1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 46 using namespace mlir; 47 using namespace mlir::LLVM; 48 using namespace mlir::LLVM::detail; 49 50 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 51 52 /// Builds a constant of a sequential LLVM type `type`, potentially containing 53 /// other sequential types recursively, from the individual constant values 54 /// provided in `constants`. `shape` contains the number of elements in nested 55 /// sequential types. Reports errors at `loc` and returns nullptr on error. 56 static llvm::Constant * 57 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 58 ArrayRef<int64_t> shape, llvm::Type *type, 59 Location loc) { 60 if (shape.empty()) { 61 llvm::Constant *result = constants.front(); 62 constants = constants.drop_front(); 63 return result; 64 } 65 66 llvm::Type *elementType; 67 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 68 elementType = arrayTy->getElementType(); 69 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 70 elementType = vectorTy->getElementType(); 71 } else { 72 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 73 return nullptr; 74 } 75 76 SmallVector<llvm::Constant *, 8> nested; 77 nested.reserve(shape.front()); 78 for (int64_t i = 0; i < shape.front(); ++i) { 79 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 80 elementType, loc)); 81 if (!nested.back()) 82 return nullptr; 83 } 84 85 if (shape.size() == 1 && type->isVectorTy()) 86 return llvm::ConstantVector::get(nested); 87 return llvm::ConstantArray::get( 88 llvm::ArrayType::get(elementType, shape.front()), nested); 89 } 90 91 /// Returns the first non-sequential type nested in sequential types. 92 static llvm::Type *getInnermostElementType(llvm::Type *type) { 93 do { 94 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 95 type = arrayTy->getElementType(); 96 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 97 type = vectorTy->getElementType(); 98 } else { 99 return type; 100 } 101 } while (true); 102 } 103 104 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 105 /// storage if possible. This supports elements attributes of tensor or vector 106 /// type and avoids constructing separate objects for individual values of the 107 /// innermost dimension. Constants for other dimensions are still constructed 108 /// recursively. Returns null if constructing from raw data is not supported for 109 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 110 /// other errors at `loc`. 111 static llvm::Constant * 112 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 113 llvm::Type *llvmType, 114 const ModuleTranslation &moduleTranslation) { 115 if (!denseElementsAttr) 116 return nullptr; 117 118 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 119 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 120 return nullptr; 121 122 // Compute the shape of all dimensions but the innermost. Note that the 123 // innermost dimension may be that of the vector element type. 124 ShapedType type = denseElementsAttr.getType(); 125 bool hasVectorElementType = type.getElementType().isa<VectorType>(); 126 unsigned numAggregates = 127 denseElementsAttr.getNumElements() / 128 (hasVectorElementType ? 1 129 : denseElementsAttr.getType().getShape().back()); 130 ArrayRef<int64_t> outerShape = type.getShape(); 131 if (!hasVectorElementType) 132 outerShape = outerShape.drop_back(); 133 134 // Handle the case of vector splat, LLVM has special support for it. 135 if (denseElementsAttr.isSplat() && 136 (type.isa<VectorType>() || hasVectorElementType)) { 137 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 138 innermostLLVMType, denseElementsAttr.getSplatValue(), loc, 139 moduleTranslation, /*isTopLevel=*/false); 140 llvm::Constant *splatVector = 141 llvm::ConstantDataVector::getSplat(0, splatValue); 142 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 143 ArrayRef<llvm::Constant *> constantsRef = constants; 144 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 145 } 146 if (denseElementsAttr.isSplat()) 147 return nullptr; 148 149 // In case of non-splat, create a constructor for the innermost constant from 150 // a piece of raw data. 151 std::function<llvm::Constant *(StringRef)> buildCstData; 152 if (type.isa<TensorType>()) { 153 auto vectorElementType = type.getElementType().dyn_cast<VectorType>(); 154 if (vectorElementType && vectorElementType.getRank() == 1) { 155 buildCstData = [&](StringRef data) { 156 return llvm::ConstantDataVector::getRaw( 157 data, vectorElementType.getShape().back(), innermostLLVMType); 158 }; 159 } else if (!vectorElementType) { 160 buildCstData = [&](StringRef data) { 161 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 162 innermostLLVMType); 163 }; 164 } 165 } else if (type.isa<VectorType>()) { 166 buildCstData = [&](StringRef data) { 167 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 168 innermostLLVMType); 169 }; 170 } 171 if (!buildCstData) 172 return nullptr; 173 174 // Create innermost constants and defer to the default constant creation 175 // mechanism for other dimensions. 176 SmallVector<llvm::Constant *> constants; 177 unsigned aggregateSize = denseElementsAttr.getType().getShape().back() * 178 (innermostLLVMType->getScalarSizeInBits() / 8); 179 constants.reserve(numAggregates); 180 for (unsigned i = 0; i < numAggregates; ++i) { 181 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 182 aggregateSize); 183 constants.push_back(buildCstData(data)); 184 } 185 186 ArrayRef<llvm::Constant *> constantsRef = constants; 187 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 188 } 189 190 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 191 /// This currently supports integer, floating point, splat and dense element 192 /// attributes and combinations thereof. Also, an array attribute with two 193 /// elements is supported to represent a complex constant. In case of error, 194 /// report it to `loc` and return nullptr. 195 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 196 llvm::Type *llvmType, Attribute attr, Location loc, 197 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 198 if (!attr) 199 return llvm::UndefValue::get(llvmType); 200 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 201 if (!isTopLevel) { 202 emitError(loc, "nested struct types are not supported in constants"); 203 return nullptr; 204 } 205 auto arrayAttr = attr.cast<ArrayAttr>(); 206 llvm::Type *elementType = structType->getElementType(0); 207 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 208 moduleTranslation, false); 209 if (!real) 210 return nullptr; 211 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 212 moduleTranslation, false); 213 if (!imag) 214 return nullptr; 215 return llvm::ConstantStruct::get(structType, {real, imag}); 216 } 217 // For integer types, we allow a mismatch in sizes as the index type in 218 // MLIR might have a different size than the index type in the LLVM module. 219 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 220 return llvm::ConstantInt::get( 221 llvmType, 222 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 223 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 224 if (llvmType != 225 llvm::Type::getFloatingPointTy(llvmType->getContext(), 226 floatAttr.getValue().getSemantics())) { 227 emitError(loc, "FloatAttr does not match expected type of the constant"); 228 return nullptr; 229 } 230 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 231 } 232 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 233 return llvm::ConstantExpr::getBitCast( 234 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 235 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 236 llvm::Type *elementType; 237 uint64_t numElements; 238 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 239 elementType = arrayTy->getElementType(); 240 numElements = arrayTy->getNumElements(); 241 } else { 242 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 243 elementType = vectorTy->getElementType(); 244 numElements = vectorTy->getNumElements(); 245 } 246 // Splat value is a scalar. Extract it only if the element type is not 247 // another sequence type. The recursion terminates because each step removes 248 // one outer sequential type. 249 bool elementTypeSequential = 250 isa<llvm::ArrayType, llvm::VectorType>(elementType); 251 llvm::Constant *child = getLLVMConstant( 252 elementType, 253 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc, 254 moduleTranslation, false); 255 if (!child) 256 return nullptr; 257 if (llvmType->isVectorTy()) 258 return llvm::ConstantVector::getSplat( 259 llvm::ElementCount::get(numElements, /*Scalable=*/false), child); 260 if (llvmType->isArrayTy()) { 261 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 262 SmallVector<llvm::Constant *, 8> constants(numElements, child); 263 return llvm::ConstantArray::get(arrayType, constants); 264 } 265 } 266 267 // Try using raw elements data if possible. 268 if (llvm::Constant *result = 269 convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(), 270 llvmType, moduleTranslation)) { 271 return result; 272 } 273 274 // Fall back to element-by-element construction otherwise. 275 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 276 assert(elementsAttr.getType().hasStaticShape()); 277 assert(!elementsAttr.getType().getShape().empty() && 278 "unexpected empty elements attribute shape"); 279 280 SmallVector<llvm::Constant *, 8> constants; 281 constants.reserve(elementsAttr.getNumElements()); 282 llvm::Type *innermostType = getInnermostElementType(llvmType); 283 for (auto n : elementsAttr.getValues<Attribute>()) { 284 constants.push_back( 285 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 286 if (!constants.back()) 287 return nullptr; 288 } 289 ArrayRef<llvm::Constant *> constantsRef = constants; 290 llvm::Constant *result = buildSequentialConstant( 291 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 292 assert(constantsRef.empty() && "did not consume all elemental constants"); 293 return result; 294 } 295 296 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 297 return llvm::ConstantDataArray::get( 298 moduleTranslation.getLLVMContext(), 299 ArrayRef<char>{stringAttr.getValue().data(), 300 stringAttr.getValue().size()}); 301 } 302 emitError(loc, "unsupported constant value"); 303 return nullptr; 304 } 305 306 ModuleTranslation::ModuleTranslation(Operation *module, 307 std::unique_ptr<llvm::Module> llvmModule) 308 : mlirModule(module), llvmModule(std::move(llvmModule)), 309 debugTranslation( 310 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 311 typeTranslator(this->llvmModule->getContext()), 312 iface(module->getContext()) { 313 assert(satisfiesLLVMModule(mlirModule) && 314 "mlirModule should honor LLVM's module semantics."); 315 } 316 ModuleTranslation::~ModuleTranslation() { 317 if (ompBuilder) 318 ompBuilder->finalize(); 319 } 320 321 void ModuleTranslation::forgetMapping(Region ®ion) { 322 SmallVector<Region *> toProcess; 323 toProcess.push_back(®ion); 324 while (!toProcess.empty()) { 325 Region *current = toProcess.pop_back_val(); 326 for (Block &block : *current) { 327 blockMapping.erase(&block); 328 for (Value arg : block.getArguments()) 329 valueMapping.erase(arg); 330 for (Operation &op : block) { 331 for (Value value : op.getResults()) 332 valueMapping.erase(value); 333 if (op.hasSuccessors()) 334 branchMapping.erase(&op); 335 if (isa<LLVM::GlobalOp>(op)) 336 globalsMapping.erase(&op); 337 accessGroupMetadataMapping.erase(&op); 338 llvm::append_range( 339 toProcess, 340 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 341 } 342 } 343 } 344 } 345 346 /// Get the SSA value passed to the current block from the terminator operation 347 /// of its predecessor. 348 static Value getPHISourceValue(Block *current, Block *pred, 349 unsigned numArguments, unsigned index) { 350 Operation &terminator = *pred->getTerminator(); 351 if (isa<LLVM::BrOp>(terminator)) 352 return terminator.getOperand(index); 353 354 SuccessorRange successors = terminator.getSuccessors(); 355 assert(std::adjacent_find(successors.begin(), successors.end()) == 356 successors.end() && 357 "successors with arguments in LLVM branches must be different blocks"); 358 (void)successors; 359 360 // For instructions that branch based on a condition value, we need to take 361 // the operands for the branch that was taken. 362 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 363 // For conditional branches, we take the operands from either the "true" or 364 // the "false" branch. 365 return condBranchOp.getSuccessor(0) == current 366 ? condBranchOp.trueDestOperands()[index] 367 : condBranchOp.falseDestOperands()[index]; 368 } 369 370 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 371 // For switches, we take the operands from either the default case, or from 372 // the case branch that was taken. 373 if (switchOp.defaultDestination() == current) 374 return switchOp.defaultOperands()[index]; 375 for (auto i : llvm::enumerate(switchOp.caseDestinations())) 376 if (i.value() == current) 377 return switchOp.getCaseOperands(i.index())[index]; 378 } 379 380 llvm_unreachable("only branch or switch operations can be terminators of a " 381 "block that has successors"); 382 } 383 384 /// Connect the PHI nodes to the results of preceding blocks. 385 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 386 const ModuleTranslation &state) { 387 // Skip the first block, it cannot be branched to and its arguments correspond 388 // to the arguments of the LLVM function. 389 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 390 ++it) { 391 Block *bb = &*it; 392 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 393 auto phis = llvmBB->phis(); 394 auto numArguments = bb->getNumArguments(); 395 assert(numArguments == std::distance(phis.begin(), phis.end())); 396 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 397 auto &phiNode = numberedPhiNode.value(); 398 unsigned index = numberedPhiNode.index(); 399 for (auto *pred : bb->getPredecessors()) { 400 // Find the LLVM IR block that contains the converted terminator 401 // instruction and use it in the PHI node. Note that this block is not 402 // necessarily the same as state.lookupBlock(pred), some operations 403 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 404 // split the blocks. 405 llvm::Instruction *terminator = 406 state.lookupBranch(pred->getTerminator()); 407 assert(terminator && "missing the mapping for a terminator"); 408 phiNode.addIncoming( 409 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 410 terminator->getParent()); 411 } 412 } 413 } 414 } 415 416 /// Sort function blocks topologically. 417 SetVector<Block *> 418 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 419 // For each block that has not been visited yet (i.e. that has no 420 // predecessors), add it to the list as well as its successors. 421 SetVector<Block *> blocks; 422 for (Block &b : region) { 423 if (blocks.count(&b) == 0) { 424 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 425 blocks.insert(traversal.begin(), traversal.end()); 426 } 427 } 428 assert(blocks.size() == region.getBlocks().size() && 429 "some blocks are not sorted"); 430 431 return blocks; 432 } 433 434 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 435 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 436 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 437 llvm::Module *module = builder.GetInsertBlock()->getModule(); 438 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 439 return builder.CreateCall(fn, args); 440 } 441 442 llvm::Value * 443 mlir::LLVM::detail::createNvvmIntrinsicCall(llvm::IRBuilderBase &builder, 444 llvm::Intrinsic::ID intrinsic, 445 ArrayRef<llvm::Value *> args) { 446 llvm::Module *module = builder.GetInsertBlock()->getModule(); 447 llvm::Function *fn; 448 if (llvm::Intrinsic::isOverloaded(intrinsic)) { 449 if (intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f16_f16 && 450 intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f32_f32) { 451 // NVVM load and store instrinsic names are overloaded on the 452 // source/destination pointer type. Pointer is the first argument in the 453 // corresponding NVVM Op. 454 fn = llvm::Intrinsic::getDeclaration(module, intrinsic, 455 {args[0]->getType()}); 456 } else { 457 fn = llvm::Intrinsic::getDeclaration(module, intrinsic, {}); 458 } 459 } else { 460 fn = llvm::Intrinsic::getDeclaration(module, intrinsic); 461 } 462 return builder.CreateCall(fn, args); 463 } 464 465 /// Given a single MLIR operation, create the corresponding LLVM IR operation 466 /// using the `builder`. 467 LogicalResult 468 ModuleTranslation::convertOperation(Operation &op, 469 llvm::IRBuilderBase &builder) { 470 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 471 if (!opIface) 472 return op.emitError("cannot be converted to LLVM IR: missing " 473 "`LLVMTranslationDialectInterface` registration for " 474 "dialect for op: ") 475 << op.getName(); 476 477 if (failed(opIface->convertOperation(&op, builder, *this))) 478 return op.emitError("LLVM Translation failed for operation: ") 479 << op.getName(); 480 481 return convertDialectAttributes(&op); 482 } 483 484 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 485 /// to define values corresponding to the MLIR block arguments. These nodes 486 /// are not connected to the source basic blocks, which may not exist yet. Uses 487 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 488 /// been created for `bb` and included in the block mapping. Inserts new 489 /// instructions at the end of the block and leaves `builder` in a state 490 /// suitable for further insertion into the end of the block. 491 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 492 llvm::IRBuilderBase &builder) { 493 builder.SetInsertPoint(lookupBlock(&bb)); 494 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 495 496 // Before traversing operations, make block arguments available through 497 // value remapping and PHI nodes, but do not add incoming edges for the PHI 498 // nodes just yet: those values may be defined by this or following blocks. 499 // This step is omitted if "ignoreArguments" is set. The arguments of the 500 // first block have been already made available through the remapping of 501 // LLVM function arguments. 502 if (!ignoreArguments) { 503 auto predecessors = bb.getPredecessors(); 504 unsigned numPredecessors = 505 std::distance(predecessors.begin(), predecessors.end()); 506 for (auto arg : bb.getArguments()) { 507 auto wrappedType = arg.getType(); 508 if (!isCompatibleType(wrappedType)) 509 return emitError(bb.front().getLoc(), 510 "block argument does not have an LLVM type"); 511 llvm::Type *type = convertType(wrappedType); 512 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 513 mapValue(arg, phi); 514 } 515 } 516 517 // Traverse operations. 518 for (auto &op : bb) { 519 // Set the current debug location within the builder. 520 builder.SetCurrentDebugLocation( 521 debugTranslation->translateLoc(op.getLoc(), subprogram)); 522 523 if (failed(convertOperation(op, builder))) 524 return failure(); 525 } 526 527 return success(); 528 } 529 530 /// A helper method to get the single Block in an operation honoring LLVM's 531 /// module requirements. 532 static Block &getModuleBody(Operation *module) { 533 return module->getRegion(0).front(); 534 } 535 536 /// A helper method to decide if a constant must not be set as a global variable 537 /// initializer. For an external linkage variable, the variable with an 538 /// initializer is considered externally visible and defined in this module, the 539 /// variable without an initializer is externally available and is defined 540 /// elsewhere. 541 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 542 llvm::Constant *cst) { 543 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 544 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 545 } 546 547 /// Sets the runtime preemption specifier of `gv` to dso_local if 548 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 549 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 550 llvm::GlobalValue *gv) { 551 if (dsoLocalRequested) 552 gv->setDSOLocal(true); 553 } 554 555 /// Create named global variables that correspond to llvm.mlir.global 556 /// definitions. 557 LogicalResult ModuleTranslation::convertGlobals() { 558 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 559 llvm::Type *type = convertType(op.getType()); 560 llvm::Constant *cst = nullptr; 561 if (op.getValueOrNull()) { 562 // String attributes are treated separately because they cannot appear as 563 // in-function constants and are thus not supported by getLLVMConstant. 564 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 565 cst = llvm::ConstantDataArray::getString( 566 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 567 type = cst->getType(); 568 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 569 *this))) { 570 return failure(); 571 } 572 } 573 574 auto linkage = convertLinkageToLLVM(op.linkage()); 575 auto addrSpace = op.addr_space(); 576 577 // LLVM IR requires constant with linkage other than external or weak 578 // external to have initializers. If MLIR does not provide an initializer, 579 // default to undef. 580 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 581 if (!dropInitializer && !cst) 582 cst = llvm::UndefValue::get(type); 583 else if (dropInitializer && cst) 584 cst = nullptr; 585 586 auto *var = new llvm::GlobalVariable( 587 *llvmModule, type, op.constant(), linkage, cst, op.sym_name(), 588 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 589 590 if (op.unnamed_addr().hasValue()) 591 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.unnamed_addr())); 592 593 if (op.section().hasValue()) 594 var->setSection(*op.section()); 595 596 addRuntimePreemptionSpecifier(op.dso_local(), var); 597 598 Optional<uint64_t> alignment = op.alignment(); 599 if (alignment.hasValue()) 600 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 601 602 globalsMapping.try_emplace(op, var); 603 } 604 605 // Convert global variable bodies. This is done after all global variables 606 // have been created in LLVM IR because a global body may refer to another 607 // global or itself. So all global variables need to be mapped first. 608 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 609 if (Block *initializer = op.getInitializerBlock()) { 610 llvm::IRBuilder<> builder(llvmModule->getContext()); 611 for (auto &op : initializer->without_terminator()) { 612 if (failed(convertOperation(op, builder)) || 613 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 614 return emitError(op.getLoc(), "unemittable constant value"); 615 } 616 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 617 llvm::Constant *cst = 618 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 619 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 620 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 621 global->setInitializer(cst); 622 } 623 } 624 625 return success(); 626 } 627 628 /// Attempts to add an attribute identified by `key`, optionally with the given 629 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 630 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 631 /// otherwise keep it as a string attribute. Performs additional checks for 632 /// attributes known to have or not have a value in order to avoid assertions 633 /// inside LLVM upon construction. 634 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 635 llvm::Function *llvmFunc, 636 StringRef key, 637 StringRef value = StringRef()) { 638 auto kind = llvm::Attribute::getAttrKindFromName(key); 639 if (kind == llvm::Attribute::None) { 640 llvmFunc->addFnAttr(key, value); 641 return success(); 642 } 643 644 if (llvm::Attribute::isIntAttrKind(kind)) { 645 if (value.empty()) 646 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 647 648 int result; 649 if (!value.getAsInteger(/*Radix=*/0, result)) 650 llvmFunc->addFnAttr( 651 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 652 else 653 llvmFunc->addFnAttr(key, value); 654 return success(); 655 } 656 657 if (!value.empty()) 658 return emitError(loc) << "LLVM attribute '" << key 659 << "' does not expect a value, found '" << value 660 << "'"; 661 662 llvmFunc->addFnAttr(kind); 663 return success(); 664 } 665 666 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 667 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 668 /// to be an array attribute containing either string attributes, treated as 669 /// value-less LLVM attributes, or array attributes containing two string 670 /// attributes, with the first string being the name of the corresponding LLVM 671 /// attribute and the second string beings its value. Note that even integer 672 /// attributes are expected to have their values expressed as strings. 673 static LogicalResult 674 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 675 llvm::Function *llvmFunc) { 676 if (!attributes) 677 return success(); 678 679 for (Attribute attr : *attributes) { 680 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 681 if (failed( 682 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 683 return failure(); 684 continue; 685 } 686 687 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 688 if (!arrayAttr || arrayAttr.size() != 2) 689 return emitError(loc) 690 << "expected 'passthrough' to contain string or array attributes"; 691 692 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 693 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 694 if (!keyAttr || !valueAttr) 695 return emitError(loc) 696 << "expected arrays within 'passthrough' to contain two strings"; 697 698 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 699 valueAttr.getValue()))) 700 return failure(); 701 } 702 return success(); 703 } 704 705 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 706 // Clear the block, branch value mappings, they are only relevant within one 707 // function. 708 blockMapping.clear(); 709 valueMapping.clear(); 710 branchMapping.clear(); 711 llvm::Function *llvmFunc = lookupFunction(func.getName()); 712 713 // Translate the debug information for this function. 714 debugTranslation->translate(func, *llvmFunc); 715 716 // Add function arguments to the value remapping table. 717 // If there was noalias info then we decorate each argument accordingly. 718 unsigned int argIdx = 0; 719 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 720 llvm::Argument &llvmArg = std::get<1>(kvp); 721 BlockArgument mlirArg = std::get<0>(kvp); 722 723 if (auto attr = func.getArgAttrOfType<UnitAttr>( 724 argIdx, LLVMDialect::getNoAliasAttrName())) { 725 // NB: Attribute already verified to be boolean, so check if we can indeed 726 // attach the attribute to this argument, based on its type. 727 auto argTy = mlirArg.getType(); 728 if (!argTy.isa<LLVM::LLVMPointerType>()) 729 return func.emitError( 730 "llvm.noalias attribute attached to LLVM non-pointer argument"); 731 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 732 } 733 734 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 735 argIdx, LLVMDialect::getAlignAttrName())) { 736 // NB: Attribute already verified to be int, so check if we can indeed 737 // attach the attribute to this argument, based on its type. 738 auto argTy = mlirArg.getType(); 739 if (!argTy.isa<LLVM::LLVMPointerType>()) 740 return func.emitError( 741 "llvm.align attribute attached to LLVM non-pointer argument"); 742 llvmArg.addAttrs( 743 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 744 } 745 746 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 747 auto argTy = mlirArg.getType(); 748 if (!argTy.isa<LLVM::LLVMPointerType>()) 749 return func.emitError( 750 "llvm.sret attribute attached to LLVM non-pointer argument"); 751 llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr( 752 llvmArg.getType()->getPointerElementType())); 753 } 754 755 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 756 auto argTy = mlirArg.getType(); 757 if (!argTy.isa<LLVM::LLVMPointerType>()) 758 return func.emitError( 759 "llvm.byval attribute attached to LLVM non-pointer argument"); 760 llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr( 761 llvmArg.getType()->getPointerElementType())); 762 } 763 764 mapValue(mlirArg, &llvmArg); 765 argIdx++; 766 } 767 768 // Check the personality and set it. 769 if (func.personality().hasValue()) { 770 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 771 if (llvm::Constant *pfunc = 772 getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this)) 773 llvmFunc->setPersonalityFn(pfunc); 774 } 775 776 // First, create all blocks so we can jump to them. 777 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 778 for (auto &bb : func) { 779 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 780 llvmBB->insertInto(llvmFunc); 781 mapBlock(&bb, llvmBB); 782 } 783 784 // Then, convert blocks one by one in topological order to ensure defs are 785 // converted before uses. 786 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 787 for (Block *bb : blocks) { 788 llvm::IRBuilder<> builder(llvmContext); 789 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 790 return failure(); 791 } 792 793 // After all blocks have been traversed and values mapped, connect the PHI 794 // nodes to the results of preceding blocks. 795 detail::connectPHINodes(func.getBody(), *this); 796 797 // Finally, convert dialect attributes attached to the function. 798 return convertDialectAttributes(func); 799 } 800 801 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 802 for (NamedAttribute attribute : op->getDialectAttrs()) 803 if (failed(iface.amendOperation(op, attribute, *this))) 804 return failure(); 805 return success(); 806 } 807 808 LogicalResult ModuleTranslation::convertFunctionSignatures() { 809 // Declare all functions first because there may be function calls that form a 810 // call graph with cycles, or global initializers that reference functions. 811 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 812 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 813 function.getName(), 814 cast<llvm::FunctionType>(convertType(function.getType()))); 815 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 816 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage())); 817 mapFunction(function.getName(), llvmFunc); 818 addRuntimePreemptionSpecifier(function.dso_local(), llvmFunc); 819 820 // Forward the pass-through attributes to LLVM. 821 if (failed(forwardPassthroughAttributes(function.getLoc(), 822 function.passthrough(), llvmFunc))) 823 return failure(); 824 } 825 826 return success(); 827 } 828 829 LogicalResult ModuleTranslation::convertFunctions() { 830 // Convert functions. 831 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 832 // Ignore external functions. 833 if (function.isExternal()) 834 continue; 835 836 if (failed(convertOneFunction(function))) 837 return failure(); 838 } 839 840 return success(); 841 } 842 843 llvm::MDNode * 844 ModuleTranslation::getAccessGroup(Operation &opInst, 845 SymbolRefAttr accessGroupRef) const { 846 auto metadataName = accessGroupRef.getRootReference(); 847 auto accessGroupName = accessGroupRef.getLeafReference(); 848 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 849 opInst.getParentOp(), metadataName); 850 auto *accessGroupOp = 851 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 852 return accessGroupMetadataMapping.lookup(accessGroupOp); 853 } 854 855 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 856 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 857 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 858 llvm::LLVMContext &ctx = llvmModule->getContext(); 859 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 860 accessGroupMetadataMapping.insert({op, accessGroup}); 861 }); 862 }); 863 return success(); 864 } 865 866 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 867 llvm::Instruction *inst) { 868 auto accessGroups = 869 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 870 if (accessGroups && !accessGroups.empty()) { 871 llvm::Module *module = inst->getModule(); 872 SmallVector<llvm::Metadata *> metadatas; 873 for (SymbolRefAttr accessGroupRef : 874 accessGroups.getAsRange<SymbolRefAttr>()) 875 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 876 877 llvm::MDNode *unionMD = nullptr; 878 if (metadatas.size() == 1) 879 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 880 else if (metadatas.size() >= 2) 881 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 882 883 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 884 } 885 } 886 887 LogicalResult ModuleTranslation::createAliasScopeMetadata() { 888 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 889 // Create the domains first, so they can be reference below in the scopes. 890 DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping; 891 metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) { 892 llvm::LLVMContext &ctx = llvmModule->getContext(); 893 llvm::SmallVector<llvm::Metadata *, 2> operands; 894 operands.push_back({}); // Placeholder for self-reference 895 if (Optional<StringRef> description = op.description()) 896 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 897 llvm::MDNode *domain = llvm::MDNode::get(ctx, operands); 898 domain->replaceOperandWith(0, domain); // Self-reference for uniqueness 899 aliasScopeDomainMetadataMapping.insert({op, domain}); 900 }); 901 902 // Now create the scopes, referencing the domains created above. 903 metadatas.walk([&](LLVM::AliasScopeMetadataOp op) { 904 llvm::LLVMContext &ctx = llvmModule->getContext(); 905 assert(isa<LLVM::MetadataOp>(op->getParentOp())); 906 auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp()); 907 Operation *domainOp = 908 SymbolTable::lookupNearestSymbolFrom(metadataOp, op.domainAttr()); 909 llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp); 910 assert(domain && "Scope's domain should already be valid"); 911 llvm::SmallVector<llvm::Metadata *, 3> operands; 912 operands.push_back({}); // Placeholder for self-reference 913 operands.push_back(domain); 914 if (Optional<StringRef> description = op.description()) 915 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 916 llvm::MDNode *scope = llvm::MDNode::get(ctx, operands); 917 scope->replaceOperandWith(0, scope); // Self-reference for uniqueness 918 aliasScopeMetadataMapping.insert({op, scope}); 919 }); 920 }); 921 return success(); 922 } 923 924 llvm::MDNode * 925 ModuleTranslation::getAliasScope(Operation &opInst, 926 SymbolRefAttr aliasScopeRef) const { 927 StringAttr metadataName = aliasScopeRef.getRootReference(); 928 StringAttr scopeName = aliasScopeRef.getLeafReference(); 929 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 930 opInst.getParentOp(), metadataName); 931 Operation *aliasScopeOp = 932 SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName); 933 return aliasScopeMetadataMapping.lookup(aliasScopeOp); 934 } 935 936 void ModuleTranslation::setAliasScopeMetadata(Operation *op, 937 llvm::Instruction *inst) { 938 auto populateScopeMetadata = [this, op, inst](StringRef attrName, 939 StringRef llvmMetadataName) { 940 auto scopes = op->getAttrOfType<ArrayAttr>(attrName); 941 if (!scopes || scopes.empty()) 942 return; 943 llvm::Module *module = inst->getModule(); 944 SmallVector<llvm::Metadata *> scopeMDs; 945 for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>()) 946 scopeMDs.push_back(getAliasScope(*op, scopeRef)); 947 llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs); 948 inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD); 949 }; 950 951 populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope"); 952 populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias"); 953 } 954 955 llvm::Type *ModuleTranslation::convertType(Type type) { 956 return typeTranslator.translateType(type); 957 } 958 959 /// A helper to look up remapped operands in the value remapping table. 960 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 961 SmallVector<llvm::Value *> remapped; 962 remapped.reserve(values.size()); 963 for (Value v : values) 964 remapped.push_back(lookupValue(v)); 965 return remapped; 966 } 967 968 const llvm::DILocation * 969 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 970 return debugTranslation->translateLoc(loc, scope); 971 } 972 973 llvm::NamedMDNode * 974 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 975 return llvmModule->getOrInsertNamedMetadata(name); 976 } 977 978 void ModuleTranslation::StackFrame::anchor() {} 979 980 static std::unique_ptr<llvm::Module> 981 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 982 StringRef name) { 983 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 984 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 985 if (auto dataLayoutAttr = 986 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 987 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 988 if (auto targetTripleAttr = 989 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 990 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 991 992 // Inject declarations for `malloc` and `free` functions that can be used in 993 // memref allocation/deallocation coming from standard ops lowering. 994 llvm::IRBuilder<> builder(llvmContext); 995 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 996 builder.getInt64Ty()); 997 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 998 builder.getInt8PtrTy()); 999 1000 return llvmModule; 1001 } 1002 1003 std::unique_ptr<llvm::Module> 1004 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1005 StringRef name) { 1006 if (!satisfiesLLVMModule(module)) 1007 return nullptr; 1008 std::unique_ptr<llvm::Module> llvmModule = 1009 prepareLLVMModule(module, llvmContext, name); 1010 1011 LLVM::ensureDistinctSuccessors(module); 1012 1013 ModuleTranslation translator(module, std::move(llvmModule)); 1014 if (failed(translator.convertFunctionSignatures())) 1015 return nullptr; 1016 if (failed(translator.convertGlobals())) 1017 return nullptr; 1018 if (failed(translator.createAccessGroupMetadata())) 1019 return nullptr; 1020 if (failed(translator.createAliasScopeMetadata())) 1021 return nullptr; 1022 if (failed(translator.convertFunctions())) 1023 return nullptr; 1024 1025 // Convert other top-level operations if possible. 1026 llvm::IRBuilder<> llvmBuilder(llvmContext); 1027 for (Operation &o : getModuleBody(module).getOperations()) { 1028 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) && 1029 !o.hasTrait<OpTrait::IsTerminator>() && 1030 failed(translator.convertOperation(o, llvmBuilder))) { 1031 return nullptr; 1032 } 1033 } 1034 1035 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1036 return nullptr; 1037 1038 return std::move(translator.llvmModule); 1039 } 1040