1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
20 #include "mlir/IR/Attributes.h"
21 #include "mlir/IR/BuiltinOps.h"
22 #include "mlir/IR/BuiltinTypes.h"
23 #include "mlir/IR/RegionGraphTraits.h"
24 #include "mlir/Support/LLVM.h"
25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
26 #include "mlir/Target/LLVMIR/TypeTranslation.h"
27 #include "llvm/ADT/TypeSwitch.h"
28 
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 
45 using namespace mlir;
46 using namespace mlir::LLVM;
47 using namespace mlir::LLVM::detail;
48 
49 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
50 
51 /// Builds a constant of a sequential LLVM type `type`, potentially containing
52 /// other sequential types recursively, from the individual constant values
53 /// provided in `constants`. `shape` contains the number of elements in nested
54 /// sequential types. Reports errors at `loc` and returns nullptr on error.
55 static llvm::Constant *
56 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
57                         ArrayRef<int64_t> shape, llvm::Type *type,
58                         Location loc) {
59   if (shape.empty()) {
60     llvm::Constant *result = constants.front();
61     constants = constants.drop_front();
62     return result;
63   }
64 
65   llvm::Type *elementType;
66   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
67     elementType = arrayTy->getElementType();
68   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
69     elementType = vectorTy->getElementType();
70   } else {
71     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
72     return nullptr;
73   }
74 
75   SmallVector<llvm::Constant *, 8> nested;
76   nested.reserve(shape.front());
77   for (int64_t i = 0; i < shape.front(); ++i) {
78     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
79                                              elementType, loc));
80     if (!nested.back())
81       return nullptr;
82   }
83 
84   if (shape.size() == 1 && type->isVectorTy())
85     return llvm::ConstantVector::get(nested);
86   return llvm::ConstantArray::get(
87       llvm::ArrayType::get(elementType, shape.front()), nested);
88 }
89 
90 /// Returns the first non-sequential type nested in sequential types.
91 static llvm::Type *getInnermostElementType(llvm::Type *type) {
92   do {
93     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
94       type = arrayTy->getElementType();
95     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
96       type = vectorTy->getElementType();
97     } else {
98       return type;
99     }
100   } while (true);
101 }
102 
103 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
104 /// This currently supports integer, floating point, splat and dense element
105 /// attributes and combinations thereof.  In case of error, report it to `loc`
106 /// and return nullptr.
107 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
108     llvm::Type *llvmType, Attribute attr, Location loc,
109     const ModuleTranslation &moduleTranslation) {
110   if (!attr)
111     return llvm::UndefValue::get(llvmType);
112   if (llvmType->isStructTy()) {
113     emitError(loc, "struct types are not supported in constants");
114     return nullptr;
115   }
116   // For integer types, we allow a mismatch in sizes as the index type in
117   // MLIR might have a different size than the index type in the LLVM module.
118   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
119     return llvm::ConstantInt::get(
120         llvmType,
121         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
122   if (auto floatAttr = attr.dyn_cast<FloatAttr>())
123     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
124   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
125     return llvm::ConstantExpr::getBitCast(
126         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
127   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
128     llvm::Type *elementType;
129     uint64_t numElements;
130     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
131       elementType = arrayTy->getElementType();
132       numElements = arrayTy->getNumElements();
133     } else {
134       auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
135       elementType = vectorTy->getElementType();
136       numElements = vectorTy->getNumElements();
137     }
138     // Splat value is a scalar. Extract it only if the element type is not
139     // another sequence type. The recursion terminates because each step removes
140     // one outer sequential type.
141     bool elementTypeSequential =
142         isa<llvm::ArrayType, llvm::VectorType>(elementType);
143     llvm::Constant *child = getLLVMConstant(
144         elementType,
145         elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc,
146         moduleTranslation);
147     if (!child)
148       return nullptr;
149     if (llvmType->isVectorTy())
150       return llvm::ConstantVector::getSplat(
151           llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
152     if (llvmType->isArrayTy()) {
153       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
154       SmallVector<llvm::Constant *, 8> constants(numElements, child);
155       return llvm::ConstantArray::get(arrayType, constants);
156     }
157   }
158 
159   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
160     assert(elementsAttr.getType().hasStaticShape());
161     assert(elementsAttr.getNumElements() != 0 &&
162            "unexpected empty elements attribute");
163     assert(!elementsAttr.getType().getShape().empty() &&
164            "unexpected empty elements attribute shape");
165 
166     SmallVector<llvm::Constant *, 8> constants;
167     constants.reserve(elementsAttr.getNumElements());
168     llvm::Type *innermostType = getInnermostElementType(llvmType);
169     for (auto n : elementsAttr.getValues<Attribute>()) {
170       constants.push_back(
171           getLLVMConstant(innermostType, n, loc, moduleTranslation));
172       if (!constants.back())
173         return nullptr;
174     }
175     ArrayRef<llvm::Constant *> constantsRef = constants;
176     llvm::Constant *result = buildSequentialConstant(
177         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
178     assert(constantsRef.empty() && "did not consume all elemental constants");
179     return result;
180   }
181 
182   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
183     return llvm::ConstantDataArray::get(
184         moduleTranslation.getLLVMContext(),
185         ArrayRef<char>{stringAttr.getValue().data(),
186                        stringAttr.getValue().size()});
187   }
188   emitError(loc, "unsupported constant value");
189   return nullptr;
190 }
191 
192 ModuleTranslation::ModuleTranslation(Operation *module,
193                                      std::unique_ptr<llvm::Module> llvmModule)
194     : mlirModule(module), llvmModule(std::move(llvmModule)),
195       debugTranslation(
196           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
197       typeTranslator(this->llvmModule->getContext()),
198       iface(module->getContext()) {
199   assert(satisfiesLLVMModule(mlirModule) &&
200          "mlirModule should honor LLVM's module semantics.");
201 }
202 ModuleTranslation::~ModuleTranslation() {
203   if (ompBuilder)
204     ompBuilder->finalize();
205 }
206 
207 /// Get the SSA value passed to the current block from the terminator operation
208 /// of its predecessor.
209 static Value getPHISourceValue(Block *current, Block *pred,
210                                unsigned numArguments, unsigned index) {
211   Operation &terminator = *pred->getTerminator();
212   if (isa<LLVM::BrOp>(terminator))
213     return terminator.getOperand(index);
214 
215   SuccessorRange successors = terminator.getSuccessors();
216   assert(std::adjacent_find(successors.begin(), successors.end()) ==
217              successors.end() &&
218          "successors with arguments in LLVM branches must be different blocks");
219   (void)successors;
220 
221   // For instructions that branch based on a condition value, we need to take
222   // the operands for the branch that was taken.
223   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
224     // For conditional branches, we take the operands from either the "true" or
225     // the "false" branch.
226     return condBranchOp.getSuccessor(0) == current
227                ? condBranchOp.trueDestOperands()[index]
228                : condBranchOp.falseDestOperands()[index];
229   }
230 
231   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
232     // For switches, we take the operands from either the default case, or from
233     // the case branch that was taken.
234     if (switchOp.defaultDestination() == current)
235       return switchOp.defaultOperands()[index];
236     for (auto i : llvm::enumerate(switchOp.caseDestinations()))
237       if (i.value() == current)
238         return switchOp.getCaseOperands(i.index())[index];
239   }
240 
241   llvm_unreachable("only branch or switch operations can be terminators of a "
242                    "block that has successors");
243 }
244 
245 /// Connect the PHI nodes to the results of preceding blocks.
246 void mlir::LLVM::detail::connectPHINodes(Region &region,
247                                          const ModuleTranslation &state) {
248   // Skip the first block, it cannot be branched to and its arguments correspond
249   // to the arguments of the LLVM function.
250   for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
251        ++it) {
252     Block *bb = &*it;
253     llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
254     auto phis = llvmBB->phis();
255     auto numArguments = bb->getNumArguments();
256     assert(numArguments == std::distance(phis.begin(), phis.end()));
257     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
258       auto &phiNode = numberedPhiNode.value();
259       unsigned index = numberedPhiNode.index();
260       for (auto *pred : bb->getPredecessors()) {
261         // Find the LLVM IR block that contains the converted terminator
262         // instruction and use it in the PHI node. Note that this block is not
263         // necessarily the same as state.lookupBlock(pred), some operations
264         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
265         // split the blocks.
266         llvm::Instruction *terminator =
267             state.lookupBranch(pred->getTerminator());
268         assert(terminator && "missing the mapping for a terminator");
269         phiNode.addIncoming(
270             state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
271             terminator->getParent());
272       }
273     }
274   }
275 }
276 
277 /// Sort function blocks topologically.
278 llvm::SetVector<Block *>
279 mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
280   // For each block that has not been visited yet (i.e. that has no
281   // predecessors), add it to the list as well as its successors.
282   llvm::SetVector<Block *> blocks;
283   for (Block &b : region) {
284     if (blocks.count(&b) == 0) {
285       llvm::ReversePostOrderTraversal<Block *> traversal(&b);
286       blocks.insert(traversal.begin(), traversal.end());
287     }
288   }
289   assert(blocks.size() == region.getBlocks().size() &&
290          "some blocks are not sorted");
291 
292   return blocks;
293 }
294 
295 llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
296     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
297     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
298   llvm::Module *module = builder.GetInsertBlock()->getModule();
299   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
300   return builder.CreateCall(fn, args);
301 }
302 
303 /// Given a single MLIR operation, create the corresponding LLVM IR operation
304 /// using the `builder`.
305 LogicalResult
306 ModuleTranslation::convertOperation(Operation &opInst,
307                                     llvm::IRBuilderBase &builder) {
308   if (failed(iface.convertOperation(&opInst, builder, *this)))
309     return opInst.emitError("unsupported or non-LLVM operation: ")
310            << opInst.getName();
311 
312   return convertDialectAttributes(&opInst);
313 }
314 
315 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
316 /// to define values corresponding to the MLIR block arguments.  These nodes
317 /// are not connected to the source basic blocks, which may not exist yet.  Uses
318 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
319 /// been created for `bb` and included in the block mapping.  Inserts new
320 /// instructions at the end of the block and leaves `builder` in a state
321 /// suitable for further insertion into the end of the block.
322 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
323                                               llvm::IRBuilderBase &builder) {
324   builder.SetInsertPoint(lookupBlock(&bb));
325   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
326 
327   // Before traversing operations, make block arguments available through
328   // value remapping and PHI nodes, but do not add incoming edges for the PHI
329   // nodes just yet: those values may be defined by this or following blocks.
330   // This step is omitted if "ignoreArguments" is set.  The arguments of the
331   // first block have been already made available through the remapping of
332   // LLVM function arguments.
333   if (!ignoreArguments) {
334     auto predecessors = bb.getPredecessors();
335     unsigned numPredecessors =
336         std::distance(predecessors.begin(), predecessors.end());
337     for (auto arg : bb.getArguments()) {
338       auto wrappedType = arg.getType();
339       if (!isCompatibleType(wrappedType))
340         return emitError(bb.front().getLoc(),
341                          "block argument does not have an LLVM type");
342       llvm::Type *type = convertType(wrappedType);
343       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
344       mapValue(arg, phi);
345     }
346   }
347 
348   // Traverse operations.
349   for (auto &op : bb) {
350     // Set the current debug location within the builder.
351     builder.SetCurrentDebugLocation(
352         debugTranslation->translateLoc(op.getLoc(), subprogram));
353 
354     if (failed(convertOperation(op, builder)))
355       return failure();
356   }
357 
358   return success();
359 }
360 
361 /// A helper method to get the single Block in an operation honoring LLVM's
362 /// module requirements.
363 static Block &getModuleBody(Operation *module) {
364   return module->getRegion(0).front();
365 }
366 
367 /// A helper method to decide if a constant must not be set as a global variable
368 /// initializer.
369 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
370                                         llvm::Constant *cst) {
371   return (linkage == llvm::GlobalVariable::ExternalLinkage &&
372           isa<llvm::UndefValue>(cst)) ||
373          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
374 }
375 
376 /// Create named global variables that correspond to llvm.mlir.global
377 /// definitions.
378 LogicalResult ModuleTranslation::convertGlobals() {
379   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
380     llvm::Type *type = convertType(op.getType());
381     llvm::Constant *cst = llvm::UndefValue::get(type);
382     if (op.getValueOrNull()) {
383       // String attributes are treated separately because they cannot appear as
384       // in-function constants and are thus not supported by getLLVMConstant.
385       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
386         cst = llvm::ConstantDataArray::getString(
387             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
388         type = cst->getType();
389       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
390                                          *this))) {
391         return failure();
392       }
393     }
394 
395     auto linkage = convertLinkageToLLVM(op.linkage());
396     auto addrSpace = op.addr_space();
397     auto *var = new llvm::GlobalVariable(
398         *llvmModule, type, op.constant(), linkage,
399         shouldDropGlobalInitializer(linkage, cst) ? nullptr : cst,
400         op.sym_name(),
401         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
402 
403     globalsMapping.try_emplace(op, var);
404   }
405 
406   // Convert global variable bodies. This is done after all global variables
407   // have been created in LLVM IR because a global body may refer to another
408   // global or itself. So all global variables need to be mapped first.
409   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
410     if (Block *initializer = op.getInitializerBlock()) {
411       llvm::IRBuilder<> builder(llvmModule->getContext());
412       for (auto &op : initializer->without_terminator()) {
413         if (failed(convertOperation(op, builder)) ||
414             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
415           return emitError(op.getLoc(), "unemittable constant value");
416       }
417       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
418       llvm::Constant *cst =
419           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
420       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
421       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
422         global->setInitializer(cst);
423     }
424   }
425 
426   return success();
427 }
428 
429 /// Attempts to add an attribute identified by `key`, optionally with the given
430 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
431 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
432 /// otherwise keep it as a string attribute. Performs additional checks for
433 /// attributes known to have or not have a value in order to avoid assertions
434 /// inside LLVM upon construction.
435 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
436                                                llvm::Function *llvmFunc,
437                                                StringRef key,
438                                                StringRef value = StringRef()) {
439   auto kind = llvm::Attribute::getAttrKindFromName(key);
440   if (kind == llvm::Attribute::None) {
441     llvmFunc->addFnAttr(key, value);
442     return success();
443   }
444 
445   if (llvm::Attribute::doesAttrKindHaveArgument(kind)) {
446     if (value.empty())
447       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
448 
449     int result;
450     if (!value.getAsInteger(/*Radix=*/0, result))
451       llvmFunc->addFnAttr(
452           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
453     else
454       llvmFunc->addFnAttr(key, value);
455     return success();
456   }
457 
458   if (!value.empty())
459     return emitError(loc) << "LLVM attribute '" << key
460                           << "' does not expect a value, found '" << value
461                           << "'";
462 
463   llvmFunc->addFnAttr(kind);
464   return success();
465 }
466 
467 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
468 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
469 /// to be an array attribute containing either string attributes, treated as
470 /// value-less LLVM attributes, or array attributes containing two string
471 /// attributes, with the first string being the name of the corresponding LLVM
472 /// attribute and the second string beings its value. Note that even integer
473 /// attributes are expected to have their values expressed as strings.
474 static LogicalResult
475 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
476                              llvm::Function *llvmFunc) {
477   if (!attributes)
478     return success();
479 
480   for (Attribute attr : *attributes) {
481     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
482       if (failed(
483               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
484         return failure();
485       continue;
486     }
487 
488     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
489     if (!arrayAttr || arrayAttr.size() != 2)
490       return emitError(loc)
491              << "expected 'passthrough' to contain string or array attributes";
492 
493     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
494     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
495     if (!keyAttr || !valueAttr)
496       return emitError(loc)
497              << "expected arrays within 'passthrough' to contain two strings";
498 
499     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
500                                          valueAttr.getValue())))
501       return failure();
502   }
503   return success();
504 }
505 
506 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
507   // Clear the block, branch value mappings, they are only relevant within one
508   // function.
509   blockMapping.clear();
510   valueMapping.clear();
511   branchMapping.clear();
512   llvm::Function *llvmFunc = lookupFunction(func.getName());
513 
514   // Translate the debug information for this function.
515   debugTranslation->translate(func, *llvmFunc);
516 
517   // Add function arguments to the value remapping table.
518   // If there was noalias info then we decorate each argument accordingly.
519   unsigned int argIdx = 0;
520   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
521     llvm::Argument &llvmArg = std::get<1>(kvp);
522     BlockArgument mlirArg = std::get<0>(kvp);
523 
524     if (auto attr = func.getArgAttrOfType<BoolAttr>(
525             argIdx, LLVMDialect::getNoAliasAttrName())) {
526       // NB: Attribute already verified to be boolean, so check if we can indeed
527       // attach the attribute to this argument, based on its type.
528       auto argTy = mlirArg.getType();
529       if (!argTy.isa<LLVM::LLVMPointerType>())
530         return func.emitError(
531             "llvm.noalias attribute attached to LLVM non-pointer argument");
532       if (attr.getValue())
533         llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
534     }
535 
536     if (auto attr = func.getArgAttrOfType<IntegerAttr>(
537             argIdx, LLVMDialect::getAlignAttrName())) {
538       // NB: Attribute already verified to be int, so check if we can indeed
539       // attach the attribute to this argument, based on its type.
540       auto argTy = mlirArg.getType();
541       if (!argTy.isa<LLVM::LLVMPointerType>())
542         return func.emitError(
543             "llvm.align attribute attached to LLVM non-pointer argument");
544       llvmArg.addAttrs(
545           llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
546     }
547 
548     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
549       auto argTy = mlirArg.getType();
550       if (!argTy.isa<LLVM::LLVMPointerType>())
551         return func.emitError(
552             "llvm.sret attribute attached to LLVM non-pointer argument");
553       llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr(
554           llvmArg.getType()->getPointerElementType()));
555     }
556 
557     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
558       auto argTy = mlirArg.getType();
559       if (!argTy.isa<LLVM::LLVMPointerType>())
560         return func.emitError(
561             "llvm.byval attribute attached to LLVM non-pointer argument");
562       llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr(
563           llvmArg.getType()->getPointerElementType()));
564     }
565 
566     mapValue(mlirArg, &llvmArg);
567     argIdx++;
568   }
569 
570   // Check the personality and set it.
571   if (func.personality().hasValue()) {
572     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
573     if (llvm::Constant *pfunc =
574             getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this))
575       llvmFunc->setPersonalityFn(pfunc);
576   }
577 
578   // First, create all blocks so we can jump to them.
579   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
580   for (auto &bb : func) {
581     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
582     llvmBB->insertInto(llvmFunc);
583     mapBlock(&bb, llvmBB);
584   }
585 
586   // Then, convert blocks one by one in topological order to ensure defs are
587   // converted before uses.
588   auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
589   for (Block *bb : blocks) {
590     llvm::IRBuilder<> builder(llvmContext);
591     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
592       return failure();
593   }
594 
595   // After all blocks have been traversed and values mapped, connect the PHI
596   // nodes to the results of preceding blocks.
597   detail::connectPHINodes(func.getBody(), *this);
598 
599   // Finally, convert dialect attributes attached to the function.
600   return convertDialectAttributes(func);
601 }
602 
603 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
604   for (NamedAttribute attribute : op->getDialectAttrs())
605     if (failed(iface.amendOperation(op, attribute, *this)))
606       return failure();
607   return success();
608 }
609 
610 /// Check whether the module contains only supported ops directly in its body.
611 static LogicalResult checkSupportedModuleOps(Operation *m) {
612   for (Operation &o : getModuleBody(m).getOperations())
613     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) &&
614         !o.hasTrait<OpTrait::IsTerminator>())
615       return o.emitOpError("unsupported module-level operation");
616   return success();
617 }
618 
619 LogicalResult ModuleTranslation::convertFunctionSignatures() {
620   // Declare all functions first because there may be function calls that form a
621   // call graph with cycles, or global initializers that reference functions.
622   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
623     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
624         function.getName(),
625         cast<llvm::FunctionType>(convertType(function.getType())));
626     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
627     llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
628     mapFunction(function.getName(), llvmFunc);
629 
630     // Forward the pass-through attributes to LLVM.
631     if (failed(forwardPassthroughAttributes(function.getLoc(),
632                                             function.passthrough(), llvmFunc)))
633       return failure();
634   }
635 
636   return success();
637 }
638 
639 LogicalResult ModuleTranslation::convertFunctions() {
640   // Convert functions.
641   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
642     // Ignore external functions.
643     if (function.isExternal())
644       continue;
645 
646     if (failed(convertOneFunction(function)))
647       return failure();
648   }
649 
650   return success();
651 }
652 
653 llvm::MDNode *
654 ModuleTranslation::getAccessGroup(Operation &opInst,
655                                   SymbolRefAttr accessGroupRef) const {
656   auto metadataName = accessGroupRef.getRootReference();
657   auto accessGroupName = accessGroupRef.getLeafReference();
658   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
659       opInst.getParentOp(), metadataName);
660   auto *accessGroupOp =
661       SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
662   return accessGroupMetadataMapping.lookup(accessGroupOp);
663 }
664 
665 LogicalResult ModuleTranslation::createAccessGroupMetadata() {
666   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
667     metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
668       llvm::LLVMContext &ctx = llvmModule->getContext();
669       llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
670       accessGroupMetadataMapping.insert({op, accessGroup});
671     });
672   });
673   return success();
674 }
675 
676 void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
677                                                 llvm::Instruction *inst) {
678   auto accessGroups =
679       op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
680   if (accessGroups && !accessGroups.empty()) {
681     llvm::Module *module = inst->getModule();
682     SmallVector<llvm::Metadata *> metadatas;
683     for (SymbolRefAttr accessGroupRef :
684          accessGroups.getAsRange<SymbolRefAttr>())
685       metadatas.push_back(getAccessGroup(*op, accessGroupRef));
686 
687     llvm::MDNode *unionMD = nullptr;
688     if (metadatas.size() == 1)
689       unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
690     else if (metadatas.size() >= 2)
691       unionMD = llvm::MDNode::get(module->getContext(), metadatas);
692 
693     inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
694   }
695 }
696 
697 llvm::Type *ModuleTranslation::convertType(Type type) {
698   return typeTranslator.translateType(type);
699 }
700 
701 /// A helper to look up remapped operands in the value remapping table.`
702 SmallVector<llvm::Value *, 8>
703 ModuleTranslation::lookupValues(ValueRange values) {
704   SmallVector<llvm::Value *, 8> remapped;
705   remapped.reserve(values.size());
706   for (Value v : values)
707     remapped.push_back(lookupValue(v));
708   return remapped;
709 }
710 
711 const llvm::DILocation *
712 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
713   return debugTranslation->translateLoc(loc, scope);
714 }
715 
716 llvm::NamedMDNode *
717 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
718   return llvmModule->getOrInsertNamedMetadata(name);
719 }
720 
721 static std::unique_ptr<llvm::Module>
722 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
723                   StringRef name) {
724   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
725   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
726   if (auto dataLayoutAttr =
727           m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
728     llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
729   if (auto targetTripleAttr =
730           m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
731     llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
732 
733   // Inject declarations for `malloc` and `free` functions that can be used in
734   // memref allocation/deallocation coming from standard ops lowering.
735   llvm::IRBuilder<> builder(llvmContext);
736   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
737                                   builder.getInt64Ty());
738   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
739                                   builder.getInt8PtrTy());
740 
741   return llvmModule;
742 }
743 
744 std::unique_ptr<llvm::Module>
745 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
746                               StringRef name) {
747   if (!satisfiesLLVMModule(module))
748     return nullptr;
749   if (failed(checkSupportedModuleOps(module)))
750     return nullptr;
751   std::unique_ptr<llvm::Module> llvmModule =
752       prepareLLVMModule(module, llvmContext, name);
753 
754   LLVM::ensureDistinctSuccessors(module);
755 
756   ModuleTranslation translator(module, std::move(llvmModule));
757   if (failed(translator.convertFunctionSignatures()))
758     return nullptr;
759   if (failed(translator.convertGlobals()))
760     return nullptr;
761   if (failed(translator.createAccessGroupMetadata()))
762     return nullptr;
763   if (failed(translator.convertFunctions()))
764     return nullptr;
765   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
766     return nullptr;
767 
768   return std::move(translator.llvmModule);
769 }
770