1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 34 using namespace mlir; 35 using namespace mlir::LLVM; 36 using namespace mlir::LLVM::detail; 37 38 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 39 40 /// Builds a constant of a sequential LLVM type `type`, potentially containing 41 /// other sequential types recursively, from the individual constant values 42 /// provided in `constants`. `shape` contains the number of elements in nested 43 /// sequential types. Reports errors at `loc` and returns nullptr on error. 44 static llvm::Constant * 45 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 46 ArrayRef<int64_t> shape, llvm::Type *type, 47 Location loc) { 48 if (shape.empty()) { 49 llvm::Constant *result = constants.front(); 50 constants = constants.drop_front(); 51 return result; 52 } 53 54 if (!isa<llvm::SequentialType>(type)) { 55 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 56 return nullptr; 57 } 58 59 llvm::Type *elementType = type->getSequentialElementType(); 60 SmallVector<llvm::Constant *, 8> nested; 61 nested.reserve(shape.front()); 62 for (int64_t i = 0; i < shape.front(); ++i) { 63 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 64 elementType, loc)); 65 if (!nested.back()) 66 return nullptr; 67 } 68 69 if (shape.size() == 1 && type->isVectorTy()) 70 return llvm::ConstantVector::get(nested); 71 return llvm::ConstantArray::get( 72 llvm::ArrayType::get(elementType, shape.front()), nested); 73 } 74 75 /// Returns the first non-sequential type nested in sequential types. 76 static llvm::Type *getInnermostElementType(llvm::Type *type) { 77 while (isa<llvm::SequentialType>(type)) 78 type = type->getSequentialElementType(); 79 return type; 80 } 81 82 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 83 /// This currently supports integer, floating point, splat and dense element 84 /// attributes and combinations thereof. In case of error, report it to `loc` 85 /// and return nullptr. 86 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 87 Attribute attr, 88 Location loc) { 89 if (!attr) 90 return llvm::UndefValue::get(llvmType); 91 if (llvmType->isStructTy()) { 92 emitError(loc, "struct types are not supported in constants"); 93 return nullptr; 94 } 95 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 96 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 97 if (auto boolAttr = attr.dyn_cast<BoolAttr>()) 98 return llvm::ConstantInt::get(llvmType, boolAttr.getValue()); 99 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 100 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 101 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 102 return functionMapping.lookup(funcAttr.getValue()); 103 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 104 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 105 auto elementType = sequentialType->getElementType(); 106 uint64_t numElements = sequentialType->getNumElements(); 107 // Splat value is a scalar. Extract it only if the element type is not 108 // another sequence type. The recursion terminates because each step removes 109 // one outer sequential type. 110 llvm::Constant *child = getLLVMConstant( 111 elementType, 112 isa<llvm::SequentialType>(elementType) ? splatAttr 113 : splatAttr.getSplatValue(), 114 loc); 115 if (!child) 116 return nullptr; 117 if (llvmType->isVectorTy()) 118 return llvm::ConstantVector::getSplat( 119 llvm::ElementCount(numElements, /*Scalable=*/false), child); 120 if (llvmType->isArrayTy()) { 121 auto arrayType = llvm::ArrayType::get(elementType, numElements); 122 SmallVector<llvm::Constant *, 8> constants(numElements, child); 123 return llvm::ConstantArray::get(arrayType, constants); 124 } 125 } 126 127 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 128 assert(elementsAttr.getType().hasStaticShape()); 129 assert(elementsAttr.getNumElements() != 0 && 130 "unexpected empty elements attribute"); 131 assert(!elementsAttr.getType().getShape().empty() && 132 "unexpected empty elements attribute shape"); 133 134 SmallVector<llvm::Constant *, 8> constants; 135 constants.reserve(elementsAttr.getNumElements()); 136 llvm::Type *innermostType = getInnermostElementType(llvmType); 137 for (auto n : elementsAttr.getValues<Attribute>()) { 138 constants.push_back(getLLVMConstant(innermostType, n, loc)); 139 if (!constants.back()) 140 return nullptr; 141 } 142 ArrayRef<llvm::Constant *> constantsRef = constants; 143 llvm::Constant *result = buildSequentialConstant( 144 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 145 assert(constantsRef.empty() && "did not consume all elemental constants"); 146 return result; 147 } 148 149 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 150 return llvm::ConstantDataArray::get( 151 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 152 stringAttr.getValue().size()}); 153 } 154 emitError(loc, "unsupported constant value"); 155 return nullptr; 156 } 157 158 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 159 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 160 switch (p) { 161 case LLVM::ICmpPredicate::eq: 162 return llvm::CmpInst::Predicate::ICMP_EQ; 163 case LLVM::ICmpPredicate::ne: 164 return llvm::CmpInst::Predicate::ICMP_NE; 165 case LLVM::ICmpPredicate::slt: 166 return llvm::CmpInst::Predicate::ICMP_SLT; 167 case LLVM::ICmpPredicate::sle: 168 return llvm::CmpInst::Predicate::ICMP_SLE; 169 case LLVM::ICmpPredicate::sgt: 170 return llvm::CmpInst::Predicate::ICMP_SGT; 171 case LLVM::ICmpPredicate::sge: 172 return llvm::CmpInst::Predicate::ICMP_SGE; 173 case LLVM::ICmpPredicate::ult: 174 return llvm::CmpInst::Predicate::ICMP_ULT; 175 case LLVM::ICmpPredicate::ule: 176 return llvm::CmpInst::Predicate::ICMP_ULE; 177 case LLVM::ICmpPredicate::ugt: 178 return llvm::CmpInst::Predicate::ICMP_UGT; 179 case LLVM::ICmpPredicate::uge: 180 return llvm::CmpInst::Predicate::ICMP_UGE; 181 } 182 llvm_unreachable("incorrect comparison predicate"); 183 } 184 185 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 186 switch (p) { 187 case LLVM::FCmpPredicate::_false: 188 return llvm::CmpInst::Predicate::FCMP_FALSE; 189 case LLVM::FCmpPredicate::oeq: 190 return llvm::CmpInst::Predicate::FCMP_OEQ; 191 case LLVM::FCmpPredicate::ogt: 192 return llvm::CmpInst::Predicate::FCMP_OGT; 193 case LLVM::FCmpPredicate::oge: 194 return llvm::CmpInst::Predicate::FCMP_OGE; 195 case LLVM::FCmpPredicate::olt: 196 return llvm::CmpInst::Predicate::FCMP_OLT; 197 case LLVM::FCmpPredicate::ole: 198 return llvm::CmpInst::Predicate::FCMP_OLE; 199 case LLVM::FCmpPredicate::one: 200 return llvm::CmpInst::Predicate::FCMP_ONE; 201 case LLVM::FCmpPredicate::ord: 202 return llvm::CmpInst::Predicate::FCMP_ORD; 203 case LLVM::FCmpPredicate::ueq: 204 return llvm::CmpInst::Predicate::FCMP_UEQ; 205 case LLVM::FCmpPredicate::ugt: 206 return llvm::CmpInst::Predicate::FCMP_UGT; 207 case LLVM::FCmpPredicate::uge: 208 return llvm::CmpInst::Predicate::FCMP_UGE; 209 case LLVM::FCmpPredicate::ult: 210 return llvm::CmpInst::Predicate::FCMP_ULT; 211 case LLVM::FCmpPredicate::ule: 212 return llvm::CmpInst::Predicate::FCMP_ULE; 213 case LLVM::FCmpPredicate::une: 214 return llvm::CmpInst::Predicate::FCMP_UNE; 215 case LLVM::FCmpPredicate::uno: 216 return llvm::CmpInst::Predicate::FCMP_UNO; 217 case LLVM::FCmpPredicate::_true: 218 return llvm::CmpInst::Predicate::FCMP_TRUE; 219 } 220 llvm_unreachable("incorrect comparison predicate"); 221 } 222 223 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 224 switch (op) { 225 case LLVM::AtomicBinOp::xchg: 226 return llvm::AtomicRMWInst::BinOp::Xchg; 227 case LLVM::AtomicBinOp::add: 228 return llvm::AtomicRMWInst::BinOp::Add; 229 case LLVM::AtomicBinOp::sub: 230 return llvm::AtomicRMWInst::BinOp::Sub; 231 case LLVM::AtomicBinOp::_and: 232 return llvm::AtomicRMWInst::BinOp::And; 233 case LLVM::AtomicBinOp::nand: 234 return llvm::AtomicRMWInst::BinOp::Nand; 235 case LLVM::AtomicBinOp::_or: 236 return llvm::AtomicRMWInst::BinOp::Or; 237 case LLVM::AtomicBinOp::_xor: 238 return llvm::AtomicRMWInst::BinOp::Xor; 239 case LLVM::AtomicBinOp::max: 240 return llvm::AtomicRMWInst::BinOp::Max; 241 case LLVM::AtomicBinOp::min: 242 return llvm::AtomicRMWInst::BinOp::Min; 243 case LLVM::AtomicBinOp::umax: 244 return llvm::AtomicRMWInst::BinOp::UMax; 245 case LLVM::AtomicBinOp::umin: 246 return llvm::AtomicRMWInst::BinOp::UMin; 247 case LLVM::AtomicBinOp::fadd: 248 return llvm::AtomicRMWInst::BinOp::FAdd; 249 case LLVM::AtomicBinOp::fsub: 250 return llvm::AtomicRMWInst::BinOp::FSub; 251 } 252 llvm_unreachable("incorrect atomic binary operator"); 253 } 254 255 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 256 switch (ordering) { 257 case LLVM::AtomicOrdering::not_atomic: 258 return llvm::AtomicOrdering::NotAtomic; 259 case LLVM::AtomicOrdering::unordered: 260 return llvm::AtomicOrdering::Unordered; 261 case LLVM::AtomicOrdering::monotonic: 262 return llvm::AtomicOrdering::Monotonic; 263 case LLVM::AtomicOrdering::acquire: 264 return llvm::AtomicOrdering::Acquire; 265 case LLVM::AtomicOrdering::release: 266 return llvm::AtomicOrdering::Release; 267 case LLVM::AtomicOrdering::acq_rel: 268 return llvm::AtomicOrdering::AcquireRelease; 269 case LLVM::AtomicOrdering::seq_cst: 270 return llvm::AtomicOrdering::SequentiallyConsistent; 271 } 272 llvm_unreachable("incorrect atomic ordering"); 273 } 274 275 ModuleTranslation::ModuleTranslation(Operation *module, 276 std::unique_ptr<llvm::Module> llvmModule) 277 : mlirModule(module), llvmModule(std::move(llvmModule)), 278 debugTranslation( 279 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 280 ompDialect( 281 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()) { 282 assert(satisfiesLLVMModule(mlirModule) && 283 "mlirModule should honor LLVM's module semantics."); 284 } 285 ModuleTranslation::~ModuleTranslation() {} 286 287 /// Given a single MLIR operation, create the corresponding LLVM IR operation 288 /// using the `builder`. LLVM IR Builder does not have a generic interface so 289 /// this has to be a long chain of `if`s calling different functions with a 290 /// different number of arguments. 291 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 292 llvm::IRBuilder<> &builder) { 293 auto extractPosition = [](ArrayAttr attr) { 294 SmallVector<unsigned, 4> position; 295 position.reserve(attr.size()); 296 for (Attribute v : attr) 297 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 298 return position; 299 }; 300 301 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 302 303 // Emit function calls. If the "callee" attribute is present, this is a 304 // direct function call and we also need to look up the remapped function 305 // itself. Otherwise, this is an indirect call and the callee is the first 306 // operand, look it up as a normal value. Return the llvm::Value representing 307 // the function result, which may be of llvm::VoidTy type. 308 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 309 auto operands = lookupValues(op.getOperands()); 310 ArrayRef<llvm::Value *> operandsRef(operands); 311 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 312 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 313 operandsRef); 314 } else { 315 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 316 } 317 }; 318 319 // Emit calls. If the called function has a result, remap the corresponding 320 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 321 if (isa<LLVM::CallOp>(opInst)) { 322 llvm::Value *result = convertCall(opInst); 323 if (opInst.getNumResults() != 0) { 324 valueMapping[opInst.getResult(0)] = result; 325 return success(); 326 } 327 // Check that LLVM call returns void for 0-result functions. 328 return success(result->getType()->isVoidTy()); 329 } 330 331 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 332 auto operands = lookupValues(opInst.getOperands()); 333 ArrayRef<llvm::Value *> operandsRef(operands); 334 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) 335 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 336 blockMapping[invOp.getSuccessor(0)], 337 blockMapping[invOp.getSuccessor(1)], operandsRef); 338 else 339 builder.CreateInvoke( 340 operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 341 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 342 return success(); 343 } 344 345 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 346 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 347 llvm::LandingPadInst *lpi = 348 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 349 350 // Add clauses 351 for (auto operand : lookupValues(lpOp.getOperands())) { 352 // All operands should be constant - checked by verifier 353 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 354 lpi->addClause(constOperand); 355 } 356 return success(); 357 } 358 359 // Emit branches. We need to look up the remapped blocks and ignore the block 360 // arguments that were transformed into PHI nodes. 361 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 362 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 363 return success(); 364 } 365 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 366 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 367 blockMapping[condbrOp.getSuccessor(0)], 368 blockMapping[condbrOp.getSuccessor(1)]); 369 return success(); 370 } 371 372 // Emit addressof. We need to look up the global value referenced by the 373 // operation and store it in the MLIR-to-LLVM value mapping. This does not 374 // emit any LLVM instruction. 375 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 376 LLVM::GlobalOp global = addressOfOp.getGlobal(); 377 // The verifier should not have allowed this. 378 assert(global && "referencing an undefined global"); 379 380 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 381 return success(); 382 } 383 384 if (opInst.getDialect() == ompDialect) { 385 if (!ompBuilder) { 386 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 387 ompBuilder->initialize(); 388 } 389 390 if (isa<omp::BarrierOp>(opInst)) { 391 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 392 return success(); 393 } 394 return opInst.emitError("unsupported OpenMP operation: ") 395 << opInst.getName(); 396 } 397 398 return opInst.emitError("unsupported or non-LLVM operation: ") 399 << opInst.getName(); 400 } 401 402 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 403 /// to define values corresponding to the MLIR block arguments. These nodes 404 /// are not connected to the source basic blocks, which may not exist yet. 405 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 406 llvm::IRBuilder<> builder(blockMapping[&bb]); 407 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 408 409 // Before traversing operations, make block arguments available through 410 // value remapping and PHI nodes, but do not add incoming edges for the PHI 411 // nodes just yet: those values may be defined by this or following blocks. 412 // This step is omitted if "ignoreArguments" is set. The arguments of the 413 // first block have been already made available through the remapping of 414 // LLVM function arguments. 415 if (!ignoreArguments) { 416 auto predecessors = bb.getPredecessors(); 417 unsigned numPredecessors = 418 std::distance(predecessors.begin(), predecessors.end()); 419 for (auto arg : bb.getArguments()) { 420 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 421 if (!wrappedType) 422 return emitError(bb.front().getLoc(), 423 "block argument does not have an LLVM type"); 424 llvm::Type *type = wrappedType.getUnderlyingType(); 425 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 426 valueMapping[arg] = phi; 427 } 428 } 429 430 // Traverse operations. 431 for (auto &op : bb) { 432 // Set the current debug location within the builder. 433 builder.SetCurrentDebugLocation( 434 debugTranslation->translateLoc(op.getLoc(), subprogram)); 435 436 if (failed(convertOperation(op, builder))) 437 return failure(); 438 } 439 440 return success(); 441 } 442 443 /// Create named global variables that correspond to llvm.mlir.global 444 /// definitions. 445 LogicalResult ModuleTranslation::convertGlobals() { 446 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 447 llvm::Type *type = op.getType().getUnderlyingType(); 448 llvm::Constant *cst = llvm::UndefValue::get(type); 449 if (op.getValueOrNull()) { 450 // String attributes are treated separately because they cannot appear as 451 // in-function constants and are thus not supported by getLLVMConstant. 452 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 453 cst = llvm::ConstantDataArray::getString( 454 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 455 type = cst->getType(); 456 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 457 op.getLoc()))) { 458 return failure(); 459 } 460 } else if (Block *initializer = op.getInitializerBlock()) { 461 llvm::IRBuilder<> builder(llvmModule->getContext()); 462 for (auto &op : initializer->without_terminator()) { 463 if (failed(convertOperation(op, builder)) || 464 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 465 return emitError(op.getLoc(), "unemittable constant value"); 466 } 467 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 468 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 469 } 470 471 auto linkage = convertLinkageToLLVM(op.linkage()); 472 bool anyExternalLinkage = 473 ((linkage == llvm::GlobalVariable::ExternalLinkage && 474 isa<llvm::UndefValue>(cst)) || 475 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 476 auto addrSpace = op.addr_space().getLimitedValue(); 477 auto *var = new llvm::GlobalVariable( 478 *llvmModule, type, op.constant(), linkage, 479 anyExternalLinkage ? nullptr : cst, op.sym_name(), 480 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 481 482 globalsMapping.try_emplace(op, var); 483 } 484 485 return success(); 486 } 487 488 /// Get the SSA value passed to the current block from the terminator operation 489 /// of its predecessor. 490 static Value getPHISourceValue(Block *current, Block *pred, 491 unsigned numArguments, unsigned index) { 492 auto &terminator = *pred->getTerminator(); 493 if (isa<LLVM::BrOp>(terminator)) { 494 return terminator.getOperand(index); 495 } 496 497 // For conditional branches, we need to check if the current block is reached 498 // through the "true" or the "false" branch and take the relevant operands. 499 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 500 assert(condBranchOp && 501 "only branch operations can be terminators of a block that " 502 "has successors"); 503 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 504 "successors with arguments in LLVM conditional branches must be " 505 "different blocks"); 506 507 return condBranchOp.getSuccessor(0) == current 508 ? condBranchOp.trueDestOperands()[index] 509 : condBranchOp.falseDestOperands()[index]; 510 } 511 512 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 513 // Skip the first block, it cannot be branched to and its arguments correspond 514 // to the arguments of the LLVM function. 515 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 516 Block *bb = &*it; 517 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 518 auto phis = llvmBB->phis(); 519 auto numArguments = bb->getNumArguments(); 520 assert(numArguments == std::distance(phis.begin(), phis.end())); 521 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 522 auto &phiNode = numberedPhiNode.value(); 523 unsigned index = numberedPhiNode.index(); 524 for (auto *pred : bb->getPredecessors()) { 525 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 526 bb, pred, numArguments, index)), 527 blockMapping.lookup(pred)); 528 } 529 } 530 } 531 } 532 533 // TODO(mlir-team): implement an iterative version 534 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 535 blocks.insert(b); 536 for (Block *bb : b->getSuccessors()) { 537 if (blocks.count(bb) == 0) 538 topologicalSortImpl(blocks, bb); 539 } 540 } 541 542 /// Sort function blocks topologically. 543 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 544 // For each blocks that has not been visited yet (i.e. that has no 545 // predecessors), add it to the list and traverse its successors in DFS 546 // preorder. 547 llvm::SetVector<Block *> blocks; 548 for (Block &b : f.getBlocks()) { 549 if (blocks.count(&b) == 0) 550 topologicalSortImpl(blocks, &b); 551 } 552 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 553 554 return blocks; 555 } 556 557 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 558 // Clear the block and value mappings, they are only relevant within one 559 // function. 560 blockMapping.clear(); 561 valueMapping.clear(); 562 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 563 564 // Translate the debug information for this function. 565 debugTranslation->translate(func, *llvmFunc); 566 567 // Add function arguments to the value remapping table. 568 // If there was noalias info then we decorate each argument accordingly. 569 unsigned int argIdx = 0; 570 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 571 llvm::Argument &llvmArg = std::get<1>(kvp); 572 BlockArgument mlirArg = std::get<0>(kvp); 573 574 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 575 // NB: Attribute already verified to be boolean, so check if we can indeed 576 // attach the attribute to this argument, based on its type. 577 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 578 if (!argTy.getUnderlyingType()->isPointerTy()) 579 return func.emitError( 580 "llvm.noalias attribute attached to LLVM non-pointer argument"); 581 if (attr.getValue()) 582 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 583 } 584 valueMapping[mlirArg] = &llvmArg; 585 argIdx++; 586 } 587 588 // First, create all blocks so we can jump to them. 589 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 590 for (auto &bb : func) { 591 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 592 llvmBB->insertInto(llvmFunc); 593 blockMapping[&bb] = llvmBB; 594 } 595 596 // Then, convert blocks one by one in topological order to ensure defs are 597 // converted before uses. 598 auto blocks = topologicalSort(func); 599 for (auto indexedBB : llvm::enumerate(blocks)) { 600 auto *bb = indexedBB.value(); 601 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 602 return failure(); 603 } 604 605 // Finally, after all blocks have been traversed and values mapped, connect 606 // the PHI nodes to the results of preceding blocks. 607 connectPHINodes(func); 608 return success(); 609 } 610 611 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 612 for (Operation &o : getModuleBody(m).getOperations()) 613 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 614 !o.isKnownTerminator()) 615 return o.emitOpError("unsupported module-level operation"); 616 return success(); 617 } 618 619 LogicalResult ModuleTranslation::convertFunctions() { 620 // Declare all functions first because there may be function calls that form a 621 // call graph with cycles. 622 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 623 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 624 function.getName(), 625 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 626 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 627 functionMapping[function.getName()] = 628 cast<llvm::Function>(llvmFuncCst.getCallee()); 629 } 630 631 // Convert functions. 632 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 633 // Ignore external functions. 634 if (function.isExternal()) 635 continue; 636 637 if (failed(convertOneFunction(function))) 638 return failure(); 639 } 640 641 return success(); 642 } 643 644 /// A helper to look up remapped operands in the value remapping table.` 645 SmallVector<llvm::Value *, 8> 646 ModuleTranslation::lookupValues(ValueRange values) { 647 SmallVector<llvm::Value *, 8> remapped; 648 remapped.reserve(values.size()); 649 for (Value v : values) 650 remapped.push_back(valueMapping.lookup(v)); 651 return remapped; 652 } 653 654 std::unique_ptr<llvm::Module> 655 ModuleTranslation::prepareLLVMModule(Operation *m) { 656 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 657 assert(dialect && "LLVM dialect must be registered"); 658 659 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 660 if (!llvmModule) 661 return nullptr; 662 663 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 664 llvm::IRBuilder<> builder(llvmContext); 665 666 // Inject declarations for `malloc` and `free` functions that can be used in 667 // memref allocation/deallocation coming from standard ops lowering. 668 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 669 builder.getInt64Ty()); 670 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 671 builder.getInt8PtrTy()); 672 673 return llvmModule; 674 } 675