1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 34 using namespace mlir; 35 using namespace mlir::LLVM; 36 using namespace mlir::LLVM::detail; 37 38 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 39 40 /// Builds a constant of a sequential LLVM type `type`, potentially containing 41 /// other sequential types recursively, from the individual constant values 42 /// provided in `constants`. `shape` contains the number of elements in nested 43 /// sequential types. Reports errors at `loc` and returns nullptr on error. 44 static llvm::Constant * 45 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 46 ArrayRef<int64_t> shape, llvm::Type *type, 47 Location loc) { 48 if (shape.empty()) { 49 llvm::Constant *result = constants.front(); 50 constants = constants.drop_front(); 51 return result; 52 } 53 54 if (!isa<llvm::SequentialType>(type)) { 55 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 56 return nullptr; 57 } 58 59 llvm::Type *elementType = type->getSequentialElementType(); 60 SmallVector<llvm::Constant *, 8> nested; 61 nested.reserve(shape.front()); 62 for (int64_t i = 0; i < shape.front(); ++i) { 63 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 64 elementType, loc)); 65 if (!nested.back()) 66 return nullptr; 67 } 68 69 if (shape.size() == 1 && type->isVectorTy()) 70 return llvm::ConstantVector::get(nested); 71 return llvm::ConstantArray::get( 72 llvm::ArrayType::get(elementType, shape.front()), nested); 73 } 74 75 /// Returns the first non-sequential type nested in sequential types. 76 static llvm::Type *getInnermostElementType(llvm::Type *type) { 77 while (isa<llvm::SequentialType>(type)) 78 type = type->getSequentialElementType(); 79 return type; 80 } 81 82 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 83 /// This currently supports integer, floating point, splat and dense element 84 /// attributes and combinations thereof. In case of error, report it to `loc` 85 /// and return nullptr. 86 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 87 Attribute attr, 88 Location loc) { 89 if (!attr) 90 return llvm::UndefValue::get(llvmType); 91 if (llvmType->isStructTy()) { 92 emitError(loc, "struct types are not supported in constants"); 93 return nullptr; 94 } 95 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 96 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 97 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 98 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 99 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 100 return functionMapping.lookup(funcAttr.getValue()); 101 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 102 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 103 auto elementType = sequentialType->getElementType(); 104 uint64_t numElements = sequentialType->getNumElements(); 105 // Splat value is a scalar. Extract it only if the element type is not 106 // another sequence type. The recursion terminates because each step removes 107 // one outer sequential type. 108 llvm::Constant *child = getLLVMConstant( 109 elementType, 110 isa<llvm::SequentialType>(elementType) ? splatAttr 111 : splatAttr.getSplatValue(), 112 loc); 113 if (!child) 114 return nullptr; 115 if (llvmType->isVectorTy()) 116 return llvm::ConstantVector::getSplat( 117 llvm::ElementCount(numElements, /*Scalable=*/false), child); 118 if (llvmType->isArrayTy()) { 119 auto arrayType = llvm::ArrayType::get(elementType, numElements); 120 SmallVector<llvm::Constant *, 8> constants(numElements, child); 121 return llvm::ConstantArray::get(arrayType, constants); 122 } 123 } 124 125 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 126 assert(elementsAttr.getType().hasStaticShape()); 127 assert(elementsAttr.getNumElements() != 0 && 128 "unexpected empty elements attribute"); 129 assert(!elementsAttr.getType().getShape().empty() && 130 "unexpected empty elements attribute shape"); 131 132 SmallVector<llvm::Constant *, 8> constants; 133 constants.reserve(elementsAttr.getNumElements()); 134 llvm::Type *innermostType = getInnermostElementType(llvmType); 135 for (auto n : elementsAttr.getValues<Attribute>()) { 136 constants.push_back(getLLVMConstant(innermostType, n, loc)); 137 if (!constants.back()) 138 return nullptr; 139 } 140 ArrayRef<llvm::Constant *> constantsRef = constants; 141 llvm::Constant *result = buildSequentialConstant( 142 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 143 assert(constantsRef.empty() && "did not consume all elemental constants"); 144 return result; 145 } 146 147 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 148 return llvm::ConstantDataArray::get( 149 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 150 stringAttr.getValue().size()}); 151 } 152 emitError(loc, "unsupported constant value"); 153 return nullptr; 154 } 155 156 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 157 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 158 switch (p) { 159 case LLVM::ICmpPredicate::eq: 160 return llvm::CmpInst::Predicate::ICMP_EQ; 161 case LLVM::ICmpPredicate::ne: 162 return llvm::CmpInst::Predicate::ICMP_NE; 163 case LLVM::ICmpPredicate::slt: 164 return llvm::CmpInst::Predicate::ICMP_SLT; 165 case LLVM::ICmpPredicate::sle: 166 return llvm::CmpInst::Predicate::ICMP_SLE; 167 case LLVM::ICmpPredicate::sgt: 168 return llvm::CmpInst::Predicate::ICMP_SGT; 169 case LLVM::ICmpPredicate::sge: 170 return llvm::CmpInst::Predicate::ICMP_SGE; 171 case LLVM::ICmpPredicate::ult: 172 return llvm::CmpInst::Predicate::ICMP_ULT; 173 case LLVM::ICmpPredicate::ule: 174 return llvm::CmpInst::Predicate::ICMP_ULE; 175 case LLVM::ICmpPredicate::ugt: 176 return llvm::CmpInst::Predicate::ICMP_UGT; 177 case LLVM::ICmpPredicate::uge: 178 return llvm::CmpInst::Predicate::ICMP_UGE; 179 } 180 llvm_unreachable("incorrect comparison predicate"); 181 } 182 183 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 184 switch (p) { 185 case LLVM::FCmpPredicate::_false: 186 return llvm::CmpInst::Predicate::FCMP_FALSE; 187 case LLVM::FCmpPredicate::oeq: 188 return llvm::CmpInst::Predicate::FCMP_OEQ; 189 case LLVM::FCmpPredicate::ogt: 190 return llvm::CmpInst::Predicate::FCMP_OGT; 191 case LLVM::FCmpPredicate::oge: 192 return llvm::CmpInst::Predicate::FCMP_OGE; 193 case LLVM::FCmpPredicate::olt: 194 return llvm::CmpInst::Predicate::FCMP_OLT; 195 case LLVM::FCmpPredicate::ole: 196 return llvm::CmpInst::Predicate::FCMP_OLE; 197 case LLVM::FCmpPredicate::one: 198 return llvm::CmpInst::Predicate::FCMP_ONE; 199 case LLVM::FCmpPredicate::ord: 200 return llvm::CmpInst::Predicate::FCMP_ORD; 201 case LLVM::FCmpPredicate::ueq: 202 return llvm::CmpInst::Predicate::FCMP_UEQ; 203 case LLVM::FCmpPredicate::ugt: 204 return llvm::CmpInst::Predicate::FCMP_UGT; 205 case LLVM::FCmpPredicate::uge: 206 return llvm::CmpInst::Predicate::FCMP_UGE; 207 case LLVM::FCmpPredicate::ult: 208 return llvm::CmpInst::Predicate::FCMP_ULT; 209 case LLVM::FCmpPredicate::ule: 210 return llvm::CmpInst::Predicate::FCMP_ULE; 211 case LLVM::FCmpPredicate::une: 212 return llvm::CmpInst::Predicate::FCMP_UNE; 213 case LLVM::FCmpPredicate::uno: 214 return llvm::CmpInst::Predicate::FCMP_UNO; 215 case LLVM::FCmpPredicate::_true: 216 return llvm::CmpInst::Predicate::FCMP_TRUE; 217 } 218 llvm_unreachable("incorrect comparison predicate"); 219 } 220 221 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 222 switch (op) { 223 case LLVM::AtomicBinOp::xchg: 224 return llvm::AtomicRMWInst::BinOp::Xchg; 225 case LLVM::AtomicBinOp::add: 226 return llvm::AtomicRMWInst::BinOp::Add; 227 case LLVM::AtomicBinOp::sub: 228 return llvm::AtomicRMWInst::BinOp::Sub; 229 case LLVM::AtomicBinOp::_and: 230 return llvm::AtomicRMWInst::BinOp::And; 231 case LLVM::AtomicBinOp::nand: 232 return llvm::AtomicRMWInst::BinOp::Nand; 233 case LLVM::AtomicBinOp::_or: 234 return llvm::AtomicRMWInst::BinOp::Or; 235 case LLVM::AtomicBinOp::_xor: 236 return llvm::AtomicRMWInst::BinOp::Xor; 237 case LLVM::AtomicBinOp::max: 238 return llvm::AtomicRMWInst::BinOp::Max; 239 case LLVM::AtomicBinOp::min: 240 return llvm::AtomicRMWInst::BinOp::Min; 241 case LLVM::AtomicBinOp::umax: 242 return llvm::AtomicRMWInst::BinOp::UMax; 243 case LLVM::AtomicBinOp::umin: 244 return llvm::AtomicRMWInst::BinOp::UMin; 245 case LLVM::AtomicBinOp::fadd: 246 return llvm::AtomicRMWInst::BinOp::FAdd; 247 case LLVM::AtomicBinOp::fsub: 248 return llvm::AtomicRMWInst::BinOp::FSub; 249 } 250 llvm_unreachable("incorrect atomic binary operator"); 251 } 252 253 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 254 switch (ordering) { 255 case LLVM::AtomicOrdering::not_atomic: 256 return llvm::AtomicOrdering::NotAtomic; 257 case LLVM::AtomicOrdering::unordered: 258 return llvm::AtomicOrdering::Unordered; 259 case LLVM::AtomicOrdering::monotonic: 260 return llvm::AtomicOrdering::Monotonic; 261 case LLVM::AtomicOrdering::acquire: 262 return llvm::AtomicOrdering::Acquire; 263 case LLVM::AtomicOrdering::release: 264 return llvm::AtomicOrdering::Release; 265 case LLVM::AtomicOrdering::acq_rel: 266 return llvm::AtomicOrdering::AcquireRelease; 267 case LLVM::AtomicOrdering::seq_cst: 268 return llvm::AtomicOrdering::SequentiallyConsistent; 269 } 270 llvm_unreachable("incorrect atomic ordering"); 271 } 272 273 ModuleTranslation::ModuleTranslation(Operation *module, 274 std::unique_ptr<llvm::Module> llvmModule) 275 : mlirModule(module), llvmModule(std::move(llvmModule)), 276 debugTranslation( 277 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 278 ompDialect( 279 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()) { 280 assert(satisfiesLLVMModule(mlirModule) && 281 "mlirModule should honor LLVM's module semantics."); 282 } 283 ModuleTranslation::~ModuleTranslation() {} 284 285 /// Given a single MLIR operation, create the corresponding LLVM IR operation 286 /// using the `builder`. LLVM IR Builder does not have a generic interface so 287 /// this has to be a long chain of `if`s calling different functions with a 288 /// different number of arguments. 289 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 290 llvm::IRBuilder<> &builder) { 291 auto extractPosition = [](ArrayAttr attr) { 292 SmallVector<unsigned, 4> position; 293 position.reserve(attr.size()); 294 for (Attribute v : attr) 295 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 296 return position; 297 }; 298 299 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 300 301 // Emit function calls. If the "callee" attribute is present, this is a 302 // direct function call and we also need to look up the remapped function 303 // itself. Otherwise, this is an indirect call and the callee is the first 304 // operand, look it up as a normal value. Return the llvm::Value representing 305 // the function result, which may be of llvm::VoidTy type. 306 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 307 auto operands = lookupValues(op.getOperands()); 308 ArrayRef<llvm::Value *> operandsRef(operands); 309 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 310 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 311 operandsRef); 312 } else { 313 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 314 } 315 }; 316 317 // Emit calls. If the called function has a result, remap the corresponding 318 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 319 if (isa<LLVM::CallOp>(opInst)) { 320 llvm::Value *result = convertCall(opInst); 321 if (opInst.getNumResults() != 0) { 322 valueMapping[opInst.getResult(0)] = result; 323 return success(); 324 } 325 // Check that LLVM call returns void for 0-result functions. 326 return success(result->getType()->isVoidTy()); 327 } 328 329 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 330 auto operands = lookupValues(opInst.getOperands()); 331 ArrayRef<llvm::Value *> operandsRef(operands); 332 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) 333 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 334 blockMapping[invOp.getSuccessor(0)], 335 blockMapping[invOp.getSuccessor(1)], operandsRef); 336 else 337 builder.CreateInvoke( 338 operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 339 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 340 return success(); 341 } 342 343 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 344 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 345 llvm::LandingPadInst *lpi = 346 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 347 348 // Add clauses 349 for (auto operand : lookupValues(lpOp.getOperands())) { 350 // All operands should be constant - checked by verifier 351 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 352 lpi->addClause(constOperand); 353 } 354 return success(); 355 } 356 357 // Emit branches. We need to look up the remapped blocks and ignore the block 358 // arguments that were transformed into PHI nodes. 359 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 360 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 361 return success(); 362 } 363 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 364 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 365 blockMapping[condbrOp.getSuccessor(0)], 366 blockMapping[condbrOp.getSuccessor(1)]); 367 return success(); 368 } 369 370 // Emit addressof. We need to look up the global value referenced by the 371 // operation and store it in the MLIR-to-LLVM value mapping. This does not 372 // emit any LLVM instruction. 373 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 374 LLVM::GlobalOp global = addressOfOp.getGlobal(); 375 // The verifier should not have allowed this. 376 assert(global && "referencing an undefined global"); 377 378 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 379 return success(); 380 } 381 382 if (opInst.getDialect() == ompDialect) { 383 if (!ompBuilder) { 384 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 385 ompBuilder->initialize(); 386 } 387 388 if (isa<omp::BarrierOp>(opInst)) { 389 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 390 return success(); 391 } 392 return opInst.emitError("unsupported OpenMP operation: ") 393 << opInst.getName(); 394 } 395 396 return opInst.emitError("unsupported or non-LLVM operation: ") 397 << opInst.getName(); 398 } 399 400 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 401 /// to define values corresponding to the MLIR block arguments. These nodes 402 /// are not connected to the source basic blocks, which may not exist yet. 403 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 404 llvm::IRBuilder<> builder(blockMapping[&bb]); 405 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 406 407 // Before traversing operations, make block arguments available through 408 // value remapping and PHI nodes, but do not add incoming edges for the PHI 409 // nodes just yet: those values may be defined by this or following blocks. 410 // This step is omitted if "ignoreArguments" is set. The arguments of the 411 // first block have been already made available through the remapping of 412 // LLVM function arguments. 413 if (!ignoreArguments) { 414 auto predecessors = bb.getPredecessors(); 415 unsigned numPredecessors = 416 std::distance(predecessors.begin(), predecessors.end()); 417 for (auto arg : bb.getArguments()) { 418 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 419 if (!wrappedType) 420 return emitError(bb.front().getLoc(), 421 "block argument does not have an LLVM type"); 422 llvm::Type *type = wrappedType.getUnderlyingType(); 423 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 424 valueMapping[arg] = phi; 425 } 426 } 427 428 // Traverse operations. 429 for (auto &op : bb) { 430 // Set the current debug location within the builder. 431 builder.SetCurrentDebugLocation( 432 debugTranslation->translateLoc(op.getLoc(), subprogram)); 433 434 if (failed(convertOperation(op, builder))) 435 return failure(); 436 } 437 438 return success(); 439 } 440 441 /// Create named global variables that correspond to llvm.mlir.global 442 /// definitions. 443 LogicalResult ModuleTranslation::convertGlobals() { 444 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 445 llvm::Type *type = op.getType().getUnderlyingType(); 446 llvm::Constant *cst = llvm::UndefValue::get(type); 447 if (op.getValueOrNull()) { 448 // String attributes are treated separately because they cannot appear as 449 // in-function constants and are thus not supported by getLLVMConstant. 450 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 451 cst = llvm::ConstantDataArray::getString( 452 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 453 type = cst->getType(); 454 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 455 op.getLoc()))) { 456 return failure(); 457 } 458 } else if (Block *initializer = op.getInitializerBlock()) { 459 llvm::IRBuilder<> builder(llvmModule->getContext()); 460 for (auto &op : initializer->without_terminator()) { 461 if (failed(convertOperation(op, builder)) || 462 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 463 return emitError(op.getLoc(), "unemittable constant value"); 464 } 465 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 466 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 467 } 468 469 auto linkage = convertLinkageToLLVM(op.linkage()); 470 bool anyExternalLinkage = 471 (linkage == llvm::GlobalVariable::ExternalLinkage || 472 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 473 auto addrSpace = op.addr_space().getLimitedValue(); 474 auto *var = new llvm::GlobalVariable( 475 *llvmModule, type, op.constant(), linkage, 476 anyExternalLinkage ? nullptr : cst, op.sym_name(), 477 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 478 479 globalsMapping.try_emplace(op, var); 480 } 481 482 return success(); 483 } 484 485 /// Get the SSA value passed to the current block from the terminator operation 486 /// of its predecessor. 487 static Value getPHISourceValue(Block *current, Block *pred, 488 unsigned numArguments, unsigned index) { 489 auto &terminator = *pred->getTerminator(); 490 if (isa<LLVM::BrOp>(terminator)) { 491 return terminator.getOperand(index); 492 } 493 494 // For conditional branches, we need to check if the current block is reached 495 // through the "true" or the "false" branch and take the relevant operands. 496 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 497 assert(condBranchOp && 498 "only branch operations can be terminators of a block that " 499 "has successors"); 500 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 501 "successors with arguments in LLVM conditional branches must be " 502 "different blocks"); 503 504 return condBranchOp.getSuccessor(0) == current 505 ? condBranchOp.trueDestOperands()[index] 506 : condBranchOp.falseDestOperands()[index]; 507 } 508 509 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 510 // Skip the first block, it cannot be branched to and its arguments correspond 511 // to the arguments of the LLVM function. 512 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 513 Block *bb = &*it; 514 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 515 auto phis = llvmBB->phis(); 516 auto numArguments = bb->getNumArguments(); 517 assert(numArguments == std::distance(phis.begin(), phis.end())); 518 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 519 auto &phiNode = numberedPhiNode.value(); 520 unsigned index = numberedPhiNode.index(); 521 for (auto *pred : bb->getPredecessors()) { 522 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 523 bb, pred, numArguments, index)), 524 blockMapping.lookup(pred)); 525 } 526 } 527 } 528 } 529 530 // TODO(mlir-team): implement an iterative version 531 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 532 blocks.insert(b); 533 for (Block *bb : b->getSuccessors()) { 534 if (blocks.count(bb) == 0) 535 topologicalSortImpl(blocks, bb); 536 } 537 } 538 539 /// Sort function blocks topologically. 540 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 541 // For each blocks that has not been visited yet (i.e. that has no 542 // predecessors), add it to the list and traverse its successors in DFS 543 // preorder. 544 llvm::SetVector<Block *> blocks; 545 for (Block &b : f.getBlocks()) { 546 if (blocks.count(&b) == 0) 547 topologicalSortImpl(blocks, &b); 548 } 549 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 550 551 return blocks; 552 } 553 554 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 555 // Clear the block and value mappings, they are only relevant within one 556 // function. 557 blockMapping.clear(); 558 valueMapping.clear(); 559 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 560 561 // Translate the debug information for this function. 562 debugTranslation->translate(func, *llvmFunc); 563 564 // Add function arguments to the value remapping table. 565 // If there was noalias info then we decorate each argument accordingly. 566 unsigned int argIdx = 0; 567 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 568 llvm::Argument &llvmArg = std::get<1>(kvp); 569 BlockArgument mlirArg = std::get<0>(kvp); 570 571 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 572 // NB: Attribute already verified to be boolean, so check if we can indeed 573 // attach the attribute to this argument, based on its type. 574 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 575 if (!argTy.getUnderlyingType()->isPointerTy()) 576 return func.emitError( 577 "llvm.noalias attribute attached to LLVM non-pointer argument"); 578 if (attr.getValue()) 579 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 580 } 581 valueMapping[mlirArg] = &llvmArg; 582 argIdx++; 583 } 584 585 // First, create all blocks so we can jump to them. 586 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 587 for (auto &bb : func) { 588 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 589 llvmBB->insertInto(llvmFunc); 590 blockMapping[&bb] = llvmBB; 591 } 592 593 // Then, convert blocks one by one in topological order to ensure defs are 594 // converted before uses. 595 auto blocks = topologicalSort(func); 596 for (auto indexedBB : llvm::enumerate(blocks)) { 597 auto *bb = indexedBB.value(); 598 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 599 return failure(); 600 } 601 602 // Finally, after all blocks have been traversed and values mapped, connect 603 // the PHI nodes to the results of preceding blocks. 604 connectPHINodes(func); 605 return success(); 606 } 607 608 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 609 for (Operation &o : getModuleBody(m).getOperations()) 610 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 611 !o.isKnownTerminator()) 612 return o.emitOpError("unsupported module-level operation"); 613 return success(); 614 } 615 616 LogicalResult ModuleTranslation::convertFunctions() { 617 // Declare all functions first because there may be function calls that form a 618 // call graph with cycles. 619 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 620 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 621 function.getName(), 622 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 623 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 624 functionMapping[function.getName()] = 625 cast<llvm::Function>(llvmFuncCst.getCallee()); 626 } 627 628 // Convert functions. 629 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 630 // Ignore external functions. 631 if (function.isExternal()) 632 continue; 633 634 if (failed(convertOneFunction(function))) 635 return failure(); 636 } 637 638 return success(); 639 } 640 641 /// A helper to look up remapped operands in the value remapping table.` 642 SmallVector<llvm::Value *, 8> 643 ModuleTranslation::lookupValues(ValueRange values) { 644 SmallVector<llvm::Value *, 8> remapped; 645 remapped.reserve(values.size()); 646 for (Value v : values) 647 remapped.push_back(valueMapping.lookup(v)); 648 return remapped; 649 } 650 651 std::unique_ptr<llvm::Module> 652 ModuleTranslation::prepareLLVMModule(Operation *m) { 653 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 654 assert(dialect && "LLVM dialect must be registered"); 655 656 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 657 if (!llvmModule) 658 return nullptr; 659 660 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 661 llvm::IRBuilder<> builder(llvmContext); 662 663 // Inject declarations for `malloc` and `free` functions that can be used in 664 // memref allocation/deallocation coming from standard ops lowering. 665 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 666 builder.getInt64Ty()); 667 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 668 builder.getInt8PtrTy()); 669 670 return llvmModule; 671 } 672