1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 34 using namespace mlir; 35 using namespace mlir::LLVM; 36 using namespace mlir::LLVM::detail; 37 38 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 39 40 /// Builds a constant of a sequential LLVM type `type`, potentially containing 41 /// other sequential types recursively, from the individual constant values 42 /// provided in `constants`. `shape` contains the number of elements in nested 43 /// sequential types. Reports errors at `loc` and returns nullptr on error. 44 static llvm::Constant * 45 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 46 ArrayRef<int64_t> shape, llvm::Type *type, 47 Location loc) { 48 if (shape.empty()) { 49 llvm::Constant *result = constants.front(); 50 constants = constants.drop_front(); 51 return result; 52 } 53 54 if (!isa<llvm::SequentialType>(type)) { 55 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 56 return nullptr; 57 } 58 59 llvm::Type *elementType = type->getSequentialElementType(); 60 SmallVector<llvm::Constant *, 8> nested; 61 nested.reserve(shape.front()); 62 for (int64_t i = 0; i < shape.front(); ++i) { 63 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 64 elementType, loc)); 65 if (!nested.back()) 66 return nullptr; 67 } 68 69 if (shape.size() == 1 && type->isVectorTy()) 70 return llvm::ConstantVector::get(nested); 71 return llvm::ConstantArray::get( 72 llvm::ArrayType::get(elementType, shape.front()), nested); 73 } 74 75 /// Returns the first non-sequential type nested in sequential types. 76 static llvm::Type *getInnermostElementType(llvm::Type *type) { 77 while (isa<llvm::SequentialType>(type)) 78 type = type->getSequentialElementType(); 79 return type; 80 } 81 82 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 83 /// This currently supports integer, floating point, splat and dense element 84 /// attributes and combinations thereof. In case of error, report it to `loc` 85 /// and return nullptr. 86 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 87 Attribute attr, 88 Location loc) { 89 if (!attr) 90 return llvm::UndefValue::get(llvmType); 91 if (llvmType->isStructTy()) { 92 emitError(loc, "struct types are not supported in constants"); 93 return nullptr; 94 } 95 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 96 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 97 if (auto boolAttr = attr.dyn_cast<BoolAttr>()) 98 return llvm::ConstantInt::get(llvmType, boolAttr.getValue()); 99 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 100 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 101 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 102 return llvm::ConstantExpr::getBitCast( 103 functionMapping.lookup(funcAttr.getValue()), llvmType); 104 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 105 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 106 auto elementType = sequentialType->getElementType(); 107 uint64_t numElements = sequentialType->getNumElements(); 108 // Splat value is a scalar. Extract it only if the element type is not 109 // another sequence type. The recursion terminates because each step removes 110 // one outer sequential type. 111 llvm::Constant *child = getLLVMConstant( 112 elementType, 113 isa<llvm::SequentialType>(elementType) ? splatAttr 114 : splatAttr.getSplatValue(), 115 loc); 116 if (!child) 117 return nullptr; 118 if (llvmType->isVectorTy()) 119 return llvm::ConstantVector::getSplat( 120 llvm::ElementCount(numElements, /*Scalable=*/false), child); 121 if (llvmType->isArrayTy()) { 122 auto arrayType = llvm::ArrayType::get(elementType, numElements); 123 SmallVector<llvm::Constant *, 8> constants(numElements, child); 124 return llvm::ConstantArray::get(arrayType, constants); 125 } 126 } 127 128 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 129 assert(elementsAttr.getType().hasStaticShape()); 130 assert(elementsAttr.getNumElements() != 0 && 131 "unexpected empty elements attribute"); 132 assert(!elementsAttr.getType().getShape().empty() && 133 "unexpected empty elements attribute shape"); 134 135 SmallVector<llvm::Constant *, 8> constants; 136 constants.reserve(elementsAttr.getNumElements()); 137 llvm::Type *innermostType = getInnermostElementType(llvmType); 138 for (auto n : elementsAttr.getValues<Attribute>()) { 139 constants.push_back(getLLVMConstant(innermostType, n, loc)); 140 if (!constants.back()) 141 return nullptr; 142 } 143 ArrayRef<llvm::Constant *> constantsRef = constants; 144 llvm::Constant *result = buildSequentialConstant( 145 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 146 assert(constantsRef.empty() && "did not consume all elemental constants"); 147 return result; 148 } 149 150 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 151 return llvm::ConstantDataArray::get( 152 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 153 stringAttr.getValue().size()}); 154 } 155 emitError(loc, "unsupported constant value"); 156 return nullptr; 157 } 158 159 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 160 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 161 switch (p) { 162 case LLVM::ICmpPredicate::eq: 163 return llvm::CmpInst::Predicate::ICMP_EQ; 164 case LLVM::ICmpPredicate::ne: 165 return llvm::CmpInst::Predicate::ICMP_NE; 166 case LLVM::ICmpPredicate::slt: 167 return llvm::CmpInst::Predicate::ICMP_SLT; 168 case LLVM::ICmpPredicate::sle: 169 return llvm::CmpInst::Predicate::ICMP_SLE; 170 case LLVM::ICmpPredicate::sgt: 171 return llvm::CmpInst::Predicate::ICMP_SGT; 172 case LLVM::ICmpPredicate::sge: 173 return llvm::CmpInst::Predicate::ICMP_SGE; 174 case LLVM::ICmpPredicate::ult: 175 return llvm::CmpInst::Predicate::ICMP_ULT; 176 case LLVM::ICmpPredicate::ule: 177 return llvm::CmpInst::Predicate::ICMP_ULE; 178 case LLVM::ICmpPredicate::ugt: 179 return llvm::CmpInst::Predicate::ICMP_UGT; 180 case LLVM::ICmpPredicate::uge: 181 return llvm::CmpInst::Predicate::ICMP_UGE; 182 } 183 llvm_unreachable("incorrect comparison predicate"); 184 } 185 186 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 187 switch (p) { 188 case LLVM::FCmpPredicate::_false: 189 return llvm::CmpInst::Predicate::FCMP_FALSE; 190 case LLVM::FCmpPredicate::oeq: 191 return llvm::CmpInst::Predicate::FCMP_OEQ; 192 case LLVM::FCmpPredicate::ogt: 193 return llvm::CmpInst::Predicate::FCMP_OGT; 194 case LLVM::FCmpPredicate::oge: 195 return llvm::CmpInst::Predicate::FCMP_OGE; 196 case LLVM::FCmpPredicate::olt: 197 return llvm::CmpInst::Predicate::FCMP_OLT; 198 case LLVM::FCmpPredicate::ole: 199 return llvm::CmpInst::Predicate::FCMP_OLE; 200 case LLVM::FCmpPredicate::one: 201 return llvm::CmpInst::Predicate::FCMP_ONE; 202 case LLVM::FCmpPredicate::ord: 203 return llvm::CmpInst::Predicate::FCMP_ORD; 204 case LLVM::FCmpPredicate::ueq: 205 return llvm::CmpInst::Predicate::FCMP_UEQ; 206 case LLVM::FCmpPredicate::ugt: 207 return llvm::CmpInst::Predicate::FCMP_UGT; 208 case LLVM::FCmpPredicate::uge: 209 return llvm::CmpInst::Predicate::FCMP_UGE; 210 case LLVM::FCmpPredicate::ult: 211 return llvm::CmpInst::Predicate::FCMP_ULT; 212 case LLVM::FCmpPredicate::ule: 213 return llvm::CmpInst::Predicate::FCMP_ULE; 214 case LLVM::FCmpPredicate::une: 215 return llvm::CmpInst::Predicate::FCMP_UNE; 216 case LLVM::FCmpPredicate::uno: 217 return llvm::CmpInst::Predicate::FCMP_UNO; 218 case LLVM::FCmpPredicate::_true: 219 return llvm::CmpInst::Predicate::FCMP_TRUE; 220 } 221 llvm_unreachable("incorrect comparison predicate"); 222 } 223 224 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 225 switch (op) { 226 case LLVM::AtomicBinOp::xchg: 227 return llvm::AtomicRMWInst::BinOp::Xchg; 228 case LLVM::AtomicBinOp::add: 229 return llvm::AtomicRMWInst::BinOp::Add; 230 case LLVM::AtomicBinOp::sub: 231 return llvm::AtomicRMWInst::BinOp::Sub; 232 case LLVM::AtomicBinOp::_and: 233 return llvm::AtomicRMWInst::BinOp::And; 234 case LLVM::AtomicBinOp::nand: 235 return llvm::AtomicRMWInst::BinOp::Nand; 236 case LLVM::AtomicBinOp::_or: 237 return llvm::AtomicRMWInst::BinOp::Or; 238 case LLVM::AtomicBinOp::_xor: 239 return llvm::AtomicRMWInst::BinOp::Xor; 240 case LLVM::AtomicBinOp::max: 241 return llvm::AtomicRMWInst::BinOp::Max; 242 case LLVM::AtomicBinOp::min: 243 return llvm::AtomicRMWInst::BinOp::Min; 244 case LLVM::AtomicBinOp::umax: 245 return llvm::AtomicRMWInst::BinOp::UMax; 246 case LLVM::AtomicBinOp::umin: 247 return llvm::AtomicRMWInst::BinOp::UMin; 248 case LLVM::AtomicBinOp::fadd: 249 return llvm::AtomicRMWInst::BinOp::FAdd; 250 case LLVM::AtomicBinOp::fsub: 251 return llvm::AtomicRMWInst::BinOp::FSub; 252 } 253 llvm_unreachable("incorrect atomic binary operator"); 254 } 255 256 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 257 switch (ordering) { 258 case LLVM::AtomicOrdering::not_atomic: 259 return llvm::AtomicOrdering::NotAtomic; 260 case LLVM::AtomicOrdering::unordered: 261 return llvm::AtomicOrdering::Unordered; 262 case LLVM::AtomicOrdering::monotonic: 263 return llvm::AtomicOrdering::Monotonic; 264 case LLVM::AtomicOrdering::acquire: 265 return llvm::AtomicOrdering::Acquire; 266 case LLVM::AtomicOrdering::release: 267 return llvm::AtomicOrdering::Release; 268 case LLVM::AtomicOrdering::acq_rel: 269 return llvm::AtomicOrdering::AcquireRelease; 270 case LLVM::AtomicOrdering::seq_cst: 271 return llvm::AtomicOrdering::SequentiallyConsistent; 272 } 273 llvm_unreachable("incorrect atomic ordering"); 274 } 275 276 ModuleTranslation::ModuleTranslation(Operation *module, 277 std::unique_ptr<llvm::Module> llvmModule) 278 : mlirModule(module), llvmModule(std::move(llvmModule)), 279 debugTranslation( 280 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 281 ompDialect( 282 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()) { 283 assert(satisfiesLLVMModule(mlirModule) && 284 "mlirModule should honor LLVM's module semantics."); 285 } 286 ModuleTranslation::~ModuleTranslation() {} 287 288 /// Given a single MLIR operation, create the corresponding LLVM IR operation 289 /// using the `builder`. LLVM IR Builder does not have a generic interface so 290 /// this has to be a long chain of `if`s calling different functions with a 291 /// different number of arguments. 292 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 293 llvm::IRBuilder<> &builder) { 294 auto extractPosition = [](ArrayAttr attr) { 295 SmallVector<unsigned, 4> position; 296 position.reserve(attr.size()); 297 for (Attribute v : attr) 298 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 299 return position; 300 }; 301 302 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 303 304 // Emit function calls. If the "callee" attribute is present, this is a 305 // direct function call and we also need to look up the remapped function 306 // itself. Otherwise, this is an indirect call and the callee is the first 307 // operand, look it up as a normal value. Return the llvm::Value representing 308 // the function result, which may be of llvm::VoidTy type. 309 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 310 auto operands = lookupValues(op.getOperands()); 311 ArrayRef<llvm::Value *> operandsRef(operands); 312 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 313 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 314 operandsRef); 315 } else { 316 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 317 } 318 }; 319 320 // Emit calls. If the called function has a result, remap the corresponding 321 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 322 if (isa<LLVM::CallOp>(opInst)) { 323 llvm::Value *result = convertCall(opInst); 324 if (opInst.getNumResults() != 0) { 325 valueMapping[opInst.getResult(0)] = result; 326 return success(); 327 } 328 // Check that LLVM call returns void for 0-result functions. 329 return success(result->getType()->isVoidTy()); 330 } 331 332 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 333 auto operands = lookupValues(opInst.getOperands()); 334 ArrayRef<llvm::Value *> operandsRef(operands); 335 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) 336 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 337 blockMapping[invOp.getSuccessor(0)], 338 blockMapping[invOp.getSuccessor(1)], operandsRef); 339 else 340 builder.CreateInvoke( 341 operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 342 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 343 return success(); 344 } 345 346 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 347 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 348 llvm::LandingPadInst *lpi = 349 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 350 351 // Add clauses 352 for (auto operand : lookupValues(lpOp.getOperands())) { 353 // All operands should be constant - checked by verifier 354 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 355 lpi->addClause(constOperand); 356 } 357 valueMapping[lpOp.getResult()] = lpi; 358 return success(); 359 } 360 361 // Emit branches. We need to look up the remapped blocks and ignore the block 362 // arguments that were transformed into PHI nodes. 363 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 364 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 365 return success(); 366 } 367 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 368 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 369 blockMapping[condbrOp.getSuccessor(0)], 370 blockMapping[condbrOp.getSuccessor(1)]); 371 return success(); 372 } 373 374 // Emit addressof. We need to look up the global value referenced by the 375 // operation and store it in the MLIR-to-LLVM value mapping. This does not 376 // emit any LLVM instruction. 377 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 378 LLVM::GlobalOp global = addressOfOp.getGlobal(); 379 // The verifier should not have allowed this. 380 assert(global && "referencing an undefined global"); 381 382 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 383 return success(); 384 } 385 386 if (opInst.getDialect() == ompDialect) { 387 if (!ompBuilder) { 388 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 389 ompBuilder->initialize(); 390 } 391 392 if (isa<omp::BarrierOp>(opInst)) { 393 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 394 return success(); 395 } 396 return opInst.emitError("unsupported OpenMP operation: ") 397 << opInst.getName(); 398 } 399 400 return opInst.emitError("unsupported or non-LLVM operation: ") 401 << opInst.getName(); 402 } 403 404 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 405 /// to define values corresponding to the MLIR block arguments. These nodes 406 /// are not connected to the source basic blocks, which may not exist yet. 407 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 408 llvm::IRBuilder<> builder(blockMapping[&bb]); 409 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 410 411 // Before traversing operations, make block arguments available through 412 // value remapping and PHI nodes, but do not add incoming edges for the PHI 413 // nodes just yet: those values may be defined by this or following blocks. 414 // This step is omitted if "ignoreArguments" is set. The arguments of the 415 // first block have been already made available through the remapping of 416 // LLVM function arguments. 417 if (!ignoreArguments) { 418 auto predecessors = bb.getPredecessors(); 419 unsigned numPredecessors = 420 std::distance(predecessors.begin(), predecessors.end()); 421 for (auto arg : bb.getArguments()) { 422 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 423 if (!wrappedType) 424 return emitError(bb.front().getLoc(), 425 "block argument does not have an LLVM type"); 426 llvm::Type *type = wrappedType.getUnderlyingType(); 427 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 428 valueMapping[arg] = phi; 429 } 430 } 431 432 // Traverse operations. 433 for (auto &op : bb) { 434 // Set the current debug location within the builder. 435 builder.SetCurrentDebugLocation( 436 debugTranslation->translateLoc(op.getLoc(), subprogram)); 437 438 if (failed(convertOperation(op, builder))) 439 return failure(); 440 } 441 442 return success(); 443 } 444 445 /// Create named global variables that correspond to llvm.mlir.global 446 /// definitions. 447 LogicalResult ModuleTranslation::convertGlobals() { 448 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 449 llvm::Type *type = op.getType().getUnderlyingType(); 450 llvm::Constant *cst = llvm::UndefValue::get(type); 451 if (op.getValueOrNull()) { 452 // String attributes are treated separately because they cannot appear as 453 // in-function constants and are thus not supported by getLLVMConstant. 454 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 455 cst = llvm::ConstantDataArray::getString( 456 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 457 type = cst->getType(); 458 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 459 op.getLoc()))) { 460 return failure(); 461 } 462 } else if (Block *initializer = op.getInitializerBlock()) { 463 llvm::IRBuilder<> builder(llvmModule->getContext()); 464 for (auto &op : initializer->without_terminator()) { 465 if (failed(convertOperation(op, builder)) || 466 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 467 return emitError(op.getLoc(), "unemittable constant value"); 468 } 469 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 470 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 471 } 472 473 auto linkage = convertLinkageToLLVM(op.linkage()); 474 bool anyExternalLinkage = 475 ((linkage == llvm::GlobalVariable::ExternalLinkage && 476 isa<llvm::UndefValue>(cst)) || 477 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 478 auto addrSpace = op.addr_space().getLimitedValue(); 479 auto *var = new llvm::GlobalVariable( 480 *llvmModule, type, op.constant(), linkage, 481 anyExternalLinkage ? nullptr : cst, op.sym_name(), 482 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 483 484 globalsMapping.try_emplace(op, var); 485 } 486 487 return success(); 488 } 489 490 /// Get the SSA value passed to the current block from the terminator operation 491 /// of its predecessor. 492 static Value getPHISourceValue(Block *current, Block *pred, 493 unsigned numArguments, unsigned index) { 494 auto &terminator = *pred->getTerminator(); 495 if (isa<LLVM::BrOp>(terminator)) { 496 return terminator.getOperand(index); 497 } 498 499 // For conditional branches, we need to check if the current block is reached 500 // through the "true" or the "false" branch and take the relevant operands. 501 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 502 assert(condBranchOp && 503 "only branch operations can be terminators of a block that " 504 "has successors"); 505 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 506 "successors with arguments in LLVM conditional branches must be " 507 "different blocks"); 508 509 return condBranchOp.getSuccessor(0) == current 510 ? condBranchOp.trueDestOperands()[index] 511 : condBranchOp.falseDestOperands()[index]; 512 } 513 514 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 515 // Skip the first block, it cannot be branched to and its arguments correspond 516 // to the arguments of the LLVM function. 517 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 518 Block *bb = &*it; 519 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 520 auto phis = llvmBB->phis(); 521 auto numArguments = bb->getNumArguments(); 522 assert(numArguments == std::distance(phis.begin(), phis.end())); 523 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 524 auto &phiNode = numberedPhiNode.value(); 525 unsigned index = numberedPhiNode.index(); 526 for (auto *pred : bb->getPredecessors()) { 527 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 528 bb, pred, numArguments, index)), 529 blockMapping.lookup(pred)); 530 } 531 } 532 } 533 } 534 535 // TODO(mlir-team): implement an iterative version 536 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 537 blocks.insert(b); 538 for (Block *bb : b->getSuccessors()) { 539 if (blocks.count(bb) == 0) 540 topologicalSortImpl(blocks, bb); 541 } 542 } 543 544 /// Sort function blocks topologically. 545 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 546 // For each blocks that has not been visited yet (i.e. that has no 547 // predecessors), add it to the list and traverse its successors in DFS 548 // preorder. 549 llvm::SetVector<Block *> blocks; 550 for (Block &b : f.getBlocks()) { 551 if (blocks.count(&b) == 0) 552 topologicalSortImpl(blocks, &b); 553 } 554 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 555 556 return blocks; 557 } 558 559 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 560 // Clear the block and value mappings, they are only relevant within one 561 // function. 562 blockMapping.clear(); 563 valueMapping.clear(); 564 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 565 566 // Translate the debug information for this function. 567 debugTranslation->translate(func, *llvmFunc); 568 569 // Add function arguments to the value remapping table. 570 // If there was noalias info then we decorate each argument accordingly. 571 unsigned int argIdx = 0; 572 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 573 llvm::Argument &llvmArg = std::get<1>(kvp); 574 BlockArgument mlirArg = std::get<0>(kvp); 575 576 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 577 // NB: Attribute already verified to be boolean, so check if we can indeed 578 // attach the attribute to this argument, based on its type. 579 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 580 if (!argTy.getUnderlyingType()->isPointerTy()) 581 return func.emitError( 582 "llvm.noalias attribute attached to LLVM non-pointer argument"); 583 if (attr.getValue()) 584 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 585 } 586 valueMapping[mlirArg] = &llvmArg; 587 argIdx++; 588 } 589 590 // Check the personality and set it. 591 if (func.personality().hasValue()) { 592 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 593 if (llvm::Constant *pfunc = 594 getLLVMConstant(ty, func.personalityAttr(), func.getLoc())) 595 llvmFunc->setPersonalityFn(pfunc); 596 } 597 598 // First, create all blocks so we can jump to them. 599 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 600 for (auto &bb : func) { 601 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 602 llvmBB->insertInto(llvmFunc); 603 blockMapping[&bb] = llvmBB; 604 } 605 606 // Then, convert blocks one by one in topological order to ensure defs are 607 // converted before uses. 608 auto blocks = topologicalSort(func); 609 for (auto indexedBB : llvm::enumerate(blocks)) { 610 auto *bb = indexedBB.value(); 611 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 612 return failure(); 613 } 614 615 // Finally, after all blocks have been traversed and values mapped, connect 616 // the PHI nodes to the results of preceding blocks. 617 connectPHINodes(func); 618 return success(); 619 } 620 621 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 622 for (Operation &o : getModuleBody(m).getOperations()) 623 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 624 !o.isKnownTerminator()) 625 return o.emitOpError("unsupported module-level operation"); 626 return success(); 627 } 628 629 LogicalResult ModuleTranslation::convertFunctions() { 630 // Declare all functions first because there may be function calls that form a 631 // call graph with cycles. 632 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 633 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 634 function.getName(), 635 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 636 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 637 functionMapping[function.getName()] = 638 cast<llvm::Function>(llvmFuncCst.getCallee()); 639 } 640 641 // Convert functions. 642 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 643 // Ignore external functions. 644 if (function.isExternal()) 645 continue; 646 647 if (failed(convertOneFunction(function))) 648 return failure(); 649 } 650 651 return success(); 652 } 653 654 /// A helper to look up remapped operands in the value remapping table.` 655 SmallVector<llvm::Value *, 8> 656 ModuleTranslation::lookupValues(ValueRange values) { 657 SmallVector<llvm::Value *, 8> remapped; 658 remapped.reserve(values.size()); 659 for (Value v : values) { 660 assert(valueMapping.count(v) && "referencing undefined value"); 661 remapped.push_back(valueMapping.lookup(v)); 662 } 663 return remapped; 664 } 665 666 std::unique_ptr<llvm::Module> 667 ModuleTranslation::prepareLLVMModule(Operation *m) { 668 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 669 assert(dialect && "LLVM dialect must be registered"); 670 671 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 672 if (!llvmModule) 673 return nullptr; 674 675 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 676 llvm::IRBuilder<> builder(llvmContext); 677 678 // Inject declarations for `malloc` and `free` functions that can be used in 679 // memref allocation/deallocation coming from standard ops lowering. 680 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 681 builder.getInt64Ty()); 682 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 683 builder.getInt8PtrTy()); 684 685 return llvmModule; 686 } 687