1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Copyright 2019 The MLIR Authors. 4 // 5 // Licensed under the Apache License, Version 2.0 (the "License"); 6 // you may not use this file except in compliance with the License. 7 // You may obtain a copy of the License at 8 // 9 // http://www.apache.org/licenses/LICENSE-2.0 10 // 11 // Unless required by applicable law or agreed to in writing, software 12 // distributed under the License is distributed on an "AS IS" BASIS, 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 // See the License for the specific language governing permissions and 15 // limitations under the License. 16 // ============================================================================= 17 // 18 // This file implements the translation between an MLIR LLVM dialect module and 19 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 24 25 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 26 #include "mlir/IR/Attributes.h" 27 #include "mlir/IR/Module.h" 28 #include "mlir/Support/LLVM.h" 29 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 39 namespace mlir { 40 namespace LLVM { 41 42 // Convert an MLIR function type to LLVM IR. Arguments of the function must of 43 // MLIR LLVM IR dialect types. Use `loc` as a location when reporting errors. 44 // Return nullptr on errors. 45 static llvm::FunctionType *convertFunctionType(llvm::LLVMContext &llvmContext, 46 FunctionType type, Location loc, 47 bool isVarArgs) { 48 assert(type && "expected non-null type"); 49 if (type.getNumResults() > 1) 50 return emitError(loc, "LLVM functions can only have 0 or 1 result"), 51 nullptr; 52 53 SmallVector<llvm::Type *, 8> argTypes; 54 argTypes.reserve(type.getNumInputs()); 55 for (auto t : type.getInputs()) { 56 auto wrappedLLVMType = t.dyn_cast<LLVM::LLVMType>(); 57 if (!wrappedLLVMType) 58 return emitError(loc, "non-LLVM function argument type"), nullptr; 59 argTypes.push_back(wrappedLLVMType.getUnderlyingType()); 60 } 61 62 if (type.getNumResults() == 0) 63 return llvm::FunctionType::get(llvm::Type::getVoidTy(llvmContext), argTypes, 64 isVarArgs); 65 66 auto wrappedResultType = type.getResult(0).dyn_cast<LLVM::LLVMType>(); 67 if (!wrappedResultType) 68 return emitError(loc, "non-LLVM function result"), nullptr; 69 70 return llvm::FunctionType::get(wrappedResultType.getUnderlyingType(), 71 argTypes, isVarArgs); 72 } 73 74 // Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 75 // This currently supports integer, floating point, splat and dense element 76 // attributes and combinations thereof. In case of error, report it to `loc` 77 // and return nullptr. 78 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 79 Attribute attr, 80 Location loc) { 81 if (!attr) 82 return llvm::UndefValue::get(llvmType); 83 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 84 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 85 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 86 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 87 if (auto funcAttr = attr.dyn_cast<SymbolRefAttr>()) 88 return functionMapping.lookup(funcAttr.getValue()); 89 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 90 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 91 auto elementType = sequentialType->getElementType(); 92 uint64_t numElements = sequentialType->getNumElements(); 93 auto *child = getLLVMConstant(elementType, splatAttr.getSplatValue(), loc); 94 if (llvmType->isVectorTy()) 95 return llvm::ConstantVector::getSplat(numElements, child); 96 if (llvmType->isArrayTy()) { 97 auto arrayType = llvm::ArrayType::get(elementType, numElements); 98 SmallVector<llvm::Constant *, 8> constants(numElements, child); 99 return llvm::ConstantArray::get(arrayType, constants); 100 } 101 } 102 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 103 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 104 auto elementType = sequentialType->getElementType(); 105 uint64_t numElements = sequentialType->getNumElements(); 106 SmallVector<llvm::Constant *, 8> constants; 107 constants.reserve(numElements); 108 for (auto n : elementsAttr.getValues<Attribute>()) { 109 constants.push_back(getLLVMConstant(elementType, n, loc)); 110 if (!constants.back()) 111 return nullptr; 112 } 113 if (llvmType->isVectorTy()) 114 return llvm::ConstantVector::get(constants); 115 if (llvmType->isArrayTy()) { 116 auto arrayType = llvm::ArrayType::get(elementType, numElements); 117 return llvm::ConstantArray::get(arrayType, constants); 118 } 119 } 120 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 121 return llvm::ConstantDataArray::get( 122 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 123 stringAttr.getValue().size()}); 124 } 125 emitError(loc, "unsupported constant value"); 126 return nullptr; 127 } 128 129 // Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 130 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 131 switch (p) { 132 case LLVM::ICmpPredicate::eq: 133 return llvm::CmpInst::Predicate::ICMP_EQ; 134 case LLVM::ICmpPredicate::ne: 135 return llvm::CmpInst::Predicate::ICMP_NE; 136 case LLVM::ICmpPredicate::slt: 137 return llvm::CmpInst::Predicate::ICMP_SLT; 138 case LLVM::ICmpPredicate::sle: 139 return llvm::CmpInst::Predicate::ICMP_SLE; 140 case LLVM::ICmpPredicate::sgt: 141 return llvm::CmpInst::Predicate::ICMP_SGT; 142 case LLVM::ICmpPredicate::sge: 143 return llvm::CmpInst::Predicate::ICMP_SGE; 144 case LLVM::ICmpPredicate::ult: 145 return llvm::CmpInst::Predicate::ICMP_ULT; 146 case LLVM::ICmpPredicate::ule: 147 return llvm::CmpInst::Predicate::ICMP_ULE; 148 case LLVM::ICmpPredicate::ugt: 149 return llvm::CmpInst::Predicate::ICMP_UGT; 150 case LLVM::ICmpPredicate::uge: 151 return llvm::CmpInst::Predicate::ICMP_UGE; 152 } 153 llvm_unreachable("incorrect comparison predicate"); 154 } 155 156 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 157 switch (p) { 158 case LLVM::FCmpPredicate::_false: 159 return llvm::CmpInst::Predicate::FCMP_FALSE; 160 case LLVM::FCmpPredicate::oeq: 161 return llvm::CmpInst::Predicate::FCMP_OEQ; 162 case LLVM::FCmpPredicate::ogt: 163 return llvm::CmpInst::Predicate::FCMP_OGT; 164 case LLVM::FCmpPredicate::oge: 165 return llvm::CmpInst::Predicate::FCMP_OGE; 166 case LLVM::FCmpPredicate::olt: 167 return llvm::CmpInst::Predicate::FCMP_OLT; 168 case LLVM::FCmpPredicate::ole: 169 return llvm::CmpInst::Predicate::FCMP_OLE; 170 case LLVM::FCmpPredicate::one: 171 return llvm::CmpInst::Predicate::FCMP_ONE; 172 case LLVM::FCmpPredicate::ord: 173 return llvm::CmpInst::Predicate::FCMP_ORD; 174 case LLVM::FCmpPredicate::ueq: 175 return llvm::CmpInst::Predicate::FCMP_UEQ; 176 case LLVM::FCmpPredicate::ugt: 177 return llvm::CmpInst::Predicate::FCMP_UGT; 178 case LLVM::FCmpPredicate::uge: 179 return llvm::CmpInst::Predicate::FCMP_UGE; 180 case LLVM::FCmpPredicate::ult: 181 return llvm::CmpInst::Predicate::FCMP_ULT; 182 case LLVM::FCmpPredicate::ule: 183 return llvm::CmpInst::Predicate::FCMP_ULE; 184 case LLVM::FCmpPredicate::une: 185 return llvm::CmpInst::Predicate::FCMP_UNE; 186 case LLVM::FCmpPredicate::uno: 187 return llvm::CmpInst::Predicate::FCMP_UNO; 188 case LLVM::FCmpPredicate::_true: 189 return llvm::CmpInst::Predicate::FCMP_TRUE; 190 } 191 llvm_unreachable("incorrect comparison predicate"); 192 } 193 194 // A helper to look up remapped operands in the value remapping table. 195 template <typename Range> 196 SmallVector<llvm::Value *, 8> ModuleTranslation::lookupValues(Range &&values) { 197 SmallVector<llvm::Value *, 8> remapped; 198 remapped.reserve(llvm::size(values)); 199 for (Value *v : values) { 200 remapped.push_back(valueMapping.lookup(v)); 201 } 202 return remapped; 203 } 204 205 // Given a single MLIR operation, create the corresponding LLVM IR operation 206 // using the `builder`. LLVM IR Builder does not have a generic interface so 207 // this has to be a long chain of `if`s calling different functions with a 208 // different number of arguments. 209 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 210 llvm::IRBuilder<> &builder) { 211 auto extractPosition = [](ArrayAttr attr) { 212 SmallVector<unsigned, 4> position; 213 position.reserve(attr.size()); 214 for (Attribute v : attr) 215 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 216 return position; 217 }; 218 219 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 220 221 // Emit function calls. If the "callee" attribute is present, this is a 222 // direct function call and we also need to look up the remapped function 223 // itself. Otherwise, this is an indirect call and the callee is the first 224 // operand, look it up as a normal value. Return the llvm::Value representing 225 // the function result, which may be of llvm::VoidTy type. 226 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 227 auto operands = lookupValues(op.getOperands()); 228 ArrayRef<llvm::Value *> operandsRef(operands); 229 if (auto attr = op.getAttrOfType<SymbolRefAttr>("callee")) { 230 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 231 operandsRef); 232 } else { 233 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 234 } 235 }; 236 237 // Emit calls. If the called function has a result, remap the corresponding 238 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 239 if (isa<LLVM::CallOp>(opInst)) { 240 llvm::Value *result = convertCall(opInst); 241 if (opInst.getNumResults() != 0) { 242 valueMapping[opInst.getResult(0)] = result; 243 return success(); 244 } 245 // Check that LLVM call returns void for 0-result functions. 246 return success(result->getType()->isVoidTy()); 247 } 248 249 // Emit branches. We need to look up the remapped blocks and ignore the block 250 // arguments that were transformed into PHI nodes. 251 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 252 builder.CreateBr(blockMapping[brOp.getSuccessor(0)]); 253 return success(); 254 } 255 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 256 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 257 blockMapping[condbrOp.getSuccessor(0)], 258 blockMapping[condbrOp.getSuccessor(1)]); 259 return success(); 260 } 261 262 // Emit addressof. We need to look up the global value referenced by the 263 // operation and store it in the MLIR-to-LLVM value mapping. This does not 264 // emit any LLVM instruction. 265 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 266 LLVM::GlobalOp global = addressOfOp.getGlobal(); 267 // The verifier should not have allowed this. 268 assert(global && "referencing an undefined global"); 269 270 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 271 return success(); 272 } 273 274 return opInst.emitError("unsupported or non-LLVM operation: ") 275 << opInst.getName(); 276 } 277 278 // Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 279 // to define values corresponding to the MLIR block arguments. These nodes 280 // are not connected to the source basic blocks, which may not exist yet. 281 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 282 llvm::IRBuilder<> builder(blockMapping[&bb]); 283 284 // Before traversing operations, make block arguments available through 285 // value remapping and PHI nodes, but do not add incoming edges for the PHI 286 // nodes just yet: those values may be defined by this or following blocks. 287 // This step is omitted if "ignoreArguments" is set. The arguments of the 288 // first block have been already made available through the remapping of 289 // LLVM function arguments. 290 if (!ignoreArguments) { 291 auto predecessors = bb.getPredecessors(); 292 unsigned numPredecessors = 293 std::distance(predecessors.begin(), predecessors.end()); 294 for (auto *arg : bb.getArguments()) { 295 auto wrappedType = arg->getType().dyn_cast<LLVM::LLVMType>(); 296 if (!wrappedType) 297 return emitError(bb.front().getLoc(), 298 "block argument does not have an LLVM type"); 299 llvm::Type *type = wrappedType.getUnderlyingType(); 300 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 301 valueMapping[arg] = phi; 302 } 303 } 304 305 // Traverse operations. 306 for (auto &op : bb) { 307 if (failed(convertOperation(op, builder))) 308 return failure(); 309 } 310 311 return success(); 312 } 313 314 // Create named global variables that correspond to llvm.mlir.global 315 // definitions. 316 void ModuleTranslation::convertGlobals() { 317 for (auto op : mlirModule.getOps<LLVM::GlobalOp>()) { 318 llvm::Constant *cst; 319 llvm::Type *type; 320 // String attributes are treated separately because they cannot appear as 321 // in-function constants and are thus not supported by getLLVMConstant. 322 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 323 cst = llvm::ConstantDataArray::getString( 324 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 325 type = cst->getType(); 326 } else { 327 type = op.getType().getUnderlyingType(); 328 cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc()); 329 } 330 331 auto addrSpace = op.addr_space().getLimitedValue(); 332 auto *var = new llvm::GlobalVariable( 333 *llvmModule, type, op.constant(), llvm::GlobalValue::InternalLinkage, 334 cst, op.sym_name(), /*InsertBefore=*/nullptr, 335 llvm::GlobalValue::NotThreadLocal, addrSpace); 336 337 globalsMapping.try_emplace(op, var); 338 } 339 } 340 341 // Get the SSA value passed to the current block from the terminator operation 342 // of its predecessor. 343 static Value *getPHISourceValue(Block *current, Block *pred, 344 unsigned numArguments, unsigned index) { 345 auto &terminator = *pred->getTerminator(); 346 if (isa<LLVM::BrOp>(terminator)) { 347 return terminator.getOperand(index); 348 } 349 350 // For conditional branches, we need to check if the current block is reached 351 // through the "true" or the "false" branch and take the relevant operands. 352 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 353 assert(condBranchOp && 354 "only branch operations can be terminators of a block that " 355 "has successors"); 356 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 357 "successors with arguments in LLVM conditional branches must be " 358 "different blocks"); 359 360 return condBranchOp.getSuccessor(0) == current 361 ? terminator.getSuccessorOperand(0, index) 362 : terminator.getSuccessorOperand(1, index); 363 } 364 365 void ModuleTranslation::connectPHINodes(FuncOp func) { 366 // Skip the first block, it cannot be branched to and its arguments correspond 367 // to the arguments of the LLVM function. 368 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 369 Block *bb = &*it; 370 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 371 auto phis = llvmBB->phis(); 372 auto numArguments = bb->getNumArguments(); 373 assert(numArguments == std::distance(phis.begin(), phis.end())); 374 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 375 auto &phiNode = numberedPhiNode.value(); 376 unsigned index = numberedPhiNode.index(); 377 for (auto *pred : bb->getPredecessors()) { 378 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 379 bb, pred, numArguments, index)), 380 blockMapping.lookup(pred)); 381 } 382 } 383 } 384 } 385 386 // TODO(mlir-team): implement an iterative version 387 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 388 blocks.insert(b); 389 for (Block *bb : b->getSuccessors()) { 390 if (blocks.count(bb) == 0) 391 topologicalSortImpl(blocks, bb); 392 } 393 } 394 395 // Sort function blocks topologically. 396 static llvm::SetVector<Block *> topologicalSort(FuncOp f) { 397 // For each blocks that has not been visited yet (i.e. that has no 398 // predecessors), add it to the list and traverse its successors in DFS 399 // preorder. 400 llvm::SetVector<Block *> blocks; 401 for (Block &b : f.getBlocks()) { 402 if (blocks.count(&b) == 0) 403 topologicalSortImpl(blocks, &b); 404 } 405 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 406 407 return blocks; 408 } 409 410 LogicalResult ModuleTranslation::convertOneFunction(FuncOp func) { 411 // Clear the block and value mappings, they are only relevant within one 412 // function. 413 blockMapping.clear(); 414 valueMapping.clear(); 415 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 416 // Add function arguments to the value remapping table. 417 // If there was noalias info then we decorate each argument accordingly. 418 unsigned int argIdx = 0; 419 for (const auto &kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 420 llvm::Argument &llvmArg = std::get<1>(kvp); 421 BlockArgument *mlirArg = std::get<0>(kvp); 422 423 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 424 // NB: Attribute already verified to be boolean, so check if we can indeed 425 // attach the attribute to this argument, based on its type. 426 auto argTy = mlirArg->getType().dyn_cast<LLVM::LLVMType>(); 427 if (!argTy.getUnderlyingType()->isPointerTy()) 428 return func.emitError( 429 "llvm.noalias attribute attached to LLVM non-pointer argument"); 430 if (attr.getValue()) 431 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 432 } 433 valueMapping[mlirArg] = &llvmArg; 434 argIdx++; 435 } 436 437 // First, create all blocks so we can jump to them. 438 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 439 for (auto &bb : func) { 440 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 441 llvmBB->insertInto(llvmFunc); 442 blockMapping[&bb] = llvmBB; 443 } 444 445 // Then, convert blocks one by one in topological order to ensure defs are 446 // converted before uses. 447 auto blocks = topologicalSort(func); 448 for (auto indexedBB : llvm::enumerate(blocks)) { 449 auto *bb = indexedBB.value(); 450 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 451 return failure(); 452 } 453 454 // Finally, after all blocks have been traversed and values mapped, connect 455 // the PHI nodes to the results of preceding blocks. 456 connectPHINodes(func); 457 return success(); 458 } 459 460 LogicalResult ModuleTranslation::convertFunctions() { 461 // Declare all functions first because there may be function calls that form a 462 // call graph with cycles. 463 for (FuncOp function : mlirModule.getOps<FuncOp>()) { 464 mlir::BoolAttr isVarArgsAttr = 465 function.getAttrOfType<BoolAttr>("std.varargs"); 466 bool isVarArgs = isVarArgsAttr && isVarArgsAttr.getValue(); 467 llvm::FunctionType *functionType = 468 convertFunctionType(llvmModule->getContext(), function.getType(), 469 function.getLoc(), isVarArgs); 470 if (!functionType) 471 return failure(); 472 llvm::FunctionCallee llvmFuncCst = 473 llvmModule->getOrInsertFunction(function.getName(), functionType); 474 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 475 functionMapping[function.getName()] = 476 cast<llvm::Function>(llvmFuncCst.getCallee()); 477 } 478 479 // Convert functions. 480 for (FuncOp function : mlirModule.getOps<FuncOp>()) { 481 // Ignore external functions. 482 if (function.isExternal()) 483 continue; 484 485 if (failed(convertOneFunction(function))) 486 return failure(); 487 } 488 489 return success(); 490 } 491 492 std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(ModuleOp m) { 493 auto *dialect = m.getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 494 assert(dialect && "LLVM dialect must be registered"); 495 496 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 497 if (!llvmModule) 498 return nullptr; 499 500 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 501 llvm::IRBuilder<> builder(llvmContext); 502 503 // Inject declarations for `malloc` and `free` functions that can be used in 504 // memref allocation/deallocation coming from standard ops lowering. 505 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 506 builder.getInt64Ty()); 507 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 508 builder.getInt8PtrTy()); 509 510 return llvmModule; 511 } 512 513 } // namespace LLVM 514 } // namespace mlir 515