1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 #include "mlir/Target/LLVMIR/TypeTranslation.h" 24 #include "llvm/ADT/TypeSwitch.h" 25 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 39 using namespace mlir; 40 using namespace mlir::LLVM; 41 using namespace mlir::LLVM::detail; 42 43 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 44 45 /// Builds a constant of a sequential LLVM type `type`, potentially containing 46 /// other sequential types recursively, from the individual constant values 47 /// provided in `constants`. `shape` contains the number of elements in nested 48 /// sequential types. Reports errors at `loc` and returns nullptr on error. 49 static llvm::Constant * 50 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 51 ArrayRef<int64_t> shape, llvm::Type *type, 52 Location loc) { 53 if (shape.empty()) { 54 llvm::Constant *result = constants.front(); 55 constants = constants.drop_front(); 56 return result; 57 } 58 59 llvm::Type *elementType; 60 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 61 elementType = arrayTy->getElementType(); 62 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 63 elementType = vectorTy->getElementType(); 64 } else { 65 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 66 return nullptr; 67 } 68 69 SmallVector<llvm::Constant *, 8> nested; 70 nested.reserve(shape.front()); 71 for (int64_t i = 0; i < shape.front(); ++i) { 72 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 73 elementType, loc)); 74 if (!nested.back()) 75 return nullptr; 76 } 77 78 if (shape.size() == 1 && type->isVectorTy()) 79 return llvm::ConstantVector::get(nested); 80 return llvm::ConstantArray::get( 81 llvm::ArrayType::get(elementType, shape.front()), nested); 82 } 83 84 /// Returns the first non-sequential type nested in sequential types. 85 static llvm::Type *getInnermostElementType(llvm::Type *type) { 86 do { 87 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 88 type = arrayTy->getElementType(); 89 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 90 type = vectorTy->getElementType(); 91 } else { 92 return type; 93 } 94 } while (1); 95 } 96 97 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 98 /// This currently supports integer, floating point, splat and dense element 99 /// attributes and combinations thereof. In case of error, report it to `loc` 100 /// and return nullptr. 101 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 102 Attribute attr, 103 Location loc) { 104 if (!attr) 105 return llvm::UndefValue::get(llvmType); 106 if (llvmType->isStructTy()) { 107 emitError(loc, "struct types are not supported in constants"); 108 return nullptr; 109 } 110 // For integer types, we allow a mismatch in sizes as the index type in 111 // MLIR might have a different size than the index type in the LLVM module. 112 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 113 return llvm::ConstantInt::get( 114 llvmType, 115 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 116 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 117 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 118 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 119 return llvm::ConstantExpr::getBitCast( 120 functionMapping.lookup(funcAttr.getValue()), llvmType); 121 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 122 llvm::Type *elementType; 123 uint64_t numElements; 124 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 125 elementType = arrayTy->getElementType(); 126 numElements = arrayTy->getNumElements(); 127 } else { 128 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 129 elementType = vectorTy->getElementType(); 130 numElements = vectorTy->getNumElements(); 131 } 132 // Splat value is a scalar. Extract it only if the element type is not 133 // another sequence type. The recursion terminates because each step removes 134 // one outer sequential type. 135 bool elementTypeSequential = 136 isa<llvm::ArrayType, llvm::VectorType>(elementType); 137 llvm::Constant *child = getLLVMConstant( 138 elementType, 139 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc); 140 if (!child) 141 return nullptr; 142 if (llvmType->isVectorTy()) 143 return llvm::ConstantVector::getSplat( 144 llvm::ElementCount(numElements, /*Scalable=*/false), child); 145 if (llvmType->isArrayTy()) { 146 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 147 SmallVector<llvm::Constant *, 8> constants(numElements, child); 148 return llvm::ConstantArray::get(arrayType, constants); 149 } 150 } 151 152 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 153 assert(elementsAttr.getType().hasStaticShape()); 154 assert(elementsAttr.getNumElements() != 0 && 155 "unexpected empty elements attribute"); 156 assert(!elementsAttr.getType().getShape().empty() && 157 "unexpected empty elements attribute shape"); 158 159 SmallVector<llvm::Constant *, 8> constants; 160 constants.reserve(elementsAttr.getNumElements()); 161 llvm::Type *innermostType = getInnermostElementType(llvmType); 162 for (auto n : elementsAttr.getValues<Attribute>()) { 163 constants.push_back(getLLVMConstant(innermostType, n, loc)); 164 if (!constants.back()) 165 return nullptr; 166 } 167 ArrayRef<llvm::Constant *> constantsRef = constants; 168 llvm::Constant *result = buildSequentialConstant( 169 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 170 assert(constantsRef.empty() && "did not consume all elemental constants"); 171 return result; 172 } 173 174 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 175 return llvm::ConstantDataArray::get( 176 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 177 stringAttr.getValue().size()}); 178 } 179 emitError(loc, "unsupported constant value"); 180 return nullptr; 181 } 182 183 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 184 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 185 switch (p) { 186 case LLVM::ICmpPredicate::eq: 187 return llvm::CmpInst::Predicate::ICMP_EQ; 188 case LLVM::ICmpPredicate::ne: 189 return llvm::CmpInst::Predicate::ICMP_NE; 190 case LLVM::ICmpPredicate::slt: 191 return llvm::CmpInst::Predicate::ICMP_SLT; 192 case LLVM::ICmpPredicate::sle: 193 return llvm::CmpInst::Predicate::ICMP_SLE; 194 case LLVM::ICmpPredicate::sgt: 195 return llvm::CmpInst::Predicate::ICMP_SGT; 196 case LLVM::ICmpPredicate::sge: 197 return llvm::CmpInst::Predicate::ICMP_SGE; 198 case LLVM::ICmpPredicate::ult: 199 return llvm::CmpInst::Predicate::ICMP_ULT; 200 case LLVM::ICmpPredicate::ule: 201 return llvm::CmpInst::Predicate::ICMP_ULE; 202 case LLVM::ICmpPredicate::ugt: 203 return llvm::CmpInst::Predicate::ICMP_UGT; 204 case LLVM::ICmpPredicate::uge: 205 return llvm::CmpInst::Predicate::ICMP_UGE; 206 } 207 llvm_unreachable("incorrect comparison predicate"); 208 } 209 210 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 211 switch (p) { 212 case LLVM::FCmpPredicate::_false: 213 return llvm::CmpInst::Predicate::FCMP_FALSE; 214 case LLVM::FCmpPredicate::oeq: 215 return llvm::CmpInst::Predicate::FCMP_OEQ; 216 case LLVM::FCmpPredicate::ogt: 217 return llvm::CmpInst::Predicate::FCMP_OGT; 218 case LLVM::FCmpPredicate::oge: 219 return llvm::CmpInst::Predicate::FCMP_OGE; 220 case LLVM::FCmpPredicate::olt: 221 return llvm::CmpInst::Predicate::FCMP_OLT; 222 case LLVM::FCmpPredicate::ole: 223 return llvm::CmpInst::Predicate::FCMP_OLE; 224 case LLVM::FCmpPredicate::one: 225 return llvm::CmpInst::Predicate::FCMP_ONE; 226 case LLVM::FCmpPredicate::ord: 227 return llvm::CmpInst::Predicate::FCMP_ORD; 228 case LLVM::FCmpPredicate::ueq: 229 return llvm::CmpInst::Predicate::FCMP_UEQ; 230 case LLVM::FCmpPredicate::ugt: 231 return llvm::CmpInst::Predicate::FCMP_UGT; 232 case LLVM::FCmpPredicate::uge: 233 return llvm::CmpInst::Predicate::FCMP_UGE; 234 case LLVM::FCmpPredicate::ult: 235 return llvm::CmpInst::Predicate::FCMP_ULT; 236 case LLVM::FCmpPredicate::ule: 237 return llvm::CmpInst::Predicate::FCMP_ULE; 238 case LLVM::FCmpPredicate::une: 239 return llvm::CmpInst::Predicate::FCMP_UNE; 240 case LLVM::FCmpPredicate::uno: 241 return llvm::CmpInst::Predicate::FCMP_UNO; 242 case LLVM::FCmpPredicate::_true: 243 return llvm::CmpInst::Predicate::FCMP_TRUE; 244 } 245 llvm_unreachable("incorrect comparison predicate"); 246 } 247 248 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 249 switch (op) { 250 case LLVM::AtomicBinOp::xchg: 251 return llvm::AtomicRMWInst::BinOp::Xchg; 252 case LLVM::AtomicBinOp::add: 253 return llvm::AtomicRMWInst::BinOp::Add; 254 case LLVM::AtomicBinOp::sub: 255 return llvm::AtomicRMWInst::BinOp::Sub; 256 case LLVM::AtomicBinOp::_and: 257 return llvm::AtomicRMWInst::BinOp::And; 258 case LLVM::AtomicBinOp::nand: 259 return llvm::AtomicRMWInst::BinOp::Nand; 260 case LLVM::AtomicBinOp::_or: 261 return llvm::AtomicRMWInst::BinOp::Or; 262 case LLVM::AtomicBinOp::_xor: 263 return llvm::AtomicRMWInst::BinOp::Xor; 264 case LLVM::AtomicBinOp::max: 265 return llvm::AtomicRMWInst::BinOp::Max; 266 case LLVM::AtomicBinOp::min: 267 return llvm::AtomicRMWInst::BinOp::Min; 268 case LLVM::AtomicBinOp::umax: 269 return llvm::AtomicRMWInst::BinOp::UMax; 270 case LLVM::AtomicBinOp::umin: 271 return llvm::AtomicRMWInst::BinOp::UMin; 272 case LLVM::AtomicBinOp::fadd: 273 return llvm::AtomicRMWInst::BinOp::FAdd; 274 case LLVM::AtomicBinOp::fsub: 275 return llvm::AtomicRMWInst::BinOp::FSub; 276 } 277 llvm_unreachable("incorrect atomic binary operator"); 278 } 279 280 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 281 switch (ordering) { 282 case LLVM::AtomicOrdering::not_atomic: 283 return llvm::AtomicOrdering::NotAtomic; 284 case LLVM::AtomicOrdering::unordered: 285 return llvm::AtomicOrdering::Unordered; 286 case LLVM::AtomicOrdering::monotonic: 287 return llvm::AtomicOrdering::Monotonic; 288 case LLVM::AtomicOrdering::acquire: 289 return llvm::AtomicOrdering::Acquire; 290 case LLVM::AtomicOrdering::release: 291 return llvm::AtomicOrdering::Release; 292 case LLVM::AtomicOrdering::acq_rel: 293 return llvm::AtomicOrdering::AcquireRelease; 294 case LLVM::AtomicOrdering::seq_cst: 295 return llvm::AtomicOrdering::SequentiallyConsistent; 296 } 297 llvm_unreachable("incorrect atomic ordering"); 298 } 299 300 ModuleTranslation::ModuleTranslation(Operation *module, 301 std::unique_ptr<llvm::Module> llvmModule) 302 : mlirModule(module), llvmModule(std::move(llvmModule)), 303 debugTranslation( 304 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 305 ompDialect( 306 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()), 307 typeTranslator(this->llvmModule->getContext()) { 308 assert(satisfiesLLVMModule(mlirModule) && 309 "mlirModule should honor LLVM's module semantics."); 310 } 311 ModuleTranslation::~ModuleTranslation() { 312 if (ompBuilder) 313 ompBuilder->finalize(); 314 } 315 316 /// Get the SSA value passed to the current block from the terminator operation 317 /// of its predecessor. 318 static Value getPHISourceValue(Block *current, Block *pred, 319 unsigned numArguments, unsigned index) { 320 Operation &terminator = *pred->getTerminator(); 321 if (isa<LLVM::BrOp>(terminator)) 322 return terminator.getOperand(index); 323 324 // For conditional branches, we need to check if the current block is reached 325 // through the "true" or the "false" branch and take the relevant operands. 326 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 327 assert(condBranchOp && 328 "only branch operations can be terminators of a block that " 329 "has successors"); 330 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 331 "successors with arguments in LLVM conditional branches must be " 332 "different blocks"); 333 334 return condBranchOp.getSuccessor(0) == current 335 ? condBranchOp.trueDestOperands()[index] 336 : condBranchOp.falseDestOperands()[index]; 337 } 338 339 /// Connect the PHI nodes to the results of preceding blocks. 340 template <typename T> 341 static void 342 connectPHINodes(T &func, const DenseMap<Value, llvm::Value *> &valueMapping, 343 const DenseMap<Block *, llvm::BasicBlock *> &blockMapping) { 344 // Skip the first block, it cannot be branched to and its arguments correspond 345 // to the arguments of the LLVM function. 346 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 347 Block *bb = &*it; 348 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 349 auto phis = llvmBB->phis(); 350 auto numArguments = bb->getNumArguments(); 351 assert(numArguments == std::distance(phis.begin(), phis.end())); 352 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 353 auto &phiNode = numberedPhiNode.value(); 354 unsigned index = numberedPhiNode.index(); 355 for (auto *pred : bb->getPredecessors()) { 356 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 357 bb, pred, numArguments, index)), 358 blockMapping.lookup(pred)); 359 } 360 } 361 } 362 } 363 364 // TODO: implement an iterative version 365 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 366 blocks.insert(b); 367 for (Block *bb : b->getSuccessors()) { 368 if (blocks.count(bb) == 0) 369 topologicalSortImpl(blocks, bb); 370 } 371 } 372 373 /// Sort function blocks topologically. 374 template <typename T> 375 static llvm::SetVector<Block *> topologicalSort(T &f) { 376 // For each blocks that has not been visited yet (i.e. that has no 377 // predecessors), add it to the list and traverse its successors in DFS 378 // preorder. 379 llvm::SetVector<Block *> blocks; 380 for (Block &b : f) { 381 if (blocks.count(&b) == 0) 382 topologicalSortImpl(blocks, &b); 383 } 384 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 385 386 return blocks; 387 } 388 389 /// Convert the OpenMP parallel Operation to LLVM IR. 390 LogicalResult 391 ModuleTranslation::convertOmpParallel(Operation &opInst, 392 llvm::IRBuilder<> &builder) { 393 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 394 395 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, 396 llvm::BasicBlock &continuationIP) { 397 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 398 399 llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock(); 400 llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator(); 401 402 builder.SetInsertPoint(codeGenIPBB); 403 // ParallelOp has only `1` region associated with it. 404 auto ®ion = cast<omp::ParallelOp>(opInst).getRegion(); 405 for (auto &bb : region) { 406 auto *llvmBB = llvm::BasicBlock::Create( 407 llvmContext, "omp.par.region", codeGenIP.getBlock()->getParent()); 408 blockMapping[&bb] = llvmBB; 409 } 410 411 // Then, convert blocks one by one in topological order to ensure 412 // defs are converted before uses. 413 llvm::SetVector<Block *> blocks = topologicalSort(region); 414 for (auto indexedBB : llvm::enumerate(blocks)) { 415 Block *bb = indexedBB.value(); 416 llvm::BasicBlock *curLLVMBB = blockMapping[bb]; 417 if (bb->isEntryBlock()) 418 codeGenIPBBTI->setSuccessor(0, curLLVMBB); 419 420 // TODO: Error not returned up the hierarchy 421 if (failed( 422 convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 423 return; 424 425 // If this block has the terminator then add a jump to 426 // continuation bb 427 for (auto &op : *bb) { 428 if (isa<omp::TerminatorOp>(op)) { 429 builder.SetInsertPoint(curLLVMBB); 430 builder.CreateBr(&continuationIP); 431 } 432 } 433 } 434 // Finally, after all blocks have been traversed and values mapped, 435 // connect the PHI nodes to the results of preceding blocks. 436 connectPHINodes(region, valueMapping, blockMapping); 437 }; 438 439 // TODO: Perform appropriate actions according to the data-sharing 440 // attribute (shared, private, firstprivate, ...) of variables. 441 // Currently defaults to shared. 442 auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, 443 llvm::Value &vPtr, 444 llvm::Value *&replacementValue) -> InsertPointTy { 445 replacementValue = &vPtr; 446 447 return codeGenIP; 448 }; 449 450 // TODO: Perform finalization actions for variables. This has to be 451 // called for variables which have destructors/finalizers. 452 auto finiCB = [&](InsertPointTy codeGenIP) {}; 453 454 // TODO: The various operands of parallel operation are not handled. 455 // Parallel operation is created with some default options for now. 456 llvm::Value *ifCond = nullptr; 457 if (auto ifExprVar = cast<omp::ParallelOp>(opInst).if_expr_var()) 458 ifCond = valueMapping.lookup(ifExprVar); 459 llvm::Value *numThreads = nullptr; 460 if (auto numThreadsVar = cast<omp::ParallelOp>(opInst).num_threads_var()) 461 numThreads = valueMapping.lookup(numThreadsVar); 462 // TODO: Is the Parallel construct cancellable? 463 bool isCancellable = false; 464 // TODO: Determine the actual alloca insertion point, e.g., the function 465 // entry or the alloca insertion point as provided by the body callback 466 // above. 467 llvm::OpenMPIRBuilder::InsertPointTy allocaIP(builder.saveIP()); 468 builder.restoreIP(ompBuilder->CreateParallel( 469 builder, allocaIP, bodyGenCB, privCB, finiCB, ifCond, numThreads, 470 llvm::omp::OMP_PROC_BIND_default, isCancellable)); 471 return success(); 472 } 473 474 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR 475 /// (including OpenMP runtime calls). 476 LogicalResult 477 ModuleTranslation::convertOmpOperation(Operation &opInst, 478 llvm::IRBuilder<> &builder) { 479 if (!ompBuilder) { 480 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 481 ompBuilder->initialize(); 482 } 483 return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst) 484 .Case([&](omp::BarrierOp) { 485 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 486 return success(); 487 }) 488 .Case([&](omp::TaskwaitOp) { 489 ompBuilder->CreateTaskwait(builder.saveIP()); 490 return success(); 491 }) 492 .Case([&](omp::TaskyieldOp) { 493 ompBuilder->CreateTaskyield(builder.saveIP()); 494 return success(); 495 }) 496 .Case([&](omp::FlushOp) { 497 // No support in Openmp runtime funciton (__kmpc_flush) to accept 498 // the argument list. 499 // OpenMP standard states the following: 500 // "An implementation may implement a flush with a list by ignoring 501 // the list, and treating it the same as a flush without a list." 502 // 503 // The argument list is discarded so that, flush with a list is treated 504 // same as a flush without a list. 505 ompBuilder->CreateFlush(builder.saveIP()); 506 return success(); 507 }) 508 .Case([&](omp::TerminatorOp) { return success(); }) 509 .Case( 510 [&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); }) 511 .Default([&](Operation *inst) { 512 return inst->emitError("unsupported OpenMP operation: ") 513 << inst->getName(); 514 }); 515 } 516 517 /// Given a single MLIR operation, create the corresponding LLVM IR operation 518 /// using the `builder`. LLVM IR Builder does not have a generic interface so 519 /// this has to be a long chain of `if`s calling different functions with a 520 /// different number of arguments. 521 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 522 llvm::IRBuilder<> &builder) { 523 auto extractPosition = [](ArrayAttr attr) { 524 SmallVector<unsigned, 4> position; 525 position.reserve(attr.size()); 526 for (Attribute v : attr) 527 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 528 return position; 529 }; 530 531 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 532 533 // Emit function calls. If the "callee" attribute is present, this is a 534 // direct function call and we also need to look up the remapped function 535 // itself. Otherwise, this is an indirect call and the callee is the first 536 // operand, look it up as a normal value. Return the llvm::Value representing 537 // the function result, which may be of llvm::VoidTy type. 538 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 539 auto operands = lookupValues(op.getOperands()); 540 ArrayRef<llvm::Value *> operandsRef(operands); 541 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 542 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 543 operandsRef); 544 } else { 545 auto *calleePtrType = 546 cast<llvm::PointerType>(operandsRef.front()->getType()); 547 auto *calleeType = 548 cast<llvm::FunctionType>(calleePtrType->getElementType()); 549 return builder.CreateCall(calleeType, operandsRef.front(), 550 operandsRef.drop_front()); 551 } 552 }; 553 554 // Emit calls. If the called function has a result, remap the corresponding 555 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 556 if (isa<LLVM::CallOp>(opInst)) { 557 llvm::Value *result = convertCall(opInst); 558 if (opInst.getNumResults() != 0) { 559 valueMapping[opInst.getResult(0)] = result; 560 return success(); 561 } 562 // Check that LLVM call returns void for 0-result functions. 563 return success(result->getType()->isVoidTy()); 564 } 565 566 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 567 auto operands = lookupValues(opInst.getOperands()); 568 ArrayRef<llvm::Value *> operandsRef(operands); 569 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) { 570 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 571 blockMapping[invOp.getSuccessor(0)], 572 blockMapping[invOp.getSuccessor(1)], operandsRef); 573 } else { 574 auto *calleePtrType = 575 cast<llvm::PointerType>(operandsRef.front()->getType()); 576 auto *calleeType = 577 cast<llvm::FunctionType>(calleePtrType->getElementType()); 578 builder.CreateInvoke( 579 calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 580 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 581 } 582 return success(); 583 } 584 585 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 586 llvm::Type *ty = convertType(lpOp.getType().cast<LLVMType>()); 587 llvm::LandingPadInst *lpi = 588 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 589 590 // Add clauses 591 for (auto operand : lookupValues(lpOp.getOperands())) { 592 // All operands should be constant - checked by verifier 593 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 594 lpi->addClause(constOperand); 595 } 596 valueMapping[lpOp.getResult()] = lpi; 597 return success(); 598 } 599 600 // Emit branches. We need to look up the remapped blocks and ignore the block 601 // arguments that were transformed into PHI nodes. 602 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 603 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 604 return success(); 605 } 606 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 607 auto weights = condbrOp.branch_weights(); 608 llvm::MDNode *branchWeights = nullptr; 609 if (weights) { 610 // Map weight attributes to LLVM metadata. 611 auto trueWeight = 612 weights.getValue().getValue(0).cast<IntegerAttr>().getInt(); 613 auto falseWeight = 614 weights.getValue().getValue(1).cast<IntegerAttr>().getInt(); 615 branchWeights = 616 llvm::MDBuilder(llvmModule->getContext()) 617 .createBranchWeights(static_cast<uint32_t>(trueWeight), 618 static_cast<uint32_t>(falseWeight)); 619 } 620 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 621 blockMapping[condbrOp.getSuccessor(0)], 622 blockMapping[condbrOp.getSuccessor(1)], branchWeights); 623 return success(); 624 } 625 626 // Emit addressof. We need to look up the global value referenced by the 627 // operation and store it in the MLIR-to-LLVM value mapping. This does not 628 // emit any LLVM instruction. 629 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 630 LLVM::GlobalOp global = addressOfOp.getGlobal(); 631 LLVM::LLVMFuncOp function = addressOfOp.getFunction(); 632 633 // The verifier should not have allowed this. 634 assert((global || function) && 635 "referencing an undefined global or function"); 636 637 valueMapping[addressOfOp.getResult()] = 638 global ? globalsMapping.lookup(global) 639 : functionMapping.lookup(function.getName()); 640 return success(); 641 } 642 643 if (opInst.getDialect() == ompDialect) { 644 return convertOmpOperation(opInst, builder); 645 } 646 647 return opInst.emitError("unsupported or non-LLVM operation: ") 648 << opInst.getName(); 649 } 650 651 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 652 /// to define values corresponding to the MLIR block arguments. These nodes 653 /// are not connected to the source basic blocks, which may not exist yet. 654 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 655 llvm::IRBuilder<> builder(blockMapping[&bb]); 656 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 657 658 // Before traversing operations, make block arguments available through 659 // value remapping and PHI nodes, but do not add incoming edges for the PHI 660 // nodes just yet: those values may be defined by this or following blocks. 661 // This step is omitted if "ignoreArguments" is set. The arguments of the 662 // first block have been already made available through the remapping of 663 // LLVM function arguments. 664 if (!ignoreArguments) { 665 auto predecessors = bb.getPredecessors(); 666 unsigned numPredecessors = 667 std::distance(predecessors.begin(), predecessors.end()); 668 for (auto arg : bb.getArguments()) { 669 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 670 if (!wrappedType) 671 return emitError(bb.front().getLoc(), 672 "block argument does not have an LLVM type"); 673 llvm::Type *type = convertType(wrappedType); 674 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 675 valueMapping[arg] = phi; 676 } 677 } 678 679 // Traverse operations. 680 for (auto &op : bb) { 681 // Set the current debug location within the builder. 682 builder.SetCurrentDebugLocation( 683 debugTranslation->translateLoc(op.getLoc(), subprogram)); 684 685 if (failed(convertOperation(op, builder))) 686 return failure(); 687 } 688 689 return success(); 690 } 691 692 /// Create named global variables that correspond to llvm.mlir.global 693 /// definitions. 694 LogicalResult ModuleTranslation::convertGlobals() { 695 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 696 llvm::Type *type = convertType(op.getType()); 697 llvm::Constant *cst = llvm::UndefValue::get(type); 698 if (op.getValueOrNull()) { 699 // String attributes are treated separately because they cannot appear as 700 // in-function constants and are thus not supported by getLLVMConstant. 701 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 702 cst = llvm::ConstantDataArray::getString( 703 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 704 type = cst->getType(); 705 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 706 op.getLoc()))) { 707 return failure(); 708 } 709 } else if (Block *initializer = op.getInitializerBlock()) { 710 llvm::IRBuilder<> builder(llvmModule->getContext()); 711 for (auto &op : initializer->without_terminator()) { 712 if (failed(convertOperation(op, builder)) || 713 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 714 return emitError(op.getLoc(), "unemittable constant value"); 715 } 716 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 717 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 718 } 719 720 auto linkage = convertLinkageToLLVM(op.linkage()); 721 bool anyExternalLinkage = 722 ((linkage == llvm::GlobalVariable::ExternalLinkage && 723 isa<llvm::UndefValue>(cst)) || 724 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 725 auto addrSpace = op.addr_space().getLimitedValue(); 726 auto *var = new llvm::GlobalVariable( 727 *llvmModule, type, op.constant(), linkage, 728 anyExternalLinkage ? nullptr : cst, op.sym_name(), 729 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 730 731 globalsMapping.try_emplace(op, var); 732 } 733 734 return success(); 735 } 736 737 /// Attempts to add an attribute identified by `key`, optionally with the given 738 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 739 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 740 /// otherwise keep it as a string attribute. Performs additional checks for 741 /// attributes known to have or not have a value in order to avoid assertions 742 /// inside LLVM upon construction. 743 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 744 llvm::Function *llvmFunc, 745 StringRef key, 746 StringRef value = StringRef()) { 747 auto kind = llvm::Attribute::getAttrKindFromName(key); 748 if (kind == llvm::Attribute::None) { 749 llvmFunc->addFnAttr(key, value); 750 return success(); 751 } 752 753 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) { 754 if (value.empty()) 755 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 756 757 int result; 758 if (!value.getAsInteger(/*Radix=*/0, result)) 759 llvmFunc->addFnAttr( 760 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 761 else 762 llvmFunc->addFnAttr(key, value); 763 return success(); 764 } 765 766 if (!value.empty()) 767 return emitError(loc) << "LLVM attribute '" << key 768 << "' does not expect a value, found '" << value 769 << "'"; 770 771 llvmFunc->addFnAttr(kind); 772 return success(); 773 } 774 775 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 776 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 777 /// to be an array attribute containing either string attributes, treated as 778 /// value-less LLVM attributes, or array attributes containing two string 779 /// attributes, with the first string being the name of the corresponding LLVM 780 /// attribute and the second string beings its value. Note that even integer 781 /// attributes are expected to have their values expressed as strings. 782 static LogicalResult 783 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 784 llvm::Function *llvmFunc) { 785 if (!attributes) 786 return success(); 787 788 for (Attribute attr : *attributes) { 789 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 790 if (failed( 791 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 792 return failure(); 793 continue; 794 } 795 796 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 797 if (!arrayAttr || arrayAttr.size() != 2) 798 return emitError(loc) 799 << "expected 'passthrough' to contain string or array attributes"; 800 801 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 802 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 803 if (!keyAttr || !valueAttr) 804 return emitError(loc) 805 << "expected arrays within 'passthrough' to contain two strings"; 806 807 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 808 valueAttr.getValue()))) 809 return failure(); 810 } 811 return success(); 812 } 813 814 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 815 // Clear the block and value mappings, they are only relevant within one 816 // function. 817 blockMapping.clear(); 818 valueMapping.clear(); 819 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 820 821 // Translate the debug information for this function. 822 debugTranslation->translate(func, *llvmFunc); 823 824 // Add function arguments to the value remapping table. 825 // If there was noalias info then we decorate each argument accordingly. 826 unsigned int argIdx = 0; 827 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 828 llvm::Argument &llvmArg = std::get<1>(kvp); 829 BlockArgument mlirArg = std::get<0>(kvp); 830 831 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 832 // NB: Attribute already verified to be boolean, so check if we can indeed 833 // attach the attribute to this argument, based on its type. 834 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 835 if (!argTy.isPointerTy()) 836 return func.emitError( 837 "llvm.noalias attribute attached to LLVM non-pointer argument"); 838 if (attr.getValue()) 839 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 840 } 841 842 if (auto attr = func.getArgAttrOfType<IntegerAttr>(argIdx, "llvm.align")) { 843 // NB: Attribute already verified to be int, so check if we can indeed 844 // attach the attribute to this argument, based on its type. 845 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 846 if (!argTy.isPointerTy()) 847 return func.emitError( 848 "llvm.align attribute attached to LLVM non-pointer argument"); 849 llvmArg.addAttrs( 850 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 851 } 852 853 valueMapping[mlirArg] = &llvmArg; 854 argIdx++; 855 } 856 857 // Check the personality and set it. 858 if (func.personality().hasValue()) { 859 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 860 if (llvm::Constant *pfunc = 861 getLLVMConstant(ty, func.personalityAttr(), func.getLoc())) 862 llvmFunc->setPersonalityFn(pfunc); 863 } 864 865 // First, create all blocks so we can jump to them. 866 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 867 for (auto &bb : func) { 868 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 869 llvmBB->insertInto(llvmFunc); 870 blockMapping[&bb] = llvmBB; 871 } 872 873 // Then, convert blocks one by one in topological order to ensure defs are 874 // converted before uses. 875 auto blocks = topologicalSort(func); 876 for (auto indexedBB : llvm::enumerate(blocks)) { 877 auto *bb = indexedBB.value(); 878 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 879 return failure(); 880 } 881 882 // Finally, after all blocks have been traversed and values mapped, connect 883 // the PHI nodes to the results of preceding blocks. 884 connectPHINodes(func, valueMapping, blockMapping); 885 return success(); 886 } 887 888 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 889 for (Operation &o : getModuleBody(m).getOperations()) 890 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator()) 891 return o.emitOpError("unsupported module-level operation"); 892 return success(); 893 } 894 895 LogicalResult ModuleTranslation::convertFunctionSignatures() { 896 // Declare all functions first because there may be function calls that form a 897 // call graph with cycles, or global initializers that reference functions. 898 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 899 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 900 function.getName(), 901 cast<llvm::FunctionType>(convertType(function.getType()))); 902 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 903 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage())); 904 functionMapping[function.getName()] = llvmFunc; 905 906 // Forward the pass-through attributes to LLVM. 907 if (failed(forwardPassthroughAttributes(function.getLoc(), 908 function.passthrough(), llvmFunc))) 909 return failure(); 910 } 911 912 return success(); 913 } 914 915 LogicalResult ModuleTranslation::convertFunctions() { 916 // Convert functions. 917 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 918 // Ignore external functions. 919 if (function.isExternal()) 920 continue; 921 922 if (failed(convertOneFunction(function))) 923 return failure(); 924 } 925 926 return success(); 927 } 928 929 llvm::Type *ModuleTranslation::convertType(LLVMType type) { 930 return typeTranslator.translateType(type); 931 } 932 933 /// A helper to look up remapped operands in the value remapping table.` 934 SmallVector<llvm::Value *, 8> 935 ModuleTranslation::lookupValues(ValueRange values) { 936 SmallVector<llvm::Value *, 8> remapped; 937 remapped.reserve(values.size()); 938 for (Value v : values) { 939 assert(valueMapping.count(v) && "referencing undefined value"); 940 remapped.push_back(valueMapping.lookup(v)); 941 } 942 return remapped; 943 } 944 945 std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule( 946 Operation *m, llvm::LLVMContext &llvmContext, StringRef name) { 947 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 948 assert(dialect && "LLVM dialect must be registered"); 949 950 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 951 llvmModule->setDataLayout(dialect->getDataLayout()); 952 953 // Inject declarations for `malloc` and `free` functions that can be used in 954 // memref allocation/deallocation coming from standard ops lowering. 955 llvm::IRBuilder<> builder(llvmContext); 956 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 957 builder.getInt64Ty()); 958 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 959 builder.getInt8PtrTy()); 960 961 return llvmModule; 962 } 963