1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
19 #include "mlir/IR/Attributes.h"
20 #include "mlir/IR/BuiltinOps.h"
21 #include "mlir/IR/BuiltinTypes.h"
22 #include "mlir/IR/RegionGraphTraits.h"
23 #include "mlir/Support/LLVM.h"
24 #include "mlir/Target/LLVMIR/TypeTranslation.h"
25 #include "llvm/ADT/TypeSwitch.h"
26 
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 
42 using namespace mlir;
43 using namespace mlir::LLVM;
44 using namespace mlir::LLVM::detail;
45 
46 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
47 
48 /// Builds a constant of a sequential LLVM type `type`, potentially containing
49 /// other sequential types recursively, from the individual constant values
50 /// provided in `constants`. `shape` contains the number of elements in nested
51 /// sequential types. Reports errors at `loc` and returns nullptr on error.
52 static llvm::Constant *
53 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
54                         ArrayRef<int64_t> shape, llvm::Type *type,
55                         Location loc) {
56   if (shape.empty()) {
57     llvm::Constant *result = constants.front();
58     constants = constants.drop_front();
59     return result;
60   }
61 
62   llvm::Type *elementType;
63   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
64     elementType = arrayTy->getElementType();
65   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
66     elementType = vectorTy->getElementType();
67   } else {
68     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
69     return nullptr;
70   }
71 
72   SmallVector<llvm::Constant *, 8> nested;
73   nested.reserve(shape.front());
74   for (int64_t i = 0; i < shape.front(); ++i) {
75     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
76                                              elementType, loc));
77     if (!nested.back())
78       return nullptr;
79   }
80 
81   if (shape.size() == 1 && type->isVectorTy())
82     return llvm::ConstantVector::get(nested);
83   return llvm::ConstantArray::get(
84       llvm::ArrayType::get(elementType, shape.front()), nested);
85 }
86 
87 /// Returns the first non-sequential type nested in sequential types.
88 static llvm::Type *getInnermostElementType(llvm::Type *type) {
89   do {
90     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
91       type = arrayTy->getElementType();
92     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
93       type = vectorTy->getElementType();
94     } else {
95       return type;
96     }
97   } while (1);
98 }
99 
100 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
101 /// This currently supports integer, floating point, splat and dense element
102 /// attributes and combinations thereof.  In case of error, report it to `loc`
103 /// and return nullptr.
104 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
105                                                    Attribute attr,
106                                                    Location loc) {
107   if (!attr)
108     return llvm::UndefValue::get(llvmType);
109   if (llvmType->isStructTy()) {
110     emitError(loc, "struct types are not supported in constants");
111     return nullptr;
112   }
113   // For integer types, we allow a mismatch in sizes as the index type in
114   // MLIR might have a different size than the index type in the LLVM module.
115   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
116     return llvm::ConstantInt::get(
117         llvmType,
118         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
119   if (auto floatAttr = attr.dyn_cast<FloatAttr>())
120     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
121   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
122     return llvm::ConstantExpr::getBitCast(
123         functionMapping.lookup(funcAttr.getValue()), llvmType);
124   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
125     llvm::Type *elementType;
126     uint64_t numElements;
127     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
128       elementType = arrayTy->getElementType();
129       numElements = arrayTy->getNumElements();
130     } else {
131       auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
132       elementType = vectorTy->getElementType();
133       numElements = vectorTy->getNumElements();
134     }
135     // Splat value is a scalar. Extract it only if the element type is not
136     // another sequence type. The recursion terminates because each step removes
137     // one outer sequential type.
138     bool elementTypeSequential =
139         isa<llvm::ArrayType, llvm::VectorType>(elementType);
140     llvm::Constant *child = getLLVMConstant(
141         elementType,
142         elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc);
143     if (!child)
144       return nullptr;
145     if (llvmType->isVectorTy())
146       return llvm::ConstantVector::getSplat(
147           llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
148     if (llvmType->isArrayTy()) {
149       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
150       SmallVector<llvm::Constant *, 8> constants(numElements, child);
151       return llvm::ConstantArray::get(arrayType, constants);
152     }
153   }
154 
155   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
156     assert(elementsAttr.getType().hasStaticShape());
157     assert(elementsAttr.getNumElements() != 0 &&
158            "unexpected empty elements attribute");
159     assert(!elementsAttr.getType().getShape().empty() &&
160            "unexpected empty elements attribute shape");
161 
162     SmallVector<llvm::Constant *, 8> constants;
163     constants.reserve(elementsAttr.getNumElements());
164     llvm::Type *innermostType = getInnermostElementType(llvmType);
165     for (auto n : elementsAttr.getValues<Attribute>()) {
166       constants.push_back(getLLVMConstant(innermostType, n, loc));
167       if (!constants.back())
168         return nullptr;
169     }
170     ArrayRef<llvm::Constant *> constantsRef = constants;
171     llvm::Constant *result = buildSequentialConstant(
172         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
173     assert(constantsRef.empty() && "did not consume all elemental constants");
174     return result;
175   }
176 
177   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
178     return llvm::ConstantDataArray::get(
179         llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
180                                                  stringAttr.getValue().size()});
181   }
182   emitError(loc, "unsupported constant value");
183   return nullptr;
184 }
185 
186 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
187 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
188   switch (p) {
189   case LLVM::ICmpPredicate::eq:
190     return llvm::CmpInst::Predicate::ICMP_EQ;
191   case LLVM::ICmpPredicate::ne:
192     return llvm::CmpInst::Predicate::ICMP_NE;
193   case LLVM::ICmpPredicate::slt:
194     return llvm::CmpInst::Predicate::ICMP_SLT;
195   case LLVM::ICmpPredicate::sle:
196     return llvm::CmpInst::Predicate::ICMP_SLE;
197   case LLVM::ICmpPredicate::sgt:
198     return llvm::CmpInst::Predicate::ICMP_SGT;
199   case LLVM::ICmpPredicate::sge:
200     return llvm::CmpInst::Predicate::ICMP_SGE;
201   case LLVM::ICmpPredicate::ult:
202     return llvm::CmpInst::Predicate::ICMP_ULT;
203   case LLVM::ICmpPredicate::ule:
204     return llvm::CmpInst::Predicate::ICMP_ULE;
205   case LLVM::ICmpPredicate::ugt:
206     return llvm::CmpInst::Predicate::ICMP_UGT;
207   case LLVM::ICmpPredicate::uge:
208     return llvm::CmpInst::Predicate::ICMP_UGE;
209   }
210   llvm_unreachable("incorrect comparison predicate");
211 }
212 
213 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
214   switch (p) {
215   case LLVM::FCmpPredicate::_false:
216     return llvm::CmpInst::Predicate::FCMP_FALSE;
217   case LLVM::FCmpPredicate::oeq:
218     return llvm::CmpInst::Predicate::FCMP_OEQ;
219   case LLVM::FCmpPredicate::ogt:
220     return llvm::CmpInst::Predicate::FCMP_OGT;
221   case LLVM::FCmpPredicate::oge:
222     return llvm::CmpInst::Predicate::FCMP_OGE;
223   case LLVM::FCmpPredicate::olt:
224     return llvm::CmpInst::Predicate::FCMP_OLT;
225   case LLVM::FCmpPredicate::ole:
226     return llvm::CmpInst::Predicate::FCMP_OLE;
227   case LLVM::FCmpPredicate::one:
228     return llvm::CmpInst::Predicate::FCMP_ONE;
229   case LLVM::FCmpPredicate::ord:
230     return llvm::CmpInst::Predicate::FCMP_ORD;
231   case LLVM::FCmpPredicate::ueq:
232     return llvm::CmpInst::Predicate::FCMP_UEQ;
233   case LLVM::FCmpPredicate::ugt:
234     return llvm::CmpInst::Predicate::FCMP_UGT;
235   case LLVM::FCmpPredicate::uge:
236     return llvm::CmpInst::Predicate::FCMP_UGE;
237   case LLVM::FCmpPredicate::ult:
238     return llvm::CmpInst::Predicate::FCMP_ULT;
239   case LLVM::FCmpPredicate::ule:
240     return llvm::CmpInst::Predicate::FCMP_ULE;
241   case LLVM::FCmpPredicate::une:
242     return llvm::CmpInst::Predicate::FCMP_UNE;
243   case LLVM::FCmpPredicate::uno:
244     return llvm::CmpInst::Predicate::FCMP_UNO;
245   case LLVM::FCmpPredicate::_true:
246     return llvm::CmpInst::Predicate::FCMP_TRUE;
247   }
248   llvm_unreachable("incorrect comparison predicate");
249 }
250 
251 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) {
252   switch (op) {
253   case LLVM::AtomicBinOp::xchg:
254     return llvm::AtomicRMWInst::BinOp::Xchg;
255   case LLVM::AtomicBinOp::add:
256     return llvm::AtomicRMWInst::BinOp::Add;
257   case LLVM::AtomicBinOp::sub:
258     return llvm::AtomicRMWInst::BinOp::Sub;
259   case LLVM::AtomicBinOp::_and:
260     return llvm::AtomicRMWInst::BinOp::And;
261   case LLVM::AtomicBinOp::nand:
262     return llvm::AtomicRMWInst::BinOp::Nand;
263   case LLVM::AtomicBinOp::_or:
264     return llvm::AtomicRMWInst::BinOp::Or;
265   case LLVM::AtomicBinOp::_xor:
266     return llvm::AtomicRMWInst::BinOp::Xor;
267   case LLVM::AtomicBinOp::max:
268     return llvm::AtomicRMWInst::BinOp::Max;
269   case LLVM::AtomicBinOp::min:
270     return llvm::AtomicRMWInst::BinOp::Min;
271   case LLVM::AtomicBinOp::umax:
272     return llvm::AtomicRMWInst::BinOp::UMax;
273   case LLVM::AtomicBinOp::umin:
274     return llvm::AtomicRMWInst::BinOp::UMin;
275   case LLVM::AtomicBinOp::fadd:
276     return llvm::AtomicRMWInst::BinOp::FAdd;
277   case LLVM::AtomicBinOp::fsub:
278     return llvm::AtomicRMWInst::BinOp::FSub;
279   }
280   llvm_unreachable("incorrect atomic binary operator");
281 }
282 
283 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) {
284   switch (ordering) {
285   case LLVM::AtomicOrdering::not_atomic:
286     return llvm::AtomicOrdering::NotAtomic;
287   case LLVM::AtomicOrdering::unordered:
288     return llvm::AtomicOrdering::Unordered;
289   case LLVM::AtomicOrdering::monotonic:
290     return llvm::AtomicOrdering::Monotonic;
291   case LLVM::AtomicOrdering::acquire:
292     return llvm::AtomicOrdering::Acquire;
293   case LLVM::AtomicOrdering::release:
294     return llvm::AtomicOrdering::Release;
295   case LLVM::AtomicOrdering::acq_rel:
296     return llvm::AtomicOrdering::AcquireRelease;
297   case LLVM::AtomicOrdering::seq_cst:
298     return llvm::AtomicOrdering::SequentiallyConsistent;
299   }
300   llvm_unreachable("incorrect atomic ordering");
301 }
302 
303 ModuleTranslation::ModuleTranslation(Operation *module,
304                                      std::unique_ptr<llvm::Module> llvmModule)
305     : mlirModule(module), llvmModule(std::move(llvmModule)),
306       debugTranslation(
307           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
308       ompDialect(module->getContext()->getLoadedDialect("omp")),
309       typeTranslator(this->llvmModule->getContext()) {
310   assert(satisfiesLLVMModule(mlirModule) &&
311          "mlirModule should honor LLVM's module semantics.");
312 }
313 ModuleTranslation::~ModuleTranslation() {
314   if (ompBuilder)
315     ompBuilder->finalize();
316 }
317 
318 /// Get the SSA value passed to the current block from the terminator operation
319 /// of its predecessor.
320 static Value getPHISourceValue(Block *current, Block *pred,
321                                unsigned numArguments, unsigned index) {
322   Operation &terminator = *pred->getTerminator();
323   if (isa<LLVM::BrOp>(terminator))
324     return terminator.getOperand(index);
325 
326   // For conditional branches, we need to check if the current block is reached
327   // through the "true" or the "false" branch and take the relevant operands.
328   auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
329   assert(condBranchOp &&
330          "only branch operations can be terminators of a block that "
331          "has successors");
332   assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
333          "successors with arguments in LLVM conditional branches must be "
334          "different blocks");
335 
336   return condBranchOp.getSuccessor(0) == current
337              ? condBranchOp.trueDestOperands()[index]
338              : condBranchOp.falseDestOperands()[index];
339 }
340 
341 /// Connect the PHI nodes to the results of preceding blocks.
342 template <typename T>
343 static void connectPHINodes(
344     T &func, const DenseMap<Value, llvm::Value *> &valueMapping,
345     const DenseMap<Block *, llvm::BasicBlock *> &blockMapping,
346     const DenseMap<Operation *, llvm::Instruction *> &branchMapping) {
347   // Skip the first block, it cannot be branched to and its arguments correspond
348   // to the arguments of the LLVM function.
349   for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
350     Block *bb = &*it;
351     llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
352     auto phis = llvmBB->phis();
353     auto numArguments = bb->getNumArguments();
354     assert(numArguments == std::distance(phis.begin(), phis.end()));
355     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
356       auto &phiNode = numberedPhiNode.value();
357       unsigned index = numberedPhiNode.index();
358       for (auto *pred : bb->getPredecessors()) {
359         // Find the LLVM IR block that contains the converted terminator
360         // instruction and use it in the PHI node. Note that this block is not
361         // necessarily the same as blockMapping.lookup(pred), some operations
362         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
363         // split the blocks.
364         llvm::Instruction *terminator =
365             branchMapping.lookup(pred->getTerminator());
366         assert(terminator && "missing the mapping for a terminator");
367         phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
368                                 bb, pred, numArguments, index)),
369                             terminator->getParent());
370       }
371     }
372   }
373 }
374 
375 /// Sort function blocks topologically.
376 template <typename T>
377 static llvm::SetVector<Block *> topologicalSort(T &f) {
378   // For each block that has not been visited yet (i.e. that has no
379   // predecessors), add it to the list as well as its successors.
380   llvm::SetVector<Block *> blocks;
381   for (Block &b : f) {
382     if (blocks.count(&b) == 0) {
383       llvm::ReversePostOrderTraversal<Block *> traversal(&b);
384       blocks.insert(traversal.begin(), traversal.end());
385     }
386   }
387   assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
388 
389   return blocks;
390 }
391 
392 /// Convert the OpenMP parallel Operation to LLVM IR.
393 LogicalResult
394 ModuleTranslation::convertOmpParallel(Operation &opInst,
395                                       llvm::IRBuilder<> &builder) {
396   using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
397   // TODO: support error propagation in OpenMPIRBuilder and use it instead of
398   // relying on captured variables.
399   LogicalResult bodyGenStatus = success();
400 
401   auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
402                        llvm::BasicBlock &continuationIP) {
403     llvm::LLVMContext &llvmContext = llvmModule->getContext();
404 
405     llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock();
406     llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator();
407     ompContinuationIPStack.push_back(&continuationIP);
408 
409     // ParallelOp has only `1` region associated with it.
410     auto &region = cast<omp::ParallelOp>(opInst).getRegion();
411     for (auto &bb : region) {
412       auto *llvmBB = llvm::BasicBlock::Create(
413           llvmContext, "omp.par.region", codeGenIP.getBlock()->getParent());
414       blockMapping[&bb] = llvmBB;
415     }
416 
417     convertOmpOpRegions(region, valueMapping, blockMapping, codeGenIPBBTI,
418                         continuationIP, builder, bodyGenStatus);
419     ompContinuationIPStack.pop_back();
420 
421   };
422 
423   // TODO: Perform appropriate actions according to the data-sharing
424   // attribute (shared, private, firstprivate, ...) of variables.
425   // Currently defaults to shared.
426   auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
427                     llvm::Value &, llvm::Value &vPtr,
428                     llvm::Value *&replacementValue) -> InsertPointTy {
429     replacementValue = &vPtr;
430 
431     return codeGenIP;
432   };
433 
434   // TODO: Perform finalization actions for variables. This has to be
435   // called for variables which have destructors/finalizers.
436   auto finiCB = [&](InsertPointTy codeGenIP) {};
437 
438   llvm::Value *ifCond = nullptr;
439   if (auto ifExprVar = cast<omp::ParallelOp>(opInst).if_expr_var())
440     ifCond = valueMapping.lookup(ifExprVar);
441   llvm::Value *numThreads = nullptr;
442   if (auto numThreadsVar = cast<omp::ParallelOp>(opInst).num_threads_var())
443     numThreads = valueMapping.lookup(numThreadsVar);
444   llvm::omp::ProcBindKind pbKind = llvm::omp::OMP_PROC_BIND_default;
445   if (auto bind = cast<omp::ParallelOp>(opInst).proc_bind_val())
446     pbKind = llvm::omp::getProcBindKind(bind.getValue());
447   // TODO: Is the Parallel construct cancellable?
448   bool isCancellable = false;
449   // TODO: Determine the actual alloca insertion point, e.g., the function
450   // entry or the alloca insertion point as provided by the body callback
451   // above.
452   llvm::OpenMPIRBuilder::InsertPointTy allocaIP(builder.saveIP());
453   if (failed(bodyGenStatus))
454     return failure();
455   builder.restoreIP(
456       ompBuilder->createParallel(builder, allocaIP, bodyGenCB, privCB, finiCB,
457                                  ifCond, numThreads, pbKind, isCancellable));
458   return success();
459 }
460 
461 void ModuleTranslation::convertOmpOpRegions(
462     Region &region, DenseMap<Value, llvm::Value *> &valueMapping,
463     DenseMap<Block *, llvm::BasicBlock *> &blockMapping,
464     llvm::Instruction *codeGenIPBBTI, llvm::BasicBlock &continuationIP,
465     llvm::IRBuilder<> &builder, LogicalResult &bodyGenStatus) {
466   // Convert blocks one by one in topological order to ensure
467   // defs are converted before uses.
468   llvm::SetVector<Block *> blocks = topologicalSort(region);
469   for (auto indexedBB : llvm::enumerate(blocks)) {
470     Block *bb = indexedBB.value();
471     llvm::BasicBlock *curLLVMBB = blockMapping[bb];
472     if (bb->isEntryBlock()) {
473       assert(codeGenIPBBTI->getNumSuccessors() == 1 &&
474              "OpenMPIRBuilder provided entry block has multiple successors");
475       assert(codeGenIPBBTI->getSuccessor(0) == &continuationIP &&
476              "ContinuationIP is not the successor of OpenMPIRBuilder "
477              "provided entry block");
478       codeGenIPBBTI->setSuccessor(0, curLLVMBB);
479     }
480 
481     if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) {
482       bodyGenStatus = failure();
483       return;
484     }
485   }
486   // Finally, after all blocks have been traversed and values mapped,
487   // connect the PHI nodes to the results of preceding blocks.
488   connectPHINodes(region, valueMapping, blockMapping, branchMapping);
489 }
490 
491 LogicalResult ModuleTranslation::convertOmpMaster(Operation &opInst,
492                                                   llvm::IRBuilder<> &builder) {
493   using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
494   // TODO: support error propagation in OpenMPIRBuilder and use it instead of
495   // relying on captured variables.
496   LogicalResult bodyGenStatus = success();
497 
498   auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
499                        llvm::BasicBlock &continuationIP) {
500     llvm::LLVMContext &llvmContext = llvmModule->getContext();
501 
502     llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock();
503     llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator();
504     ompContinuationIPStack.push_back(&continuationIP);
505 
506     // MasterOp has only `1` region associated with it.
507     auto &region = cast<omp::MasterOp>(opInst).getRegion();
508     for (auto &bb : region) {
509       auto *llvmBB = llvm::BasicBlock::Create(
510           llvmContext, "omp.master.region", codeGenIP.getBlock()->getParent());
511       blockMapping[&bb] = llvmBB;
512     }
513     convertOmpOpRegions(region, valueMapping, blockMapping, codeGenIPBBTI,
514                         continuationIP, builder, bodyGenStatus);
515     ompContinuationIPStack.pop_back();
516   };
517 
518   // TODO: Perform finalization actions for variables. This has to be
519   // called for variables which have destructors/finalizers.
520   auto finiCB = [&](InsertPointTy codeGenIP) {};
521 
522   builder.restoreIP(ompBuilder->createMaster(builder, bodyGenCB, finiCB));
523   return success();
524 }
525 
526 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR
527 /// (including OpenMP runtime calls).
528 LogicalResult
529 ModuleTranslation::convertOmpOperation(Operation &opInst,
530                                        llvm::IRBuilder<> &builder) {
531   if (!ompBuilder) {
532     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
533     ompBuilder->initialize();
534   }
535   return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst)
536       .Case([&](omp::BarrierOp) {
537         ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
538         return success();
539       })
540       .Case([&](omp::TaskwaitOp) {
541         ompBuilder->createTaskwait(builder.saveIP());
542         return success();
543       })
544       .Case([&](omp::TaskyieldOp) {
545         ompBuilder->createTaskyield(builder.saveIP());
546         return success();
547       })
548       .Case([&](omp::FlushOp) {
549         // No support in Openmp runtime function (__kmpc_flush) to accept
550         // the argument list.
551         // OpenMP standard states the following:
552         //  "An implementation may implement a flush with a list by ignoring
553         //   the list, and treating it the same as a flush without a list."
554         //
555         // The argument list is discarded so that, flush with a list is treated
556         // same as a flush without a list.
557         ompBuilder->createFlush(builder.saveIP());
558         return success();
559       })
560       .Case([&](omp::TerminatorOp) {
561         builder.CreateBr(ompContinuationIPStack.back());
562         return success();
563       })
564       .Case(
565           [&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); })
566       .Case([&](omp::MasterOp) { return convertOmpMaster(opInst, builder); })
567       .Default([&](Operation *inst) {
568         return inst->emitError("unsupported OpenMP operation: ")
569                << inst->getName();
570       });
571 }
572 
573 /// Given a single MLIR operation, create the corresponding LLVM IR operation
574 /// using the `builder`.  LLVM IR Builder does not have a generic interface so
575 /// this has to be a long chain of `if`s calling different functions with a
576 /// different number of arguments.
577 LogicalResult ModuleTranslation::convertOperation(Operation &opInst,
578                                                   llvm::IRBuilder<> &builder) {
579   auto extractPosition = [](ArrayAttr attr) {
580     SmallVector<unsigned, 4> position;
581     position.reserve(attr.size());
582     for (Attribute v : attr)
583       position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
584     return position;
585   };
586 
587 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc"
588 
589   // Emit function calls.  If the "callee" attribute is present, this is a
590   // direct function call and we also need to look up the remapped function
591   // itself.  Otherwise, this is an indirect call and the callee is the first
592   // operand, look it up as a normal value.  Return the llvm::Value representing
593   // the function result, which may be of llvm::VoidTy type.
594   auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
595     auto operands = lookupValues(op.getOperands());
596     ArrayRef<llvm::Value *> operandsRef(operands);
597     if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) {
598       return builder.CreateCall(functionMapping.lookup(attr.getValue()),
599                                 operandsRef);
600     } else {
601       auto *calleePtrType =
602           cast<llvm::PointerType>(operandsRef.front()->getType());
603       auto *calleeType =
604           cast<llvm::FunctionType>(calleePtrType->getElementType());
605       return builder.CreateCall(calleeType, operandsRef.front(),
606                                 operandsRef.drop_front());
607     }
608   };
609 
610   // Emit calls.  If the called function has a result, remap the corresponding
611   // value.  Note that LLVM IR dialect CallOp has either 0 or 1 result.
612   if (isa<LLVM::CallOp>(opInst)) {
613     llvm::Value *result = convertCall(opInst);
614     if (opInst.getNumResults() != 0) {
615       valueMapping[opInst.getResult(0)] = result;
616       return success();
617     }
618     // Check that LLVM call returns void for 0-result functions.
619     return success(result->getType()->isVoidTy());
620   }
621 
622   if (auto inlineAsmOp = dyn_cast<LLVM::InlineAsmOp>(opInst)) {
623     // TODO: refactor function type creation which usually occurs in std-LLVM
624     // conversion.
625     SmallVector<LLVM::LLVMType, 8> operandTypes;
626     operandTypes.reserve(inlineAsmOp.operands().size());
627     for (auto t : inlineAsmOp.operands().getTypes())
628       operandTypes.push_back(t.cast<LLVM::LLVMType>());
629 
630     LLVM::LLVMType resultType;
631     if (inlineAsmOp.getNumResults() == 0) {
632       resultType = LLVM::LLVMType::getVoidTy(mlirModule->getContext());
633     } else {
634       assert(inlineAsmOp.getNumResults() == 1);
635       resultType = inlineAsmOp.getResultTypes()[0].cast<LLVM::LLVMType>();
636     }
637     auto ft = LLVM::LLVMType::getFunctionTy(resultType, operandTypes,
638                                             /*isVarArg=*/false);
639     llvm::InlineAsm *inlineAsmInst =
640         inlineAsmOp.asm_dialect().hasValue()
641             ? llvm::InlineAsm::get(
642                   static_cast<llvm::FunctionType *>(convertType(ft)),
643                   inlineAsmOp.asm_string(), inlineAsmOp.constraints(),
644                   inlineAsmOp.has_side_effects(), inlineAsmOp.is_align_stack(),
645                   convertAsmDialectToLLVM(*inlineAsmOp.asm_dialect()))
646             : llvm::InlineAsm::get(
647                   static_cast<llvm::FunctionType *>(convertType(ft)),
648                   inlineAsmOp.asm_string(), inlineAsmOp.constraints(),
649                   inlineAsmOp.has_side_effects(), inlineAsmOp.is_align_stack());
650     llvm::Value *result =
651         builder.CreateCall(inlineAsmInst, lookupValues(inlineAsmOp.operands()));
652     if (opInst.getNumResults() != 0)
653       valueMapping[opInst.getResult(0)] = result;
654     return success();
655   }
656 
657   if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) {
658     auto operands = lookupValues(opInst.getOperands());
659     ArrayRef<llvm::Value *> operandsRef(operands);
660     if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) {
661       builder.CreateInvoke(functionMapping.lookup(attr.getValue()),
662                            blockMapping[invOp.getSuccessor(0)],
663                            blockMapping[invOp.getSuccessor(1)], operandsRef);
664     } else {
665       auto *calleePtrType =
666           cast<llvm::PointerType>(operandsRef.front()->getType());
667       auto *calleeType =
668           cast<llvm::FunctionType>(calleePtrType->getElementType());
669       builder.CreateInvoke(
670           calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)],
671           blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front());
672     }
673     return success();
674   }
675 
676   if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) {
677     llvm::Type *ty = convertType(lpOp.getType().cast<LLVMType>());
678     llvm::LandingPadInst *lpi =
679         builder.CreateLandingPad(ty, lpOp.getNumOperands());
680 
681     // Add clauses
682     for (auto operand : lookupValues(lpOp.getOperands())) {
683       // All operands should be constant - checked by verifier
684       if (auto constOperand = dyn_cast<llvm::Constant>(operand))
685         lpi->addClause(constOperand);
686     }
687     valueMapping[lpOp.getResult()] = lpi;
688     return success();
689   }
690 
691   // Emit branches.  We need to look up the remapped blocks and ignore the block
692   // arguments that were transformed into PHI nodes.
693   if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
694     llvm::BranchInst *branch =
695         builder.CreateBr(blockMapping[brOp.getSuccessor()]);
696     branchMapping.try_emplace(&opInst, branch);
697     return success();
698   }
699   if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
700     auto weights = condbrOp.branch_weights();
701     llvm::MDNode *branchWeights = nullptr;
702     if (weights) {
703       // Map weight attributes to LLVM metadata.
704       auto trueWeight =
705           weights.getValue().getValue(0).cast<IntegerAttr>().getInt();
706       auto falseWeight =
707           weights.getValue().getValue(1).cast<IntegerAttr>().getInt();
708       branchWeights =
709           llvm::MDBuilder(llvmModule->getContext())
710               .createBranchWeights(static_cast<uint32_t>(trueWeight),
711                                    static_cast<uint32_t>(falseWeight));
712     }
713     llvm::BranchInst *branch = builder.CreateCondBr(
714         valueMapping.lookup(condbrOp.getOperand(0)),
715         blockMapping[condbrOp.getSuccessor(0)],
716         blockMapping[condbrOp.getSuccessor(1)], branchWeights);
717     branchMapping.try_emplace(&opInst, branch);
718     return success();
719   }
720 
721   // Emit addressof.  We need to look up the global value referenced by the
722   // operation and store it in the MLIR-to-LLVM value mapping.  This does not
723   // emit any LLVM instruction.
724   if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) {
725     LLVM::GlobalOp global = addressOfOp.getGlobal();
726     LLVM::LLVMFuncOp function = addressOfOp.getFunction();
727 
728     // The verifier should not have allowed this.
729     assert((global || function) &&
730            "referencing an undefined global or function");
731 
732     valueMapping[addressOfOp.getResult()] =
733         global ? globalsMapping.lookup(global)
734                : functionMapping.lookup(function.getName());
735     return success();
736   }
737 
738   if (ompDialect && opInst.getDialect() == ompDialect)
739     return convertOmpOperation(opInst, builder);
740 
741   return opInst.emitError("unsupported or non-LLVM operation: ")
742          << opInst.getName();
743 }
744 
745 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
746 /// to define values corresponding to the MLIR block arguments.  These nodes
747 /// are not connected to the source basic blocks, which may not exist yet.
748 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
749   llvm::IRBuilder<> builder(blockMapping[&bb]);
750   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
751 
752   // Before traversing operations, make block arguments available through
753   // value remapping and PHI nodes, but do not add incoming edges for the PHI
754   // nodes just yet: those values may be defined by this or following blocks.
755   // This step is omitted if "ignoreArguments" is set.  The arguments of the
756   // first block have been already made available through the remapping of
757   // LLVM function arguments.
758   if (!ignoreArguments) {
759     auto predecessors = bb.getPredecessors();
760     unsigned numPredecessors =
761         std::distance(predecessors.begin(), predecessors.end());
762     for (auto arg : bb.getArguments()) {
763       auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>();
764       if (!wrappedType)
765         return emitError(bb.front().getLoc(),
766                          "block argument does not have an LLVM type");
767       llvm::Type *type = convertType(wrappedType);
768       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
769       valueMapping[arg] = phi;
770     }
771   }
772 
773   // Traverse operations.
774   for (auto &op : bb) {
775     // Set the current debug location within the builder.
776     builder.SetCurrentDebugLocation(
777         debugTranslation->translateLoc(op.getLoc(), subprogram));
778 
779     if (failed(convertOperation(op, builder)))
780       return failure();
781   }
782 
783   return success();
784 }
785 
786 /// Create named global variables that correspond to llvm.mlir.global
787 /// definitions.
788 LogicalResult ModuleTranslation::convertGlobals() {
789   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
790     llvm::Type *type = convertType(op.getType());
791     llvm::Constant *cst = llvm::UndefValue::get(type);
792     if (op.getValueOrNull()) {
793       // String attributes are treated separately because they cannot appear as
794       // in-function constants and are thus not supported by getLLVMConstant.
795       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
796         cst = llvm::ConstantDataArray::getString(
797             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
798         type = cst->getType();
799       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(),
800                                          op.getLoc()))) {
801         return failure();
802       }
803     } else if (Block *initializer = op.getInitializerBlock()) {
804       llvm::IRBuilder<> builder(llvmModule->getContext());
805       for (auto &op : initializer->without_terminator()) {
806         if (failed(convertOperation(op, builder)) ||
807             !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0))))
808           return emitError(op.getLoc(), "unemittable constant value");
809       }
810       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
811       cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0)));
812     }
813 
814     auto linkage = convertLinkageToLLVM(op.linkage());
815     bool anyExternalLinkage =
816         ((linkage == llvm::GlobalVariable::ExternalLinkage &&
817           isa<llvm::UndefValue>(cst)) ||
818          linkage == llvm::GlobalVariable::ExternalWeakLinkage);
819     auto addrSpace = op.addr_space();
820     auto *var = new llvm::GlobalVariable(
821         *llvmModule, type, op.constant(), linkage,
822         anyExternalLinkage ? nullptr : cst, op.sym_name(),
823         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
824 
825     globalsMapping.try_emplace(op, var);
826   }
827 
828   return success();
829 }
830 
831 /// Attempts to add an attribute identified by `key`, optionally with the given
832 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
833 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
834 /// otherwise keep it as a string attribute. Performs additional checks for
835 /// attributes known to have or not have a value in order to avoid assertions
836 /// inside LLVM upon construction.
837 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
838                                                llvm::Function *llvmFunc,
839                                                StringRef key,
840                                                StringRef value = StringRef()) {
841   auto kind = llvm::Attribute::getAttrKindFromName(key);
842   if (kind == llvm::Attribute::None) {
843     llvmFunc->addFnAttr(key, value);
844     return success();
845   }
846 
847   if (llvm::Attribute::doesAttrKindHaveArgument(kind)) {
848     if (value.empty())
849       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
850 
851     int result;
852     if (!value.getAsInteger(/*Radix=*/0, result))
853       llvmFunc->addFnAttr(
854           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
855     else
856       llvmFunc->addFnAttr(key, value);
857     return success();
858   }
859 
860   if (!value.empty())
861     return emitError(loc) << "LLVM attribute '" << key
862                           << "' does not expect a value, found '" << value
863                           << "'";
864 
865   llvmFunc->addFnAttr(kind);
866   return success();
867 }
868 
869 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
870 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
871 /// to be an array attribute containing either string attributes, treated as
872 /// value-less LLVM attributes, or array attributes containing two string
873 /// attributes, with the first string being the name of the corresponding LLVM
874 /// attribute and the second string beings its value. Note that even integer
875 /// attributes are expected to have their values expressed as strings.
876 static LogicalResult
877 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
878                              llvm::Function *llvmFunc) {
879   if (!attributes)
880     return success();
881 
882   for (Attribute attr : *attributes) {
883     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
884       if (failed(
885               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
886         return failure();
887       continue;
888     }
889 
890     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
891     if (!arrayAttr || arrayAttr.size() != 2)
892       return emitError(loc)
893              << "expected 'passthrough' to contain string or array attributes";
894 
895     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
896     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
897     if (!keyAttr || !valueAttr)
898       return emitError(loc)
899              << "expected arrays within 'passthrough' to contain two strings";
900 
901     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
902                                          valueAttr.getValue())))
903       return failure();
904   }
905   return success();
906 }
907 
908 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
909   // Clear the block, branch value mappings, they are only relevant within one
910   // function.
911   blockMapping.clear();
912   valueMapping.clear();
913   branchMapping.clear();
914   llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
915 
916   // Translate the debug information for this function.
917   debugTranslation->translate(func, *llvmFunc);
918 
919   // Add function arguments to the value remapping table.
920   // If there was noalias info then we decorate each argument accordingly.
921   unsigned int argIdx = 0;
922   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
923     llvm::Argument &llvmArg = std::get<1>(kvp);
924     BlockArgument mlirArg = std::get<0>(kvp);
925 
926     if (auto attr = func.getArgAttrOfType<BoolAttr>(
927             argIdx, LLVMDialect::getNoAliasAttrName())) {
928       // NB: Attribute already verified to be boolean, so check if we can indeed
929       // attach the attribute to this argument, based on its type.
930       auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
931       if (!argTy.isPointerTy())
932         return func.emitError(
933             "llvm.noalias attribute attached to LLVM non-pointer argument");
934       if (attr.getValue())
935         llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
936     }
937 
938     if (auto attr = func.getArgAttrOfType<IntegerAttr>(
939             argIdx, LLVMDialect::getAlignAttrName())) {
940       // NB: Attribute already verified to be int, so check if we can indeed
941       // attach the attribute to this argument, based on its type.
942       auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
943       if (!argTy.isPointerTy())
944         return func.emitError(
945             "llvm.align attribute attached to LLVM non-pointer argument");
946       llvmArg.addAttrs(
947           llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
948     }
949 
950     valueMapping[mlirArg] = &llvmArg;
951     argIdx++;
952   }
953 
954   // Check the personality and set it.
955   if (func.personality().hasValue()) {
956     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
957     if (llvm::Constant *pfunc =
958             getLLVMConstant(ty, func.personalityAttr(), func.getLoc()))
959       llvmFunc->setPersonalityFn(pfunc);
960   }
961 
962   // First, create all blocks so we can jump to them.
963   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
964   for (auto &bb : func) {
965     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
966     llvmBB->insertInto(llvmFunc);
967     blockMapping[&bb] = llvmBB;
968   }
969 
970   // Then, convert blocks one by one in topological order to ensure defs are
971   // converted before uses.
972   auto blocks = topologicalSort(func);
973   for (auto indexedBB : llvm::enumerate(blocks)) {
974     auto *bb = indexedBB.value();
975     if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
976       return failure();
977   }
978 
979   // Finally, after all blocks have been traversed and values mapped, connect
980   // the PHI nodes to the results of preceding blocks.
981   connectPHINodes(func, valueMapping, blockMapping, branchMapping);
982   return success();
983 }
984 
985 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) {
986   for (Operation &o : getModuleBody(m).getOperations())
987     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator())
988       return o.emitOpError("unsupported module-level operation");
989   return success();
990 }
991 
992 LogicalResult ModuleTranslation::convertFunctionSignatures() {
993   // Declare all functions first because there may be function calls that form a
994   // call graph with cycles, or global initializers that reference functions.
995   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
996     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
997         function.getName(),
998         cast<llvm::FunctionType>(convertType(function.getType())));
999     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1000     llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
1001     functionMapping[function.getName()] = llvmFunc;
1002 
1003     // Forward the pass-through attributes to LLVM.
1004     if (failed(forwardPassthroughAttributes(function.getLoc(),
1005                                             function.passthrough(), llvmFunc)))
1006       return failure();
1007   }
1008 
1009   return success();
1010 }
1011 
1012 LogicalResult ModuleTranslation::convertFunctions() {
1013   // Convert functions.
1014   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1015     // Ignore external functions.
1016     if (function.isExternal())
1017       continue;
1018 
1019     if (failed(convertOneFunction(function)))
1020       return failure();
1021   }
1022 
1023   return success();
1024 }
1025 
1026 llvm::Type *ModuleTranslation::convertType(LLVMType type) {
1027   return typeTranslator.translateType(type);
1028 }
1029 
1030 /// A helper to look up remapped operands in the value remapping table.`
1031 SmallVector<llvm::Value *, 8>
1032 ModuleTranslation::lookupValues(ValueRange values) {
1033   SmallVector<llvm::Value *, 8> remapped;
1034   remapped.reserve(values.size());
1035   for (Value v : values) {
1036     assert(valueMapping.count(v) && "referencing undefined value");
1037     remapped.push_back(valueMapping.lookup(v));
1038   }
1039   return remapped;
1040 }
1041 
1042 std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(
1043     Operation *m, llvm::LLVMContext &llvmContext, StringRef name) {
1044   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1045   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1046   if (auto dataLayoutAttr =
1047           m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
1048     llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
1049   if (auto targetTripleAttr =
1050           m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1051     llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
1052 
1053   // Inject declarations for `malloc` and `free` functions that can be used in
1054   // memref allocation/deallocation coming from standard ops lowering.
1055   llvm::IRBuilder<> builder(llvmContext);
1056   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
1057                                   builder.getInt64Ty());
1058   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
1059                                   builder.getInt8PtrTy());
1060 
1061   return llvmModule;
1062 }
1063