1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/DLTI/DLTI.h"
18 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
19 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
20 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
21 #include "mlir/IR/Attributes.h"
22 #include "mlir/IR/BuiltinOps.h"
23 #include "mlir/IR/BuiltinTypes.h"
24 #include "mlir/IR/RegionGraphTraits.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
27 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
28 #include "llvm/ADT/TypeSwitch.h"
29 
30 #include "llvm/ADT/PostOrderIterator.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicsNVPTX.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Verifier.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/Cloning.h"
46 #include "llvm/Transforms/Utils/ModuleUtils.h"
47 
48 using namespace mlir;
49 using namespace mlir::LLVM;
50 using namespace mlir::LLVM::detail;
51 
52 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
53 
54 /// Translates the given data layout spec attribute to the LLVM IR data layout.
55 /// Only integer, float and endianness entries are currently supported.
56 FailureOr<llvm::DataLayout>
57 translateDataLayout(DataLayoutSpecInterface attribute,
58                     const DataLayout &dataLayout,
59                     Optional<Location> loc = llvm::None) {
60   if (!loc)
61     loc = UnknownLoc::get(attribute.getContext());
62 
63   // Translate the endianness attribute.
64   std::string llvmDataLayout;
65   llvm::raw_string_ostream layoutStream(llvmDataLayout);
66   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
67     auto key = entry.getKey().dyn_cast<StringAttr>();
68     if (!key)
69       continue;
70     if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
71       auto value = entry.getValue().cast<StringAttr>();
72       bool isLittleEndian =
73           value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
74       layoutStream << (isLittleEndian ? "e" : "E");
75       layoutStream.flush();
76       continue;
77     }
78     emitError(*loc) << "unsupported data layout key " << key;
79     return failure();
80   }
81 
82   // Go through the list of entries to check which types are explicitly
83   // specified in entries. Don't use the entries directly though but query the
84   // data from the layout.
85   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
86     auto type = entry.getKey().dyn_cast<Type>();
87     if (!type)
88       continue;
89     // Data layout for the index type is irrelevant at this point.
90     if (type.isa<IndexType>())
91       continue;
92     FailureOr<std::string> prefix =
93         llvm::TypeSwitch<Type, FailureOr<std::string>>(type)
94             .Case<IntegerType>(
95                 [loc](IntegerType integerType) -> FailureOr<std::string> {
96                   if (integerType.getSignedness() == IntegerType::Signless)
97                     return std::string("i");
98                   emitError(*loc)
99                       << "unsupported data layout for non-signless integer "
100                       << integerType;
101                   return failure();
102                 })
103             .Case<Float16Type, Float32Type, Float64Type, Float80Type,
104                   Float128Type>([](Type) { return std::string("f"); })
105             .Default([loc](Type type) -> FailureOr<std::string> {
106               emitError(*loc) << "unsupported type in data layout: " << type;
107               return failure();
108             });
109     if (failed(prefix))
110       return failure();
111 
112     unsigned size = dataLayout.getTypeSizeInBits(type);
113     unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
114     unsigned preferred = dataLayout.getTypePreferredAlignment(type) * 8u;
115     layoutStream << "-" << *prefix << size << ":" << abi;
116     if (abi != preferred)
117       layoutStream << ":" << preferred;
118   }
119   layoutStream.flush();
120   StringRef layoutSpec(llvmDataLayout);
121   if (layoutSpec.startswith("-"))
122     layoutSpec = layoutSpec.drop_front();
123 
124   return llvm::DataLayout(layoutSpec);
125 }
126 
127 /// Builds a constant of a sequential LLVM type `type`, potentially containing
128 /// other sequential types recursively, from the individual constant values
129 /// provided in `constants`. `shape` contains the number of elements in nested
130 /// sequential types. Reports errors at `loc` and returns nullptr on error.
131 static llvm::Constant *
132 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
133                         ArrayRef<int64_t> shape, llvm::Type *type,
134                         Location loc) {
135   if (shape.empty()) {
136     llvm::Constant *result = constants.front();
137     constants = constants.drop_front();
138     return result;
139   }
140 
141   llvm::Type *elementType;
142   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
143     elementType = arrayTy->getElementType();
144   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
145     elementType = vectorTy->getElementType();
146   } else {
147     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
148     return nullptr;
149   }
150 
151   SmallVector<llvm::Constant *, 8> nested;
152   nested.reserve(shape.front());
153   for (int64_t i = 0; i < shape.front(); ++i) {
154     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
155                                              elementType, loc));
156     if (!nested.back())
157       return nullptr;
158   }
159 
160   if (shape.size() == 1 && type->isVectorTy())
161     return llvm::ConstantVector::get(nested);
162   return llvm::ConstantArray::get(
163       llvm::ArrayType::get(elementType, shape.front()), nested);
164 }
165 
166 /// Returns the first non-sequential type nested in sequential types.
167 static llvm::Type *getInnermostElementType(llvm::Type *type) {
168   do {
169     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
170       type = arrayTy->getElementType();
171     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
172       type = vectorTy->getElementType();
173     } else {
174       return type;
175     }
176   } while (true);
177 }
178 
179 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
180 /// storage if possible. This supports elements attributes of tensor or vector
181 /// type and avoids constructing separate objects for individual values of the
182 /// innermost dimension. Constants for other dimensions are still constructed
183 /// recursively. Returns null if constructing from raw data is not supported for
184 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
185 /// other errors at `loc`.
186 static llvm::Constant *
187 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
188                          llvm::Type *llvmType,
189                          const ModuleTranslation &moduleTranslation) {
190   if (!denseElementsAttr)
191     return nullptr;
192 
193   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
194   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
195     return nullptr;
196 
197   ShapedType type = denseElementsAttr.getType();
198   if (type.getNumElements() == 0)
199     return nullptr;
200 
201   // Compute the shape of all dimensions but the innermost. Note that the
202   // innermost dimension may be that of the vector element type.
203   bool hasVectorElementType = type.getElementType().isa<VectorType>();
204   unsigned numAggregates =
205       denseElementsAttr.getNumElements() /
206       (hasVectorElementType ? 1
207                             : denseElementsAttr.getType().getShape().back());
208   ArrayRef<int64_t> outerShape = type.getShape();
209   if (!hasVectorElementType)
210     outerShape = outerShape.drop_back();
211 
212   // Handle the case of vector splat, LLVM has special support for it.
213   if (denseElementsAttr.isSplat() &&
214       (type.isa<VectorType>() || hasVectorElementType)) {
215     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
216         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
217         moduleTranslation);
218     llvm::Constant *splatVector =
219         llvm::ConstantDataVector::getSplat(0, splatValue);
220     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
221     ArrayRef<llvm::Constant *> constantsRef = constants;
222     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
223   }
224   if (denseElementsAttr.isSplat())
225     return nullptr;
226 
227   // In case of non-splat, create a constructor for the innermost constant from
228   // a piece of raw data.
229   std::function<llvm::Constant *(StringRef)> buildCstData;
230   if (type.isa<TensorType>()) {
231     auto vectorElementType = type.getElementType().dyn_cast<VectorType>();
232     if (vectorElementType && vectorElementType.getRank() == 1) {
233       buildCstData = [&](StringRef data) {
234         return llvm::ConstantDataVector::getRaw(
235             data, vectorElementType.getShape().back(), innermostLLVMType);
236       };
237     } else if (!vectorElementType) {
238       buildCstData = [&](StringRef data) {
239         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
240                                                innermostLLVMType);
241       };
242     }
243   } else if (type.isa<VectorType>()) {
244     buildCstData = [&](StringRef data) {
245       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
246                                               innermostLLVMType);
247     };
248   }
249   if (!buildCstData)
250     return nullptr;
251 
252   // Create innermost constants and defer to the default constant creation
253   // mechanism for other dimensions.
254   SmallVector<llvm::Constant *> constants;
255   unsigned aggregateSize = denseElementsAttr.getType().getShape().back() *
256                            (innermostLLVMType->getScalarSizeInBits() / 8);
257   constants.reserve(numAggregates);
258   for (unsigned i = 0; i < numAggregates; ++i) {
259     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
260                    aggregateSize);
261     constants.push_back(buildCstData(data));
262   }
263 
264   ArrayRef<llvm::Constant *> constantsRef = constants;
265   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
266 }
267 
268 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
269 /// This currently supports integer, floating point, splat and dense element
270 /// attributes and combinations thereof. Also, an array attribute with two
271 /// elements is supported to represent a complex constant.  In case of error,
272 /// report it to `loc` and return nullptr.
273 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
274     llvm::Type *llvmType, Attribute attr, Location loc,
275     const ModuleTranslation &moduleTranslation) {
276   if (!attr)
277     return llvm::UndefValue::get(llvmType);
278   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
279     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
280     if (!arrayAttr || arrayAttr.size() != 2) {
281       emitError(loc, "expected struct type to be a complex number");
282       return nullptr;
283     }
284     llvm::Type *elementType = structType->getElementType(0);
285     llvm::Constant *real =
286         getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
287     if (!real)
288       return nullptr;
289     llvm::Constant *imag =
290         getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
291     if (!imag)
292       return nullptr;
293     return llvm::ConstantStruct::get(structType, {real, imag});
294   }
295   // For integer types, we allow a mismatch in sizes as the index type in
296   // MLIR might have a different size than the index type in the LLVM module.
297   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
298     return llvm::ConstantInt::get(
299         llvmType,
300         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
301   if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
302     if (llvmType !=
303         llvm::Type::getFloatingPointTy(llvmType->getContext(),
304                                        floatAttr.getValue().getSemantics())) {
305       emitError(loc, "FloatAttr does not match expected type of the constant");
306       return nullptr;
307     }
308     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
309   }
310   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
311     return llvm::ConstantExpr::getBitCast(
312         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
313   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
314     llvm::Type *elementType;
315     uint64_t numElements;
316     bool isScalable = false;
317     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
318       elementType = arrayTy->getElementType();
319       numElements = arrayTy->getNumElements();
320     } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
321       elementType = fVectorTy->getElementType();
322       numElements = fVectorTy->getNumElements();
323     } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
324       elementType = sVectorTy->getElementType();
325       numElements = sVectorTy->getMinNumElements();
326       isScalable = true;
327     } else {
328       llvm_unreachable("unrecognized constant vector type");
329     }
330     // Splat value is a scalar. Extract it only if the element type is not
331     // another sequence type. The recursion terminates because each step removes
332     // one outer sequential type.
333     bool elementTypeSequential =
334         isa<llvm::ArrayType, llvm::VectorType>(elementType);
335     llvm::Constant *child = getLLVMConstant(
336         elementType,
337         elementTypeSequential ? splatAttr
338                               : splatAttr.getSplatValue<Attribute>(),
339         loc, moduleTranslation);
340     if (!child)
341       return nullptr;
342     if (llvmType->isVectorTy())
343       return llvm::ConstantVector::getSplat(
344           llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
345     if (llvmType->isArrayTy()) {
346       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
347       SmallVector<llvm::Constant *, 8> constants(numElements, child);
348       return llvm::ConstantArray::get(arrayType, constants);
349     }
350   }
351 
352   // Try using raw elements data if possible.
353   if (llvm::Constant *result =
354           convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(),
355                                    llvmType, moduleTranslation)) {
356     return result;
357   }
358 
359   // Fall back to element-by-element construction otherwise.
360   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
361     assert(elementsAttr.getType().hasStaticShape());
362     assert(!elementsAttr.getType().getShape().empty() &&
363            "unexpected empty elements attribute shape");
364 
365     SmallVector<llvm::Constant *, 8> constants;
366     constants.reserve(elementsAttr.getNumElements());
367     llvm::Type *innermostType = getInnermostElementType(llvmType);
368     for (auto n : elementsAttr.getValues<Attribute>()) {
369       constants.push_back(
370           getLLVMConstant(innermostType, n, loc, moduleTranslation));
371       if (!constants.back())
372         return nullptr;
373     }
374     ArrayRef<llvm::Constant *> constantsRef = constants;
375     llvm::Constant *result = buildSequentialConstant(
376         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
377     assert(constantsRef.empty() && "did not consume all elemental constants");
378     return result;
379   }
380 
381   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
382     return llvm::ConstantDataArray::get(
383         moduleTranslation.getLLVMContext(),
384         ArrayRef<char>{stringAttr.getValue().data(),
385                        stringAttr.getValue().size()});
386   }
387   emitError(loc, "unsupported constant value");
388   return nullptr;
389 }
390 
391 ModuleTranslation::ModuleTranslation(Operation *module,
392                                      std::unique_ptr<llvm::Module> llvmModule)
393     : mlirModule(module), llvmModule(std::move(llvmModule)),
394       debugTranslation(
395           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
396       typeTranslator(this->llvmModule->getContext()),
397       iface(module->getContext()) {
398   assert(satisfiesLLVMModule(mlirModule) &&
399          "mlirModule should honor LLVM's module semantics.");
400 }
401 ModuleTranslation::~ModuleTranslation() {
402   if (ompBuilder)
403     ompBuilder->finalize();
404 }
405 
406 void ModuleTranslation::forgetMapping(Region &region) {
407   SmallVector<Region *> toProcess;
408   toProcess.push_back(&region);
409   while (!toProcess.empty()) {
410     Region *current = toProcess.pop_back_val();
411     for (Block &block : *current) {
412       blockMapping.erase(&block);
413       for (Value arg : block.getArguments())
414         valueMapping.erase(arg);
415       for (Operation &op : block) {
416         for (Value value : op.getResults())
417           valueMapping.erase(value);
418         if (op.hasSuccessors())
419           branchMapping.erase(&op);
420         if (isa<LLVM::GlobalOp>(op))
421           globalsMapping.erase(&op);
422         accessGroupMetadataMapping.erase(&op);
423         llvm::append_range(
424             toProcess,
425             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
426       }
427     }
428   }
429 }
430 
431 /// Get the SSA value passed to the current block from the terminator operation
432 /// of its predecessor.
433 static Value getPHISourceValue(Block *current, Block *pred,
434                                unsigned numArguments, unsigned index) {
435   Operation &terminator = *pred->getTerminator();
436   if (isa<LLVM::BrOp>(terminator))
437     return terminator.getOperand(index);
438 
439 #ifndef NDEBUG
440   llvm::SmallPtrSet<Block *, 4> seenSuccessors;
441   for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
442     Block *successor = terminator.getSuccessor(i);
443     auto branch = cast<BranchOpInterface>(terminator);
444     SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
445     assert(
446         (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
447         "successors with arguments in LLVM branches must be different blocks");
448     seenSuccessors.insert(successor);
449   }
450 #endif
451 
452   // For instructions that branch based on a condition value, we need to take
453   // the operands for the branch that was taken.
454   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
455     // For conditional branches, we take the operands from either the "true" or
456     // the "false" branch.
457     return condBranchOp.getSuccessor(0) == current
458                ? condBranchOp.getTrueDestOperands()[index]
459                : condBranchOp.getFalseDestOperands()[index];
460   }
461 
462   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
463     // For switches, we take the operands from either the default case, or from
464     // the case branch that was taken.
465     if (switchOp.getDefaultDestination() == current)
466       return switchOp.getDefaultOperands()[index];
467     for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
468       if (i.value() == current)
469         return switchOp.getCaseOperands(i.index())[index];
470   }
471 
472   if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
473     return invokeOp.getNormalDest() == current
474                ? invokeOp.getNormalDestOperands()[index]
475                : invokeOp.getUnwindDestOperands()[index];
476   }
477 
478   llvm_unreachable(
479       "only branch, switch or invoke operations can be terminators "
480       "of a block that has successors");
481 }
482 
483 /// Connect the PHI nodes to the results of preceding blocks.
484 void mlir::LLVM::detail::connectPHINodes(Region &region,
485                                          const ModuleTranslation &state) {
486   // Skip the first block, it cannot be branched to and its arguments correspond
487   // to the arguments of the LLVM function.
488   for (Block &bb : llvm::drop_begin(region)) {
489     llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
490     auto phis = llvmBB->phis();
491     auto numArguments = bb.getNumArguments();
492     assert(numArguments == std::distance(phis.begin(), phis.end()));
493     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
494       auto &phiNode = numberedPhiNode.value();
495       unsigned index = numberedPhiNode.index();
496       for (auto *pred : bb.getPredecessors()) {
497         // Find the LLVM IR block that contains the converted terminator
498         // instruction and use it in the PHI node. Note that this block is not
499         // necessarily the same as state.lookupBlock(pred), some operations
500         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
501         // split the blocks.
502         llvm::Instruction *terminator =
503             state.lookupBranch(pred->getTerminator());
504         assert(terminator && "missing the mapping for a terminator");
505         phiNode.addIncoming(state.lookupValue(getPHISourceValue(
506                                 &bb, pred, numArguments, index)),
507                             terminator->getParent());
508       }
509     }
510   }
511 }
512 
513 /// Sort function blocks topologically.
514 SetVector<Block *>
515 mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
516   // For each block that has not been visited yet (i.e. that has no
517   // predecessors), add it to the list as well as its successors.
518   SetVector<Block *> blocks;
519   for (Block &b : region) {
520     if (blocks.count(&b) == 0) {
521       llvm::ReversePostOrderTraversal<Block *> traversal(&b);
522       blocks.insert(traversal.begin(), traversal.end());
523     }
524   }
525   assert(blocks.size() == region.getBlocks().size() &&
526          "some blocks are not sorted");
527 
528   return blocks;
529 }
530 
531 llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
532     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
533     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
534   llvm::Module *module = builder.GetInsertBlock()->getModule();
535   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
536   return builder.CreateCall(fn, args);
537 }
538 
539 /// Given a single MLIR operation, create the corresponding LLVM IR operation
540 /// using the `builder`.
541 LogicalResult
542 ModuleTranslation::convertOperation(Operation &op,
543                                     llvm::IRBuilderBase &builder) {
544   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
545   if (!opIface)
546     return op.emitError("cannot be converted to LLVM IR: missing "
547                         "`LLVMTranslationDialectInterface` registration for "
548                         "dialect for op: ")
549            << op.getName();
550 
551   if (failed(opIface->convertOperation(&op, builder, *this)))
552     return op.emitError("LLVM Translation failed for operation: ")
553            << op.getName();
554 
555   return convertDialectAttributes(&op);
556 }
557 
558 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
559 /// to define values corresponding to the MLIR block arguments.  These nodes
560 /// are not connected to the source basic blocks, which may not exist yet.  Uses
561 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
562 /// been created for `bb` and included in the block mapping.  Inserts new
563 /// instructions at the end of the block and leaves `builder` in a state
564 /// suitable for further insertion into the end of the block.
565 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
566                                               llvm::IRBuilderBase &builder) {
567   builder.SetInsertPoint(lookupBlock(&bb));
568   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
569 
570   // Before traversing operations, make block arguments available through
571   // value remapping and PHI nodes, but do not add incoming edges for the PHI
572   // nodes just yet: those values may be defined by this or following blocks.
573   // This step is omitted if "ignoreArguments" is set.  The arguments of the
574   // first block have been already made available through the remapping of
575   // LLVM function arguments.
576   if (!ignoreArguments) {
577     auto predecessors = bb.getPredecessors();
578     unsigned numPredecessors =
579         std::distance(predecessors.begin(), predecessors.end());
580     for (auto arg : bb.getArguments()) {
581       auto wrappedType = arg.getType();
582       if (!isCompatibleType(wrappedType))
583         return emitError(bb.front().getLoc(),
584                          "block argument does not have an LLVM type");
585       llvm::Type *type = convertType(wrappedType);
586       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
587       mapValue(arg, phi);
588     }
589   }
590 
591   // Traverse operations.
592   for (auto &op : bb) {
593     // Set the current debug location within the builder.
594     builder.SetCurrentDebugLocation(
595         debugTranslation->translateLoc(op.getLoc(), subprogram));
596 
597     if (failed(convertOperation(op, builder)))
598       return failure();
599   }
600 
601   return success();
602 }
603 
604 /// A helper method to get the single Block in an operation honoring LLVM's
605 /// module requirements.
606 static Block &getModuleBody(Operation *module) {
607   return module->getRegion(0).front();
608 }
609 
610 /// A helper method to decide if a constant must not be set as a global variable
611 /// initializer. For an external linkage variable, the variable with an
612 /// initializer is considered externally visible and defined in this module, the
613 /// variable without an initializer is externally available and is defined
614 /// elsewhere.
615 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
616                                         llvm::Constant *cst) {
617   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
618          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
619 }
620 
621 /// Sets the runtime preemption specifier of `gv` to dso_local if
622 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
623 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
624                                           llvm::GlobalValue *gv) {
625   if (dsoLocalRequested)
626     gv->setDSOLocal(true);
627 }
628 
629 /// Create named global variables that correspond to llvm.mlir.global
630 /// definitions. Convert llvm.global_ctors and global_dtors ops.
631 LogicalResult ModuleTranslation::convertGlobals() {
632   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
633     llvm::Type *type = convertType(op.getType());
634     llvm::Constant *cst = nullptr;
635     if (op.getValueOrNull()) {
636       // String attributes are treated separately because they cannot appear as
637       // in-function constants and are thus not supported by getLLVMConstant.
638       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
639         cst = llvm::ConstantDataArray::getString(
640             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
641         type = cst->getType();
642       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
643                                          *this))) {
644         return failure();
645       }
646     }
647 
648     auto linkage = convertLinkageToLLVM(op.getLinkage());
649     auto addrSpace = op.getAddrSpace();
650 
651     // LLVM IR requires constant with linkage other than external or weak
652     // external to have initializers. If MLIR does not provide an initializer,
653     // default to undef.
654     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
655     if (!dropInitializer && !cst)
656       cst = llvm::UndefValue::get(type);
657     else if (dropInitializer && cst)
658       cst = nullptr;
659 
660     auto *var = new llvm::GlobalVariable(
661         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
662         /*InsertBefore=*/nullptr,
663         op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
664                              : llvm::GlobalValue::NotThreadLocal,
665         addrSpace);
666 
667     if (op.getUnnamedAddr().has_value())
668       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
669 
670     if (op.getSection().has_value())
671       var->setSection(*op.getSection());
672 
673     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
674 
675     Optional<uint64_t> alignment = op.getAlignment();
676     if (alignment.has_value())
677       var->setAlignment(llvm::MaybeAlign(alignment.value()));
678 
679     globalsMapping.try_emplace(op, var);
680   }
681 
682   // Convert global variable bodies. This is done after all global variables
683   // have been created in LLVM IR because a global body may refer to another
684   // global or itself. So all global variables need to be mapped first.
685   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
686     if (Block *initializer = op.getInitializerBlock()) {
687       llvm::IRBuilder<> builder(llvmModule->getContext());
688       for (auto &op : initializer->without_terminator()) {
689         if (failed(convertOperation(op, builder)) ||
690             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
691           return emitError(op.getLoc(), "unemittable constant value");
692       }
693       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
694       llvm::Constant *cst =
695           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
696       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
697       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
698         global->setInitializer(cst);
699     }
700   }
701 
702   // Convert llvm.mlir.global_ctors and dtors.
703   for (Operation &op : getModuleBody(mlirModule)) {
704     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
705     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
706     if (!ctorOp && !dtorOp)
707       continue;
708     auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
709                         : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
710     auto appendGlobalFn =
711         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
712     for (auto symbolAndPriority : range) {
713       llvm::Function *f = lookupFunction(
714           std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue());
715       appendGlobalFn(
716           *llvmModule, f,
717           std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(),
718           /*Data=*/nullptr);
719     }
720   }
721 
722   return success();
723 }
724 
725 /// Attempts to add an attribute identified by `key`, optionally with the given
726 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
727 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
728 /// otherwise keep it as a string attribute. Performs additional checks for
729 /// attributes known to have or not have a value in order to avoid assertions
730 /// inside LLVM upon construction.
731 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
732                                                llvm::Function *llvmFunc,
733                                                StringRef key,
734                                                StringRef value = StringRef()) {
735   auto kind = llvm::Attribute::getAttrKindFromName(key);
736   if (kind == llvm::Attribute::None) {
737     llvmFunc->addFnAttr(key, value);
738     return success();
739   }
740 
741   if (llvm::Attribute::isIntAttrKind(kind)) {
742     if (value.empty())
743       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
744 
745     int result;
746     if (!value.getAsInteger(/*Radix=*/0, result))
747       llvmFunc->addFnAttr(
748           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
749     else
750       llvmFunc->addFnAttr(key, value);
751     return success();
752   }
753 
754   if (!value.empty())
755     return emitError(loc) << "LLVM attribute '" << key
756                           << "' does not expect a value, found '" << value
757                           << "'";
758 
759   llvmFunc->addFnAttr(kind);
760   return success();
761 }
762 
763 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
764 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
765 /// to be an array attribute containing either string attributes, treated as
766 /// value-less LLVM attributes, or array attributes containing two string
767 /// attributes, with the first string being the name of the corresponding LLVM
768 /// attribute and the second string beings its value. Note that even integer
769 /// attributes are expected to have their values expressed as strings.
770 static LogicalResult
771 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
772                              llvm::Function *llvmFunc) {
773   if (!attributes)
774     return success();
775 
776   for (Attribute attr : *attributes) {
777     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
778       if (failed(
779               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
780         return failure();
781       continue;
782     }
783 
784     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
785     if (!arrayAttr || arrayAttr.size() != 2)
786       return emitError(loc)
787              << "expected 'passthrough' to contain string or array attributes";
788 
789     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
790     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
791     if (!keyAttr || !valueAttr)
792       return emitError(loc)
793              << "expected arrays within 'passthrough' to contain two strings";
794 
795     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
796                                          valueAttr.getValue())))
797       return failure();
798   }
799   return success();
800 }
801 
802 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
803   // Clear the block, branch value mappings, they are only relevant within one
804   // function.
805   blockMapping.clear();
806   valueMapping.clear();
807   branchMapping.clear();
808   llvm::Function *llvmFunc = lookupFunction(func.getName());
809 
810   // Translate the debug information for this function.
811   debugTranslation->translate(func, *llvmFunc);
812 
813   // Add function arguments to the value remapping table.
814   // If there was noalias info then we decorate each argument accordingly.
815   unsigned int argIdx = 0;
816   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
817     llvm::Argument &llvmArg = std::get<1>(kvp);
818     BlockArgument mlirArg = std::get<0>(kvp);
819 
820     if (auto attr = func.getArgAttrOfType<UnitAttr>(
821             argIdx, LLVMDialect::getNoAliasAttrName())) {
822       // NB: Attribute already verified to be boolean, so check if we can indeed
823       // attach the attribute to this argument, based on its type.
824       auto argTy = mlirArg.getType();
825       if (!argTy.isa<LLVM::LLVMPointerType>())
826         return func.emitError(
827             "llvm.noalias attribute attached to LLVM non-pointer argument");
828       llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
829     }
830 
831     if (auto attr = func.getArgAttrOfType<IntegerAttr>(
832             argIdx, LLVMDialect::getAlignAttrName())) {
833       // NB: Attribute already verified to be int, so check if we can indeed
834       // attach the attribute to this argument, based on its type.
835       auto argTy = mlirArg.getType();
836       if (!argTy.isa<LLVM::LLVMPointerType>())
837         return func.emitError(
838             "llvm.align attribute attached to LLVM non-pointer argument");
839       llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
840                            .addAlignmentAttr(llvm::Align(attr.getInt())));
841     }
842 
843     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
844       auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMPointerType>();
845       if (!argTy)
846         return func.emitError(
847             "llvm.sret attribute attached to LLVM non-pointer argument");
848       llvmArg.addAttrs(
849           llvm::AttrBuilder(llvmArg.getContext())
850               .addStructRetAttr(convertType(argTy.getElementType())));
851     }
852 
853     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
854       auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMPointerType>();
855       if (!argTy)
856         return func.emitError(
857             "llvm.byval attribute attached to LLVM non-pointer argument");
858       llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
859                            .addByValAttr(convertType(argTy.getElementType())));
860     }
861 
862     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.nest")) {
863       auto argTy = mlirArg.getType();
864       if (!argTy.isa<LLVM::LLVMPointerType>())
865         return func.emitError(
866             "llvm.nest attribute attached to LLVM non-pointer argument");
867       llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
868                            .addAttribute(llvm::Attribute::Nest));
869     }
870 
871     mapValue(mlirArg, &llvmArg);
872     argIdx++;
873   }
874 
875   // Check the personality and set it.
876   if (func.getPersonality()) {
877     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
878     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
879                                                 func.getLoc(), *this))
880       llvmFunc->setPersonalityFn(pfunc);
881   }
882 
883   if (auto gc = func.getGarbageCollector())
884     llvmFunc->setGC(gc->str());
885 
886   // First, create all blocks so we can jump to them.
887   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
888   for (auto &bb : func) {
889     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
890     llvmBB->insertInto(llvmFunc);
891     mapBlock(&bb, llvmBB);
892   }
893 
894   // Then, convert blocks one by one in topological order to ensure defs are
895   // converted before uses.
896   auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
897   for (Block *bb : blocks) {
898     llvm::IRBuilder<> builder(llvmContext);
899     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
900       return failure();
901   }
902 
903   // After all blocks have been traversed and values mapped, connect the PHI
904   // nodes to the results of preceding blocks.
905   detail::connectPHINodes(func.getBody(), *this);
906 
907   // Finally, convert dialect attributes attached to the function.
908   return convertDialectAttributes(func);
909 }
910 
911 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
912   for (NamedAttribute attribute : op->getDialectAttrs())
913     if (failed(iface.amendOperation(op, attribute, *this)))
914       return failure();
915   return success();
916 }
917 
918 LogicalResult ModuleTranslation::convertFunctionSignatures() {
919   // Declare all functions first because there may be function calls that form a
920   // call graph with cycles, or global initializers that reference functions.
921   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
922     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
923         function.getName(),
924         cast<llvm::FunctionType>(convertType(function.getFunctionType())));
925     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
926     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
927     mapFunction(function.getName(), llvmFunc);
928     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
929 
930     // Forward the pass-through attributes to LLVM.
931     if (failed(forwardPassthroughAttributes(
932             function.getLoc(), function.getPassthrough(), llvmFunc)))
933       return failure();
934   }
935 
936   return success();
937 }
938 
939 LogicalResult ModuleTranslation::convertFunctions() {
940   // Convert functions.
941   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
942     // Ignore external functions.
943     if (function.isExternal())
944       continue;
945 
946     if (failed(convertOneFunction(function)))
947       return failure();
948   }
949 
950   return success();
951 }
952 
953 llvm::MDNode *
954 ModuleTranslation::getAccessGroup(Operation &opInst,
955                                   SymbolRefAttr accessGroupRef) const {
956   auto metadataName = accessGroupRef.getRootReference();
957   auto accessGroupName = accessGroupRef.getLeafReference();
958   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
959       opInst.getParentOp(), metadataName);
960   auto *accessGroupOp =
961       SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
962   return accessGroupMetadataMapping.lookup(accessGroupOp);
963 }
964 
965 LogicalResult ModuleTranslation::createAccessGroupMetadata() {
966   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
967     metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
968       llvm::LLVMContext &ctx = llvmModule->getContext();
969       llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
970       accessGroupMetadataMapping.insert({op, accessGroup});
971     });
972   });
973   return success();
974 }
975 
976 void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
977                                                 llvm::Instruction *inst) {
978   auto accessGroups =
979       op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
980   if (accessGroups && !accessGroups.empty()) {
981     llvm::Module *module = inst->getModule();
982     SmallVector<llvm::Metadata *> metadatas;
983     for (SymbolRefAttr accessGroupRef :
984          accessGroups.getAsRange<SymbolRefAttr>())
985       metadatas.push_back(getAccessGroup(*op, accessGroupRef));
986 
987     llvm::MDNode *unionMD = nullptr;
988     if (metadatas.size() == 1)
989       unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
990     else if (metadatas.size() >= 2)
991       unionMD = llvm::MDNode::get(module->getContext(), metadatas);
992 
993     inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
994   }
995 }
996 
997 LogicalResult ModuleTranslation::createAliasScopeMetadata() {
998   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
999     // Create the domains first, so they can be reference below in the scopes.
1000     DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping;
1001     metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) {
1002       llvm::LLVMContext &ctx = llvmModule->getContext();
1003       llvm::SmallVector<llvm::Metadata *, 2> operands;
1004       operands.push_back({}); // Placeholder for self-reference
1005       if (Optional<StringRef> description = op.getDescription())
1006         operands.push_back(llvm::MDString::get(ctx, *description));
1007       llvm::MDNode *domain = llvm::MDNode::get(ctx, operands);
1008       domain->replaceOperandWith(0, domain); // Self-reference for uniqueness
1009       aliasScopeDomainMetadataMapping.insert({op, domain});
1010     });
1011 
1012     // Now create the scopes, referencing the domains created above.
1013     metadatas.walk([&](LLVM::AliasScopeMetadataOp op) {
1014       llvm::LLVMContext &ctx = llvmModule->getContext();
1015       assert(isa<LLVM::MetadataOp>(op->getParentOp()));
1016       auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp());
1017       Operation *domainOp =
1018           SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr());
1019       llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp);
1020       assert(domain && "Scope's domain should already be valid");
1021       llvm::SmallVector<llvm::Metadata *, 3> operands;
1022       operands.push_back({}); // Placeholder for self-reference
1023       operands.push_back(domain);
1024       if (Optional<StringRef> description = op.getDescription())
1025         operands.push_back(llvm::MDString::get(ctx, *description));
1026       llvm::MDNode *scope = llvm::MDNode::get(ctx, operands);
1027       scope->replaceOperandWith(0, scope); // Self-reference for uniqueness
1028       aliasScopeMetadataMapping.insert({op, scope});
1029     });
1030   });
1031   return success();
1032 }
1033 
1034 llvm::MDNode *
1035 ModuleTranslation::getAliasScope(Operation &opInst,
1036                                  SymbolRefAttr aliasScopeRef) const {
1037   StringAttr metadataName = aliasScopeRef.getRootReference();
1038   StringAttr scopeName = aliasScopeRef.getLeafReference();
1039   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
1040       opInst.getParentOp(), metadataName);
1041   Operation *aliasScopeOp =
1042       SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName);
1043   return aliasScopeMetadataMapping.lookup(aliasScopeOp);
1044 }
1045 
1046 void ModuleTranslation::setAliasScopeMetadata(Operation *op,
1047                                               llvm::Instruction *inst) {
1048   auto populateScopeMetadata = [this, op, inst](StringRef attrName,
1049                                                 StringRef llvmMetadataName) {
1050     auto scopes = op->getAttrOfType<ArrayAttr>(attrName);
1051     if (!scopes || scopes.empty())
1052       return;
1053     llvm::Module *module = inst->getModule();
1054     SmallVector<llvm::Metadata *> scopeMDs;
1055     for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>())
1056       scopeMDs.push_back(getAliasScope(*op, scopeRef));
1057     llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs);
1058     inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD);
1059   };
1060 
1061   populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope");
1062   populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias");
1063 }
1064 
1065 llvm::Type *ModuleTranslation::convertType(Type type) {
1066   return typeTranslator.translateType(type);
1067 }
1068 
1069 /// A helper to look up remapped operands in the value remapping table.
1070 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1071   SmallVector<llvm::Value *> remapped;
1072   remapped.reserve(values.size());
1073   for (Value v : values)
1074     remapped.push_back(lookupValue(v));
1075   return remapped;
1076 }
1077 
1078 const llvm::DILocation *
1079 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
1080   return debugTranslation->translateLoc(loc, scope);
1081 }
1082 
1083 llvm::NamedMDNode *
1084 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1085   return llvmModule->getOrInsertNamedMetadata(name);
1086 }
1087 
1088 void ModuleTranslation::StackFrame::anchor() {}
1089 
1090 static std::unique_ptr<llvm::Module>
1091 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1092                   StringRef name) {
1093   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1094   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1095   if (auto dataLayoutAttr =
1096           m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1097     llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
1098   } else {
1099     FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1100     if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1101       if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1102         llvmDataLayout =
1103             translateDataLayout(spec, DataLayout(iface), m->getLoc());
1104       }
1105     } else if (auto mod = dyn_cast<ModuleOp>(m)) {
1106       if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
1107         llvmDataLayout =
1108             translateDataLayout(spec, DataLayout(mod), m->getLoc());
1109       }
1110     }
1111     if (failed(llvmDataLayout))
1112       return nullptr;
1113     llvmModule->setDataLayout(*llvmDataLayout);
1114   }
1115   if (auto targetTripleAttr =
1116           m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1117     llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
1118 
1119   // Inject declarations for `malloc` and `free` functions that can be used in
1120   // memref allocation/deallocation coming from standard ops lowering.
1121   llvm::IRBuilder<> builder(llvmContext);
1122   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
1123                                   builder.getInt64Ty());
1124   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
1125                                   builder.getInt8PtrTy());
1126 
1127   return llvmModule;
1128 }
1129 
1130 std::unique_ptr<llvm::Module>
1131 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1132                               StringRef name) {
1133   if (!satisfiesLLVMModule(module))
1134     return nullptr;
1135 
1136   std::unique_ptr<llvm::Module> llvmModule =
1137       prepareLLVMModule(module, llvmContext, name);
1138   if (!llvmModule)
1139     return nullptr;
1140 
1141   LLVM::ensureDistinctSuccessors(module);
1142 
1143   ModuleTranslation translator(module, std::move(llvmModule));
1144   if (failed(translator.convertFunctionSignatures()))
1145     return nullptr;
1146   if (failed(translator.convertGlobals()))
1147     return nullptr;
1148   if (failed(translator.createAccessGroupMetadata()))
1149     return nullptr;
1150   if (failed(translator.createAliasScopeMetadata()))
1151     return nullptr;
1152   if (failed(translator.convertFunctions()))
1153     return nullptr;
1154 
1155   // Convert other top-level operations if possible.
1156   llvm::IRBuilder<> llvmBuilder(llvmContext);
1157   for (Operation &o : getModuleBody(module).getOperations()) {
1158     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1159              LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) &&
1160         !o.hasTrait<OpTrait::IsTerminator>() &&
1161         failed(translator.convertOperation(o, llvmBuilder))) {
1162       return nullptr;
1163     }
1164   }
1165 
1166   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
1167     return nullptr;
1168 
1169   return std::move(translator.llvmModule);
1170 }
1171