_OGT; 190 case LLVM::FCmpPredicate::oge: 191 return llvm::CmpInst::Predicate::FCMP_OGE; 192 case LLVM::FCmpPredicate::olt: 193 return llvm::CmpInst::Predicate::FCMP_OLT; 194 case LLVM::FCmpPredicate::ole: 195 return llvm::CmpInst::Predicate::FCMP_OLE; 196 case LLVM::FCmpPredicate::one: 197 return llvm::CmpInst::Predicate::FCMP_ONE; 198 case LLVM::FCmpPredicate::ord: 199 return llvm::CmpInst::Predicate::FCMP_ORD; 200 case LLVM::FCmpPredicate::ueq: 201 return llvm::CmpInst::Predicate::FCMP_UEQ; 202 case LLVM::FCmpPredicate::ugt: 203 return llvm::CmpInst::Predicate::FCMP_UGT; 204 case LLVM::FCmpPredicate::uge: 205 return llvm::CmpInst::Predicate::FCMP_UGE; 206 case LLVM::FCmpPredicate::ult: 207 return llvm::CmpInst::Predicate::FCMP_ULT; 208 case LLVM::FCmpPredicate::ule: 209 return llvm::CmpInst::Predicate::FCMP_ULE; 210 case LLVM::FCmpPredicate::une: 211 return llvm::CmpInst::Predicate::FCMP_UNE; 212 case LLVM::FCmpPredicate::uno: 213 return llvm::CmpInst::Predicate::FCMP_UNO; 214 case LLVM::FCmpPredicate::_true: 215 return llvm::CmpInst::Predicate::FCMP_TRUE; 216 } 217 llvm_unreachable("incorrect comparison predicate"); 218 } 219 220 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 221 switch (op) { 222 case LLVM::AtomicBinOp::xchg: 223 return llvm::AtomicRMWInst::BinOp::Xchg; 224 case LLVM::AtomicBinOp::add: 225 return llvm::AtomicRMWInst::BinOp::Add; 226 case LLVM::AtomicBinOp::sub: 227 return llvm::AtomicRMWInst::BinOp::Sub; 228 case LLVM::AtomicBinOp::_and: 229 return llvm::AtomicRMWInst::BinOp::And; 230 case LLVM::AtomicBinOp::nand: 231 return llvm::AtomicRMWInst::BinOp::Nand; 232 case LLVM::AtomicBinOp::_or: 233 return llvm::AtomicRMWInst::BinOp::Or; 234 case LLVM::AtomicBinOp::_xor: 235 return llvm::AtomicRMWInst::BinOp::Xor; 236 case LLVM::AtomicBinOp::max: 237 return llvm::AtomicRMWInst::BinOp::Max; 238 case LLVM::AtomicBinOp::min: 239 return llvm::AtomicRMWInst::BinOp::Min; 240 case LLVM::AtomicBinOp::umax: 241 return llvm::AtomicRMWInst::BinOp::UMax; 242 case LLVM::AtomicBinOp::umin: 243 return llvm::AtomicRMWInst::BinOp::UMin; 244 case LLVM::AtomicBinOp::fadd: 245 return llvm::AtomicRMWInst::BinOp::FAdd; 246 case LLVM::AtomicBinOp::fsub: 247 return llvm::AtomicRMWInst::BinOp::FSub; 248 } 249 llvm_unreachable("incorrect atomic binary operator"); 250 } 251 252 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 253 switch (ordering) { 254 case LLVM::AtomicOrdering::not_atomic: 255 return llvm::AtomicOrdering::NotAtomic; 256 case LLVM::AtomicOrdering::unordered: 257 return llvm::AtomicOrdering::Unordered; 258 case LLVM::AtomicOrdering::monotonic: 259 return llvm::AtomicOrdering::Monotonic; 260 case LLVM::AtomicOrdering::acquire: 261 return llvm::AtomicOrdering::Acquire; 262 case LLVM::AtomicOrdering::release: 263 return llvm::AtomicOrdering::Release; 264 case LLVM::AtomicOrdering::acq_rel: 265 return llvm::AtomicOrdering::AcquireRelease; 266 case LLVM::AtomicOrdering::seq_cst: 267 return llvm::AtomicOrdering::SequentiallyConsistent; 268 } 269 llvm_unreachable("incorrect atomic ordering"); 270 } 271 272 ModuleTranslation::ModuleTranslation(Operation *module, 273 std::unique_ptr<llvm::Module> llvmModule) 274 : mlirModule(module), llvmModule(std::move(llvmModule)), 275 debugTranslation( 276 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 277 ompDialect( 278 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()) { 279 assert(satisfiesLLVMModule(mlirModule) && 280 "mlirModule should honor LLVM's module semantics."); 281 } 282 ModuleTranslation::~ModuleTranslation() {} 283 284 /// Given a single MLIR operation, create the corresponding LLVM IR operation 285 /// using the `builder`. LLVM IR Builder does not have a generic interface so 286 /// this has to be a long chain of `if`s calling different functions with a 287 /// different number of arguments. 288 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 289 llvm::IRBuilder<> &builder) { 290 auto extractPosition = [](ArrayAttr attr) { 291 SmallVector<unsigned, 4> position; 292 position.reserve(attr.size()); 293 for (Attribute v : attr) 294 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 295 return position; 296 }; 297 298 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 299 300 // Emit function calls. If the "callee" attribute is present, this is a 301 // direct function call and we also need to look up the remapped function 302 // itself. Otherwise, this is an indirect call and the callee is the first 303 // operand, look it up as a normal value. Return the llvm::Value representing 304 // the function result, which may be of llvm::VoidTy type. 305 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 306 auto operands = lookupValues(op.getOperands()); 307 ArrayRef<llvm::Value *> operandsRef(operands); 308 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 309 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 310 operandsRef); 311 } else { 312 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 313 } 314 }; 315 316 // Emit calls. If the called function has a result, remap the corresponding 317 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 318 if (isa<LLVM::CallOp>(opInst)) { 319 llvm::Value *result = convertCall(opInst); 320 if (opInst.getNumResults() != 0) { 321 valueMapping[opInst.getResult(0)] = result; 322 return success(); 323 } 324 // Check that LLVM call returns void for 0-result functions. 325 return success(result->getType()->isVoidTy()); 326 } 327 328 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 329 auto operands = lookupValues(opInst.getOperands()); 330 ArrayRef<llvm::Value *> operandsRef(operands); 331 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) 332 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 333 blockMapping[invOp.getSuccessor(0)], 334 blockMapping[invOp.getSuccessor(1)], operandsRef); 335 else 336 builder.CreateInvoke( 337 operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 338 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 339 return success(); 340 } 341 342 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 343 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 344 llvm::LandingPadInst *lpi = 345 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 346 347 // Add clauses 348 for (auto operand : lookupValues(lpOp.getOperands())) { 349 // All operands should be constant - checked by verifier 350 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 351 lpi->addClause(constOperand); 352 } 353 return success(); 354 } 355 356 // Emit branches. We need to look up the remapped blocks and ignore the block 357 // arguments that were transformed into PHI nodes. 358 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 359 builder.CreateBr(blockMapping[brOp.getSuccessor(0)]); 360 return success(); 361 } 362 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 363 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 364 blockMapping[condbrOp.getSuccessor(0)], 365 blockMapping[condbrOp.getSuccessor(1)]); 366 return success(); 367 } 368 369 // Emit addressof. We need to look up the global value referenced by the 370 // operation and store it in the MLIR-to-LLVM value mapping. This does not 371 // emit any LLVM instruction. 372 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 373 LLVM::GlobalOp global = addressOfOp.getGlobal(); 374 // The verifier should not have allowed this. 375 assert(global && "referencing an undefined global"); 376 377 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 378 return success(); 379 } 380 381 if (opInst.getDialect() == ompDialect) { 382 if (!ompBuilder) { 383 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 384 ompBuilder->initialize(); 385 } 386 387 if (isa<omp::BarrierOp>(opInst)) { 388 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 389 return success(); 390 } 391 return opInst.emitError("unsupported OpenMP operation: ") 392 << opInst.getName(); 393 } 394 395 return opInst.emitError("unsupported or non-LLVM operation: ") 396 << opInst.getName(); 397 } 398 399 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 400 /// to define values corresponding to the MLIR block arguments. These nodes 401 /// are not connected to the source basic blocks, which may not exist yet. 402 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 403 llvm::IRBuilder<> builder(blockMapping[&bb]); 404 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 405 406 // Before traversing operations, make block arguments available through 407 // value remapping and PHI nodes, but do not add incoming edges for the PHI 408 // nodes just yet: those values may be defined by this or following blocks. 409 // This step is omitted if "ignoreArguments" is set. The arguments of the 410 // first block have been already made available through the remapping of 411 // LLVM function arguments. 412 if (!ignoreArguments) { 413 auto predecessors = bb.getPredecessors(); 414 unsigned numPredecessors = 415 std::distance(predecessors.begin(), predecessors.end()); 416 for (auto arg : bb.getArguments()) { 417 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 418 if (!wrappedType) 419 return emitError(bb.front().getLoc(), 420 "block argument does not have an LLVM type"); 421 llvm::Type *type = wrappedType.getUnderlyingType(); 422 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 423 valueMapping[arg] = phi; 424 } 425 } 426 427 // Traverse operations. 428 for (auto &op : bb) { 429 // Set the current debug location within the builder. 430 builder.SetCurrentDebugLocation( 431 debugTranslation->translateLoc(op.getLoc(), subprogram)); 432 433 if (failed(convertOperation(op, builder))) 434 return failure(); 435 } 436 437 return success(); 438 } 439 440 /// Create named global variables that correspond to llvm.mlir.global 441 /// definitions. 442 LogicalResult ModuleTranslation::convertGlobals() { 443 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 444 llvm::Type *type = op.getType().getUnderlyingType(); 445 llvm::Constant *cst = llvm::UndefValue::get(type); 446 if (op.getValueOrNull()) { 447 // String attributes are treated separately because they cannot appear as 448 // in-function constants and are thus not supported by getLLVMConstant. 449 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 450 cst = llvm::ConstantDataArray::getString( 451 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 452 type = cst->getType(); 453 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 454 op.getLoc()))) { 455 return failure(); 456 } 457 } else if (Block *initializer = op.getInitializerBlock()) { 458 llvm::IRBuilder<> builder(llvmModule->getContext()); 459 for (auto &op : initializer->without_terminator()) { 460 if (failed(convertOperation(op, builder)) || 461 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 462 return emitError(op.getLoc(), "unemittable constant value"); 463 } 464 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 465 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 466 } 467 468 auto linkage = convertLinkageToLLVM(op.linkage()); 469 bool anyExternalLinkage = 470 (linkage == llvm::GlobalVariable::ExternalLinkage || 471 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 472 auto addrSpace = op.addr_space().getLimitedValue(); 473 auto *var = new llvm::GlobalVariable( 474 *llvmModule, type, op.constant(), linkage, 475 anyExternalLinkage ? nullptr : cst, op.sym_name(), 476 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 477 478 globalsMapping.try_emplace(op, var); 479 } 480 481 return success(); 482 } 483 484 /// Get the SSA value passed to the current block from the terminator operation 485 /// of its predecessor. 486 static Value getPHISourceValue(Block *current, Block *pred, 487 unsigned numArguments, unsigned index) { 488 auto &terminator = *pred->getTerminator(); 489 if (isa<LLVM::BrOp>(terminator)) { 490 return terminator.getOperand(index); 491 } 492 493 // For conditional branches, we need to check if the current block is reached 494 // through the "true" or the "false" branch and take the relevant operands. 495 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 496 assert(condBranchOp && 497 "only branch operations can be terminators of a block that " 498 "has successors"); 499 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 500 "successors with arguments in LLVM conditional branches must be " 501 "different blocks"); 502 503 return condBranchOp.getSuccessor(0) == current 504 ? terminator.getSuccessorOperand(0, index) 505 : terminator.getSuccessorOperand(1, index); 506 } 507 508 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 509 // Skip the first block, it cannot be branched to and its arguments correspond 510 // to the arguments of the LLVM function. 511 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 512 Block *bb = &*it; 513 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 514 auto phis = llvmBB->phis(); 515 auto numArguments = bb->getNumArguments(); 516 assert(numArguments == std::distance(phis.begin(), phis.end())); 517 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 518 auto &phiNode = numberedPhiNode.value(); 519 unsigned index = numberedPhiNode.index(); 520 for (auto *pred : bb->getPredecessors()) { 521 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 522 bb, pred, numArguments, index)), 523 blockMapping.lookup(pred)); 524 } 525 } 526 } 527 } 528 529 // TODO(mlir-team): implement an iterative version 530 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 531 blocks.insert(b); 532 for (Block *bb : b->getSuccessors()) { 533 if (blocks.count(bb) == 0) 534 topologicalSortImpl(blocks, bb); 535 } 536 } 537 538 /// Sort function blocks topologically. 539 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 540 // For each blocks that has not been visited yet (i.e. that has no 541 // predecessors), add it to the list and traverse its successors in DFS 542 // preorder. 543 llvm::SetVector<Block *> blocks; 544 for (Block &b : f.getBlocks()) { 545 if (blocks.count(&b) == 0) 546 topologicalSortImpl(blocks, &b); 547 } 548 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 549 550 return blocks; 551 } 552 553 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 554 // Clear the block and value mappings, they are only relevant within one 555 // function. 556 blockMapping.clear(); 557 valueMapping.clear(); 558 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 559 560 // Translate the debug information for this function. 561 debugTranslation->translate(func, *llvmFunc); 562 563 // Add function arguments to the value remapping table. 564 // If there was noalias info then we decorate each argument accordingly. 565 unsigned int argIdx = 0; 566 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 567 llvm::Argument &llvmArg = std::get<1>(kvp); 568 BlockArgument mlirArg = std::get<0>(kvp); 569 570 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 571 // NB: Attribute already verified to be boolean, so check if we can indeed 572 // attach the attribute to this argument, based on its type. 573 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 574 if (!argTy.getUnderlyingType()->isPointerTy()) 575 return func.emitError( 576 "llvm.noalias attribute attached to LLVM non-pointer argument"); 577 if (attr.getValue()) 578 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 579 } 580 valueMapping[mlirArg] = &llvmArg; 581 argIdx++; 582 } 583 584 // First, create all blocks so we can jump to them. 585 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 586 for (auto &bb : func) { 587 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 588 llvmBB->insertInto(llvmFunc); 589 blockMapping[&bb] = llvmBB; 590 } 591 592 // Then, convert blocks one by one in topological order to ensure defs are 593 // converted before uses. 594 auto blocks = topologicalSort(func); 595 for (auto indexedBB : llvm::enumerate(blocks)) { 596 auto *bb = indexedBB.value(); 597 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 598 return failure(); 599 } 600 601 // Finally, after all blocks have been traversed and values mapped, connect 602 // the PHI nodes to the results of preceding blocks. 603 connectPHINodes(func); 604 return success(); 605 } 606 607 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 608 for (Operation &o : getModuleBody(m).getOperations()) 609 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 610 !o.isKnownTerminator()) 611 return o.emitOpError("unsupported module-level operation"); 612 return success(); 613 } 614 615 LogicalResult ModuleTranslation::convertFunctions() { 616 // Declare all functions first because there may be function calls that form a 617 // call graph with cycles. 618 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 619 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 620 function.getName(), 621 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 622 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 623 functionMapping[function.getName()] = 624 cast<llvm::Function>(llvmFuncCst.getCallee()); 625 } 626 627 // Convert functions. 628 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 629 // Ignore external functions. 630 if (function.isExternal()) 631 continue; 632 633 if (failed(convertOneFunction(function))) 634 return failure(); 635 } 636 637 return success(); 638 } 639 640 /// A helper to look up remapped operands in the value remapping table.` 641 SmallVector<llvm::Value *, 8> 642 ModuleTranslation::lookupValues(ValueRange values) { 643 SmallVector<llvm::Value *, 8> remapped; 644 remapped.reserve(values.size()); 645 for (Value v : values) 646 remapped.push_back(valueMapping.lookup(v)); 647 return remapped; 648 } 649 650 std::unique_ptr<llvm::Module> 651 ModuleTranslation::prepareLLVMModule(Operation *m) { 652 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 653 assert(dialect && "LLVM dialect must be registered"); 654 655 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 656 if (!llvmModule) 657 return nullptr; 658 659 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 660 llvm::IRBuilder<> builder(llvmContext); 661 662 // Inject declarations for `malloc` and `free` functions that can be used in 663 // memref allocation/deallocation coming from standard ops lowering. 664 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 665 builder.getInt64Ty()); 666 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 667 builder.getInt8PtrTy()); 668 669 return llvmModule; 670 } 671