1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 17 #include "mlir/IR/Attributes.h" 18 #include "mlir/IR/Module.h" 19 #include "mlir/IR/StandardTypes.h" 20 #include "mlir/Support/LLVM.h" 21 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Transforms/Utils/Cloning.h" 30 31 using namespace mlir; 32 using namespace mlir::LLVM; 33 34 /// Builds a constant of a sequential LLVM type `type`, potentially containing 35 /// other sequential types recursively, from the individual constant values 36 /// provided in `constants`. `shape` contains the number of elements in nested 37 /// sequential types. Reports errors at `loc` and returns nullptr on error. 38 static llvm::Constant * 39 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 40 ArrayRef<int64_t> shape, llvm::Type *type, 41 Location loc) { 42 if (shape.empty()) { 43 llvm::Constant *result = constants.front(); 44 constants = constants.drop_front(); 45 return result; 46 } 47 48 if (!isa<llvm::SequentialType>(type)) { 49 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 50 return nullptr; 51 } 52 53 llvm::Type *elementType = type->getSequentialElementType(); 54 SmallVector<llvm::Constant *, 8> nested; 55 nested.reserve(shape.front()); 56 for (int64_t i = 0; i < shape.front(); ++i) { 57 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 58 elementType, loc)); 59 if (!nested.back()) 60 return nullptr; 61 } 62 63 if (shape.size() == 1 && type->isVectorTy()) 64 return llvm::ConstantVector::get(nested); 65 return llvm::ConstantArray::get( 66 llvm::ArrayType::get(elementType, shape.front()), nested); 67 } 68 69 /// Returns the first non-sequential type nested in sequential types. 70 static llvm::Type *getInnermostElementType(llvm::Type *type) { 71 while (isa<llvm::SequentialType>(type)) 72 type = type->getSequentialElementType(); 73 return type; 74 } 75 76 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 77 /// This currently supports integer, floating point, splat and dense element 78 /// attributes and combinations thereof. In case of error, report it to `loc` 79 /// and return nullptr. 80 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 81 Attribute attr, 82 Location loc) { 83 if (!attr) 84 return llvm::UndefValue::get(llvmType); 85 if (llvmType->isStructTy()) { 86 emitError(loc, "struct types are not supported in constants"); 87 return nullptr; 88 } 89 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 90 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 91 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 92 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 93 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 94 return functionMapping.lookup(funcAttr.getValue()); 95 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 96 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 97 auto elementType = sequentialType->getElementType(); 98 uint64_t numElements = sequentialType->getNumElements(); 99 // Splat value is a scalar. Extract it only if the element type is not 100 // another sequence type. The recursion terminates because each step removes 101 // one outer sequential type. 102 llvm::Constant *child = getLLVMConstant( 103 elementType, 104 isa<llvm::SequentialType>(elementType) ? splatAttr 105 : splatAttr.getSplatValue(), 106 loc); 107 if (!child) 108 return nullptr; 109 if (llvmType->isVectorTy()) 110 return llvm::ConstantVector::getSplat(numElements, child); 111 if (llvmType->isArrayTy()) { 112 auto arrayType = llvm::ArrayType::get(elementType, numElements); 113 SmallVector<llvm::Constant *, 8> constants(numElements, child); 114 return llvm::ConstantArray::get(arrayType, constants); 115 } 116 } 117 118 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 119 assert(elementsAttr.getType().hasStaticShape()); 120 assert(elementsAttr.getNumElements() != 0 && 121 "unexpected empty elements attribute"); 122 assert(!elementsAttr.getType().getShape().empty() && 123 "unexpected empty elements attribute shape"); 124 125 SmallVector<llvm::Constant *, 8> constants; 126 constants.reserve(elementsAttr.getNumElements()); 127 llvm::Type *innermostType = getInnermostElementType(llvmType); 128 for (auto n : elementsAttr.getValues<Attribute>()) { 129 constants.push_back(getLLVMConstant(innermostType, n, loc)); 130 if (!constants.back()) 131 return nullptr; 132 } 133 ArrayRef<llvm::Constant *> constantsRef = constants; 134 llvm::Constant *result = buildSequentialConstant( 135 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 136 assert(constantsRef.empty() && "did not consume all elemental constants"); 137 return result; 138 } 139 140 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 141 return llvm::ConstantDataArray::get( 142 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 143 stringAttr.getValue().size()}); 144 } 145 emitError(loc, "unsupported constant value"); 146 return nullptr; 147 } 148 149 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 150 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 151 switch (p) { 152 case LLVM::ICmpPredicate::eq: 153 return llvm::CmpInst::Predicate::ICMP_EQ; 154 case LLVM::ICmpPredicate::ne: 155 return llvm::CmpInst::Predicate::ICMP_NE; 156 case LLVM::ICmpPredicate::slt: 157 return llvm::CmpInst::Predicate::ICMP_SLT; 158 case LLVM::ICmpPredicate::sle: 159 return llvm::CmpInst::Predicate::ICMP_SLE; 160 case LLVM::ICmpPredicate::sgt: 161 return llvm::CmpInst::Predicate::ICMP_SGT; 162 case LLVM::ICmpPredicate::sge: 163 return llvm::CmpInst::Predicate::ICMP_SGE; 164 case LLVM::ICmpPredicate::ult: 165 return llvm::CmpInst::Predicate::ICMP_ULT; 166 case LLVM::ICmpPredicate::ule: 167 return llvm::CmpInst::Predicate::ICMP_ULE; 168 case LLVM::ICmpPredicate::ugt: 169 return llvm::CmpInst::Predicate::ICMP_UGT; 170 case LLVM::ICmpPredicate::uge: 171 return llvm::CmpInst::Predicate::ICMP_UGE; 172 } 173 llvm_unreachable("incorrect comparison predicate"); 174 } 175 176 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 177 switch (p) { 178 case LLVM::FCmpPredicate::_false: 179 return llvm::CmpInst::Predicate::FCMP_FALSE; 180 case LLVM::FCmpPredicate::oeq: 181 return llvm::CmpInst::Predicate::FCMP_OEQ; 182 case LLVM::FCmpPredicate::ogt: 183 return llvm::CmpInst::Predicate::FCMP_OGT; 184 case LLVM::FCmpPredicate::oge: 185 return llvm::CmpInst::Predicate::FCMP_OGE; 186 case LLVM::FCmpPredicate::olt: 187 return llvm::CmpInst::Predicate::FCMP_OLT; 188 case LLVM::FCmpPredicate::ole: 189 return llvm::CmpInst::Predicate::FCMP_OLE; 190 case LLVM::FCmpPredicate::one: 191 return llvm::CmpInst::Predicate::FCMP_ONE; 192 case LLVM::FCmpPredicate::ord: 193 return llvm::CmpInst::Predicate::FCMP_ORD; 194 case LLVM::FCmpPredicate::ueq: 195 return llvm::CmpInst::Predicate::FCMP_UEQ; 196 case LLVM::FCmpPredicate::ugt: 197 return llvm::CmpInst::Predicate::FCMP_UGT; 198 case LLVM::FCmpPredicate::uge: 199 return llvm::CmpInst::Predicate::FCMP_UGE; 200 case LLVM::FCmpPredicate::ult: 201 return llvm::CmpInst::Predicate::FCMP_ULT; 202 case LLVM::FCmpPredicate::ule: 203 return llvm::CmpInst::Predicate::FCMP_ULE; 204 case LLVM::FCmpPredicate::une: 205 return llvm::CmpInst::Predicate::FCMP_UNE; 206 case LLVM::FCmpPredicate::uno: 207 return llvm::CmpInst::Predicate::FCMP_UNO; 208 case LLVM::FCmpPredicate::_true: 209 return llvm::CmpInst::Predicate::FCMP_TRUE; 210 } 211 llvm_unreachable("incorrect comparison predicate"); 212 } 213 214 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 215 switch (op) { 216 case LLVM::AtomicBinOp::xchg: 217 return llvm::AtomicRMWInst::BinOp::Xchg; 218 case LLVM::AtomicBinOp::add: 219 return llvm::AtomicRMWInst::BinOp::Add; 220 case LLVM::AtomicBinOp::sub: 221 return llvm::AtomicRMWInst::BinOp::Sub; 222 case LLVM::AtomicBinOp::_and: 223 return llvm::AtomicRMWInst::BinOp::And; 224 case LLVM::AtomicBinOp::nand: 225 return llvm::AtomicRMWInst::BinOp::Nand; 226 case LLVM::AtomicBinOp::_or: 227 return llvm::AtomicRMWInst::BinOp::Or; 228 case LLVM::AtomicBinOp::_xor: 229 return llvm::AtomicRMWInst::BinOp::Xor; 230 case LLVM::AtomicBinOp::max: 231 return llvm::AtomicRMWInst::BinOp::Max; 232 case LLVM::AtomicBinOp::min: 233 return llvm::AtomicRMWInst::BinOp::Min; 234 case LLVM::AtomicBinOp::umax: 235 return llvm::AtomicRMWInst::BinOp::UMax; 236 case LLVM::AtomicBinOp::umin: 237 return llvm::AtomicRMWInst::BinOp::UMin; 238 case LLVM::AtomicBinOp::fadd: 239 return llvm::AtomicRMWInst::BinOp::FAdd; 240 case LLVM::AtomicBinOp::fsub: 241 return llvm::AtomicRMWInst::BinOp::FSub; 242 } 243 llvm_unreachable("incorrect atomic binary operator"); 244 } 245 246 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 247 switch (ordering) { 248 case LLVM::AtomicOrdering::not_atomic: 249 return llvm::AtomicOrdering::NotAtomic; 250 case LLVM::AtomicOrdering::unordered: 251 return llvm::AtomicOrdering::Unordered; 252 case LLVM::AtomicOrdering::monotonic: 253 return llvm::AtomicOrdering::Monotonic; 254 case LLVM::AtomicOrdering::acquire: 255 return llvm::AtomicOrdering::Acquire; 256 case LLVM::AtomicOrdering::release: 257 return llvm::AtomicOrdering::Release; 258 case LLVM::AtomicOrdering::acq_rel: 259 return llvm::AtomicOrdering::AcquireRelease; 260 case LLVM::AtomicOrdering::seq_cst: 261 return llvm::AtomicOrdering::SequentiallyConsistent; 262 } 263 llvm_unreachable("incorrect atomic ordering"); 264 } 265 266 /// Given a single MLIR operation, create the corresponding LLVM IR operation 267 /// using the `builder`. LLVM IR Builder does not have a generic interface so 268 /// this has to be a long chain of `if`s calling different functions with a 269 /// different number of arguments. 270 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 271 llvm::IRBuilder<> &builder) { 272 auto extractPosition = [](ArrayAttr attr) { 273 SmallVector<unsigned, 4> position; 274 position.reserve(attr.size()); 275 for (Attribute v : attr) 276 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 277 return position; 278 }; 279 280 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 281 282 // Emit function calls. If the "callee" attribute is present, this is a 283 // direct function call and we also need to look up the remapped function 284 // itself. Otherwise, this is an indirect call and the callee is the first 285 // operand, look it up as a normal value. Return the llvm::Value representing 286 // the function result, which may be of llvm::VoidTy type. 287 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 288 auto operands = lookupValues(op.getOperands()); 289 ArrayRef<llvm::Value *> operandsRef(operands); 290 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 291 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 292 operandsRef); 293 } else { 294 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 295 } 296 }; 297 298 // Emit calls. If the called function has a result, remap the corresponding 299 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 300 if (isa<LLVM::CallOp>(opInst)) { 301 llvm::Value *result = convertCall(opInst); 302 if (opInst.getNumResults() != 0) { 303 valueMapping[opInst.getResult(0)] = result; 304 return success(); 305 } 306 // Check that LLVM call returns void for 0-result functions. 307 return success(result->getType()->isVoidTy()); 308 } 309 310 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 311 auto operands = lookupValues(opInst.getOperands()); 312 ArrayRef<llvm::Value *> operandsRef(operands); 313 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) 314 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 315 blockMapping[invOp.getSuccessor(0)], 316 blockMapping[invOp.getSuccessor(1)], operandsRef); 317 else 318 builder.CreateInvoke( 319 operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 320 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 321 return success(); 322 } 323 324 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 325 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 326 llvm::LandingPadInst *lpi = 327 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 328 329 // Add clauses 330 for (auto operand : lookupValues(lpOp.getOperands())) { 331 // All operands should be constant - checked by verifier 332 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 333 lpi->addClause(constOperand); 334 } 335 return success(); 336 } 337 338 // Emit branches. We need to look up the remapped blocks and ignore the block 339 // arguments that were transformed into PHI nodes. 340 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 341 builder.CreateBr(blockMapping[brOp.getSuccessor(0)]); 342 return success(); 343 } 344 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 345 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 346 blockMapping[condbrOp.getSuccessor(0)], 347 blockMapping[condbrOp.getSuccessor(1)]); 348 return success(); 349 } 350 351 // Emit addressof. We need to look up the global value referenced by the 352 // operation and store it in the MLIR-to-LLVM value mapping. This does not 353 // emit any LLVM instruction. 354 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 355 LLVM::GlobalOp global = addressOfOp.getGlobal(); 356 // The verifier should not have allowed this. 357 assert(global && "referencing an undefined global"); 358 359 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 360 return success(); 361 } 362 363 return opInst.emitError("unsupported or non-LLVM operation: ") 364 << opInst.getName(); 365 } 366 367 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 368 /// to define values corresponding to the MLIR block arguments. These nodes 369 /// are not connected to the source basic blocks, which may not exist yet. 370 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 371 llvm::IRBuilder<> builder(blockMapping[&bb]); 372 373 // Before traversing operations, make block arguments available through 374 // value remapping and PHI nodes, but do not add incoming edges for the PHI 375 // nodes just yet: those values may be defined by this or following blocks. 376 // This step is omitted if "ignoreArguments" is set. The arguments of the 377 // first block have been already made available through the remapping of 378 // LLVM function arguments. 379 if (!ignoreArguments) { 380 auto predecessors = bb.getPredecessors(); 381 unsigned numPredecessors = 382 std::distance(predecessors.begin(), predecessors.end()); 383 for (auto arg : bb.getArguments()) { 384 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 385 if (!wrappedType) 386 return emitError(bb.front().getLoc(), 387 "block argument does not have an LLVM type"); 388 llvm::Type *type = wrappedType.getUnderlyingType(); 389 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 390 valueMapping[arg] = phi; 391 } 392 } 393 394 // Traverse operations. 395 for (auto &op : bb) { 396 if (failed(convertOperation(op, builder))) 397 return failure(); 398 } 399 400 return success(); 401 } 402 403 /// Convert the LLVM dialect linkage type to LLVM IR linkage type. 404 llvm::GlobalVariable::LinkageTypes convertLinkageType(LLVM::Linkage linkage) { 405 switch (linkage) { 406 case LLVM::Linkage::Private: 407 return llvm::GlobalValue::PrivateLinkage; 408 case LLVM::Linkage::Internal: 409 return llvm::GlobalValue::InternalLinkage; 410 case LLVM::Linkage::AvailableExternally: 411 return llvm::GlobalValue::AvailableExternallyLinkage; 412 case LLVM::Linkage::Linkonce: 413 return llvm::GlobalValue::LinkOnceAnyLinkage; 414 case LLVM::Linkage::Weak: 415 return llvm::GlobalValue::WeakAnyLinkage; 416 case LLVM::Linkage::Common: 417 return llvm::GlobalValue::CommonLinkage; 418 case LLVM::Linkage::Appending: 419 return llvm::GlobalValue::AppendingLinkage; 420 case LLVM::Linkage::ExternWeak: 421 return llvm::GlobalValue::ExternalWeakLinkage; 422 case LLVM::Linkage::LinkonceODR: 423 return llvm::GlobalValue::LinkOnceODRLinkage; 424 case LLVM::Linkage::WeakODR: 425 return llvm::GlobalValue::WeakODRLinkage; 426 case LLVM::Linkage::External: 427 return llvm::GlobalValue::ExternalLinkage; 428 } 429 llvm_unreachable("unknown linkage type"); 430 } 431 432 /// Create named global variables that correspond to llvm.mlir.global 433 /// definitions. 434 void ModuleTranslation::convertGlobals() { 435 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 436 llvm::Type *type = op.getType().getUnderlyingType(); 437 llvm::Constant *cst = llvm::UndefValue::get(type); 438 if (op.getValueOrNull()) { 439 // String attributes are treated separately because they cannot appear as 440 // in-function constants and are thus not supported by getLLVMConstant. 441 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 442 cst = llvm::ConstantDataArray::getString( 443 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 444 type = cst->getType(); 445 } else { 446 cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc()); 447 } 448 } else if (Block *initializer = op.getInitializerBlock()) { 449 llvm::IRBuilder<> builder(llvmModule->getContext()); 450 for (auto &op : initializer->without_terminator()) { 451 if (failed(convertOperation(op, builder)) || 452 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) { 453 emitError(op.getLoc(), "unemittable constant value"); 454 return; 455 } 456 } 457 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 458 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 459 } 460 461 auto linkage = convertLinkageType(op.linkage()); 462 bool anyExternalLinkage = 463 (linkage == llvm::GlobalVariable::ExternalLinkage || 464 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 465 auto addrSpace = op.addr_space().getLimitedValue(); 466 auto *var = new llvm::GlobalVariable( 467 *llvmModule, type, op.constant(), linkage, 468 anyExternalLinkage ? nullptr : cst, op.sym_name(), 469 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 470 471 globalsMapping.try_emplace(op, var); 472 } 473 } 474 475 /// Get the SSA value passed to the current block from the terminator operation 476 /// of its predecessor. 477 static Value getPHISourceValue(Block *current, Block *pred, 478 unsigned numArguments, unsigned index) { 479 auto &terminator = *pred->getTerminator(); 480 if (isa<LLVM::BrOp>(terminator)) { 481 return terminator.getOperand(index); 482 } 483 484 // For conditional branches, we need to check if the current block is reached 485 // through the "true" or the "false" branch and take the relevant operands. 486 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 487 assert(condBranchOp && 488 "only branch operations can be terminators of a block that " 489 "has successors"); 490 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 491 "successors with arguments in LLVM conditional branches must be " 492 "different blocks"); 493 494 return condBranchOp.getSuccessor(0) == current 495 ? terminator.getSuccessorOperand(0, index) 496 : terminator.getSuccessorOperand(1, index); 497 } 498 499 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 500 // Skip the first block, it cannot be branched to and its arguments correspond 501 // to the arguments of the LLVM function. 502 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 503 Block *bb = &*it; 504 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 505 auto phis = llvmBB->phis(); 506 auto numArguments = bb->getNumArguments(); 507 assert(numArguments == std::distance(phis.begin(), phis.end())); 508 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 509 auto &phiNode = numberedPhiNode.value(); 510 unsigned index = numberedPhiNode.index(); 511 for (auto *pred : bb->getPredecessors()) { 512 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 513 bb, pred, numArguments, index)), 514 blockMapping.lookup(pred)); 515 } 516 } 517 } 518 } 519 520 // TODO(mlir-team): implement an iterative version 521 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 522 blocks.insert(b); 523 for (Block *bb : b->getSuccessors()) { 524 if (blocks.count(bb) == 0) 525 topologicalSortImpl(blocks, bb); 526 } 527 } 528 529 /// Sort function blocks topologically. 530 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 531 // For each blocks that has not been visited yet (i.e. that has no 532 // predecessors), add it to the list and traverse its successors in DFS 533 // preorder. 534 llvm::SetVector<Block *> blocks; 535 for (Block &b : f.getBlocks()) { 536 if (blocks.count(&b) == 0) 537 topologicalSortImpl(blocks, &b); 538 } 539 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 540 541 return blocks; 542 } 543 544 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 545 // Clear the block and value mappings, they are only relevant within one 546 // function. 547 blockMapping.clear(); 548 valueMapping.clear(); 549 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 550 // Add function arguments to the value remapping table. 551 // If there was noalias info then we decorate each argument accordingly. 552 unsigned int argIdx = 0; 553 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 554 llvm::Argument &llvmArg = std::get<1>(kvp); 555 BlockArgument mlirArg = std::get<0>(kvp); 556 557 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 558 // NB: Attribute already verified to be boolean, so check if we can indeed 559 // attach the attribute to this argument, based on its type. 560 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 561 if (!argTy.getUnderlyingType()->isPointerTy()) 562 return func.emitError( 563 "llvm.noalias attribute attached to LLVM non-pointer argument"); 564 if (attr.getValue()) 565 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 566 } 567 valueMapping[mlirArg] = &llvmArg; 568 argIdx++; 569 } 570 571 // First, create all blocks so we can jump to them. 572 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 573 for (auto &bb : func) { 574 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 575 llvmBB->insertInto(llvmFunc); 576 blockMapping[&bb] = llvmBB; 577 } 578 579 // Then, convert blocks one by one in topological order to ensure defs are 580 // converted before uses. 581 auto blocks = topologicalSort(func); 582 for (auto indexedBB : llvm::enumerate(blocks)) { 583 auto *bb = indexedBB.value(); 584 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 585 return failure(); 586 } 587 588 // Finally, after all blocks have been traversed and values mapped, connect 589 // the PHI nodes to the results of preceding blocks. 590 connectPHINodes(func); 591 return success(); 592 } 593 594 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 595 for (Operation &o : getModuleBody(m).getOperations()) 596 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 597 !o.isKnownTerminator()) 598 return o.emitOpError("unsupported module-level operation"); 599 return success(); 600 } 601 602 LogicalResult ModuleTranslation::convertFunctions() { 603 // Declare all functions first because there may be function calls that form a 604 // call graph with cycles. 605 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 606 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 607 function.getName(), 608 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 609 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 610 functionMapping[function.getName()] = 611 cast<llvm::Function>(llvmFuncCst.getCallee()); 612 } 613 614 // Convert functions. 615 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 616 // Ignore external functions. 617 if (function.isExternal()) 618 continue; 619 620 if (failed(convertOneFunction(function))) 621 return failure(); 622 } 623 624 return success(); 625 } 626 627 /// A helper to look up remapped operands in the value remapping table.` 628 SmallVector<llvm::Value *, 8> 629 ModuleTranslation::lookupValues(ValueRange values) { 630 SmallVector<llvm::Value *, 8> remapped; 631 remapped.reserve(values.size()); 632 for (Value v : values) 633 remapped.push_back(valueMapping.lookup(v)); 634 return remapped; 635 } 636 637 std::unique_ptr<llvm::Module> 638 ModuleTranslation::prepareLLVMModule(Operation *m) { 639 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 640 assert(dialect && "LLVM dialect must be registered"); 641 642 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 643 if (!llvmModule) 644 return nullptr; 645 646 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 647 llvm::IRBuilder<> builder(llvmContext); 648 649 // Inject declarations for `malloc` and `free` functions that can be used in 650 // memref allocation/deallocation coming from standard ops lowering. 651 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 652 builder.getInt64Ty()); 653 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 654 builder.getInt8PtrTy()); 655 656 return llvmModule; 657 } 658