1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 34 using namespace mlir; 35 using namespace mlir::LLVM; 36 using namespace mlir::LLVM::detail; 37 38 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 39 40 /// Builds a constant of a sequential LLVM type `type`, potentially containing 41 /// other sequential types recursively, from the individual constant values 42 /// provided in `constants`. `shape` contains the number of elements in nested 43 /// sequential types. Reports errors at `loc` and returns nullptr on error. 44 static llvm::Constant * 45 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 46 ArrayRef<int64_t> shape, llvm::Type *type, 47 Location loc) { 48 if (shape.empty()) { 49 llvm::Constant *result = constants.front(); 50 constants = constants.drop_front(); 51 return result; 52 } 53 54 if (!isa<llvm::SequentialType>(type)) { 55 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 56 return nullptr; 57 } 58 59 llvm::Type *elementType = type->getSequentialElementType(); 60 SmallVector<llvm::Constant *, 8> nested; 61 nested.reserve(shape.front()); 62 for (int64_t i = 0; i < shape.front(); ++i) { 63 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 64 elementType, loc)); 65 if (!nested.back()) 66 return nullptr; 67 } 68 69 if (shape.size() == 1 && type->isVectorTy()) 70 return llvm::ConstantVector::get(nested); 71 return llvm::ConstantArray::get( 72 llvm::ArrayType::get(elementType, shape.front()), nested); 73 } 74 75 /// Returns the first non-sequential type nested in sequential types. 76 static llvm::Type *getInnermostElementType(llvm::Type *type) { 77 while (isa<llvm::SequentialType>(type)) 78 type = type->getSequentialElementType(); 79 return type; 80 } 81 82 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 83 /// This currently supports integer, floating point, splat and dense element 84 /// attributes and combinations thereof. In case of error, report it to `loc` 85 /// and return nullptr. 86 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 87 Attribute attr, 88 Location loc) { 89 if (!attr) 90 return llvm::UndefValue::get(llvmType); 91 if (llvmType->isStructTy()) { 92 emitError(loc, "struct types are not supported in constants"); 93 return nullptr; 94 } 95 // For integer types, we allow a mismatch in sizes as the index type in 96 // MLIR might have a different size than the index type in the LLVM module. 97 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 98 return llvm::ConstantInt::get( 99 llvmType, 100 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 101 if (auto boolAttr = attr.dyn_cast<BoolAttr>()) 102 return llvm::ConstantInt::get(llvmType, boolAttr.getValue()); 103 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 104 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 105 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 106 return llvm::ConstantExpr::getBitCast( 107 functionMapping.lookup(funcAttr.getValue()), llvmType); 108 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 109 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 110 auto *elementType = sequentialType->getElementType(); 111 uint64_t numElements = sequentialType->getNumElements(); 112 // Splat value is a scalar. Extract it only if the element type is not 113 // another sequence type. The recursion terminates because each step removes 114 // one outer sequential type. 115 llvm::Constant *child = getLLVMConstant( 116 elementType, 117 isa<llvm::SequentialType>(elementType) ? splatAttr 118 : splatAttr.getSplatValue(), 119 loc); 120 if (!child) 121 return nullptr; 122 if (llvmType->isVectorTy()) 123 return llvm::ConstantVector::getSplat( 124 llvm::ElementCount(numElements, /*Scalable=*/false), child); 125 if (llvmType->isArrayTy()) { 126 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 127 SmallVector<llvm::Constant *, 8> constants(numElements, child); 128 return llvm::ConstantArray::get(arrayType, constants); 129 } 130 } 131 132 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 133 assert(elementsAttr.getType().hasStaticShape()); 134 assert(elementsAttr.getNumElements() != 0 && 135 "unexpected empty elements attribute"); 136 assert(!elementsAttr.getType().getShape().empty() && 137 "unexpected empty elements attribute shape"); 138 139 SmallVector<llvm::Constant *, 8> constants; 140 constants.reserve(elementsAttr.getNumElements()); 141 llvm::Type *innermostType = getInnermostElementType(llvmType); 142 for (auto n : elementsAttr.getValues<Attribute>()) { 143 constants.push_back(getLLVMConstant(innermostType, n, loc)); 144 if (!constants.back()) 145 return nullptr; 146 } 147 ArrayRef<llvm::Constant *> constantsRef = constants; 148 llvm::Constant *result = buildSequentialConstant( 149 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 150 assert(constantsRef.empty() && "did not consume all elemental constants"); 151 return result; 152 } 153 154 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 155 return llvm::ConstantDataArray::get( 156 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 157 stringAttr.getValue().size()}); 158 } 159 emitError(loc, "unsupported constant value"); 160 return nullptr; 161 } 162 163 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 164 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 165 switch (p) { 166 case LLVM::ICmpPredicate::eq: 167 return llvm::CmpInst::Predicate::ICMP_EQ; 168 case LLVM::ICmpPredicate::ne: 169 return llvm::CmpInst::Predicate::ICMP_NE; 170 case LLVM::ICmpPredicate::slt: 171 return llvm::CmpInst::Predicate::ICMP_SLT; 172 case LLVM::ICmpPredicate::sle: 173 return llvm::CmpInst::Predicate::ICMP_SLE; 174 case LLVM::ICmpPredicate::sgt: 175 return llvm::CmpInst::Predicate::ICMP_SGT; 176 case LLVM::ICmpPredicate::sge: 177 return llvm::CmpInst::Predicate::ICMP_SGE; 178 case LLVM::ICmpPredicate::ult: 179 return llvm::CmpInst::Predicate::ICMP_ULT; 180 case LLVM::ICmpPredicate::ule: 181 return llvm::CmpInst::Predicate::ICMP_ULE; 182 case LLVM::ICmpPredicate::ugt: 183 return llvm::CmpInst::Predicate::ICMP_UGT; 184 case LLVM::ICmpPredicate::uge: 185 return llvm::CmpInst::Predicate::ICMP_UGE; 186 } 187 llvm_unreachable("incorrect comparison predicate"); 188 } 189 190 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 191 switch (p) { 192 case LLVM::FCmpPredicate::_false: 193 return llvm::CmpInst::Predicate::FCMP_FALSE; 194 case LLVM::FCmpPredicate::oeq: 195 return llvm::CmpInst::Predicate::FCMP_OEQ; 196 case LLVM::FCmpPredicate::ogt: 197 return llvm::CmpInst::Predicate::FCMP_OGT; 198 case LLVM::FCmpPredicate::oge: 199 return llvm::CmpInst::Predicate::FCMP_OGE; 200 case LLVM::FCmpPredicate::olt: 201 return llvm::CmpInst::Predicate::FCMP_OLT; 202 case LLVM::FCmpPredicate::ole: 203 return llvm::CmpInst::Predicate::FCMP_OLE; 204 case LLVM::FCmpPredicate::one: 205 return llvm::CmpInst::Predicate::FCMP_ONE; 206 case LLVM::FCmpPredicate::ord: 207 return llvm::CmpInst::Predicate::FCMP_ORD; 208 case LLVM::FCmpPredicate::ueq: 209 return llvm::CmpInst::Predicate::FCMP_UEQ; 210 case LLVM::FCmpPredicate::ugt: 211 return llvm::CmpInst::Predicate::FCMP_UGT; 212 case LLVM::FCmpPredicate::uge: 213 return llvm::CmpInst::Predicate::FCMP_UGE; 214 case LLVM::FCmpPredicate::ult: 215 return llvm::CmpInst::Predicate::FCMP_ULT; 216 case LLVM::FCmpPredicate::ule: 217 return llvm::CmpInst::Predicate::FCMP_ULE; 218 case LLVM::FCmpPredicate::une: 219 return llvm::CmpInst::Predicate::FCMP_UNE; 220 case LLVM::FCmpPredicate::uno: 221 return llvm::CmpInst::Predicate::FCMP_UNO; 222 case LLVM::FCmpPredicate::_true: 223 return llvm::CmpInst::Predicate::FCMP_TRUE; 224 } 225 llvm_unreachable("incorrect comparison predicate"); 226 } 227 228 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 229 switch (op) { 230 case LLVM::AtomicBinOp::xchg: 231 return llvm::AtomicRMWInst::BinOp::Xchg; 232 case LLVM::AtomicBinOp::add: 233 return llvm::AtomicRMWInst::BinOp::Add; 234 case LLVM::AtomicBinOp::sub: 235 return llvm::AtomicRMWInst::BinOp::Sub; 236 case LLVM::AtomicBinOp::_and: 237 return llvm::AtomicRMWInst::BinOp::And; 238 case LLVM::AtomicBinOp::nand: 239 return llvm::AtomicRMWInst::BinOp::Nand; 240 case LLVM::AtomicBinOp::_or: 241 return llvm::AtomicRMWInst::BinOp::Or; 242 case LLVM::AtomicBinOp::_xor: 243 return llvm::AtomicRMWInst::BinOp::Xor; 244 case LLVM::AtomicBinOp::max: 245 return llvm::AtomicRMWInst::BinOp::Max; 246 case LLVM::AtomicBinOp::min: 247 return llvm::AtomicRMWInst::BinOp::Min; 248 case LLVM::AtomicBinOp::umax: 249 return llvm::AtomicRMWInst::BinOp::UMax; 250 case LLVM::AtomicBinOp::umin: 251 return llvm::AtomicRMWInst::BinOp::UMin; 252 case LLVM::AtomicBinOp::fadd: 253 return llvm::AtomicRMWInst::BinOp::FAdd; 254 case LLVM::AtomicBinOp::fsub: 255 return llvm::AtomicRMWInst::BinOp::FSub; 256 } 257 llvm_unreachable("incorrect atomic binary operator"); 258 } 259 260 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 261 switch (ordering) { 262 case LLVM::AtomicOrdering::not_atomic: 263 return llvm::AtomicOrdering::NotAtomic; 264 case LLVM::AtomicOrdering::unordered: 265 return llvm::AtomicOrdering::Unordered; 266 case LLVM::AtomicOrdering::monotonic: 267 return llvm::AtomicOrdering::Monotonic; 268 case LLVM::AtomicOrdering::acquire: 269 return llvm::AtomicOrdering::Acquire; 270 case LLVM::AtomicOrdering::release: 271 return llvm::AtomicOrdering::Release; 272 case LLVM::AtomicOrdering::acq_rel: 273 return llvm::AtomicOrdering::AcquireRelease; 274 case LLVM::AtomicOrdering::seq_cst: 275 return llvm::AtomicOrdering::SequentiallyConsistent; 276 } 277 llvm_unreachable("incorrect atomic ordering"); 278 } 279 280 ModuleTranslation::ModuleTranslation(Operation *module, 281 std::unique_ptr<llvm::Module> llvmModule) 282 : mlirModule(module), llvmModule(std::move(llvmModule)), 283 debugTranslation( 284 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 285 ompDialect( 286 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()) { 287 assert(satisfiesLLVMModule(mlirModule) && 288 "mlirModule should honor LLVM's module semantics."); 289 } 290 ModuleTranslation::~ModuleTranslation() {} 291 292 /// Given a single MLIR operation, create the corresponding LLVM IR operation 293 /// using the `builder`. LLVM IR Builder does not have a generic interface so 294 /// this has to be a long chain of `if`s calling different functions with a 295 /// different number of arguments. 296 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 297 llvm::IRBuilder<> &builder) { 298 auto extractPosition = [](ArrayAttr attr) { 299 SmallVector<unsigned, 4> position; 300 position.reserve(attr.size()); 301 for (Attribute v : attr) 302 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 303 return position; 304 }; 305 306 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 307 308 // Emit function calls. If the "callee" attribute is present, this is a 309 // direct function call and we also need to look up the remapped function 310 // itself. Otherwise, this is an indirect call and the callee is the first 311 // operand, look it up as a normal value. Return the llvm::Value representing 312 // the function result, which may be of llvm::VoidTy type. 313 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 314 auto operands = lookupValues(op.getOperands()); 315 ArrayRef<llvm::Value *> operandsRef(operands); 316 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 317 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 318 operandsRef); 319 } else { 320 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 321 } 322 }; 323 324 // Emit calls. If the called function has a result, remap the corresponding 325 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 326 if (isa<LLVM::CallOp>(opInst)) { 327 llvm::Value *result = convertCall(opInst); 328 if (opInst.getNumResults() != 0) { 329 valueMapping[opInst.getResult(0)] = result; 330 return success(); 331 } 332 // Check that LLVM call returns void for 0-result functions. 333 return success(result->getType()->isVoidTy()); 334 } 335 336 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 337 auto operands = lookupValues(opInst.getOperands()); 338 ArrayRef<llvm::Value *> operandsRef(operands); 339 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) 340 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 341 blockMapping[invOp.getSuccessor(0)], 342 blockMapping[invOp.getSuccessor(1)], operandsRef); 343 else 344 builder.CreateInvoke( 345 operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 346 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 347 return success(); 348 } 349 350 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 351 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 352 llvm::LandingPadInst *lpi = 353 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 354 355 // Add clauses 356 for (auto operand : lookupValues(lpOp.getOperands())) { 357 // All operands should be constant - checked by verifier 358 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 359 lpi->addClause(constOperand); 360 } 361 valueMapping[lpOp.getResult()] = lpi; 362 return success(); 363 } 364 365 // Emit branches. We need to look up the remapped blocks and ignore the block 366 // arguments that were transformed into PHI nodes. 367 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 368 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 369 return success(); 370 } 371 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 372 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 373 blockMapping[condbrOp.getSuccessor(0)], 374 blockMapping[condbrOp.getSuccessor(1)]); 375 return success(); 376 } 377 378 // Emit addressof. We need to look up the global value referenced by the 379 // operation and store it in the MLIR-to-LLVM value mapping. This does not 380 // emit any LLVM instruction. 381 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 382 LLVM::GlobalOp global = addressOfOp.getGlobal(); 383 // The verifier should not have allowed this. 384 assert(global && "referencing an undefined global"); 385 386 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 387 return success(); 388 } 389 390 if (opInst.getDialect() == ompDialect) { 391 if (!ompBuilder) { 392 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 393 ompBuilder->initialize(); 394 } 395 396 if (isa<omp::BarrierOp>(opInst)) { 397 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 398 return success(); 399 } 400 return opInst.emitError("unsupported OpenMP operation: ") 401 << opInst.getName(); 402 } 403 404 return opInst.emitError("unsupported or non-LLVM operation: ") 405 << opInst.getName(); 406 } 407 408 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 409 /// to define values corresponding to the MLIR block arguments. These nodes 410 /// are not connected to the source basic blocks, which may not exist yet. 411 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 412 llvm::IRBuilder<> builder(blockMapping[&bb]); 413 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 414 415 // Before traversing operations, make block arguments available through 416 // value remapping and PHI nodes, but do not add incoming edges for the PHI 417 // nodes just yet: those values may be defined by this or following blocks. 418 // This step is omitted if "ignoreArguments" is set. The arguments of the 419 // first block have been already made available through the remapping of 420 // LLVM function arguments. 421 if (!ignoreArguments) { 422 auto predecessors = bb.getPredecessors(); 423 unsigned numPredecessors = 424 std::distance(predecessors.begin(), predecessors.end()); 425 for (auto arg : bb.getArguments()) { 426 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 427 if (!wrappedType) 428 return emitError(bb.front().getLoc(), 429 "block argument does not have an LLVM type"); 430 llvm::Type *type = wrappedType.getUnderlyingType(); 431 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 432 valueMapping[arg] = phi; 433 } 434 } 435 436 // Traverse operations. 437 for (auto &op : bb) { 438 // Set the current debug location within the builder. 439 builder.SetCurrentDebugLocation( 440 debugTranslation->translateLoc(op.getLoc(), subprogram)); 441 442 if (failed(convertOperation(op, builder))) 443 return failure(); 444 } 445 446 return success(); 447 } 448 449 /// Create named global variables that correspond to llvm.mlir.global 450 /// definitions. 451 LogicalResult ModuleTranslation::convertGlobals() { 452 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 453 llvm::Type *type = op.getType().getUnderlyingType(); 454 llvm::Constant *cst = llvm::UndefValue::get(type); 455 if (op.getValueOrNull()) { 456 // String attributes are treated separately because they cannot appear as 457 // in-function constants and are thus not supported by getLLVMConstant. 458 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 459 cst = llvm::ConstantDataArray::getString( 460 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 461 type = cst->getType(); 462 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 463 op.getLoc()))) { 464 return failure(); 465 } 466 } else if (Block *initializer = op.getInitializerBlock()) { 467 llvm::IRBuilder<> builder(llvmModule->getContext()); 468 for (auto &op : initializer->without_terminator()) { 469 if (failed(convertOperation(op, builder)) || 470 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 471 return emitError(op.getLoc(), "unemittable constant value"); 472 } 473 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 474 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 475 } 476 477 auto linkage = convertLinkageToLLVM(op.linkage()); 478 bool anyExternalLinkage = 479 ((linkage == llvm::GlobalVariable::ExternalLinkage && 480 isa<llvm::UndefValue>(cst)) || 481 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 482 auto addrSpace = op.addr_space().getLimitedValue(); 483 auto *var = new llvm::GlobalVariable( 484 *llvmModule, type, op.constant(), linkage, 485 anyExternalLinkage ? nullptr : cst, op.sym_name(), 486 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 487 488 globalsMapping.try_emplace(op, var); 489 } 490 491 return success(); 492 } 493 494 /// Get the SSA value passed to the current block from the terminator operation 495 /// of its predecessor. 496 static Value getPHISourceValue(Block *current, Block *pred, 497 unsigned numArguments, unsigned index) { 498 auto &terminator = *pred->getTerminator(); 499 if (isa<LLVM::BrOp>(terminator)) { 500 return terminator.getOperand(index); 501 } 502 503 // For conditional branches, we need to check if the current block is reached 504 // through the "true" or the "false" branch and take the relevant operands. 505 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 506 assert(condBranchOp && 507 "only branch operations can be terminators of a block that " 508 "has successors"); 509 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 510 "successors with arguments in LLVM conditional branches must be " 511 "different blocks"); 512 513 return condBranchOp.getSuccessor(0) == current 514 ? condBranchOp.trueDestOperands()[index] 515 : condBranchOp.falseDestOperands()[index]; 516 } 517 518 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 519 // Skip the first block, it cannot be branched to and its arguments correspond 520 // to the arguments of the LLVM function. 521 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 522 Block *bb = &*it; 523 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 524 auto phis = llvmBB->phis(); 525 auto numArguments = bb->getNumArguments(); 526 assert(numArguments == std::distance(phis.begin(), phis.end())); 527 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 528 auto &phiNode = numberedPhiNode.value(); 529 unsigned index = numberedPhiNode.index(); 530 for (auto *pred : bb->getPredecessors()) { 531 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 532 bb, pred, numArguments, index)), 533 blockMapping.lookup(pred)); 534 } 535 } 536 } 537 } 538 539 // TODO(mlir-team): implement an iterative version 540 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 541 blocks.insert(b); 542 for (Block *bb : b->getSuccessors()) { 543 if (blocks.count(bb) == 0) 544 topologicalSortImpl(blocks, bb); 545 } 546 } 547 548 /// Sort function blocks topologically. 549 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 550 // For each blocks that has not been visited yet (i.e. that has no 551 // predecessors), add it to the list and traverse its successors in DFS 552 // preorder. 553 llvm::SetVector<Block *> blocks; 554 for (Block &b : f.getBlocks()) { 555 if (blocks.count(&b) == 0) 556 topologicalSortImpl(blocks, &b); 557 } 558 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 559 560 return blocks; 561 } 562 563 /// Attempts to add an attribute identified by `key`, optionally with the given 564 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 565 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 566 /// otherwise keep it as a string attribute. Performs additional checks for 567 /// attributes known to have or not have a value in order to avoid assertions 568 /// inside LLVM upon construction. 569 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 570 llvm::Function *llvmFunc, 571 StringRef key, 572 StringRef value = StringRef()) { 573 auto kind = llvm::Attribute::getAttrKindFromName(key); 574 if (kind == llvm::Attribute::None) { 575 llvmFunc->addFnAttr(key, value); 576 return success(); 577 } 578 579 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) { 580 if (value.empty()) 581 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 582 583 int result; 584 if (!value.getAsInteger(/*Radix=*/0, result)) 585 llvmFunc->addFnAttr( 586 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 587 else 588 llvmFunc->addFnAttr(key, value); 589 return success(); 590 } 591 592 if (!value.empty()) 593 return emitError(loc) << "LLVM attribute '" << key 594 << "' does not expect a value, found '" << value 595 << "'"; 596 597 llvmFunc->addFnAttr(kind); 598 return success(); 599 } 600 601 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 602 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 603 /// to be an array attribute containing either string attributes, treated as 604 /// value-less LLVM attributes, or array attributes containing two string 605 /// attributes, with the first string being the name of the corresponding LLVM 606 /// attribute and the second string beings its value. Note that even integer 607 /// attributes are expected to have their values expressed as strings. 608 static LogicalResult 609 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 610 llvm::Function *llvmFunc) { 611 if (!attributes) 612 return success(); 613 614 for (Attribute attr : *attributes) { 615 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 616 if (failed( 617 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 618 return failure(); 619 continue; 620 } 621 622 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 623 if (!arrayAttr || arrayAttr.size() != 2) 624 return emitError(loc) 625 << "expected 'passthrough' to contain string or array attributes"; 626 627 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 628 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 629 if (!keyAttr || !valueAttr) 630 return emitError(loc) 631 << "expected arrays within 'passthrough' to contain two strings"; 632 633 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 634 valueAttr.getValue()))) 635 return failure(); 636 } 637 return success(); 638 } 639 640 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 641 // Clear the block and value mappings, they are only relevant within one 642 // function. 643 blockMapping.clear(); 644 valueMapping.clear(); 645 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 646 647 // Translate the debug information for this function. 648 debugTranslation->translate(func, *llvmFunc); 649 650 // Add function arguments to the value remapping table. 651 // If there was noalias info then we decorate each argument accordingly. 652 unsigned int argIdx = 0; 653 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 654 llvm::Argument &llvmArg = std::get<1>(kvp); 655 BlockArgument mlirArg = std::get<0>(kvp); 656 657 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 658 // NB: Attribute already verified to be boolean, so check if we can indeed 659 // attach the attribute to this argument, based on its type. 660 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 661 if (!argTy.getUnderlyingType()->isPointerTy()) 662 return func.emitError( 663 "llvm.noalias attribute attached to LLVM non-pointer argument"); 664 if (attr.getValue()) 665 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 666 } 667 valueMapping[mlirArg] = &llvmArg; 668 argIdx++; 669 } 670 671 // Check the personality and set it. 672 if (func.personality().hasValue()) { 673 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 674 if (llvm::Constant *pfunc = 675 getLLVMConstant(ty, func.personalityAttr(), func.getLoc())) 676 llvmFunc->setPersonalityFn(pfunc); 677 } 678 679 // First, create all blocks so we can jump to them. 680 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 681 for (auto &bb : func) { 682 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 683 llvmBB->insertInto(llvmFunc); 684 blockMapping[&bb] = llvmBB; 685 } 686 687 // Then, convert blocks one by one in topological order to ensure defs are 688 // converted before uses. 689 auto blocks = topologicalSort(func); 690 for (auto indexedBB : llvm::enumerate(blocks)) { 691 auto *bb = indexedBB.value(); 692 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 693 return failure(); 694 } 695 696 // Finally, after all blocks have been traversed and values mapped, connect 697 // the PHI nodes to the results of preceding blocks. 698 connectPHINodes(func); 699 return success(); 700 } 701 702 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 703 for (Operation &o : getModuleBody(m).getOperations()) 704 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 705 !o.isKnownTerminator()) 706 return o.emitOpError("unsupported module-level operation"); 707 return success(); 708 } 709 710 LogicalResult ModuleTranslation::convertFunctions() { 711 // Declare all functions first because there may be function calls that form a 712 // call graph with cycles. 713 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 714 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 715 function.getName(), 716 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 717 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 718 functionMapping[function.getName()] = llvmFunc; 719 720 // Forward the pass-through attributes to LLVM. 721 if (failed(forwardPassthroughAttributes(function.getLoc(), 722 function.passthrough(), llvmFunc))) 723 return failure(); 724 } 725 726 // Convert functions. 727 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 728 // Ignore external functions. 729 if (function.isExternal()) 730 continue; 731 732 if (failed(convertOneFunction(function))) 733 return failure(); 734 } 735 736 return success(); 737 } 738 739 /// A helper to look up remapped operands in the value remapping table.` 740 SmallVector<llvm::Value *, 8> 741 ModuleTranslation::lookupValues(ValueRange values) { 742 SmallVector<llvm::Value *, 8> remapped; 743 remapped.reserve(values.size()); 744 for (Value v : values) { 745 assert(valueMapping.count(v) && "referencing undefined value"); 746 remapped.push_back(valueMapping.lookup(v)); 747 } 748 return remapped; 749 } 750 751 std::unique_ptr<llvm::Module> 752 ModuleTranslation::prepareLLVMModule(Operation *m) { 753 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 754 assert(dialect && "LLVM dialect must be registered"); 755 756 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 757 if (!llvmModule) 758 return nullptr; 759 760 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 761 llvm::IRBuilder<> builder(llvmContext); 762 763 // Inject declarations for `malloc` and `free` functions that can be used in 764 // memref allocation/deallocation coming from standard ops lowering. 765 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 766 builder.getInt64Ty()); 767 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 768 builder.getInt8PtrTy()); 769 770 return llvmModule; 771 } 772