1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/ModuleUtils.h" 46 47 using namespace mlir; 48 using namespace mlir::LLVM; 49 using namespace mlir::LLVM::detail; 50 51 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 52 53 /// Builds a constant of a sequential LLVM type `type`, potentially containing 54 /// other sequential types recursively, from the individual constant values 55 /// provided in `constants`. `shape` contains the number of elements in nested 56 /// sequential types. Reports errors at `loc` and returns nullptr on error. 57 static llvm::Constant * 58 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 59 ArrayRef<int64_t> shape, llvm::Type *type, 60 Location loc) { 61 if (shape.empty()) { 62 llvm::Constant *result = constants.front(); 63 constants = constants.drop_front(); 64 return result; 65 } 66 67 llvm::Type *elementType; 68 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 69 elementType = arrayTy->getElementType(); 70 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 71 elementType = vectorTy->getElementType(); 72 } else { 73 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 74 return nullptr; 75 } 76 77 SmallVector<llvm::Constant *, 8> nested; 78 nested.reserve(shape.front()); 79 for (int64_t i = 0; i < shape.front(); ++i) { 80 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 81 elementType, loc)); 82 if (!nested.back()) 83 return nullptr; 84 } 85 86 if (shape.size() == 1 && type->isVectorTy()) 87 return llvm::ConstantVector::get(nested); 88 return llvm::ConstantArray::get( 89 llvm::ArrayType::get(elementType, shape.front()), nested); 90 } 91 92 /// Returns the first non-sequential type nested in sequential types. 93 static llvm::Type *getInnermostElementType(llvm::Type *type) { 94 do { 95 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 96 type = arrayTy->getElementType(); 97 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 98 type = vectorTy->getElementType(); 99 } else { 100 return type; 101 } 102 } while (true); 103 } 104 105 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 106 /// storage if possible. This supports elements attributes of tensor or vector 107 /// type and avoids constructing separate objects for individual values of the 108 /// innermost dimension. Constants for other dimensions are still constructed 109 /// recursively. Returns null if constructing from raw data is not supported for 110 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 111 /// other errors at `loc`. 112 static llvm::Constant * 113 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 114 llvm::Type *llvmType, 115 const ModuleTranslation &moduleTranslation) { 116 if (!denseElementsAttr) 117 return nullptr; 118 119 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 120 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 121 return nullptr; 122 123 ShapedType type = denseElementsAttr.getType(); 124 if (type.getNumElements() == 0) 125 return nullptr; 126 127 // Compute the shape of all dimensions but the innermost. Note that the 128 // innermost dimension may be that of the vector element type. 129 bool hasVectorElementType = type.getElementType().isa<VectorType>(); 130 unsigned numAggregates = 131 denseElementsAttr.getNumElements() / 132 (hasVectorElementType ? 1 133 : denseElementsAttr.getType().getShape().back()); 134 ArrayRef<int64_t> outerShape = type.getShape(); 135 if (!hasVectorElementType) 136 outerShape = outerShape.drop_back(); 137 138 // Handle the case of vector splat, LLVM has special support for it. 139 if (denseElementsAttr.isSplat() && 140 (type.isa<VectorType>() || hasVectorElementType)) { 141 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 142 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, 143 moduleTranslation, /*isTopLevel=*/false); 144 llvm::Constant *splatVector = 145 llvm::ConstantDataVector::getSplat(0, splatValue); 146 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 147 ArrayRef<llvm::Constant *> constantsRef = constants; 148 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 149 } 150 if (denseElementsAttr.isSplat()) 151 return nullptr; 152 153 // In case of non-splat, create a constructor for the innermost constant from 154 // a piece of raw data. 155 std::function<llvm::Constant *(StringRef)> buildCstData; 156 if (type.isa<TensorType>()) { 157 auto vectorElementType = type.getElementType().dyn_cast<VectorType>(); 158 if (vectorElementType && vectorElementType.getRank() == 1) { 159 buildCstData = [&](StringRef data) { 160 return llvm::ConstantDataVector::getRaw( 161 data, vectorElementType.getShape().back(), innermostLLVMType); 162 }; 163 } else if (!vectorElementType) { 164 buildCstData = [&](StringRef data) { 165 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 166 innermostLLVMType); 167 }; 168 } 169 } else if (type.isa<VectorType>()) { 170 buildCstData = [&](StringRef data) { 171 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 172 innermostLLVMType); 173 }; 174 } 175 if (!buildCstData) 176 return nullptr; 177 178 // Create innermost constants and defer to the default constant creation 179 // mechanism for other dimensions. 180 SmallVector<llvm::Constant *> constants; 181 unsigned aggregateSize = denseElementsAttr.getType().getShape().back() * 182 (innermostLLVMType->getScalarSizeInBits() / 8); 183 constants.reserve(numAggregates); 184 for (unsigned i = 0; i < numAggregates; ++i) { 185 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 186 aggregateSize); 187 constants.push_back(buildCstData(data)); 188 } 189 190 ArrayRef<llvm::Constant *> constantsRef = constants; 191 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 192 } 193 194 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 195 /// This currently supports integer, floating point, splat and dense element 196 /// attributes and combinations thereof. Also, an array attribute with two 197 /// elements is supported to represent a complex constant. In case of error, 198 /// report it to `loc` and return nullptr. 199 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 200 llvm::Type *llvmType, Attribute attr, Location loc, 201 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 202 if (!attr) 203 return llvm::UndefValue::get(llvmType); 204 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 205 if (!isTopLevel) { 206 emitError(loc, "nested struct types are not supported in constants"); 207 return nullptr; 208 } 209 auto arrayAttr = attr.cast<ArrayAttr>(); 210 llvm::Type *elementType = structType->getElementType(0); 211 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 212 moduleTranslation, false); 213 if (!real) 214 return nullptr; 215 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 216 moduleTranslation, false); 217 if (!imag) 218 return nullptr; 219 return llvm::ConstantStruct::get(structType, {real, imag}); 220 } 221 // For integer types, we allow a mismatch in sizes as the index type in 222 // MLIR might have a different size than the index type in the LLVM module. 223 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 224 return llvm::ConstantInt::get( 225 llvmType, 226 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 227 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 228 if (llvmType != 229 llvm::Type::getFloatingPointTy(llvmType->getContext(), 230 floatAttr.getValue().getSemantics())) { 231 emitError(loc, "FloatAttr does not match expected type of the constant"); 232 return nullptr; 233 } 234 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 235 } 236 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 237 return llvm::ConstantExpr::getBitCast( 238 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 239 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 240 llvm::Type *elementType; 241 uint64_t numElements; 242 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 243 elementType = arrayTy->getElementType(); 244 numElements = arrayTy->getNumElements(); 245 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { 246 elementType = fVectorTy->getElementType(); 247 numElements = fVectorTy->getNumElements(); 248 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { 249 elementType = sVectorTy->getElementType(); 250 numElements = sVectorTy->getMinNumElements(); 251 } else { 252 llvm_unreachable("unrecognized constant vector type"); 253 } 254 // Splat value is a scalar. Extract it only if the element type is not 255 // another sequence type. The recursion terminates because each step removes 256 // one outer sequential type. 257 bool elementTypeSequential = 258 isa<llvm::ArrayType, llvm::VectorType>(elementType); 259 llvm::Constant *child = getLLVMConstant( 260 elementType, 261 elementTypeSequential ? splatAttr 262 : splatAttr.getSplatValue<Attribute>(), 263 loc, moduleTranslation, false); 264 if (!child) 265 return nullptr; 266 if (llvmType->isVectorTy()) 267 return llvm::ConstantVector::getSplat( 268 llvm::ElementCount::get(numElements, /*Scalable=*/false), child); 269 if (llvmType->isArrayTy()) { 270 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 271 SmallVector<llvm::Constant *, 8> constants(numElements, child); 272 return llvm::ConstantArray::get(arrayType, constants); 273 } 274 } 275 276 // Try using raw elements data if possible. 277 if (llvm::Constant *result = 278 convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(), 279 llvmType, moduleTranslation)) { 280 return result; 281 } 282 283 // Fall back to element-by-element construction otherwise. 284 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 285 assert(elementsAttr.getType().hasStaticShape()); 286 assert(!elementsAttr.getType().getShape().empty() && 287 "unexpected empty elements attribute shape"); 288 289 SmallVector<llvm::Constant *, 8> constants; 290 constants.reserve(elementsAttr.getNumElements()); 291 llvm::Type *innermostType = getInnermostElementType(llvmType); 292 for (auto n : elementsAttr.getValues<Attribute>()) { 293 constants.push_back( 294 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 295 if (!constants.back()) 296 return nullptr; 297 } 298 ArrayRef<llvm::Constant *> constantsRef = constants; 299 llvm::Constant *result = buildSequentialConstant( 300 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 301 assert(constantsRef.empty() && "did not consume all elemental constants"); 302 return result; 303 } 304 305 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 306 return llvm::ConstantDataArray::get( 307 moduleTranslation.getLLVMContext(), 308 ArrayRef<char>{stringAttr.getValue().data(), 309 stringAttr.getValue().size()}); 310 } 311 emitError(loc, "unsupported constant value"); 312 return nullptr; 313 } 314 315 ModuleTranslation::ModuleTranslation(Operation *module, 316 std::unique_ptr<llvm::Module> llvmModule) 317 : mlirModule(module), llvmModule(std::move(llvmModule)), 318 debugTranslation( 319 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 320 typeTranslator(this->llvmModule->getContext()), 321 iface(module->getContext()) { 322 assert(satisfiesLLVMModule(mlirModule) && 323 "mlirModule should honor LLVM's module semantics."); 324 } 325 ModuleTranslation::~ModuleTranslation() { 326 if (ompBuilder) 327 ompBuilder->finalize(); 328 } 329 330 void ModuleTranslation::forgetMapping(Region ®ion) { 331 SmallVector<Region *> toProcess; 332 toProcess.push_back(®ion); 333 while (!toProcess.empty()) { 334 Region *current = toProcess.pop_back_val(); 335 for (Block &block : *current) { 336 blockMapping.erase(&block); 337 for (Value arg : block.getArguments()) 338 valueMapping.erase(arg); 339 for (Operation &op : block) { 340 for (Value value : op.getResults()) 341 valueMapping.erase(value); 342 if (op.hasSuccessors()) 343 branchMapping.erase(&op); 344 if (isa<LLVM::GlobalOp>(op)) 345 globalsMapping.erase(&op); 346 accessGroupMetadataMapping.erase(&op); 347 llvm::append_range( 348 toProcess, 349 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 350 } 351 } 352 } 353 } 354 355 /// Get the SSA value passed to the current block from the terminator operation 356 /// of its predecessor. 357 static Value getPHISourceValue(Block *current, Block *pred, 358 unsigned numArguments, unsigned index) { 359 Operation &terminator = *pred->getTerminator(); 360 if (isa<LLVM::BrOp>(terminator)) 361 return terminator.getOperand(index); 362 363 SuccessorRange successors = terminator.getSuccessors(); 364 assert(std::adjacent_find(successors.begin(), successors.end()) == 365 successors.end() && 366 "successors with arguments in LLVM branches must be different blocks"); 367 (void)successors; 368 369 // For instructions that branch based on a condition value, we need to take 370 // the operands for the branch that was taken. 371 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 372 // For conditional branches, we take the operands from either the "true" or 373 // the "false" branch. 374 return condBranchOp.getSuccessor(0) == current 375 ? condBranchOp.getTrueDestOperands()[index] 376 : condBranchOp.getFalseDestOperands()[index]; 377 } 378 379 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 380 // For switches, we take the operands from either the default case, or from 381 // the case branch that was taken. 382 if (switchOp.getDefaultDestination() == current) 383 return switchOp.getDefaultOperands()[index]; 384 for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations())) 385 if (i.value() == current) 386 return switchOp.getCaseOperands(i.index())[index]; 387 } 388 389 if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) { 390 return invokeOp.getNormalDest() == current 391 ? invokeOp.getNormalDestOperands()[index] 392 : invokeOp.getUnwindDestOperands()[index]; 393 } 394 395 llvm_unreachable( 396 "only branch, switch or invoke operations can be terminators " 397 "of a block that has successors"); 398 } 399 400 /// Connect the PHI nodes to the results of preceding blocks. 401 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 402 const ModuleTranslation &state) { 403 // Skip the first block, it cannot be branched to and its arguments correspond 404 // to the arguments of the LLVM function. 405 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 406 ++it) { 407 Block *bb = &*it; 408 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 409 auto phis = llvmBB->phis(); 410 auto numArguments = bb->getNumArguments(); 411 assert(numArguments == std::distance(phis.begin(), phis.end())); 412 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 413 auto &phiNode = numberedPhiNode.value(); 414 unsigned index = numberedPhiNode.index(); 415 for (auto *pred : bb->getPredecessors()) { 416 // Find the LLVM IR block that contains the converted terminator 417 // instruction and use it in the PHI node. Note that this block is not 418 // necessarily the same as state.lookupBlock(pred), some operations 419 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 420 // split the blocks. 421 llvm::Instruction *terminator = 422 state.lookupBranch(pred->getTerminator()); 423 assert(terminator && "missing the mapping for a terminator"); 424 phiNode.addIncoming( 425 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 426 terminator->getParent()); 427 } 428 } 429 } 430 } 431 432 /// Sort function blocks topologically. 433 SetVector<Block *> 434 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 435 // For each block that has not been visited yet (i.e. that has no 436 // predecessors), add it to the list as well as its successors. 437 SetVector<Block *> blocks; 438 for (Block &b : region) { 439 if (blocks.count(&b) == 0) { 440 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 441 blocks.insert(traversal.begin(), traversal.end()); 442 } 443 } 444 assert(blocks.size() == region.getBlocks().size() && 445 "some blocks are not sorted"); 446 447 return blocks; 448 } 449 450 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 451 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 452 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 453 llvm::Module *module = builder.GetInsertBlock()->getModule(); 454 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 455 return builder.CreateCall(fn, args); 456 } 457 458 /// Given a single MLIR operation, create the corresponding LLVM IR operation 459 /// using the `builder`. 460 LogicalResult 461 ModuleTranslation::convertOperation(Operation &op, 462 llvm::IRBuilderBase &builder) { 463 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 464 if (!opIface) 465 return op.emitError("cannot be converted to LLVM IR: missing " 466 "`LLVMTranslationDialectInterface` registration for " 467 "dialect for op: ") 468 << op.getName(); 469 470 if (failed(opIface->convertOperation(&op, builder, *this))) 471 return op.emitError("LLVM Translation failed for operation: ") 472 << op.getName(); 473 474 return convertDialectAttributes(&op); 475 } 476 477 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 478 /// to define values corresponding to the MLIR block arguments. These nodes 479 /// are not connected to the source basic blocks, which may not exist yet. Uses 480 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 481 /// been created for `bb` and included in the block mapping. Inserts new 482 /// instructions at the end of the block and leaves `builder` in a state 483 /// suitable for further insertion into the end of the block. 484 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 485 llvm::IRBuilderBase &builder) { 486 builder.SetInsertPoint(lookupBlock(&bb)); 487 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 488 489 // Before traversing operations, make block arguments available through 490 // value remapping and PHI nodes, but do not add incoming edges for the PHI 491 // nodes just yet: those values may be defined by this or following blocks. 492 // This step is omitted if "ignoreArguments" is set. The arguments of the 493 // first block have been already made available through the remapping of 494 // LLVM function arguments. 495 if (!ignoreArguments) { 496 auto predecessors = bb.getPredecessors(); 497 unsigned numPredecessors = 498 std::distance(predecessors.begin(), predecessors.end()); 499 for (auto arg : bb.getArguments()) { 500 auto wrappedType = arg.getType(); 501 if (!isCompatibleType(wrappedType)) 502 return emitError(bb.front().getLoc(), 503 "block argument does not have an LLVM type"); 504 llvm::Type *type = convertType(wrappedType); 505 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 506 mapValue(arg, phi); 507 } 508 } 509 510 // Traverse operations. 511 for (auto &op : bb) { 512 // Set the current debug location within the builder. 513 builder.SetCurrentDebugLocation( 514 debugTranslation->translateLoc(op.getLoc(), subprogram)); 515 516 if (failed(convertOperation(op, builder))) 517 return failure(); 518 } 519 520 return success(); 521 } 522 523 /// A helper method to get the single Block in an operation honoring LLVM's 524 /// module requirements. 525 static Block &getModuleBody(Operation *module) { 526 return module->getRegion(0).front(); 527 } 528 529 /// A helper method to decide if a constant must not be set as a global variable 530 /// initializer. For an external linkage variable, the variable with an 531 /// initializer is considered externally visible and defined in this module, the 532 /// variable without an initializer is externally available and is defined 533 /// elsewhere. 534 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 535 llvm::Constant *cst) { 536 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 537 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 538 } 539 540 /// Sets the runtime preemption specifier of `gv` to dso_local if 541 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 542 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 543 llvm::GlobalValue *gv) { 544 if (dsoLocalRequested) 545 gv->setDSOLocal(true); 546 } 547 548 /// Create named global variables that correspond to llvm.mlir.global 549 /// definitions. Convert llvm.global_ctors and global_dtors ops. 550 LogicalResult ModuleTranslation::convertGlobals() { 551 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 552 llvm::Type *type = convertType(op.getType()); 553 llvm::Constant *cst = nullptr; 554 if (op.getValueOrNull()) { 555 // String attributes are treated separately because they cannot appear as 556 // in-function constants and are thus not supported by getLLVMConstant. 557 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 558 cst = llvm::ConstantDataArray::getString( 559 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 560 type = cst->getType(); 561 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 562 *this))) { 563 return failure(); 564 } 565 } 566 567 auto linkage = convertLinkageToLLVM(op.getLinkage()); 568 auto addrSpace = op.getAddrSpace(); 569 570 // LLVM IR requires constant with linkage other than external or weak 571 // external to have initializers. If MLIR does not provide an initializer, 572 // default to undef. 573 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 574 if (!dropInitializer && !cst) 575 cst = llvm::UndefValue::get(type); 576 else if (dropInitializer && cst) 577 cst = nullptr; 578 579 auto *var = new llvm::GlobalVariable( 580 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 581 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 582 583 if (op.getUnnamedAddr().hasValue()) 584 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 585 586 if (op.getSection().hasValue()) 587 var->setSection(*op.getSection()); 588 589 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 590 591 Optional<uint64_t> alignment = op.getAlignment(); 592 if (alignment.hasValue()) 593 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 594 595 globalsMapping.try_emplace(op, var); 596 } 597 598 // Convert global variable bodies. This is done after all global variables 599 // have been created in LLVM IR because a global body may refer to another 600 // global or itself. So all global variables need to be mapped first. 601 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 602 if (Block *initializer = op.getInitializerBlock()) { 603 llvm::IRBuilder<> builder(llvmModule->getContext()); 604 for (auto &op : initializer->without_terminator()) { 605 if (failed(convertOperation(op, builder)) || 606 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 607 return emitError(op.getLoc(), "unemittable constant value"); 608 } 609 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 610 llvm::Constant *cst = 611 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 612 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 613 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 614 global->setInitializer(cst); 615 } 616 } 617 618 // Convert llvm.mlir.global_ctors and dtors. 619 for (Operation &op : getModuleBody(mlirModule)) { 620 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 621 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 622 if (!ctorOp && !dtorOp) 623 continue; 624 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) 625 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); 626 auto appendGlobalFn = 627 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 628 for (auto symbolAndPriority : range) { 629 llvm::Function *f = lookupFunction( 630 std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue()); 631 appendGlobalFn( 632 *llvmModule, f, 633 std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(), 634 /*Data=*/nullptr); 635 } 636 } 637 638 return success(); 639 } 640 641 /// Attempts to add an attribute identified by `key`, optionally with the given 642 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 643 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 644 /// otherwise keep it as a string attribute. Performs additional checks for 645 /// attributes known to have or not have a value in order to avoid assertions 646 /// inside LLVM upon construction. 647 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 648 llvm::Function *llvmFunc, 649 StringRef key, 650 StringRef value = StringRef()) { 651 auto kind = llvm::Attribute::getAttrKindFromName(key); 652 if (kind == llvm::Attribute::None) { 653 llvmFunc->addFnAttr(key, value); 654 return success(); 655 } 656 657 if (llvm::Attribute::isIntAttrKind(kind)) { 658 if (value.empty()) 659 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 660 661 int result; 662 if (!value.getAsInteger(/*Radix=*/0, result)) 663 llvmFunc->addFnAttr( 664 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 665 else 666 llvmFunc->addFnAttr(key, value); 667 return success(); 668 } 669 670 if (!value.empty()) 671 return emitError(loc) << "LLVM attribute '" << key 672 << "' does not expect a value, found '" << value 673 << "'"; 674 675 llvmFunc->addFnAttr(kind); 676 return success(); 677 } 678 679 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 680 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 681 /// to be an array attribute containing either string attributes, treated as 682 /// value-less LLVM attributes, or array attributes containing two string 683 /// attributes, with the first string being the name of the corresponding LLVM 684 /// attribute and the second string beings its value. Note that even integer 685 /// attributes are expected to have their values expressed as strings. 686 static LogicalResult 687 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 688 llvm::Function *llvmFunc) { 689 if (!attributes) 690 return success(); 691 692 for (Attribute attr : *attributes) { 693 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 694 if (failed( 695 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 696 return failure(); 697 continue; 698 } 699 700 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 701 if (!arrayAttr || arrayAttr.size() != 2) 702 return emitError(loc) 703 << "expected 'passthrough' to contain string or array attributes"; 704 705 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 706 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 707 if (!keyAttr || !valueAttr) 708 return emitError(loc) 709 << "expected arrays within 'passthrough' to contain two strings"; 710 711 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 712 valueAttr.getValue()))) 713 return failure(); 714 } 715 return success(); 716 } 717 718 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 719 // Clear the block, branch value mappings, they are only relevant within one 720 // function. 721 blockMapping.clear(); 722 valueMapping.clear(); 723 branchMapping.clear(); 724 llvm::Function *llvmFunc = lookupFunction(func.getName()); 725 726 // Translate the debug information for this function. 727 debugTranslation->translate(func, *llvmFunc); 728 729 // Add function arguments to the value remapping table. 730 // If there was noalias info then we decorate each argument accordingly. 731 unsigned int argIdx = 0; 732 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 733 llvm::Argument &llvmArg = std::get<1>(kvp); 734 BlockArgument mlirArg = std::get<0>(kvp); 735 736 if (auto attr = func.getArgAttrOfType<UnitAttr>( 737 argIdx, LLVMDialect::getNoAliasAttrName())) { 738 // NB: Attribute already verified to be boolean, so check if we can indeed 739 // attach the attribute to this argument, based on its type. 740 auto argTy = mlirArg.getType(); 741 if (!argTy.isa<LLVM::LLVMPointerType>()) 742 return func.emitError( 743 "llvm.noalias attribute attached to LLVM non-pointer argument"); 744 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 745 } 746 747 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 748 argIdx, LLVMDialect::getAlignAttrName())) { 749 // NB: Attribute already verified to be int, so check if we can indeed 750 // attach the attribute to this argument, based on its type. 751 auto argTy = mlirArg.getType(); 752 if (!argTy.isa<LLVM::LLVMPointerType>()) 753 return func.emitError( 754 "llvm.align attribute attached to LLVM non-pointer argument"); 755 llvmArg.addAttrs( 756 llvm::AttrBuilder(llvmArg.getContext()).addAlignmentAttr(llvm::Align(attr.getInt()))); 757 } 758 759 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 760 auto argTy = mlirArg.getType(); 761 if (!argTy.isa<LLVM::LLVMPointerType>()) 762 return func.emitError( 763 "llvm.sret attribute attached to LLVM non-pointer argument"); 764 llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext()).addStructRetAttr( 765 llvmArg.getType()->getPointerElementType())); 766 } 767 768 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 769 auto argTy = mlirArg.getType(); 770 if (!argTy.isa<LLVM::LLVMPointerType>()) 771 return func.emitError( 772 "llvm.byval attribute attached to LLVM non-pointer argument"); 773 llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext()).addByValAttr( 774 llvmArg.getType()->getPointerElementType())); 775 } 776 777 mapValue(mlirArg, &llvmArg); 778 argIdx++; 779 } 780 781 // Check the personality and set it. 782 if (func.getPersonality().hasValue()) { 783 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 784 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 785 func.getLoc(), *this)) 786 llvmFunc->setPersonalityFn(pfunc); 787 } 788 789 // First, create all blocks so we can jump to them. 790 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 791 for (auto &bb : func) { 792 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 793 llvmBB->insertInto(llvmFunc); 794 mapBlock(&bb, llvmBB); 795 } 796 797 // Then, convert blocks one by one in topological order to ensure defs are 798 // converted before uses. 799 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 800 for (Block *bb : blocks) { 801 llvm::IRBuilder<> builder(llvmContext); 802 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 803 return failure(); 804 } 805 806 // After all blocks have been traversed and values mapped, connect the PHI 807 // nodes to the results of preceding blocks. 808 detail::connectPHINodes(func.getBody(), *this); 809 810 // Finally, convert dialect attributes attached to the function. 811 return convertDialectAttributes(func); 812 } 813 814 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 815 for (NamedAttribute attribute : op->getDialectAttrs()) 816 if (failed(iface.amendOperation(op, attribute, *this))) 817 return failure(); 818 return success(); 819 } 820 821 LogicalResult ModuleTranslation::convertFunctionSignatures() { 822 // Declare all functions first because there may be function calls that form a 823 // call graph with cycles, or global initializers that reference functions. 824 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 825 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 826 function.getName(), 827 cast<llvm::FunctionType>(convertType(function.getType()))); 828 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 829 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 830 mapFunction(function.getName(), llvmFunc); 831 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 832 833 // Forward the pass-through attributes to LLVM. 834 if (failed(forwardPassthroughAttributes( 835 function.getLoc(), function.getPassthrough(), llvmFunc))) 836 return failure(); 837 } 838 839 return success(); 840 } 841 842 LogicalResult ModuleTranslation::convertFunctions() { 843 // Convert functions. 844 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 845 // Ignore external functions. 846 if (function.isExternal()) 847 continue; 848 849 if (failed(convertOneFunction(function))) 850 return failure(); 851 } 852 853 return success(); 854 } 855 856 llvm::MDNode * 857 ModuleTranslation::getAccessGroup(Operation &opInst, 858 SymbolRefAttr accessGroupRef) const { 859 auto metadataName = accessGroupRef.getRootReference(); 860 auto accessGroupName = accessGroupRef.getLeafReference(); 861 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 862 opInst.getParentOp(), metadataName); 863 auto *accessGroupOp = 864 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 865 return accessGroupMetadataMapping.lookup(accessGroupOp); 866 } 867 868 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 869 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 870 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 871 llvm::LLVMContext &ctx = llvmModule->getContext(); 872 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 873 accessGroupMetadataMapping.insert({op, accessGroup}); 874 }); 875 }); 876 return success(); 877 } 878 879 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 880 llvm::Instruction *inst) { 881 auto accessGroups = 882 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 883 if (accessGroups && !accessGroups.empty()) { 884 llvm::Module *module = inst->getModule(); 885 SmallVector<llvm::Metadata *> metadatas; 886 for (SymbolRefAttr accessGroupRef : 887 accessGroups.getAsRange<SymbolRefAttr>()) 888 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 889 890 llvm::MDNode *unionMD = nullptr; 891 if (metadatas.size() == 1) 892 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 893 else if (metadatas.size() >= 2) 894 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 895 896 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 897 } 898 } 899 900 LogicalResult ModuleTranslation::createAliasScopeMetadata() { 901 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 902 // Create the domains first, so they can be reference below in the scopes. 903 DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping; 904 metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) { 905 llvm::LLVMContext &ctx = llvmModule->getContext(); 906 llvm::SmallVector<llvm::Metadata *, 2> operands; 907 operands.push_back({}); // Placeholder for self-reference 908 if (Optional<StringRef> description = op.getDescription()) 909 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 910 llvm::MDNode *domain = llvm::MDNode::get(ctx, operands); 911 domain->replaceOperandWith(0, domain); // Self-reference for uniqueness 912 aliasScopeDomainMetadataMapping.insert({op, domain}); 913 }); 914 915 // Now create the scopes, referencing the domains created above. 916 metadatas.walk([&](LLVM::AliasScopeMetadataOp op) { 917 llvm::LLVMContext &ctx = llvmModule->getContext(); 918 assert(isa<LLVM::MetadataOp>(op->getParentOp())); 919 auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp()); 920 Operation *domainOp = 921 SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr()); 922 llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp); 923 assert(domain && "Scope's domain should already be valid"); 924 llvm::SmallVector<llvm::Metadata *, 3> operands; 925 operands.push_back({}); // Placeholder for self-reference 926 operands.push_back(domain); 927 if (Optional<StringRef> description = op.getDescription()) 928 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 929 llvm::MDNode *scope = llvm::MDNode::get(ctx, operands); 930 scope->replaceOperandWith(0, scope); // Self-reference for uniqueness 931 aliasScopeMetadataMapping.insert({op, scope}); 932 }); 933 }); 934 return success(); 935 } 936 937 llvm::MDNode * 938 ModuleTranslation::getAliasScope(Operation &opInst, 939 SymbolRefAttr aliasScopeRef) const { 940 StringAttr metadataName = aliasScopeRef.getRootReference(); 941 StringAttr scopeName = aliasScopeRef.getLeafReference(); 942 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 943 opInst.getParentOp(), metadataName); 944 Operation *aliasScopeOp = 945 SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName); 946 return aliasScopeMetadataMapping.lookup(aliasScopeOp); 947 } 948 949 void ModuleTranslation::setAliasScopeMetadata(Operation *op, 950 llvm::Instruction *inst) { 951 auto populateScopeMetadata = [this, op, inst](StringRef attrName, 952 StringRef llvmMetadataName) { 953 auto scopes = op->getAttrOfType<ArrayAttr>(attrName); 954 if (!scopes || scopes.empty()) 955 return; 956 llvm::Module *module = inst->getModule(); 957 SmallVector<llvm::Metadata *> scopeMDs; 958 for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>()) 959 scopeMDs.push_back(getAliasScope(*op, scopeRef)); 960 llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs); 961 inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD); 962 }; 963 964 populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope"); 965 populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias"); 966 } 967 968 llvm::Type *ModuleTranslation::convertType(Type type) { 969 return typeTranslator.translateType(type); 970 } 971 972 /// A helper to look up remapped operands in the value remapping table. 973 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 974 SmallVector<llvm::Value *> remapped; 975 remapped.reserve(values.size()); 976 for (Value v : values) 977 remapped.push_back(lookupValue(v)); 978 return remapped; 979 } 980 981 const llvm::DILocation * 982 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 983 return debugTranslation->translateLoc(loc, scope); 984 } 985 986 llvm::NamedMDNode * 987 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 988 return llvmModule->getOrInsertNamedMetadata(name); 989 } 990 991 void ModuleTranslation::StackFrame::anchor() {} 992 993 static std::unique_ptr<llvm::Module> 994 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 995 StringRef name) { 996 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 997 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 998 if (auto dataLayoutAttr = 999 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 1000 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 1001 if (auto targetTripleAttr = 1002 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 1003 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 1004 1005 // Inject declarations for `malloc` and `free` functions that can be used in 1006 // memref allocation/deallocation coming from standard ops lowering. 1007 llvm::IRBuilder<> builder(llvmContext); 1008 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 1009 builder.getInt64Ty()); 1010 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 1011 builder.getInt8PtrTy()); 1012 1013 return llvmModule; 1014 } 1015 1016 std::unique_ptr<llvm::Module> 1017 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1018 StringRef name) { 1019 if (!satisfiesLLVMModule(module)) 1020 return nullptr; 1021 std::unique_ptr<llvm::Module> llvmModule = 1022 prepareLLVMModule(module, llvmContext, name); 1023 1024 LLVM::ensureDistinctSuccessors(module); 1025 1026 ModuleTranslation translator(module, std::move(llvmModule)); 1027 if (failed(translator.convertFunctionSignatures())) 1028 return nullptr; 1029 if (failed(translator.convertGlobals())) 1030 return nullptr; 1031 if (failed(translator.createAccessGroupMetadata())) 1032 return nullptr; 1033 if (failed(translator.createAliasScopeMetadata())) 1034 return nullptr; 1035 if (failed(translator.convertFunctions())) 1036 return nullptr; 1037 1038 // Convert other top-level operations if possible. 1039 llvm::IRBuilder<> llvmBuilder(llvmContext); 1040 for (Operation &o : getModuleBody(module).getOperations()) { 1041 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1042 LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) && 1043 !o.hasTrait<OpTrait::IsTerminator>() && 1044 failed(translator.convertOperation(o, llvmBuilder))) { 1045 return nullptr; 1046 } 1047 } 1048 1049 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1050 return nullptr; 1051 1052 return std::move(translator.llvmModule); 1053 } 1054