1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
20 #include "mlir/IR/Attributes.h"
21 #include "mlir/IR/BuiltinOps.h"
22 #include "mlir/IR/BuiltinTypes.h"
23 #include "mlir/IR/RegionGraphTraits.h"
24 #include "mlir/Support/LLVM.h"
25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
26 #include "mlir/Target/LLVMIR/TypeTranslation.h"
27 #include "llvm/ADT/TypeSwitch.h"
28 
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 
45 using namespace mlir;
46 using namespace mlir::LLVM;
47 using namespace mlir::LLVM::detail;
48 
49 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
50 
51 /// Builds a constant of a sequential LLVM type `type`, potentially containing
52 /// other sequential types recursively, from the individual constant values
53 /// provided in `constants`. `shape` contains the number of elements in nested
54 /// sequential types. Reports errors at `loc` and returns nullptr on error.
55 static llvm::Constant *
56 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
57                         ArrayRef<int64_t> shape, llvm::Type *type,
58                         Location loc) {
59   if (shape.empty()) {
60     llvm::Constant *result = constants.front();
61     constants = constants.drop_front();
62     return result;
63   }
64 
65   llvm::Type *elementType;
66   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
67     elementType = arrayTy->getElementType();
68   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
69     elementType = vectorTy->getElementType();
70   } else {
71     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
72     return nullptr;
73   }
74 
75   SmallVector<llvm::Constant *, 8> nested;
76   nested.reserve(shape.front());
77   for (int64_t i = 0; i < shape.front(); ++i) {
78     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
79                                              elementType, loc));
80     if (!nested.back())
81       return nullptr;
82   }
83 
84   if (shape.size() == 1 && type->isVectorTy())
85     return llvm::ConstantVector::get(nested);
86   return llvm::ConstantArray::get(
87       llvm::ArrayType::get(elementType, shape.front()), nested);
88 }
89 
90 /// Returns the first non-sequential type nested in sequential types.
91 static llvm::Type *getInnermostElementType(llvm::Type *type) {
92   do {
93     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
94       type = arrayTy->getElementType();
95     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
96       type = vectorTy->getElementType();
97     } else {
98       return type;
99     }
100   } while (true);
101 }
102 
103 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
104 /// This currently supports integer, floating point, splat and dense element
105 /// attributes and combinations thereof.  In case of error, report it to `loc`
106 /// and return nullptr.
107 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
108     llvm::Type *llvmType, Attribute attr, Location loc,
109     const ModuleTranslation &moduleTranslation) {
110   if (!attr)
111     return llvm::UndefValue::get(llvmType);
112   if (llvmType->isStructTy()) {
113     emitError(loc, "struct types are not supported in constants");
114     return nullptr;
115   }
116   // For integer types, we allow a mismatch in sizes as the index type in
117   // MLIR might have a different size than the index type in the LLVM module.
118   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
119     return llvm::ConstantInt::get(
120         llvmType,
121         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
122   if (auto floatAttr = attr.dyn_cast<FloatAttr>())
123     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
124   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
125     return llvm::ConstantExpr::getBitCast(
126         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
127   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
128     llvm::Type *elementType;
129     uint64_t numElements;
130     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
131       elementType = arrayTy->getElementType();
132       numElements = arrayTy->getNumElements();
133     } else {
134       auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
135       elementType = vectorTy->getElementType();
136       numElements = vectorTy->getNumElements();
137     }
138     // Splat value is a scalar. Extract it only if the element type is not
139     // another sequence type. The recursion terminates because each step removes
140     // one outer sequential type.
141     bool elementTypeSequential =
142         isa<llvm::ArrayType, llvm::VectorType>(elementType);
143     llvm::Constant *child = getLLVMConstant(
144         elementType,
145         elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc,
146         moduleTranslation);
147     if (!child)
148       return nullptr;
149     if (llvmType->isVectorTy())
150       return llvm::ConstantVector::getSplat(
151           llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
152     if (llvmType->isArrayTy()) {
153       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
154       SmallVector<llvm::Constant *, 8> constants(numElements, child);
155       return llvm::ConstantArray::get(arrayType, constants);
156     }
157   }
158 
159   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
160     assert(elementsAttr.getType().hasStaticShape());
161     assert(elementsAttr.getNumElements() != 0 &&
162            "unexpected empty elements attribute");
163     assert(!elementsAttr.getType().getShape().empty() &&
164            "unexpected empty elements attribute shape");
165 
166     SmallVector<llvm::Constant *, 8> constants;
167     constants.reserve(elementsAttr.getNumElements());
168     llvm::Type *innermostType = getInnermostElementType(llvmType);
169     for (auto n : elementsAttr.getValues<Attribute>()) {
170       constants.push_back(
171           getLLVMConstant(innermostType, n, loc, moduleTranslation));
172       if (!constants.back())
173         return nullptr;
174     }
175     ArrayRef<llvm::Constant *> constantsRef = constants;
176     llvm::Constant *result = buildSequentialConstant(
177         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
178     assert(constantsRef.empty() && "did not consume all elemental constants");
179     return result;
180   }
181 
182   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
183     return llvm::ConstantDataArray::get(
184         moduleTranslation.getLLVMContext(),
185         ArrayRef<char>{stringAttr.getValue().data(),
186                        stringAttr.getValue().size()});
187   }
188   emitError(loc, "unsupported constant value");
189   return nullptr;
190 }
191 
192 ModuleTranslation::ModuleTranslation(Operation *module,
193                                      std::unique_ptr<llvm::Module> llvmModule)
194     : mlirModule(module), llvmModule(std::move(llvmModule)),
195       debugTranslation(
196           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
197       typeTranslator(this->llvmModule->getContext()),
198       iface(module->getContext()) {
199   assert(satisfiesLLVMModule(mlirModule) &&
200          "mlirModule should honor LLVM's module semantics.");
201 }
202 ModuleTranslation::~ModuleTranslation() {
203   if (ompBuilder)
204     ompBuilder->finalize();
205 }
206 
207 /// Get the SSA value passed to the current block from the terminator operation
208 /// of its predecessor.
209 static Value getPHISourceValue(Block *current, Block *pred,
210                                unsigned numArguments, unsigned index) {
211   Operation &terminator = *pred->getTerminator();
212   if (isa<LLVM::BrOp>(terminator))
213     return terminator.getOperand(index);
214 
215   SuccessorRange successors = terminator.getSuccessors();
216   assert(std::adjacent_find(successors.begin(), successors.end()) ==
217              successors.end() &&
218          "successors with arguments in LLVM branches must be different blocks");
219   (void)successors;
220 
221   // For instructions that branch based on a condition value, we need to take
222   // the operands for the branch that was taken.
223   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
224     // For conditional branches, we take the operands from either the "true" or
225     // the "false" branch.
226     return condBranchOp.getSuccessor(0) == current
227                ? condBranchOp.trueDestOperands()[index]
228                : condBranchOp.falseDestOperands()[index];
229   }
230 
231   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
232     // For switches, we take the operands from either the default case, or from
233     // the case branch that was taken.
234     if (switchOp.defaultDestination() == current)
235       return switchOp.defaultOperands()[index];
236     for (auto i : llvm::enumerate(switchOp.caseDestinations()))
237       if (i.value() == current)
238         return switchOp.getCaseOperands(i.index())[index];
239   }
240 
241   llvm_unreachable("only branch or switch operations can be terminators of a "
242                    "block that has successors");
243 }
244 
245 /// Connect the PHI nodes to the results of preceding blocks.
246 void mlir::LLVM::detail::connectPHINodes(Region &region,
247                                          const ModuleTranslation &state) {
248   // Skip the first block, it cannot be branched to and its arguments correspond
249   // to the arguments of the LLVM function.
250   for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
251        ++it) {
252     Block *bb = &*it;
253     llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
254     auto phis = llvmBB->phis();
255     auto numArguments = bb->getNumArguments();
256     assert(numArguments == std::distance(phis.begin(), phis.end()));
257     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
258       auto &phiNode = numberedPhiNode.value();
259       unsigned index = numberedPhiNode.index();
260       for (auto *pred : bb->getPredecessors()) {
261         // Find the LLVM IR block that contains the converted terminator
262         // instruction and use it in the PHI node. Note that this block is not
263         // necessarily the same as state.lookupBlock(pred), some operations
264         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
265         // split the blocks.
266         llvm::Instruction *terminator =
267             state.lookupBranch(pred->getTerminator());
268         assert(terminator && "missing the mapping for a terminator");
269         phiNode.addIncoming(
270             state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
271             terminator->getParent());
272       }
273     }
274   }
275 }
276 
277 /// Sort function blocks topologically.
278 SetVector<Block *>
279 mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
280   // For each block that has not been visited yet (i.e. that has no
281   // predecessors), add it to the list as well as its successors.
282   SetVector<Block *> blocks;
283   for (Block &b : region) {
284     if (blocks.count(&b) == 0) {
285       llvm::ReversePostOrderTraversal<Block *> traversal(&b);
286       blocks.insert(traversal.begin(), traversal.end());
287     }
288   }
289   assert(blocks.size() == region.getBlocks().size() &&
290          "some blocks are not sorted");
291 
292   return blocks;
293 }
294 
295 llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
296     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
297     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
298   llvm::Module *module = builder.GetInsertBlock()->getModule();
299   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
300   return builder.CreateCall(fn, args);
301 }
302 
303 /// Given a single MLIR operation, create the corresponding LLVM IR operation
304 /// using the `builder`.
305 LogicalResult
306 ModuleTranslation::convertOperation(Operation &op,
307                                     llvm::IRBuilderBase &builder) {
308   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
309   if (!opIface)
310     return op.emitError("cannot be converted to LLVM IR: missing "
311                         "`LLVMTranslationDialectInterface` registration for "
312                         "dialect for op: ")
313            << op.getName();
314 
315   if (failed(opIface->convertOperation(&op, builder, *this)))
316     return op.emitError("LLVM Translation failed for operation: ")
317            << op.getName();
318 
319   return convertDialectAttributes(&op);
320 }
321 
322 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
323 /// to define values corresponding to the MLIR block arguments.  These nodes
324 /// are not connected to the source basic blocks, which may not exist yet.  Uses
325 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
326 /// been created for `bb` and included in the block mapping.  Inserts new
327 /// instructions at the end of the block and leaves `builder` in a state
328 /// suitable for further insertion into the end of the block.
329 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
330                                               llvm::IRBuilderBase &builder) {
331   builder.SetInsertPoint(lookupBlock(&bb));
332   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
333 
334   // Before traversing operations, make block arguments available through
335   // value remapping and PHI nodes, but do not add incoming edges for the PHI
336   // nodes just yet: those values may be defined by this or following blocks.
337   // This step is omitted if "ignoreArguments" is set.  The arguments of the
338   // first block have been already made available through the remapping of
339   // LLVM function arguments.
340   if (!ignoreArguments) {
341     auto predecessors = bb.getPredecessors();
342     unsigned numPredecessors =
343         std::distance(predecessors.begin(), predecessors.end());
344     for (auto arg : bb.getArguments()) {
345       auto wrappedType = arg.getType();
346       if (!isCompatibleType(wrappedType))
347         return emitError(bb.front().getLoc(),
348                          "block argument does not have an LLVM type");
349       llvm::Type *type = convertType(wrappedType);
350       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
351       mapValue(arg, phi);
352     }
353   }
354 
355   // Traverse operations.
356   for (auto &op : bb) {
357     // Set the current debug location within the builder.
358     builder.SetCurrentDebugLocation(
359         debugTranslation->translateLoc(op.getLoc(), subprogram));
360 
361     if (failed(convertOperation(op, builder)))
362       return failure();
363   }
364 
365   return success();
366 }
367 
368 /// A helper method to get the single Block in an operation honoring LLVM's
369 /// module requirements.
370 static Block &getModuleBody(Operation *module) {
371   return module->getRegion(0).front();
372 }
373 
374 /// A helper method to decide if a constant must not be set as a global variable
375 /// initializer.
376 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
377                                         llvm::Constant *cst) {
378   return (linkage == llvm::GlobalVariable::ExternalLinkage &&
379           isa<llvm::UndefValue>(cst)) ||
380          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
381 }
382 
383 /// Create named global variables that correspond to llvm.mlir.global
384 /// definitions.
385 LogicalResult ModuleTranslation::convertGlobals() {
386   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
387     llvm::Type *type = convertType(op.getType());
388     llvm::Constant *cst = llvm::UndefValue::get(type);
389     if (op.getValueOrNull()) {
390       // String attributes are treated separately because they cannot appear as
391       // in-function constants and are thus not supported by getLLVMConstant.
392       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
393         cst = llvm::ConstantDataArray::getString(
394             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
395         type = cst->getType();
396       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
397                                          *this))) {
398         return failure();
399       }
400     }
401 
402     auto linkage = convertLinkageToLLVM(op.linkage());
403     auto addrSpace = op.addr_space();
404     auto *var = new llvm::GlobalVariable(
405         *llvmModule, type, op.constant(), linkage,
406         shouldDropGlobalInitializer(linkage, cst) ? nullptr : cst,
407         op.sym_name(),
408         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
409 
410     if (op.unnamed_addr().hasValue())
411       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.unnamed_addr()));
412 
413     globalsMapping.try_emplace(op, var);
414   }
415 
416   // Convert global variable bodies. This is done after all global variables
417   // have been created in LLVM IR because a global body may refer to another
418   // global or itself. So all global variables need to be mapped first.
419   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
420     if (Block *initializer = op.getInitializerBlock()) {
421       llvm::IRBuilder<> builder(llvmModule->getContext());
422       for (auto &op : initializer->without_terminator()) {
423         if (failed(convertOperation(op, builder)) ||
424             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
425           return emitError(op.getLoc(), "unemittable constant value");
426       }
427       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
428       llvm::Constant *cst =
429           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
430       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
431       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
432         global->setInitializer(cst);
433     }
434   }
435 
436   return success();
437 }
438 
439 /// Attempts to add an attribute identified by `key`, optionally with the given
440 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
441 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
442 /// otherwise keep it as a string attribute. Performs additional checks for
443 /// attributes known to have or not have a value in order to avoid assertions
444 /// inside LLVM upon construction.
445 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
446                                                llvm::Function *llvmFunc,
447                                                StringRef key,
448                                                StringRef value = StringRef()) {
449   auto kind = llvm::Attribute::getAttrKindFromName(key);
450   if (kind == llvm::Attribute::None) {
451     llvmFunc->addFnAttr(key, value);
452     return success();
453   }
454 
455   if (llvm::Attribute::doesAttrKindHaveArgument(kind)) {
456     if (value.empty())
457       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
458 
459     int result;
460     if (!value.getAsInteger(/*Radix=*/0, result))
461       llvmFunc->addFnAttr(
462           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
463     else
464       llvmFunc->addFnAttr(key, value);
465     return success();
466   }
467 
468   if (!value.empty())
469     return emitError(loc) << "LLVM attribute '" << key
470                           << "' does not expect a value, found '" << value
471                           << "'";
472 
473   llvmFunc->addFnAttr(kind);
474   return success();
475 }
476 
477 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
478 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
479 /// to be an array attribute containing either string attributes, treated as
480 /// value-less LLVM attributes, or array attributes containing two string
481 /// attributes, with the first string being the name of the corresponding LLVM
482 /// attribute and the second string beings its value. Note that even integer
483 /// attributes are expected to have their values expressed as strings.
484 static LogicalResult
485 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
486                              llvm::Function *llvmFunc) {
487   if (!attributes)
488     return success();
489 
490   for (Attribute attr : *attributes) {
491     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
492       if (failed(
493               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
494         return failure();
495       continue;
496     }
497 
498     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
499     if (!arrayAttr || arrayAttr.size() != 2)
500       return emitError(loc)
501              << "expected 'passthrough' to contain string or array attributes";
502 
503     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
504     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
505     if (!keyAttr || !valueAttr)
506       return emitError(loc)
507              << "expected arrays within 'passthrough' to contain two strings";
508 
509     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
510                                          valueAttr.getValue())))
511       return failure();
512   }
513   return success();
514 }
515 
516 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
517   // Clear the block, branch value mappings, they are only relevant within one
518   // function.
519   blockMapping.clear();
520   valueMapping.clear();
521   branchMapping.clear();
522   llvm::Function *llvmFunc = lookupFunction(func.getName());
523 
524   // Translate the debug information for this function.
525   debugTranslation->translate(func, *llvmFunc);
526 
527   // Add function arguments to the value remapping table.
528   // If there was noalias info then we decorate each argument accordingly.
529   unsigned int argIdx = 0;
530   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
531     llvm::Argument &llvmArg = std::get<1>(kvp);
532     BlockArgument mlirArg = std::get<0>(kvp);
533 
534     if (auto attr = func.getArgAttrOfType<BoolAttr>(
535             argIdx, LLVMDialect::getNoAliasAttrName())) {
536       // NB: Attribute already verified to be boolean, so check if we can indeed
537       // attach the attribute to this argument, based on its type.
538       auto argTy = mlirArg.getType();
539       if (!argTy.isa<LLVM::LLVMPointerType>())
540         return func.emitError(
541             "llvm.noalias attribute attached to LLVM non-pointer argument");
542       if (attr.getValue())
543         llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
544     }
545 
546     if (auto attr = func.getArgAttrOfType<IntegerAttr>(
547             argIdx, LLVMDialect::getAlignAttrName())) {
548       // NB: Attribute already verified to be int, so check if we can indeed
549       // attach the attribute to this argument, based on its type.
550       auto argTy = mlirArg.getType();
551       if (!argTy.isa<LLVM::LLVMPointerType>())
552         return func.emitError(
553             "llvm.align attribute attached to LLVM non-pointer argument");
554       llvmArg.addAttrs(
555           llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
556     }
557 
558     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
559       auto argTy = mlirArg.getType();
560       if (!argTy.isa<LLVM::LLVMPointerType>())
561         return func.emitError(
562             "llvm.sret attribute attached to LLVM non-pointer argument");
563       llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr(
564           llvmArg.getType()->getPointerElementType()));
565     }
566 
567     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
568       auto argTy = mlirArg.getType();
569       if (!argTy.isa<LLVM::LLVMPointerType>())
570         return func.emitError(
571             "llvm.byval attribute attached to LLVM non-pointer argument");
572       llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr(
573           llvmArg.getType()->getPointerElementType()));
574     }
575 
576     mapValue(mlirArg, &llvmArg);
577     argIdx++;
578   }
579 
580   // Check the personality and set it.
581   if (func.personality().hasValue()) {
582     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
583     if (llvm::Constant *pfunc =
584             getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this))
585       llvmFunc->setPersonalityFn(pfunc);
586   }
587 
588   // First, create all blocks so we can jump to them.
589   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
590   for (auto &bb : func) {
591     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
592     llvmBB->insertInto(llvmFunc);
593     mapBlock(&bb, llvmBB);
594   }
595 
596   // Then, convert blocks one by one in topological order to ensure defs are
597   // converted before uses.
598   auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
599   for (Block *bb : blocks) {
600     llvm::IRBuilder<> builder(llvmContext);
601     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
602       return failure();
603   }
604 
605   // After all blocks have been traversed and values mapped, connect the PHI
606   // nodes to the results of preceding blocks.
607   detail::connectPHINodes(func.getBody(), *this);
608 
609   // Finally, convert dialect attributes attached to the function.
610   return convertDialectAttributes(func);
611 }
612 
613 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
614   for (NamedAttribute attribute : op->getDialectAttrs())
615     if (failed(iface.amendOperation(op, attribute, *this)))
616       return failure();
617   return success();
618 }
619 
620 /// Check whether the module contains only supported ops directly in its body.
621 static LogicalResult checkSupportedModuleOps(Operation *m) {
622   for (Operation &o : getModuleBody(m).getOperations())
623     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) &&
624         !o.hasTrait<OpTrait::IsTerminator>())
625       return o.emitOpError("unsupported module-level operation");
626   return success();
627 }
628 
629 LogicalResult ModuleTranslation::convertFunctionSignatures() {
630   // Declare all functions first because there may be function calls that form a
631   // call graph with cycles, or global initializers that reference functions.
632   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
633     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
634         function.getName(),
635         cast<llvm::FunctionType>(convertType(function.getType())));
636     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
637     llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
638     mapFunction(function.getName(), llvmFunc);
639 
640     // Forward the pass-through attributes to LLVM.
641     if (failed(forwardPassthroughAttributes(function.getLoc(),
642                                             function.passthrough(), llvmFunc)))
643       return failure();
644   }
645 
646   return success();
647 }
648 
649 LogicalResult ModuleTranslation::convertFunctions() {
650   // Convert functions.
651   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
652     // Ignore external functions.
653     if (function.isExternal())
654       continue;
655 
656     if (failed(convertOneFunction(function)))
657       return failure();
658   }
659 
660   return success();
661 }
662 
663 llvm::MDNode *
664 ModuleTranslation::getAccessGroup(Operation &opInst,
665                                   SymbolRefAttr accessGroupRef) const {
666   auto metadataName = accessGroupRef.getRootReference();
667   auto accessGroupName = accessGroupRef.getLeafReference();
668   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
669       opInst.getParentOp(), metadataName);
670   auto *accessGroupOp =
671       SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
672   return accessGroupMetadataMapping.lookup(accessGroupOp);
673 }
674 
675 LogicalResult ModuleTranslation::createAccessGroupMetadata() {
676   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
677     metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
678       llvm::LLVMContext &ctx = llvmModule->getContext();
679       llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
680       accessGroupMetadataMapping.insert({op, accessGroup});
681     });
682   });
683   return success();
684 }
685 
686 void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
687                                                 llvm::Instruction *inst) {
688   auto accessGroups =
689       op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
690   if (accessGroups && !accessGroups.empty()) {
691     llvm::Module *module = inst->getModule();
692     SmallVector<llvm::Metadata *> metadatas;
693     for (SymbolRefAttr accessGroupRef :
694          accessGroups.getAsRange<SymbolRefAttr>())
695       metadatas.push_back(getAccessGroup(*op, accessGroupRef));
696 
697     llvm::MDNode *unionMD = nullptr;
698     if (metadatas.size() == 1)
699       unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
700     else if (metadatas.size() >= 2)
701       unionMD = llvm::MDNode::get(module->getContext(), metadatas);
702 
703     inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
704   }
705 }
706 
707 llvm::Type *ModuleTranslation::convertType(Type type) {
708   return typeTranslator.translateType(type);
709 }
710 
711 /// A helper to look up remapped operands in the value remapping table.`
712 SmallVector<llvm::Value *, 8>
713 ModuleTranslation::lookupValues(ValueRange values) {
714   SmallVector<llvm::Value *, 8> remapped;
715   remapped.reserve(values.size());
716   for (Value v : values)
717     remapped.push_back(lookupValue(v));
718   return remapped;
719 }
720 
721 const llvm::DILocation *
722 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
723   return debugTranslation->translateLoc(loc, scope);
724 }
725 
726 llvm::NamedMDNode *
727 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
728   return llvmModule->getOrInsertNamedMetadata(name);
729 }
730 
731 static std::unique_ptr<llvm::Module>
732 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
733                   StringRef name) {
734   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
735   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
736   if (auto dataLayoutAttr =
737           m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
738     llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
739   if (auto targetTripleAttr =
740           m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
741     llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
742 
743   // Inject declarations for `malloc` and `free` functions that can be used in
744   // memref allocation/deallocation coming from standard ops lowering.
745   llvm::IRBuilder<> builder(llvmContext);
746   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
747                                   builder.getInt64Ty());
748   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
749                                   builder.getInt8PtrTy());
750 
751   return llvmModule;
752 }
753 
754 std::unique_ptr<llvm::Module>
755 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
756                               StringRef name) {
757   if (!satisfiesLLVMModule(module))
758     return nullptr;
759   if (failed(checkSupportedModuleOps(module)))
760     return nullptr;
761   std::unique_ptr<llvm::Module> llvmModule =
762       prepareLLVMModule(module, llvmContext, name);
763 
764   LLVM::ensureDistinctSuccessors(module);
765 
766   ModuleTranslation translator(module, std::move(llvmModule));
767   if (failed(translator.convertFunctionSignatures()))
768     return nullptr;
769   if (failed(translator.convertGlobals()))
770     return nullptr;
771   if (failed(translator.createAccessGroupMetadata()))
772     return nullptr;
773   if (failed(translator.convertFunctions()))
774     return nullptr;
775   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
776     return nullptr;
777 
778   return std::move(translator.llvmModule);
779 }
780