1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
20 #include "mlir/IR/Attributes.h"
21 #include "mlir/IR/BuiltinOps.h"
22 #include "mlir/IR/BuiltinTypes.h"
23 #include "mlir/IR/RegionGraphTraits.h"
24 #include "mlir/Support/LLVM.h"
25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
26 #include "mlir/Target/LLVMIR/TypeTranslation.h"
27 #include "llvm/ADT/TypeSwitch.h"
28 
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicsNVPTX.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Verifier.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/Cloning.h"
45 
46 using namespace mlir;
47 using namespace mlir::LLVM;
48 using namespace mlir::LLVM::detail;
49 
50 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
51 
52 /// Builds a constant of a sequential LLVM type `type`, potentially containing
53 /// other sequential types recursively, from the individual constant values
54 /// provided in `constants`. `shape` contains the number of elements in nested
55 /// sequential types. Reports errors at `loc` and returns nullptr on error.
56 static llvm::Constant *
57 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
58                         ArrayRef<int64_t> shape, llvm::Type *type,
59                         Location loc) {
60   if (shape.empty()) {
61     llvm::Constant *result = constants.front();
62     constants = constants.drop_front();
63     return result;
64   }
65 
66   llvm::Type *elementType;
67   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
68     elementType = arrayTy->getElementType();
69   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
70     elementType = vectorTy->getElementType();
71   } else {
72     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
73     return nullptr;
74   }
75 
76   SmallVector<llvm::Constant *, 8> nested;
77   nested.reserve(shape.front());
78   for (int64_t i = 0; i < shape.front(); ++i) {
79     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
80                                              elementType, loc));
81     if (!nested.back())
82       return nullptr;
83   }
84 
85   if (shape.size() == 1 && type->isVectorTy())
86     return llvm::ConstantVector::get(nested);
87   return llvm::ConstantArray::get(
88       llvm::ArrayType::get(elementType, shape.front()), nested);
89 }
90 
91 /// Returns the first non-sequential type nested in sequential types.
92 static llvm::Type *getInnermostElementType(llvm::Type *type) {
93   do {
94     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
95       type = arrayTy->getElementType();
96     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
97       type = vectorTy->getElementType();
98     } else {
99       return type;
100     }
101   } while (true);
102 }
103 
104 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
105 /// This currently supports integer, floating point, splat and dense element
106 /// attributes and combinations thereof.  In case of error, report it to `loc`
107 /// and return nullptr.
108 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
109     llvm::Type *llvmType, Attribute attr, Location loc,
110     const ModuleTranslation &moduleTranslation) {
111   if (!attr)
112     return llvm::UndefValue::get(llvmType);
113   if (llvmType->isStructTy()) {
114     emitError(loc, "struct types are not supported in constants");
115     return nullptr;
116   }
117   // For integer types, we allow a mismatch in sizes as the index type in
118   // MLIR might have a different size than the index type in the LLVM module.
119   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
120     return llvm::ConstantInt::get(
121         llvmType,
122         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
123   if (auto floatAttr = attr.dyn_cast<FloatAttr>())
124     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
125   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
126     return llvm::ConstantExpr::getBitCast(
127         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
128   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
129     llvm::Type *elementType;
130     uint64_t numElements;
131     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
132       elementType = arrayTy->getElementType();
133       numElements = arrayTy->getNumElements();
134     } else {
135       auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
136       elementType = vectorTy->getElementType();
137       numElements = vectorTy->getNumElements();
138     }
139     // Splat value is a scalar. Extract it only if the element type is not
140     // another sequence type. The recursion terminates because each step removes
141     // one outer sequential type.
142     bool elementTypeSequential =
143         isa<llvm::ArrayType, llvm::VectorType>(elementType);
144     llvm::Constant *child = getLLVMConstant(
145         elementType,
146         elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc,
147         moduleTranslation);
148     if (!child)
149       return nullptr;
150     if (llvmType->isVectorTy())
151       return llvm::ConstantVector::getSplat(
152           llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
153     if (llvmType->isArrayTy()) {
154       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
155       SmallVector<llvm::Constant *, 8> constants(numElements, child);
156       return llvm::ConstantArray::get(arrayType, constants);
157     }
158   }
159 
160   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
161     assert(elementsAttr.getType().hasStaticShape());
162     assert(elementsAttr.getNumElements() != 0 &&
163            "unexpected empty elements attribute");
164     assert(!elementsAttr.getType().getShape().empty() &&
165            "unexpected empty elements attribute shape");
166 
167     SmallVector<llvm::Constant *, 8> constants;
168     constants.reserve(elementsAttr.getNumElements());
169     llvm::Type *innermostType = getInnermostElementType(llvmType);
170     for (auto n : elementsAttr.getValues<Attribute>()) {
171       constants.push_back(
172           getLLVMConstant(innermostType, n, loc, moduleTranslation));
173       if (!constants.back())
174         return nullptr;
175     }
176     ArrayRef<llvm::Constant *> constantsRef = constants;
177     llvm::Constant *result = buildSequentialConstant(
178         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
179     assert(constantsRef.empty() && "did not consume all elemental constants");
180     return result;
181   }
182 
183   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
184     return llvm::ConstantDataArray::get(
185         moduleTranslation.getLLVMContext(),
186         ArrayRef<char>{stringAttr.getValue().data(),
187                        stringAttr.getValue().size()});
188   }
189   emitError(loc, "unsupported constant value");
190   return nullptr;
191 }
192 
193 ModuleTranslation::ModuleTranslation(Operation *module,
194                                      std::unique_ptr<llvm::Module> llvmModule)
195     : mlirModule(module), llvmModule(std::move(llvmModule)),
196       debugTranslation(
197           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
198       typeTranslator(this->llvmModule->getContext()),
199       iface(module->getContext()) {
200   assert(satisfiesLLVMModule(mlirModule) &&
201          "mlirModule should honor LLVM's module semantics.");
202 }
203 ModuleTranslation::~ModuleTranslation() {
204   if (ompBuilder)
205     ompBuilder->finalize();
206 }
207 
208 /// Get the SSA value passed to the current block from the terminator operation
209 /// of its predecessor.
210 static Value getPHISourceValue(Block *current, Block *pred,
211                                unsigned numArguments, unsigned index) {
212   Operation &terminator = *pred->getTerminator();
213   if (isa<LLVM::BrOp>(terminator))
214     return terminator.getOperand(index);
215 
216   SuccessorRange successors = terminator.getSuccessors();
217   assert(std::adjacent_find(successors.begin(), successors.end()) ==
218              successors.end() &&
219          "successors with arguments in LLVM branches must be different blocks");
220   (void)successors;
221 
222   // For instructions that branch based on a condition value, we need to take
223   // the operands for the branch that was taken.
224   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
225     // For conditional branches, we take the operands from either the "true" or
226     // the "false" branch.
227     return condBranchOp.getSuccessor(0) == current
228                ? condBranchOp.trueDestOperands()[index]
229                : condBranchOp.falseDestOperands()[index];
230   }
231 
232   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
233     // For switches, we take the operands from either the default case, or from
234     // the case branch that was taken.
235     if (switchOp.defaultDestination() == current)
236       return switchOp.defaultOperands()[index];
237     for (auto i : llvm::enumerate(switchOp.caseDestinations()))
238       if (i.value() == current)
239         return switchOp.getCaseOperands(i.index())[index];
240   }
241 
242   llvm_unreachable("only branch or switch operations can be terminators of a "
243                    "block that has successors");
244 }
245 
246 /// Connect the PHI nodes to the results of preceding blocks.
247 void mlir::LLVM::detail::connectPHINodes(Region &region,
248                                          const ModuleTranslation &state) {
249   // Skip the first block, it cannot be branched to and its arguments correspond
250   // to the arguments of the LLVM function.
251   for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
252        ++it) {
253     Block *bb = &*it;
254     llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
255     auto phis = llvmBB->phis();
256     auto numArguments = bb->getNumArguments();
257     assert(numArguments == std::distance(phis.begin(), phis.end()));
258     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
259       auto &phiNode = numberedPhiNode.value();
260       unsigned index = numberedPhiNode.index();
261       for (auto *pred : bb->getPredecessors()) {
262         // Find the LLVM IR block that contains the converted terminator
263         // instruction and use it in the PHI node. Note that this block is not
264         // necessarily the same as state.lookupBlock(pred), some operations
265         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
266         // split the blocks.
267         llvm::Instruction *terminator =
268             state.lookupBranch(pred->getTerminator());
269         assert(terminator && "missing the mapping for a terminator");
270         phiNode.addIncoming(
271             state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
272             terminator->getParent());
273       }
274     }
275   }
276 }
277 
278 /// Sort function blocks topologically.
279 SetVector<Block *>
280 mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
281   // For each block that has not been visited yet (i.e. that has no
282   // predecessors), add it to the list as well as its successors.
283   SetVector<Block *> blocks;
284   for (Block &b : region) {
285     if (blocks.count(&b) == 0) {
286       llvm::ReversePostOrderTraversal<Block *> traversal(&b);
287       blocks.insert(traversal.begin(), traversal.end());
288     }
289   }
290   assert(blocks.size() == region.getBlocks().size() &&
291          "some blocks are not sorted");
292 
293   return blocks;
294 }
295 
296 llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
297     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
298     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
299   llvm::Module *module = builder.GetInsertBlock()->getModule();
300   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
301   return builder.CreateCall(fn, args);
302 }
303 
304 llvm::Value *
305 mlir::LLVM::detail::createNvvmIntrinsicCall(llvm::IRBuilderBase &builder,
306                                             llvm::Intrinsic::ID intrinsic,
307                                             ArrayRef<llvm::Value *> args) {
308   llvm::Module *module = builder.GetInsertBlock()->getModule();
309   llvm::Function *fn;
310   if (llvm::Intrinsic::isOverloaded(intrinsic)) {
311     if (intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f16_f16 &&
312         intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f32_f32) {
313       // NVVM load and store instrinsic names are overloaded on the
314       // source/destination pointer type. Pointer is the first argument in the
315       // corresponding NVVM Op.
316       fn = llvm::Intrinsic::getDeclaration(module, intrinsic,
317                                            {args[0]->getType()});
318     } else {
319       fn = llvm::Intrinsic::getDeclaration(module, intrinsic, {});
320     }
321   } else {
322     fn = llvm::Intrinsic::getDeclaration(module, intrinsic);
323   }
324   return builder.CreateCall(fn, args);
325 }
326 
327 /// Given a single MLIR operation, create the corresponding LLVM IR operation
328 /// using the `builder`.
329 LogicalResult
330 ModuleTranslation::convertOperation(Operation &op,
331                                     llvm::IRBuilderBase &builder) {
332   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
333   if (!opIface)
334     return op.emitError("cannot be converted to LLVM IR: missing "
335                         "`LLVMTranslationDialectInterface` registration for "
336                         "dialect for op: ")
337            << op.getName();
338 
339   if (failed(opIface->convertOperation(&op, builder, *this)))
340     return op.emitError("LLVM Translation failed for operation: ")
341            << op.getName();
342 
343   return convertDialectAttributes(&op);
344 }
345 
346 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
347 /// to define values corresponding to the MLIR block arguments.  These nodes
348 /// are not connected to the source basic blocks, which may not exist yet.  Uses
349 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
350 /// been created for `bb` and included in the block mapping.  Inserts new
351 /// instructions at the end of the block and leaves `builder` in a state
352 /// suitable for further insertion into the end of the block.
353 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
354                                               llvm::IRBuilderBase &builder) {
355   builder.SetInsertPoint(lookupBlock(&bb));
356   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
357 
358   // Before traversing operations, make block arguments available through
359   // value remapping and PHI nodes, but do not add incoming edges for the PHI
360   // nodes just yet: those values may be defined by this or following blocks.
361   // This step is omitted if "ignoreArguments" is set.  The arguments of the
362   // first block have been already made available through the remapping of
363   // LLVM function arguments.
364   if (!ignoreArguments) {
365     auto predecessors = bb.getPredecessors();
366     unsigned numPredecessors =
367         std::distance(predecessors.begin(), predecessors.end());
368     for (auto arg : bb.getArguments()) {
369       auto wrappedType = arg.getType();
370       if (!isCompatibleType(wrappedType))
371         return emitError(bb.front().getLoc(),
372                          "block argument does not have an LLVM type");
373       llvm::Type *type = convertType(wrappedType);
374       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
375       mapValue(arg, phi);
376     }
377   }
378 
379   // Traverse operations.
380   for (auto &op : bb) {
381     // Set the current debug location within the builder.
382     builder.SetCurrentDebugLocation(
383         debugTranslation->translateLoc(op.getLoc(), subprogram));
384 
385     if (failed(convertOperation(op, builder)))
386       return failure();
387   }
388 
389   return success();
390 }
391 
392 /// A helper method to get the single Block in an operation honoring LLVM's
393 /// module requirements.
394 static Block &getModuleBody(Operation *module) {
395   return module->getRegion(0).front();
396 }
397 
398 /// A helper method to decide if a constant must not be set as a global variable
399 /// initializer.
400 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
401                                         llvm::Constant *cst) {
402   return (linkage == llvm::GlobalVariable::ExternalLinkage &&
403           isa<llvm::UndefValue>(cst)) ||
404          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
405 }
406 
407 /// Create named global variables that correspond to llvm.mlir.global
408 /// definitions.
409 LogicalResult ModuleTranslation::convertGlobals() {
410   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
411     llvm::Type *type = convertType(op.getType());
412     llvm::Constant *cst = llvm::UndefValue::get(type);
413     if (op.getValueOrNull()) {
414       // String attributes are treated separately because they cannot appear as
415       // in-function constants and are thus not supported by getLLVMConstant.
416       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
417         cst = llvm::ConstantDataArray::getString(
418             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
419         type = cst->getType();
420       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
421                                          *this))) {
422         return failure();
423       }
424     }
425 
426     auto linkage = convertLinkageToLLVM(op.linkage());
427     auto addrSpace = op.addr_space();
428     auto *var = new llvm::GlobalVariable(
429         *llvmModule, type, op.constant(), linkage,
430         shouldDropGlobalInitializer(linkage, cst) ? nullptr : cst,
431         op.sym_name(),
432         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
433 
434     if (op.unnamed_addr().hasValue())
435       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.unnamed_addr()));
436 
437     if (op.section().hasValue())
438       var->setSection(*op.section());
439 
440     Optional<uint64_t> alignment = op.alignment();
441     if (alignment.hasValue())
442       var->setAlignment(llvm::MaybeAlign(alignment.getValue()));
443 
444     globalsMapping.try_emplace(op, var);
445   }
446 
447   // Convert global variable bodies. This is done after all global variables
448   // have been created in LLVM IR because a global body may refer to another
449   // global or itself. So all global variables need to be mapped first.
450   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
451     if (Block *initializer = op.getInitializerBlock()) {
452       llvm::IRBuilder<> builder(llvmModule->getContext());
453       for (auto &op : initializer->without_terminator()) {
454         if (failed(convertOperation(op, builder)) ||
455             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
456           return emitError(op.getLoc(), "unemittable constant value");
457       }
458       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
459       llvm::Constant *cst =
460           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
461       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
462       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
463         global->setInitializer(cst);
464     }
465   }
466 
467   return success();
468 }
469 
470 /// Attempts to add an attribute identified by `key`, optionally with the given
471 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
472 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
473 /// otherwise keep it as a string attribute. Performs additional checks for
474 /// attributes known to have or not have a value in order to avoid assertions
475 /// inside LLVM upon construction.
476 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
477                                                llvm::Function *llvmFunc,
478                                                StringRef key,
479                                                StringRef value = StringRef()) {
480   auto kind = llvm::Attribute::getAttrKindFromName(key);
481   if (kind == llvm::Attribute::None) {
482     llvmFunc->addFnAttr(key, value);
483     return success();
484   }
485 
486   if (llvm::Attribute::doesAttrKindHaveArgument(kind)) {
487     if (value.empty())
488       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
489 
490     int result;
491     if (!value.getAsInteger(/*Radix=*/0, result))
492       llvmFunc->addFnAttr(
493           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
494     else
495       llvmFunc->addFnAttr(key, value);
496     return success();
497   }
498 
499   if (!value.empty())
500     return emitError(loc) << "LLVM attribute '" << key
501                           << "' does not expect a value, found '" << value
502                           << "'";
503 
504   llvmFunc->addFnAttr(kind);
505   return success();
506 }
507 
508 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
509 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
510 /// to be an array attribute containing either string attributes, treated as
511 /// value-less LLVM attributes, or array attributes containing two string
512 /// attributes, with the first string being the name of the corresponding LLVM
513 /// attribute and the second string beings its value. Note that even integer
514 /// attributes are expected to have their values expressed as strings.
515 static LogicalResult
516 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
517                              llvm::Function *llvmFunc) {
518   if (!attributes)
519     return success();
520 
521   for (Attribute attr : *attributes) {
522     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
523       if (failed(
524               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
525         return failure();
526       continue;
527     }
528 
529     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
530     if (!arrayAttr || arrayAttr.size() != 2)
531       return emitError(loc)
532              << "expected 'passthrough' to contain string or array attributes";
533 
534     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
535     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
536     if (!keyAttr || !valueAttr)
537       return emitError(loc)
538              << "expected arrays within 'passthrough' to contain two strings";
539 
540     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
541                                          valueAttr.getValue())))
542       return failure();
543   }
544   return success();
545 }
546 
547 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
548   // Clear the block, branch value mappings, they are only relevant within one
549   // function.
550   blockMapping.clear();
551   valueMapping.clear();
552   branchMapping.clear();
553   llvm::Function *llvmFunc = lookupFunction(func.getName());
554 
555   // Translate the debug information for this function.
556   debugTranslation->translate(func, *llvmFunc);
557 
558   // Add function arguments to the value remapping table.
559   // If there was noalias info then we decorate each argument accordingly.
560   unsigned int argIdx = 0;
561   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
562     llvm::Argument &llvmArg = std::get<1>(kvp);
563     BlockArgument mlirArg = std::get<0>(kvp);
564 
565     if (auto attr = func.getArgAttrOfType<UnitAttr>(
566             argIdx, LLVMDialect::getNoAliasAttrName())) {
567       // NB: Attribute already verified to be boolean, so check if we can indeed
568       // attach the attribute to this argument, based on its type.
569       auto argTy = mlirArg.getType();
570       if (!argTy.isa<LLVM::LLVMPointerType>())
571         return func.emitError(
572             "llvm.noalias attribute attached to LLVM non-pointer argument");
573       llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
574     }
575 
576     if (auto attr = func.getArgAttrOfType<IntegerAttr>(
577             argIdx, LLVMDialect::getAlignAttrName())) {
578       // NB: Attribute already verified to be int, so check if we can indeed
579       // attach the attribute to this argument, based on its type.
580       auto argTy = mlirArg.getType();
581       if (!argTy.isa<LLVM::LLVMPointerType>())
582         return func.emitError(
583             "llvm.align attribute attached to LLVM non-pointer argument");
584       llvmArg.addAttrs(
585           llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
586     }
587 
588     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
589       auto argTy = mlirArg.getType();
590       if (!argTy.isa<LLVM::LLVMPointerType>())
591         return func.emitError(
592             "llvm.sret attribute attached to LLVM non-pointer argument");
593       llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr(
594           llvmArg.getType()->getPointerElementType()));
595     }
596 
597     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
598       auto argTy = mlirArg.getType();
599       if (!argTy.isa<LLVM::LLVMPointerType>())
600         return func.emitError(
601             "llvm.byval attribute attached to LLVM non-pointer argument");
602       llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr(
603           llvmArg.getType()->getPointerElementType()));
604     }
605 
606     mapValue(mlirArg, &llvmArg);
607     argIdx++;
608   }
609 
610   // Check the personality and set it.
611   if (func.personality().hasValue()) {
612     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
613     if (llvm::Constant *pfunc =
614             getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this))
615       llvmFunc->setPersonalityFn(pfunc);
616   }
617 
618   // First, create all blocks so we can jump to them.
619   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
620   for (auto &bb : func) {
621     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
622     llvmBB->insertInto(llvmFunc);
623     mapBlock(&bb, llvmBB);
624   }
625 
626   // Then, convert blocks one by one in topological order to ensure defs are
627   // converted before uses.
628   auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
629   for (Block *bb : blocks) {
630     llvm::IRBuilder<> builder(llvmContext);
631     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
632       return failure();
633   }
634 
635   // After all blocks have been traversed and values mapped, connect the PHI
636   // nodes to the results of preceding blocks.
637   detail::connectPHINodes(func.getBody(), *this);
638 
639   // Finally, convert dialect attributes attached to the function.
640   return convertDialectAttributes(func);
641 }
642 
643 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
644   for (NamedAttribute attribute : op->getDialectAttrs())
645     if (failed(iface.amendOperation(op, attribute, *this)))
646       return failure();
647   return success();
648 }
649 
650 /// Check whether the module contains only supported ops directly in its body.
651 static LogicalResult checkSupportedModuleOps(Operation *m) {
652   for (Operation &o : getModuleBody(m).getOperations())
653     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) &&
654         !o.hasTrait<OpTrait::IsTerminator>())
655       return o.emitOpError("unsupported module-level operation");
656   return success();
657 }
658 
659 LogicalResult ModuleTranslation::convertFunctionSignatures() {
660   // Declare all functions first because there may be function calls that form a
661   // call graph with cycles, or global initializers that reference functions.
662   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
663     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
664         function.getName(),
665         cast<llvm::FunctionType>(convertType(function.getType())));
666     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
667     llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
668     mapFunction(function.getName(), llvmFunc);
669 
670     // Forward the pass-through attributes to LLVM.
671     if (failed(forwardPassthroughAttributes(function.getLoc(),
672                                             function.passthrough(), llvmFunc)))
673       return failure();
674   }
675 
676   return success();
677 }
678 
679 LogicalResult ModuleTranslation::convertFunctions() {
680   // Convert functions.
681   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
682     // Ignore external functions.
683     if (function.isExternal())
684       continue;
685 
686     if (failed(convertOneFunction(function)))
687       return failure();
688   }
689 
690   return success();
691 }
692 
693 llvm::MDNode *
694 ModuleTranslation::getAccessGroup(Operation &opInst,
695                                   SymbolRefAttr accessGroupRef) const {
696   auto metadataName = accessGroupRef.getRootReference();
697   auto accessGroupName = accessGroupRef.getLeafReference();
698   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
699       opInst.getParentOp(), metadataName);
700   auto *accessGroupOp =
701       SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
702   return accessGroupMetadataMapping.lookup(accessGroupOp);
703 }
704 
705 LogicalResult ModuleTranslation::createAccessGroupMetadata() {
706   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
707     metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
708       llvm::LLVMContext &ctx = llvmModule->getContext();
709       llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
710       accessGroupMetadataMapping.insert({op, accessGroup});
711     });
712   });
713   return success();
714 }
715 
716 void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
717                                                 llvm::Instruction *inst) {
718   auto accessGroups =
719       op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
720   if (accessGroups && !accessGroups.empty()) {
721     llvm::Module *module = inst->getModule();
722     SmallVector<llvm::Metadata *> metadatas;
723     for (SymbolRefAttr accessGroupRef :
724          accessGroups.getAsRange<SymbolRefAttr>())
725       metadatas.push_back(getAccessGroup(*op, accessGroupRef));
726 
727     llvm::MDNode *unionMD = nullptr;
728     if (metadatas.size() == 1)
729       unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
730     else if (metadatas.size() >= 2)
731       unionMD = llvm::MDNode::get(module->getContext(), metadatas);
732 
733     inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
734   }
735 }
736 
737 llvm::Type *ModuleTranslation::convertType(Type type) {
738   return typeTranslator.translateType(type);
739 }
740 
741 /// A helper to look up remapped operands in the value remapping table.`
742 SmallVector<llvm::Value *, 8>
743 ModuleTranslation::lookupValues(ValueRange values) {
744   SmallVector<llvm::Value *, 8> remapped;
745   remapped.reserve(values.size());
746   for (Value v : values)
747     remapped.push_back(lookupValue(v));
748   return remapped;
749 }
750 
751 const llvm::DILocation *
752 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
753   return debugTranslation->translateLoc(loc, scope);
754 }
755 
756 llvm::NamedMDNode *
757 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
758   return llvmModule->getOrInsertNamedMetadata(name);
759 }
760 
761 void ModuleTranslation::StackFrame::anchor() {}
762 
763 static std::unique_ptr<llvm::Module>
764 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
765                   StringRef name) {
766   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
767   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
768   if (auto dataLayoutAttr =
769           m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
770     llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
771   if (auto targetTripleAttr =
772           m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
773     llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
774 
775   // Inject declarations for `malloc` and `free` functions that can be used in
776   // memref allocation/deallocation coming from standard ops lowering.
777   llvm::IRBuilder<> builder(llvmContext);
778   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
779                                   builder.getInt64Ty());
780   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
781                                   builder.getInt8PtrTy());
782 
783   return llvmModule;
784 }
785 
786 std::unique_ptr<llvm::Module>
787 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
788                               StringRef name) {
789   if (!satisfiesLLVMModule(module))
790     return nullptr;
791   if (failed(checkSupportedModuleOps(module)))
792     return nullptr;
793   std::unique_ptr<llvm::Module> llvmModule =
794       prepareLLVMModule(module, llvmContext, name);
795 
796   LLVM::ensureDistinctSuccessors(module);
797 
798   ModuleTranslation translator(module, std::move(llvmModule));
799   if (failed(translator.convertFunctionSignatures()))
800     return nullptr;
801   if (failed(translator.convertGlobals()))
802     return nullptr;
803   if (failed(translator.createAccessGroupMetadata()))
804     return nullptr;
805   if (failed(translator.convertFunctions()))
806     return nullptr;
807   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
808     return nullptr;
809 
810   return std::move(translator.llvmModule);
811 }
812