1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/ADT/TypeSwitch.h" 18 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/Module.h" 22 #include "mlir/IR/StandardTypes.h" 23 #include "mlir/Support/LLVM.h" 24 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 35 using namespace mlir; 36 using namespace mlir::LLVM; 37 using namespace mlir::LLVM::detail; 38 39 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 40 41 /// Builds a constant of a sequential LLVM type `type`, potentially containing 42 /// other sequential types recursively, from the individual constant values 43 /// provided in `constants`. `shape` contains the number of elements in nested 44 /// sequential types. Reports errors at `loc` and returns nullptr on error. 45 static llvm::Constant * 46 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 47 ArrayRef<int64_t> shape, llvm::Type *type, 48 Location loc) { 49 if (shape.empty()) { 50 llvm::Constant *result = constants.front(); 51 constants = constants.drop_front(); 52 return result; 53 } 54 55 llvm::Type *elementType; 56 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 57 elementType = arrayTy->getElementType(); 58 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 59 elementType = vectorTy->getElementType(); 60 } else { 61 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 62 return nullptr; 63 } 64 65 SmallVector<llvm::Constant *, 8> nested; 66 nested.reserve(shape.front()); 67 for (int64_t i = 0; i < shape.front(); ++i) { 68 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 69 elementType, loc)); 70 if (!nested.back()) 71 return nullptr; 72 } 73 74 if (shape.size() == 1 && type->isVectorTy()) 75 return llvm::ConstantVector::get(nested); 76 return llvm::ConstantArray::get( 77 llvm::ArrayType::get(elementType, shape.front()), nested); 78 } 79 80 /// Returns the first non-sequential type nested in sequential types. 81 static llvm::Type *getInnermostElementType(llvm::Type *type) { 82 do { 83 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 84 type = arrayTy->getElementType(); 85 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 86 type = vectorTy->getElementType(); 87 } else { 88 return type; 89 } 90 } while (1); 91 } 92 93 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 94 /// This currently supports integer, floating point, splat and dense element 95 /// attributes and combinations thereof. In case of error, report it to `loc` 96 /// and return nullptr. 97 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 98 Attribute attr, 99 Location loc) { 100 if (!attr) 101 return llvm::UndefValue::get(llvmType); 102 if (llvmType->isStructTy()) { 103 emitError(loc, "struct types are not supported in constants"); 104 return nullptr; 105 } 106 // For integer types, we allow a mismatch in sizes as the index type in 107 // MLIR might have a different size than the index type in the LLVM module. 108 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 109 return llvm::ConstantInt::get( 110 llvmType, 111 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 112 if (auto boolAttr = attr.dyn_cast<BoolAttr>()) 113 return llvm::ConstantInt::get(llvmType, boolAttr.getValue()); 114 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 115 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 116 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 117 return llvm::ConstantExpr::getBitCast( 118 functionMapping.lookup(funcAttr.getValue()), llvmType); 119 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 120 llvm::Type *elementType; 121 uint64_t numElements; 122 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 123 elementType = arrayTy->getElementType(); 124 numElements = arrayTy->getNumElements(); 125 } else { 126 auto *vectorTy = cast<llvm::VectorType>(llvmType); 127 elementType = vectorTy->getElementType(); 128 numElements = vectorTy->getNumElements(); 129 } 130 // Splat value is a scalar. Extract it only if the element type is not 131 // another sequence type. The recursion terminates because each step removes 132 // one outer sequential type. 133 bool elementTypeSequential = 134 isa<llvm::ArrayType>(elementType) || isa<llvm::VectorType>(elementType); 135 llvm::Constant *child = getLLVMConstant( 136 elementType, 137 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc); 138 if (!child) 139 return nullptr; 140 if (llvmType->isVectorTy()) 141 return llvm::ConstantVector::getSplat( 142 llvm::ElementCount(numElements, /*Scalable=*/false), child); 143 if (llvmType->isArrayTy()) { 144 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 145 SmallVector<llvm::Constant *, 8> constants(numElements, child); 146 return llvm::ConstantArray::get(arrayType, constants); 147 } 148 } 149 150 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 151 assert(elementsAttr.getType().hasStaticShape()); 152 assert(elementsAttr.getNumElements() != 0 && 153 "unexpected empty elements attribute"); 154 assert(!elementsAttr.getType().getShape().empty() && 155 "unexpected empty elements attribute shape"); 156 157 SmallVector<llvm::Constant *, 8> constants; 158 constants.reserve(elementsAttr.getNumElements()); 159 llvm::Type *innermostType = getInnermostElementType(llvmType); 160 for (auto n : elementsAttr.getValues<Attribute>()) { 161 constants.push_back(getLLVMConstant(innermostType, n, loc)); 162 if (!constants.back()) 163 return nullptr; 164 } 165 ArrayRef<llvm::Constant *> constantsRef = constants; 166 llvm::Constant *result = buildSequentialConstant( 167 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 168 assert(constantsRef.empty() && "did not consume all elemental constants"); 169 return result; 170 } 171 172 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 173 return llvm::ConstantDataArray::get( 174 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 175 stringAttr.getValue().size()}); 176 } 177 emitError(loc, "unsupported constant value"); 178 return nullptr; 179 } 180 181 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 182 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 183 switch (p) { 184 case LLVM::ICmpPredicate::eq: 185 return llvm::CmpInst::Predicate::ICMP_EQ; 186 case LLVM::ICmpPredicate::ne: 187 return llvm::CmpInst::Predicate::ICMP_NE; 188 case LLVM::ICmpPredicate::slt: 189 return llvm::CmpInst::Predicate::ICMP_SLT; 190 case LLVM::ICmpPredicate::sle: 191 return llvm::CmpInst::Predicate::ICMP_SLE; 192 case LLVM::ICmpPredicate::sgt: 193 return llvm::CmpInst::Predicate::ICMP_SGT; 194 case LLVM::ICmpPredicate::sge: 195 return llvm::CmpInst::Predicate::ICMP_SGE; 196 case LLVM::ICmpPredicate::ult: 197 return llvm::CmpInst::Predicate::ICMP_ULT; 198 case LLVM::ICmpPredicate::ule: 199 return llvm::CmpInst::Predicate::ICMP_ULE; 200 case LLVM::ICmpPredicate::ugt: 201 return llvm::CmpInst::Predicate::ICMP_UGT; 202 case LLVM::ICmpPredicate::uge: 203 return llvm::CmpInst::Predicate::ICMP_UGE; 204 } 205 llvm_unreachable("incorrect comparison predicate"); 206 } 207 208 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 209 switch (p) { 210 case LLVM::FCmpPredicate::_false: 211 return llvm::CmpInst::Predicate::FCMP_FALSE; 212 case LLVM::FCmpPredicate::oeq: 213 return llvm::CmpInst::Predicate::FCMP_OEQ; 214 case LLVM::FCmpPredicate::ogt: 215 return llvm::CmpInst::Predicate::FCMP_OGT; 216 case LLVM::FCmpPredicate::oge: 217 return llvm::CmpInst::Predicate::FCMP_OGE; 218 case LLVM::FCmpPredicate::olt: 219 return llvm::CmpInst::Predicate::FCMP_OLT; 220 case LLVM::FCmpPredicate::ole: 221 return llvm::CmpInst::Predicate::FCMP_OLE; 222 case LLVM::FCmpPredicate::one: 223 return llvm::CmpInst::Predicate::FCMP_ONE; 224 case LLVM::FCmpPredicate::ord: 225 return llvm::CmpInst::Predicate::FCMP_ORD; 226 case LLVM::FCmpPredicate::ueq: 227 return llvm::CmpInst::Predicate::FCMP_UEQ; 228 case LLVM::FCmpPredicate::ugt: 229 return llvm::CmpInst::Predicate::FCMP_UGT; 230 case LLVM::FCmpPredicate::uge: 231 return llvm::CmpInst::Predicate::FCMP_UGE; 232 case LLVM::FCmpPredicate::ult: 233 return llvm::CmpInst::Predicate::FCMP_ULT; 234 case LLVM::FCmpPredicate::ule: 235 return llvm::CmpInst::Predicate::FCMP_ULE; 236 case LLVM::FCmpPredicate::une: 237 return llvm::CmpInst::Predicate::FCMP_UNE; 238 case LLVM::FCmpPredicate::uno: 239 return llvm::CmpInst::Predicate::FCMP_UNO; 240 case LLVM::FCmpPredicate::_true: 241 return llvm::CmpInst::Predicate::FCMP_TRUE; 242 } 243 llvm_unreachable("incorrect comparison predicate"); 244 } 245 246 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 247 switch (op) { 248 case LLVM::AtomicBinOp::xchg: 249 return llvm::AtomicRMWInst::BinOp::Xchg; 250 case LLVM::AtomicBinOp::add: 251 return llvm::AtomicRMWInst::BinOp::Add; 252 case LLVM::AtomicBinOp::sub: 253 return llvm::AtomicRMWInst::BinOp::Sub; 254 case LLVM::AtomicBinOp::_and: 255 return llvm::AtomicRMWInst::BinOp::And; 256 case LLVM::AtomicBinOp::nand: 257 return llvm::AtomicRMWInst::BinOp::Nand; 258 case LLVM::AtomicBinOp::_or: 259 return llvm::AtomicRMWInst::BinOp::Or; 260 case LLVM::AtomicBinOp::_xor: 261 return llvm::AtomicRMWInst::BinOp::Xor; 262 case LLVM::AtomicBinOp::max: 263 return llvm::AtomicRMWInst::BinOp::Max; 264 case LLVM::AtomicBinOp::min: 265 return llvm::AtomicRMWInst::BinOp::Min; 266 case LLVM::AtomicBinOp::umax: 267 return llvm::AtomicRMWInst::BinOp::UMax; 268 case LLVM::AtomicBinOp::umin: 269 return llvm::AtomicRMWInst::BinOp::UMin; 270 case LLVM::AtomicBinOp::fadd: 271 return llvm::AtomicRMWInst::BinOp::FAdd; 272 case LLVM::AtomicBinOp::fsub: 273 return llvm::AtomicRMWInst::BinOp::FSub; 274 } 275 llvm_unreachable("incorrect atomic binary operator"); 276 } 277 278 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 279 switch (ordering) { 280 case LLVM::AtomicOrdering::not_atomic: 281 return llvm::AtomicOrdering::NotAtomic; 282 case LLVM::AtomicOrdering::unordered: 283 return llvm::AtomicOrdering::Unordered; 284 case LLVM::AtomicOrdering::monotonic: 285 return llvm::AtomicOrdering::Monotonic; 286 case LLVM::AtomicOrdering::acquire: 287 return llvm::AtomicOrdering::Acquire; 288 case LLVM::AtomicOrdering::release: 289 return llvm::AtomicOrdering::Release; 290 case LLVM::AtomicOrdering::acq_rel: 291 return llvm::AtomicOrdering::AcquireRelease; 292 case LLVM::AtomicOrdering::seq_cst: 293 return llvm::AtomicOrdering::SequentiallyConsistent; 294 } 295 llvm_unreachable("incorrect atomic ordering"); 296 } 297 298 ModuleTranslation::ModuleTranslation(Operation *module, 299 std::unique_ptr<llvm::Module> llvmModule) 300 : mlirModule(module), llvmModule(std::move(llvmModule)), 301 debugTranslation( 302 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 303 ompDialect( 304 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()) { 305 assert(satisfiesLLVMModule(mlirModule) && 306 "mlirModule should honor LLVM's module semantics."); 307 } 308 ModuleTranslation::~ModuleTranslation() {} 309 310 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR 311 /// (including OpenMP runtime calls). 312 LogicalResult 313 ModuleTranslation::convertOmpOperation(Operation &opInst, 314 llvm::IRBuilder<> &builder) { 315 if (!ompBuilder) { 316 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 317 ompBuilder->initialize(); 318 } 319 return mlir::TypeSwitch<Operation *, LogicalResult>(&opInst) 320 .Case([&](omp::BarrierOp) { 321 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 322 return success(); 323 }) 324 .Case([&](omp::TaskwaitOp) { 325 ompBuilder->CreateTaskwait(builder.saveIP()); 326 return success(); 327 }) 328 .Case([&](omp::TaskyieldOp) { 329 ompBuilder->CreateTaskyield(builder.saveIP()); 330 return success(); 331 }) 332 .Default([&](Operation *inst) { 333 return inst->emitError("unsupported OpenMP operation: ") 334 << inst->getName(); 335 }); 336 } 337 338 /// Given a single MLIR operation, create the corresponding LLVM IR operation 339 /// using the `builder`. LLVM IR Builder does not have a generic interface so 340 /// this has to be a long chain of `if`s calling different functions with a 341 /// different number of arguments. 342 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 343 llvm::IRBuilder<> &builder) { 344 auto extractPosition = [](ArrayAttr attr) { 345 SmallVector<unsigned, 4> position; 346 position.reserve(attr.size()); 347 for (Attribute v : attr) 348 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 349 return position; 350 }; 351 352 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 353 354 // Emit function calls. If the "callee" attribute is present, this is a 355 // direct function call and we also need to look up the remapped function 356 // itself. Otherwise, this is an indirect call and the callee is the first 357 // operand, look it up as a normal value. Return the llvm::Value representing 358 // the function result, which may be of llvm::VoidTy type. 359 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 360 auto operands = lookupValues(op.getOperands()); 361 ArrayRef<llvm::Value *> operandsRef(operands); 362 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 363 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 364 operandsRef); 365 } else { 366 auto *calleePtrType = 367 cast<llvm::PointerType>(operandsRef.front()->getType()); 368 auto *calleeType = 369 cast<llvm::FunctionType>(calleePtrType->getElementType()); 370 return builder.CreateCall(calleeType, operandsRef.front(), 371 operandsRef.drop_front()); 372 } 373 }; 374 375 // Emit calls. If the called function has a result, remap the corresponding 376 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 377 if (isa<LLVM::CallOp>(opInst)) { 378 llvm::Value *result = convertCall(opInst); 379 if (opInst.getNumResults() != 0) { 380 valueMapping[opInst.getResult(0)] = result; 381 return success(); 382 } 383 // Check that LLVM call returns void for 0-result functions. 384 return success(result->getType()->isVoidTy()); 385 } 386 387 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 388 auto operands = lookupValues(opInst.getOperands()); 389 ArrayRef<llvm::Value *> operandsRef(operands); 390 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) { 391 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 392 blockMapping[invOp.getSuccessor(0)], 393 blockMapping[invOp.getSuccessor(1)], operandsRef); 394 } else { 395 auto *calleePtrType = 396 cast<llvm::PointerType>(operandsRef.front()->getType()); 397 auto *calleeType = 398 cast<llvm::FunctionType>(calleePtrType->getElementType()); 399 builder.CreateInvoke( 400 calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 401 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 402 } 403 return success(); 404 } 405 406 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 407 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 408 llvm::LandingPadInst *lpi = 409 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 410 411 // Add clauses 412 for (auto operand : lookupValues(lpOp.getOperands())) { 413 // All operands should be constant - checked by verifier 414 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 415 lpi->addClause(constOperand); 416 } 417 valueMapping[lpOp.getResult()] = lpi; 418 return success(); 419 } 420 421 // Emit branches. We need to look up the remapped blocks and ignore the block 422 // arguments that were transformed into PHI nodes. 423 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 424 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 425 return success(); 426 } 427 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 428 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 429 blockMapping[condbrOp.getSuccessor(0)], 430 blockMapping[condbrOp.getSuccessor(1)]); 431 return success(); 432 } 433 434 // Emit addressof. We need to look up the global value referenced by the 435 // operation and store it in the MLIR-to-LLVM value mapping. This does not 436 // emit any LLVM instruction. 437 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 438 LLVM::GlobalOp global = addressOfOp.getGlobal(); 439 // The verifier should not have allowed this. 440 assert(global && "referencing an undefined global"); 441 442 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 443 return success(); 444 } 445 446 if (opInst.getDialect() == ompDialect) { 447 return convertOmpOperation(opInst, builder); 448 } 449 450 return opInst.emitError("unsupported or non-LLVM operation: ") 451 << opInst.getName(); 452 } 453 454 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 455 /// to define values corresponding to the MLIR block arguments. These nodes 456 /// are not connected to the source basic blocks, which may not exist yet. 457 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 458 llvm::IRBuilder<> builder(blockMapping[&bb]); 459 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 460 461 // Before traversing operations, make block arguments available through 462 // value remapping and PHI nodes, but do not add incoming edges for the PHI 463 // nodes just yet: those values may be defined by this or following blocks. 464 // This step is omitted if "ignoreArguments" is set. The arguments of the 465 // first block have been already made available through the remapping of 466 // LLVM function arguments. 467 if (!ignoreArguments) { 468 auto predecessors = bb.getPredecessors(); 469 unsigned numPredecessors = 470 std::distance(predecessors.begin(), predecessors.end()); 471 for (auto arg : bb.getArguments()) { 472 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 473 if (!wrappedType) 474 return emitError(bb.front().getLoc(), 475 "block argument does not have an LLVM type"); 476 llvm::Type *type = wrappedType.getUnderlyingType(); 477 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 478 valueMapping[arg] = phi; 479 } 480 } 481 482 // Traverse operations. 483 for (auto &op : bb) { 484 // Set the current debug location within the builder. 485 builder.SetCurrentDebugLocation( 486 debugTranslation->translateLoc(op.getLoc(), subprogram)); 487 488 if (failed(convertOperation(op, builder))) 489 return failure(); 490 } 491 492 return success(); 493 } 494 495 /// Create named global variables that correspond to llvm.mlir.global 496 /// definitions. 497 LogicalResult ModuleTranslation::convertGlobals() { 498 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 499 llvm::Type *type = op.getType().getUnderlyingType(); 500 llvm::Constant *cst = llvm::UndefValue::get(type); 501 if (op.getValueOrNull()) { 502 // String attributes are treated separately because they cannot appear as 503 // in-function constants and are thus not supported by getLLVMConstant. 504 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 505 cst = llvm::ConstantDataArray::getString( 506 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 507 type = cst->getType(); 508 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 509 op.getLoc()))) { 510 return failure(); 511 } 512 } else if (Block *initializer = op.getInitializerBlock()) { 513 llvm::IRBuilder<> builder(llvmModule->getContext()); 514 for (auto &op : initializer->without_terminator()) { 515 if (failed(convertOperation(op, builder)) || 516 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 517 return emitError(op.getLoc(), "unemittable constant value"); 518 } 519 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 520 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 521 } 522 523 auto linkage = convertLinkageToLLVM(op.linkage()); 524 bool anyExternalLinkage = 525 ((linkage == llvm::GlobalVariable::ExternalLinkage && 526 isa<llvm::UndefValue>(cst)) || 527 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 528 auto addrSpace = op.addr_space().getLimitedValue(); 529 auto *var = new llvm::GlobalVariable( 530 *llvmModule, type, op.constant(), linkage, 531 anyExternalLinkage ? nullptr : cst, op.sym_name(), 532 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 533 534 globalsMapping.try_emplace(op, var); 535 } 536 537 return success(); 538 } 539 540 /// Get the SSA value passed to the current block from the terminator operation 541 /// of its predecessor. 542 static Value getPHISourceValue(Block *current, Block *pred, 543 unsigned numArguments, unsigned index) { 544 auto &terminator = *pred->getTerminator(); 545 if (isa<LLVM::BrOp>(terminator)) { 546 return terminator.getOperand(index); 547 } 548 549 // For conditional branches, we need to check if the current block is reached 550 // through the "true" or the "false" branch and take the relevant operands. 551 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 552 assert(condBranchOp && 553 "only branch operations can be terminators of a block that " 554 "has successors"); 555 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 556 "successors with arguments in LLVM conditional branches must be " 557 "different blocks"); 558 559 return condBranchOp.getSuccessor(0) == current 560 ? condBranchOp.trueDestOperands()[index] 561 : condBranchOp.falseDestOperands()[index]; 562 } 563 564 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 565 // Skip the first block, it cannot be branched to and its arguments correspond 566 // to the arguments of the LLVM function. 567 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 568 Block *bb = &*it; 569 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 570 auto phis = llvmBB->phis(); 571 auto numArguments = bb->getNumArguments(); 572 assert(numArguments == std::distance(phis.begin(), phis.end())); 573 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 574 auto &phiNode = numberedPhiNode.value(); 575 unsigned index = numberedPhiNode.index(); 576 for (auto *pred : bb->getPredecessors()) { 577 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 578 bb, pred, numArguments, index)), 579 blockMapping.lookup(pred)); 580 } 581 } 582 } 583 } 584 585 // TODO(mlir-team): implement an iterative version 586 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 587 blocks.insert(b); 588 for (Block *bb : b->getSuccessors()) { 589 if (blocks.count(bb) == 0) 590 topologicalSortImpl(blocks, bb); 591 } 592 } 593 594 /// Sort function blocks topologically. 595 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 596 // For each blocks that has not been visited yet (i.e. that has no 597 // predecessors), add it to the list and traverse its successors in DFS 598 // preorder. 599 llvm::SetVector<Block *> blocks; 600 for (Block &b : f.getBlocks()) { 601 if (blocks.count(&b) == 0) 602 topologicalSortImpl(blocks, &b); 603 } 604 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 605 606 return blocks; 607 } 608 609 /// Attempts to add an attribute identified by `key`, optionally with the given 610 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 611 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 612 /// otherwise keep it as a string attribute. Performs additional checks for 613 /// attributes known to have or not have a value in order to avoid assertions 614 /// inside LLVM upon construction. 615 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 616 llvm::Function *llvmFunc, 617 StringRef key, 618 StringRef value = StringRef()) { 619 auto kind = llvm::Attribute::getAttrKindFromName(key); 620 if (kind == llvm::Attribute::None) { 621 llvmFunc->addFnAttr(key, value); 622 return success(); 623 } 624 625 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) { 626 if (value.empty()) 627 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 628 629 int result; 630 if (!value.getAsInteger(/*Radix=*/0, result)) 631 llvmFunc->addFnAttr( 632 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 633 else 634 llvmFunc->addFnAttr(key, value); 635 return success(); 636 } 637 638 if (!value.empty()) 639 return emitError(loc) << "LLVM attribute '" << key 640 << "' does not expect a value, found '" << value 641 << "'"; 642 643 llvmFunc->addFnAttr(kind); 644 return success(); 645 } 646 647 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 648 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 649 /// to be an array attribute containing either string attributes, treated as 650 /// value-less LLVM attributes, or array attributes containing two string 651 /// attributes, with the first string being the name of the corresponding LLVM 652 /// attribute and the second string beings its value. Note that even integer 653 /// attributes are expected to have their values expressed as strings. 654 static LogicalResult 655 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 656 llvm::Function *llvmFunc) { 657 if (!attributes) 658 return success(); 659 660 for (Attribute attr : *attributes) { 661 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 662 if (failed( 663 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 664 return failure(); 665 continue; 666 } 667 668 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 669 if (!arrayAttr || arrayAttr.size() != 2) 670 return emitError(loc) 671 << "expected 'passthrough' to contain string or array attributes"; 672 673 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 674 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 675 if (!keyAttr || !valueAttr) 676 return emitError(loc) 677 << "expected arrays within 'passthrough' to contain two strings"; 678 679 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 680 valueAttr.getValue()))) 681 return failure(); 682 } 683 return success(); 684 } 685 686 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 687 // Clear the block and value mappings, they are only relevant within one 688 // function. 689 blockMapping.clear(); 690 valueMapping.clear(); 691 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 692 693 // Translate the debug information for this function. 694 debugTranslation->translate(func, *llvmFunc); 695 696 // Add function arguments to the value remapping table. 697 // If there was noalias info then we decorate each argument accordingly. 698 unsigned int argIdx = 0; 699 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 700 llvm::Argument &llvmArg = std::get<1>(kvp); 701 BlockArgument mlirArg = std::get<0>(kvp); 702 703 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 704 // NB: Attribute already verified to be boolean, so check if we can indeed 705 // attach the attribute to this argument, based on its type. 706 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 707 if (!argTy.getUnderlyingType()->isPointerTy()) 708 return func.emitError( 709 "llvm.noalias attribute attached to LLVM non-pointer argument"); 710 if (attr.getValue()) 711 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 712 } 713 valueMapping[mlirArg] = &llvmArg; 714 argIdx++; 715 } 716 717 // Check the personality and set it. 718 if (func.personality().hasValue()) { 719 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 720 if (llvm::Constant *pfunc = 721 getLLVMConstant(ty, func.personalityAttr(), func.getLoc())) 722 llvmFunc->setPersonalityFn(pfunc); 723 } 724 725 // First, create all blocks so we can jump to them. 726 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 727 for (auto &bb : func) { 728 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 729 llvmBB->insertInto(llvmFunc); 730 blockMapping[&bb] = llvmBB; 731 } 732 733 // Then, convert blocks one by one in topological order to ensure defs are 734 // converted before uses. 735 auto blocks = topologicalSort(func); 736 for (auto indexedBB : llvm::enumerate(blocks)) { 737 auto *bb = indexedBB.value(); 738 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 739 return failure(); 740 } 741 742 // Finally, after all blocks have been traversed and values mapped, connect 743 // the PHI nodes to the results of preceding blocks. 744 connectPHINodes(func); 745 return success(); 746 } 747 748 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 749 for (Operation &o : getModuleBody(m).getOperations()) 750 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 751 !o.isKnownTerminator()) 752 return o.emitOpError("unsupported module-level operation"); 753 return success(); 754 } 755 756 LogicalResult ModuleTranslation::convertFunctions() { 757 // Declare all functions first because there may be function calls that form a 758 // call graph with cycles. 759 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 760 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 761 function.getName(), 762 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 763 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 764 functionMapping[function.getName()] = llvmFunc; 765 766 // Forward the pass-through attributes to LLVM. 767 if (failed(forwardPassthroughAttributes(function.getLoc(), 768 function.passthrough(), llvmFunc))) 769 return failure(); 770 } 771 772 // Convert functions. 773 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 774 // Ignore external functions. 775 if (function.isExternal()) 776 continue; 777 778 if (failed(convertOneFunction(function))) 779 return failure(); 780 } 781 782 return success(); 783 } 784 785 /// A helper to look up remapped operands in the value remapping table.` 786 SmallVector<llvm::Value *, 8> 787 ModuleTranslation::lookupValues(ValueRange values) { 788 SmallVector<llvm::Value *, 8> remapped; 789 remapped.reserve(values.size()); 790 for (Value v : values) { 791 assert(valueMapping.count(v) && "referencing undefined value"); 792 remapped.push_back(valueMapping.lookup(v)); 793 } 794 return remapped; 795 } 796 797 std::unique_ptr<llvm::Module> 798 ModuleTranslation::prepareLLVMModule(Operation *m) { 799 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 800 assert(dialect && "LLVM dialect must be registered"); 801 802 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 803 if (!llvmModule) 804 return nullptr; 805 806 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 807 llvm::IRBuilder<> builder(llvmContext); 808 809 // Inject declarations for `malloc` and `free` functions that can be used in 810 // memref allocation/deallocation coming from standard ops lowering. 811 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 812 builder.getInt64Ty()); 813 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 814 builder.getInt8PtrTy()); 815 816 return llvmModule; 817 } 818