1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Parser.h" 14 #include "Lexer.h" 15 #include "mlir/Analysis/Verifier.h" 16 #include "mlir/IR/AffineExpr.h" 17 #include "mlir/IR/AffineMap.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/Dialect.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/IntegerSet.h" 23 #include "mlir/IR/Location.h" 24 #include "mlir/IR/MLIRContext.h" 25 #include "mlir/IR/Module.h" 26 #include "mlir/IR/OpImplementation.h" 27 #include "mlir/IR/StandardTypes.h" 28 #include "mlir/Support/STLExtras.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/ADT/bit.h" 33 #include "llvm/Support/PrettyStackTrace.h" 34 #include "llvm/Support/SMLoc.h" 35 #include "llvm/Support/SourceMgr.h" 36 #include <algorithm> 37 using namespace mlir; 38 using llvm::MemoryBuffer; 39 using llvm::SMLoc; 40 using llvm::SourceMgr; 41 42 namespace { 43 class Parser; 44 45 //===----------------------------------------------------------------------===// 46 // SymbolState 47 //===----------------------------------------------------------------------===// 48 49 /// This class contains record of any parsed top-level symbols. 50 struct SymbolState { 51 // A map from attribute alias identifier to Attribute. 52 llvm::StringMap<Attribute> attributeAliasDefinitions; 53 54 // A map from type alias identifier to Type. 55 llvm::StringMap<Type> typeAliasDefinitions; 56 57 /// A set of locations into the main parser memory buffer for each of the 58 /// active nested parsers. Given that some nested parsers, i.e. custom dialect 59 /// parsers, operate on a temporary memory buffer, this provides an anchor 60 /// point for emitting diagnostics. 61 SmallVector<llvm::SMLoc, 1> nestedParserLocs; 62 63 /// The top-level lexer that contains the original memory buffer provided by 64 /// the user. This is used by nested parsers to get a properly encoded source 65 /// location. 66 Lexer *topLevelLexer = nullptr; 67 }; 68 69 //===----------------------------------------------------------------------===// 70 // ParserState 71 //===----------------------------------------------------------------------===// 72 73 /// This class refers to all of the state maintained globally by the parser, 74 /// such as the current lexer position etc. 75 struct ParserState { 76 ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx, 77 SymbolState &symbols) 78 : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()), 79 symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) { 80 // Set the top level lexer for the symbol state if one doesn't exist. 81 if (!symbols.topLevelLexer) 82 symbols.topLevelLexer = &lex; 83 } 84 ~ParserState() { 85 // Reset the top level lexer if it refers the lexer in our state. 86 if (symbols.topLevelLexer == &lex) 87 symbols.topLevelLexer = nullptr; 88 } 89 ParserState(const ParserState &) = delete; 90 void operator=(const ParserState &) = delete; 91 92 /// The context we're parsing into. 93 MLIRContext *const context; 94 95 /// The lexer for the source file we're parsing. 96 Lexer lex; 97 98 /// This is the next token that hasn't been consumed yet. 99 Token curToken; 100 101 /// The current state for symbol parsing. 102 SymbolState &symbols; 103 104 /// The depth of this parser in the nested parsing stack. 105 size_t parserDepth; 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // Parser 110 //===----------------------------------------------------------------------===// 111 112 /// This class implement support for parsing global entities like types and 113 /// shared entities like SSA names. It is intended to be subclassed by 114 /// specialized subparsers that include state, e.g. when a local symbol table. 115 class Parser { 116 public: 117 Builder builder; 118 119 Parser(ParserState &state) : builder(state.context), state(state) {} 120 121 // Helper methods to get stuff from the parser-global state. 122 ParserState &getState() const { return state; } 123 MLIRContext *getContext() const { return state.context; } 124 const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } 125 126 /// Parse a comma-separated list of elements up until the specified end token. 127 ParseResult 128 parseCommaSeparatedListUntil(Token::Kind rightToken, 129 const std::function<ParseResult()> &parseElement, 130 bool allowEmptyList = true); 131 132 /// Parse a comma separated list of elements that must have at least one entry 133 /// in it. 134 ParseResult 135 parseCommaSeparatedList(const std::function<ParseResult()> &parseElement); 136 137 ParseResult parsePrettyDialectSymbolName(StringRef &prettyName); 138 139 // We have two forms of parsing methods - those that return a non-null 140 // pointer on success, and those that return a ParseResult to indicate whether 141 // they returned a failure. The second class fills in by-reference arguments 142 // as the results of their action. 143 144 //===--------------------------------------------------------------------===// 145 // Error Handling 146 //===--------------------------------------------------------------------===// 147 148 /// Emit an error and return failure. 149 InFlightDiagnostic emitError(const Twine &message = {}) { 150 return emitError(state.curToken.getLoc(), message); 151 } 152 InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {}); 153 154 /// Encode the specified source location information into an attribute for 155 /// attachment to the IR. 156 Location getEncodedSourceLocation(llvm::SMLoc loc) { 157 // If there are no active nested parsers, we can get the encoded source 158 // location directly. 159 if (state.parserDepth == 0) 160 return state.lex.getEncodedSourceLocation(loc); 161 // Otherwise, we need to re-encode it to point to the top level buffer. 162 return state.symbols.topLevelLexer->getEncodedSourceLocation( 163 remapLocationToTopLevelBuffer(loc)); 164 } 165 166 /// Remaps the given SMLoc to the top level lexer of the parser. This is used 167 /// to adjust locations of potentially nested parsers to ensure that they can 168 /// be emitted properly as diagnostics. 169 llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) { 170 // If there are no active nested parsers, we can return location directly. 171 SymbolState &symbols = state.symbols; 172 if (state.parserDepth == 0) 173 return loc; 174 assert(symbols.topLevelLexer && "expected valid top-level lexer"); 175 176 // Otherwise, we need to remap the location to the main parser. This is 177 // simply offseting the location onto the location of the last nested 178 // parser. 179 size_t offset = loc.getPointer() - state.lex.getBufferBegin(); 180 auto *rawLoc = 181 symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset; 182 return llvm::SMLoc::getFromPointer(rawLoc); 183 } 184 185 //===--------------------------------------------------------------------===// 186 // Token Parsing 187 //===--------------------------------------------------------------------===// 188 189 /// Return the current token the parser is inspecting. 190 const Token &getToken() const { return state.curToken; } 191 StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } 192 193 /// If the current token has the specified kind, consume it and return true. 194 /// If not, return false. 195 bool consumeIf(Token::Kind kind) { 196 if (state.curToken.isNot(kind)) 197 return false; 198 consumeToken(kind); 199 return true; 200 } 201 202 /// Advance the current lexer onto the next token. 203 void consumeToken() { 204 assert(state.curToken.isNot(Token::eof, Token::error) && 205 "shouldn't advance past EOF or errors"); 206 state.curToken = state.lex.lexToken(); 207 } 208 209 /// Advance the current lexer onto the next token, asserting what the expected 210 /// current token is. This is preferred to the above method because it leads 211 /// to more self-documenting code with better checking. 212 void consumeToken(Token::Kind kind) { 213 assert(state.curToken.is(kind) && "consumed an unexpected token"); 214 consumeToken(); 215 } 216 217 /// Consume the specified token if present and return success. On failure, 218 /// output a diagnostic and return failure. 219 ParseResult parseToken(Token::Kind expectedToken, const Twine &message); 220 221 //===--------------------------------------------------------------------===// 222 // Type Parsing 223 //===--------------------------------------------------------------------===// 224 225 ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements); 226 ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements); 227 ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements); 228 229 /// Parse an arbitrary type. 230 Type parseType(); 231 232 /// Parse a complex type. 233 Type parseComplexType(); 234 235 /// Parse an extended type. 236 Type parseExtendedType(); 237 238 /// Parse a function type. 239 Type parseFunctionType(); 240 241 /// Parse a memref type. 242 Type parseMemRefType(); 243 244 /// Parse a non function type. 245 Type parseNonFunctionType(); 246 247 /// Parse a tensor type. 248 Type parseTensorType(); 249 250 /// Parse a tuple type. 251 Type parseTupleType(); 252 253 /// Parse a vector type. 254 VectorType parseVectorType(); 255 ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 256 bool allowDynamic = true); 257 ParseResult parseXInDimensionList(); 258 259 /// Parse strided layout specification. 260 ParseResult parseStridedLayout(int64_t &offset, 261 SmallVectorImpl<int64_t> &strides); 262 263 // Parse a brace-delimiter list of comma-separated integers with `?` as an 264 // unknown marker. 265 ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions); 266 267 //===--------------------------------------------------------------------===// 268 // Attribute Parsing 269 //===--------------------------------------------------------------------===// 270 271 /// Parse an arbitrary attribute with an optional type. 272 Attribute parseAttribute(Type type = {}); 273 274 /// Parse an attribute dictionary. 275 ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes); 276 277 /// Parse an extended attribute. 278 Attribute parseExtendedAttr(Type type); 279 280 /// Parse a float attribute. 281 Attribute parseFloatAttr(Type type, bool isNegative); 282 283 /// Parse a decimal or a hexadecimal literal, which can be either an integer 284 /// or a float attribute. 285 Attribute parseDecOrHexAttr(Type type, bool isNegative); 286 287 /// Parse an opaque elements attribute. 288 Attribute parseOpaqueElementsAttr(Type attrType); 289 290 /// Parse a dense elements attribute. 291 Attribute parseDenseElementsAttr(Type attrType); 292 ShapedType parseElementsLiteralType(Type type); 293 294 /// Parse a sparse elements attribute. 295 Attribute parseSparseElementsAttr(Type attrType); 296 297 //===--------------------------------------------------------------------===// 298 // Location Parsing 299 //===--------------------------------------------------------------------===// 300 301 /// Parse an inline location. 302 ParseResult parseLocation(LocationAttr &loc); 303 304 /// Parse a raw location instance. 305 ParseResult parseLocationInstance(LocationAttr &loc); 306 307 /// Parse a callsite location instance. 308 ParseResult parseCallSiteLocation(LocationAttr &loc); 309 310 /// Parse a fused location instance. 311 ParseResult parseFusedLocation(LocationAttr &loc); 312 313 /// Parse a name or FileLineCol location instance. 314 ParseResult parseNameOrFileLineColLocation(LocationAttr &loc); 315 316 /// Parse an optional trailing location. 317 /// 318 /// trailing-location ::= (`loc` `(` location `)`)? 319 /// 320 ParseResult parseOptionalTrailingLocation(Location &loc) { 321 // If there is a 'loc' we parse a trailing location. 322 if (!getToken().is(Token::kw_loc)) 323 return success(); 324 325 // Parse the location. 326 LocationAttr directLoc; 327 if (parseLocation(directLoc)) 328 return failure(); 329 loc = directLoc; 330 return success(); 331 } 332 333 //===--------------------------------------------------------------------===// 334 // Affine Parsing 335 //===--------------------------------------------------------------------===// 336 337 /// Parse a reference to either an affine map, or an integer set. 338 ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, 339 IntegerSet &set); 340 ParseResult parseAffineMapReference(AffineMap &map); 341 ParseResult parseIntegerSetReference(IntegerSet &set); 342 343 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 344 ParseResult 345 parseAffineMapOfSSAIds(AffineMap &map, 346 function_ref<ParseResult(bool)> parseElement, 347 OpAsmParser::Delimiter delimiter); 348 349 private: 350 /// The Parser is subclassed and reinstantiated. Do not add additional 351 /// non-trivial state here, add it to the ParserState class. 352 ParserState &state; 353 }; 354 } // end anonymous namespace 355 356 //===----------------------------------------------------------------------===// 357 // Helper methods. 358 //===----------------------------------------------------------------------===// 359 360 /// Parse a comma separated list of elements that must have at least one entry 361 /// in it. 362 ParseResult Parser::parseCommaSeparatedList( 363 const std::function<ParseResult()> &parseElement) { 364 // Non-empty case starts with an element. 365 if (parseElement()) 366 return failure(); 367 368 // Otherwise we have a list of comma separated elements. 369 while (consumeIf(Token::comma)) { 370 if (parseElement()) 371 return failure(); 372 } 373 return success(); 374 } 375 376 /// Parse a comma-separated list of elements, terminated with an arbitrary 377 /// token. This allows empty lists if allowEmptyList is true. 378 /// 379 /// abstract-list ::= rightToken // if allowEmptyList == true 380 /// abstract-list ::= element (',' element)* rightToken 381 /// 382 ParseResult Parser::parseCommaSeparatedListUntil( 383 Token::Kind rightToken, const std::function<ParseResult()> &parseElement, 384 bool allowEmptyList) { 385 // Handle the empty case. 386 if (getToken().is(rightToken)) { 387 if (!allowEmptyList) 388 return emitError("expected list element"); 389 consumeToken(rightToken); 390 return success(); 391 } 392 393 if (parseCommaSeparatedList(parseElement) || 394 parseToken(rightToken, "expected ',' or '" + 395 Token::getTokenSpelling(rightToken) + "'")) 396 return failure(); 397 398 return success(); 399 } 400 401 //===----------------------------------------------------------------------===// 402 // DialectAsmParser 403 //===----------------------------------------------------------------------===// 404 405 namespace { 406 /// This class provides the main implementation of the DialectAsmParser that 407 /// allows for dialects to parse attributes and types. This allows for dialect 408 /// hooking into the main MLIR parsing logic. 409 class CustomDialectAsmParser : public DialectAsmParser { 410 public: 411 CustomDialectAsmParser(StringRef fullSpec, Parser &parser) 412 : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()), 413 parser(parser) {} 414 ~CustomDialectAsmParser() override {} 415 416 /// Emit a diagnostic at the specified location and return failure. 417 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 418 return parser.emitError(loc, message); 419 } 420 421 /// Return a builder which provides useful access to MLIRContext, global 422 /// objects like types and attributes. 423 Builder &getBuilder() const override { return parser.builder; } 424 425 /// Get the location of the next token and store it into the argument. This 426 /// always succeeds. 427 llvm::SMLoc getCurrentLocation() override { 428 return parser.getToken().getLoc(); 429 } 430 431 /// Return the location of the original name token. 432 llvm::SMLoc getNameLoc() const override { return nameLoc; } 433 434 /// Re-encode the given source location as an MLIR location and return it. 435 Location getEncodedSourceLoc(llvm::SMLoc loc) override { 436 return parser.getEncodedSourceLocation(loc); 437 } 438 439 /// Returns the full specification of the symbol being parsed. This allows 440 /// for using a separate parser if necessary. 441 StringRef getFullSymbolSpec() const override { return fullSpec; } 442 443 /// Parse a floating point value from the stream. 444 ParseResult parseFloat(double &result) override { 445 bool negative = parser.consumeIf(Token::minus); 446 Token curTok = parser.getToken(); 447 448 // Check for a floating point value. 449 if (curTok.is(Token::floatliteral)) { 450 auto val = curTok.getFloatingPointValue(); 451 if (!val.hasValue()) 452 return emitError(curTok.getLoc(), "floating point value too large"); 453 parser.consumeToken(Token::floatliteral); 454 result = negative ? -*val : *val; 455 return success(); 456 } 457 458 // TODO(riverriddle) support hex floating point values. 459 return emitError(getCurrentLocation(), "expected floating point literal"); 460 } 461 462 /// Parse an optional integer value from the stream. 463 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 464 Token curToken = parser.getToken(); 465 if (curToken.isNot(Token::integer, Token::minus)) 466 return llvm::None; 467 468 bool negative = parser.consumeIf(Token::minus); 469 Token curTok = parser.getToken(); 470 if (parser.parseToken(Token::integer, "expected integer value")) 471 return failure(); 472 473 auto val = curTok.getUInt64IntegerValue(); 474 if (!val) 475 return emitError(curTok.getLoc(), "integer value too large"); 476 result = negative ? -*val : *val; 477 return success(); 478 } 479 480 //===--------------------------------------------------------------------===// 481 // Token Parsing 482 //===--------------------------------------------------------------------===// 483 484 /// Parse a `->` token. 485 ParseResult parseArrow() override { 486 return parser.parseToken(Token::arrow, "expected '->'"); 487 } 488 489 /// Parses a `->` if present. 490 ParseResult parseOptionalArrow() override { 491 return success(parser.consumeIf(Token::arrow)); 492 } 493 494 /// Parse a '{' token. 495 ParseResult parseLBrace() override { 496 return parser.parseToken(Token::l_brace, "expected '{'"); 497 } 498 499 /// Parse a '{' token if present 500 ParseResult parseOptionalLBrace() override { 501 return success(parser.consumeIf(Token::l_brace)); 502 } 503 504 /// Parse a `}` token. 505 ParseResult parseRBrace() override { 506 return parser.parseToken(Token::r_brace, "expected '}'"); 507 } 508 509 /// Parse a `}` token if present 510 ParseResult parseOptionalRBrace() override { 511 return success(parser.consumeIf(Token::r_brace)); 512 } 513 514 /// Parse a `:` token. 515 ParseResult parseColon() override { 516 return parser.parseToken(Token::colon, "expected ':'"); 517 } 518 519 /// Parse a `:` token if present. 520 ParseResult parseOptionalColon() override { 521 return success(parser.consumeIf(Token::colon)); 522 } 523 524 /// Parse a `,` token. 525 ParseResult parseComma() override { 526 return parser.parseToken(Token::comma, "expected ','"); 527 } 528 529 /// Parse a `,` token if present. 530 ParseResult parseOptionalComma() override { 531 return success(parser.consumeIf(Token::comma)); 532 } 533 534 /// Parses a `...` if present. 535 ParseResult parseOptionalEllipsis() override { 536 return success(parser.consumeIf(Token::ellipsis)); 537 } 538 539 /// Parse a `=` token. 540 ParseResult parseEqual() override { 541 return parser.parseToken(Token::equal, "expected '='"); 542 } 543 544 /// Parse a '<' token. 545 ParseResult parseLess() override { 546 return parser.parseToken(Token::less, "expected '<'"); 547 } 548 549 /// Parse a `<` token if present. 550 ParseResult parseOptionalLess() override { 551 return success(parser.consumeIf(Token::less)); 552 } 553 554 /// Parse a '>' token. 555 ParseResult parseGreater() override { 556 return parser.parseToken(Token::greater, "expected '>'"); 557 } 558 559 /// Parse a `>` token if present. 560 ParseResult parseOptionalGreater() override { 561 return success(parser.consumeIf(Token::greater)); 562 } 563 564 /// Parse a `(` token. 565 ParseResult parseLParen() override { 566 return parser.parseToken(Token::l_paren, "expected '('"); 567 } 568 569 /// Parses a '(' if present. 570 ParseResult parseOptionalLParen() override { 571 return success(parser.consumeIf(Token::l_paren)); 572 } 573 574 /// Parse a `)` token. 575 ParseResult parseRParen() override { 576 return parser.parseToken(Token::r_paren, "expected ')'"); 577 } 578 579 /// Parses a ')' if present. 580 ParseResult parseOptionalRParen() override { 581 return success(parser.consumeIf(Token::r_paren)); 582 } 583 584 /// Parse a `[` token. 585 ParseResult parseLSquare() override { 586 return parser.parseToken(Token::l_square, "expected '['"); 587 } 588 589 /// Parses a '[' if present. 590 ParseResult parseOptionalLSquare() override { 591 return success(parser.consumeIf(Token::l_square)); 592 } 593 594 /// Parse a `]` token. 595 ParseResult parseRSquare() override { 596 return parser.parseToken(Token::r_square, "expected ']'"); 597 } 598 599 /// Parses a ']' if present. 600 ParseResult parseOptionalRSquare() override { 601 return success(parser.consumeIf(Token::r_square)); 602 } 603 604 /// Parses a '?' if present. 605 ParseResult parseOptionalQuestion() override { 606 return success(parser.consumeIf(Token::question)); 607 } 608 609 /// Parses a '*' if present. 610 ParseResult parseOptionalStar() override { 611 return success(parser.consumeIf(Token::star)); 612 } 613 614 /// Returns if the current token corresponds to a keyword. 615 bool isCurrentTokenAKeyword() const { 616 return parser.getToken().is(Token::bare_identifier) || 617 parser.getToken().isKeyword(); 618 } 619 620 /// Parse the given keyword if present. 621 ParseResult parseOptionalKeyword(StringRef keyword) override { 622 // Check that the current token has the same spelling. 623 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 624 return failure(); 625 parser.consumeToken(); 626 return success(); 627 } 628 629 /// Parse a keyword, if present, into 'keyword'. 630 ParseResult parseOptionalKeyword(StringRef *keyword) override { 631 // Check that the current token is a keyword. 632 if (!isCurrentTokenAKeyword()) 633 return failure(); 634 635 *keyword = parser.getTokenSpelling(); 636 parser.consumeToken(); 637 return success(); 638 } 639 640 //===--------------------------------------------------------------------===// 641 // Attribute Parsing 642 //===--------------------------------------------------------------------===// 643 644 /// Parse an arbitrary attribute and return it in result. 645 ParseResult parseAttribute(Attribute &result, Type type) override { 646 result = parser.parseAttribute(type); 647 return success(static_cast<bool>(result)); 648 } 649 650 /// Parse an affine map instance into 'map'. 651 ParseResult parseAffineMap(AffineMap &map) override { 652 return parser.parseAffineMapReference(map); 653 } 654 655 /// Parse an integer set instance into 'set'. 656 ParseResult printIntegerSet(IntegerSet &set) override { 657 return parser.parseIntegerSetReference(set); 658 } 659 660 //===--------------------------------------------------------------------===// 661 // Type Parsing 662 //===--------------------------------------------------------------------===// 663 664 ParseResult parseType(Type &result) override { 665 result = parser.parseType(); 666 return success(static_cast<bool>(result)); 667 } 668 669 ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions, 670 bool allowDynamic) override { 671 return parser.parseDimensionListRanked(dimensions, allowDynamic); 672 } 673 674 private: 675 /// The full symbol specification. 676 StringRef fullSpec; 677 678 /// The source location of the dialect symbol. 679 SMLoc nameLoc; 680 681 /// The main parser. 682 Parser &parser; 683 }; 684 } // namespace 685 686 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s, 687 /// and may be recursive. Return with the 'prettyName' StringRef encompassing 688 /// the entire pretty name. 689 /// 690 /// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>' 691 /// pretty-dialect-sym-contents ::= pretty-dialect-sym-body 692 /// | '(' pretty-dialect-sym-contents+ ')' 693 /// | '[' pretty-dialect-sym-contents+ ']' 694 /// | '{' pretty-dialect-sym-contents+ '}' 695 /// | '[^[<({>\])}\0]+' 696 /// 697 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) { 698 // Pretty symbol names are a relatively unstructured format that contains a 699 // series of properly nested punctuation, with anything else in the middle. 700 // Scan ahead to find it and consume it if successful, otherwise emit an 701 // error. 702 auto *curPtr = getTokenSpelling().data(); 703 704 SmallVector<char, 8> nestedPunctuation; 705 706 // Scan over the nested punctuation, bailing out on error and consuming until 707 // we find the end. We know that we're currently looking at the '<', so we 708 // can go until we find the matching '>' character. 709 assert(*curPtr == '<'); 710 do { 711 char c = *curPtr++; 712 switch (c) { 713 case '\0': 714 // This also handles the EOF case. 715 return emitError("unexpected nul or EOF in pretty dialect name"); 716 case '<': 717 case '[': 718 case '(': 719 case '{': 720 nestedPunctuation.push_back(c); 721 continue; 722 723 case '-': 724 // The sequence `->` is treated as special token. 725 if (*curPtr == '>') 726 ++curPtr; 727 continue; 728 729 case '>': 730 if (nestedPunctuation.pop_back_val() != '<') 731 return emitError("unbalanced '>' character in pretty dialect name"); 732 break; 733 case ']': 734 if (nestedPunctuation.pop_back_val() != '[') 735 return emitError("unbalanced ']' character in pretty dialect name"); 736 break; 737 case ')': 738 if (nestedPunctuation.pop_back_val() != '(') 739 return emitError("unbalanced ')' character in pretty dialect name"); 740 break; 741 case '}': 742 if (nestedPunctuation.pop_back_val() != '{') 743 return emitError("unbalanced '}' character in pretty dialect name"); 744 break; 745 746 default: 747 continue; 748 } 749 } while (!nestedPunctuation.empty()); 750 751 // Ok, we succeeded, remember where we stopped, reset the lexer to know it is 752 // consuming all this stuff, and return. 753 state.lex.resetPointer(curPtr); 754 755 unsigned length = curPtr - prettyName.begin(); 756 prettyName = StringRef(prettyName.begin(), length); 757 consumeToken(); 758 return success(); 759 } 760 761 /// Parse an extended dialect symbol. 762 template <typename Symbol, typename SymbolAliasMap, typename CreateFn> 763 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok, 764 SymbolAliasMap &aliases, 765 CreateFn &&createSymbol) { 766 // Parse the dialect namespace. 767 StringRef identifier = p.getTokenSpelling().drop_front(); 768 auto loc = p.getToken().getLoc(); 769 p.consumeToken(identifierTok); 770 771 // If there is no '<' token following this, and if the typename contains no 772 // dot, then we are parsing a symbol alias. 773 if (p.getToken().isNot(Token::less) && !identifier.contains('.')) { 774 // Check for an alias for this type. 775 auto aliasIt = aliases.find(identifier); 776 if (aliasIt == aliases.end()) 777 return (p.emitError("undefined symbol alias id '" + identifier + "'"), 778 nullptr); 779 return aliasIt->second; 780 } 781 782 // Otherwise, we are parsing a dialect-specific symbol. If the name contains 783 // a dot, then this is the "pretty" form. If not, it is the verbose form that 784 // looks like <"...">. 785 std::string symbolData; 786 auto dialectName = identifier; 787 788 // Handle the verbose form, where "identifier" is a simple dialect name. 789 if (!identifier.contains('.')) { 790 // Consume the '<'. 791 if (p.parseToken(Token::less, "expected '<' in dialect type")) 792 return nullptr; 793 794 // Parse the symbol specific data. 795 if (p.getToken().isNot(Token::string)) 796 return (p.emitError("expected string literal data in dialect symbol"), 797 nullptr); 798 symbolData = p.getToken().getStringValue(); 799 loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1); 800 p.consumeToken(Token::string); 801 802 // Consume the '>'. 803 if (p.parseToken(Token::greater, "expected '>' in dialect symbol")) 804 return nullptr; 805 } else { 806 // Ok, the dialect name is the part of the identifier before the dot, the 807 // part after the dot is the dialect's symbol, or the start thereof. 808 auto dotHalves = identifier.split('.'); 809 dialectName = dotHalves.first; 810 auto prettyName = dotHalves.second; 811 loc = llvm::SMLoc::getFromPointer(prettyName.data()); 812 813 // If the dialect's symbol is followed immediately by a <, then lex the body 814 // of it into prettyName. 815 if (p.getToken().is(Token::less) && 816 prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) { 817 if (p.parsePrettyDialectSymbolName(prettyName)) 818 return nullptr; 819 } 820 821 symbolData = prettyName.str(); 822 } 823 824 // Record the name location of the type remapped to the top level buffer. 825 llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc); 826 p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer); 827 828 // Call into the provided symbol construction function. 829 Symbol sym = createSymbol(dialectName, symbolData, loc); 830 831 // Pop the last parser location. 832 p.getState().symbols.nestedParserLocs.pop_back(); 833 return sym; 834 } 835 836 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 837 /// parsing failed, nullptr is returned. The number of bytes read from the input 838 /// string is returned in 'numRead'. 839 template <typename T, typename ParserFn> 840 static T parseSymbol(StringRef inputStr, MLIRContext *context, 841 SymbolState &symbolState, ParserFn &&parserFn, 842 size_t *numRead = nullptr) { 843 SourceMgr sourceMgr; 844 auto memBuffer = MemoryBuffer::getMemBuffer( 845 inputStr, /*BufferName=*/"<mlir_parser_buffer>", 846 /*RequiresNullTerminator=*/false); 847 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 848 ParserState state(sourceMgr, context, symbolState); 849 Parser parser(state); 850 851 Token startTok = parser.getToken(); 852 T symbol = parserFn(parser); 853 if (!symbol) 854 return T(); 855 856 // If 'numRead' is valid, then provide the number of bytes that were read. 857 Token endTok = parser.getToken(); 858 if (numRead) { 859 *numRead = static_cast<size_t>(endTok.getLoc().getPointer() - 860 startTok.getLoc().getPointer()); 861 862 // Otherwise, ensure that all of the tokens were parsed. 863 } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) { 864 parser.emitError(endTok.getLoc(), "encountered unexpected token"); 865 return T(); 866 } 867 return symbol; 868 } 869 870 //===----------------------------------------------------------------------===// 871 // Error Handling 872 //===----------------------------------------------------------------------===// 873 874 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 875 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 876 877 // If we hit a parse error in response to a lexer error, then the lexer 878 // already reported the error. 879 if (getToken().is(Token::error)) 880 diag.abandon(); 881 return diag; 882 } 883 884 //===----------------------------------------------------------------------===// 885 // Token Parsing 886 //===----------------------------------------------------------------------===// 887 888 /// Consume the specified token if present and return success. On failure, 889 /// output a diagnostic and return failure. 890 ParseResult Parser::parseToken(Token::Kind expectedToken, 891 const Twine &message) { 892 if (consumeIf(expectedToken)) 893 return success(); 894 return emitError(message); 895 } 896 897 //===----------------------------------------------------------------------===// 898 // Type Parsing 899 //===----------------------------------------------------------------------===// 900 901 /// Parse an arbitrary type. 902 /// 903 /// type ::= function-type 904 /// | non-function-type 905 /// 906 Type Parser::parseType() { 907 if (getToken().is(Token::l_paren)) 908 return parseFunctionType(); 909 return parseNonFunctionType(); 910 } 911 912 /// Parse a function result type. 913 /// 914 /// function-result-type ::= type-list-parens 915 /// | non-function-type 916 /// 917 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) { 918 if (getToken().is(Token::l_paren)) 919 return parseTypeListParens(elements); 920 921 Type t = parseNonFunctionType(); 922 if (!t) 923 return failure(); 924 elements.push_back(t); 925 return success(); 926 } 927 928 /// Parse a list of types without an enclosing parenthesis. The list must have 929 /// at least one member. 930 /// 931 /// type-list-no-parens ::= type (`,` type)* 932 /// 933 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) { 934 auto parseElt = [&]() -> ParseResult { 935 auto elt = parseType(); 936 elements.push_back(elt); 937 return elt ? success() : failure(); 938 }; 939 940 return parseCommaSeparatedList(parseElt); 941 } 942 943 /// Parse a parenthesized list of types. 944 /// 945 /// type-list-parens ::= `(` `)` 946 /// | `(` type-list-no-parens `)` 947 /// 948 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) { 949 if (parseToken(Token::l_paren, "expected '('")) 950 return failure(); 951 952 // Handle empty lists. 953 if (getToken().is(Token::r_paren)) 954 return consumeToken(), success(); 955 956 if (parseTypeListNoParens(elements) || 957 parseToken(Token::r_paren, "expected ')'")) 958 return failure(); 959 return success(); 960 } 961 962 /// Parse a complex type. 963 /// 964 /// complex-type ::= `complex` `<` type `>` 965 /// 966 Type Parser::parseComplexType() { 967 consumeToken(Token::kw_complex); 968 969 // Parse the '<'. 970 if (parseToken(Token::less, "expected '<' in complex type")) 971 return nullptr; 972 973 llvm::SMLoc elementTypeLoc = getToken().getLoc(); 974 auto elementType = parseType(); 975 if (!elementType || 976 parseToken(Token::greater, "expected '>' in complex type")) 977 return nullptr; 978 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) 979 return emitError(elementTypeLoc, "invalid element type for complex"), 980 nullptr; 981 982 return ComplexType::get(elementType); 983 } 984 985 /// Parse an extended type. 986 /// 987 /// extended-type ::= (dialect-type | type-alias) 988 /// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>` 989 /// dialect-type ::= `!` alias-name pretty-dialect-attribute-body? 990 /// type-alias ::= `!` alias-name 991 /// 992 Type Parser::parseExtendedType() { 993 return parseExtendedSymbol<Type>( 994 *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions, 995 [&](StringRef dialectName, StringRef symbolData, 996 llvm::SMLoc loc) -> Type { 997 // If we found a registered dialect, then ask it to parse the type. 998 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 999 return parseSymbol<Type>( 1000 symbolData, state.context, state.symbols, [&](Parser &parser) { 1001 CustomDialectAsmParser customParser(symbolData, parser); 1002 return dialect->parseType(customParser); 1003 }); 1004 } 1005 1006 // Otherwise, form a new opaque type. 1007 return OpaqueType::getChecked( 1008 Identifier::get(dialectName, state.context), symbolData, 1009 state.context, getEncodedSourceLocation(loc)); 1010 }); 1011 } 1012 1013 /// Parse a function type. 1014 /// 1015 /// function-type ::= type-list-parens `->` function-result-type 1016 /// 1017 Type Parser::parseFunctionType() { 1018 assert(getToken().is(Token::l_paren)); 1019 1020 SmallVector<Type, 4> arguments, results; 1021 if (parseTypeListParens(arguments) || 1022 parseToken(Token::arrow, "expected '->' in function type") || 1023 parseFunctionResultTypes(results)) 1024 return nullptr; 1025 1026 return builder.getFunctionType(arguments, results); 1027 } 1028 1029 /// Parse the offset and strides from a strided layout specification. 1030 /// 1031 /// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list 1032 /// 1033 ParseResult Parser::parseStridedLayout(int64_t &offset, 1034 SmallVectorImpl<int64_t> &strides) { 1035 // Parse offset. 1036 consumeToken(Token::kw_offset); 1037 if (!consumeIf(Token::colon)) 1038 return emitError("expected colon after `offset` keyword"); 1039 auto maybeOffset = getToken().getUnsignedIntegerValue(); 1040 bool question = getToken().is(Token::question); 1041 if (!maybeOffset && !question) 1042 return emitError("invalid offset"); 1043 offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue()) 1044 : MemRefType::getDynamicStrideOrOffset(); 1045 consumeToken(); 1046 1047 if (!consumeIf(Token::comma)) 1048 return emitError("expected comma after offset value"); 1049 1050 // Parse stride list. 1051 if (!consumeIf(Token::kw_strides)) 1052 return emitError("expected `strides` keyword after offset specification"); 1053 if (!consumeIf(Token::colon)) 1054 return emitError("expected colon after `strides` keyword"); 1055 if (failed(parseStrideList(strides))) 1056 return emitError("invalid braces-enclosed stride list"); 1057 if (llvm::any_of(strides, [](int64_t st) { return st == 0; })) 1058 return emitError("invalid memref stride"); 1059 1060 return success(); 1061 } 1062 1063 /// Parse a memref type. 1064 /// 1065 /// memref-type ::= ranked-memref-type | unranked-memref-type 1066 /// 1067 /// ranked-memref-type ::= `memref` `<` dimension-list-ranked type 1068 /// (`,` semi-affine-map-composition)? (`,` 1069 /// memory-space)? `>` 1070 /// 1071 /// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>` 1072 /// 1073 /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map 1074 /// memory-space ::= integer-literal /* | TODO: address-space-id */ 1075 /// 1076 Type Parser::parseMemRefType() { 1077 consumeToken(Token::kw_memref); 1078 1079 if (parseToken(Token::less, "expected '<' in memref type")) 1080 return nullptr; 1081 1082 bool isUnranked; 1083 SmallVector<int64_t, 4> dimensions; 1084 1085 if (consumeIf(Token::star)) { 1086 // This is an unranked memref type. 1087 isUnranked = true; 1088 if (parseXInDimensionList()) 1089 return nullptr; 1090 1091 } else { 1092 isUnranked = false; 1093 if (parseDimensionListRanked(dimensions)) 1094 return nullptr; 1095 } 1096 1097 // Parse the element type. 1098 auto typeLoc = getToken().getLoc(); 1099 auto elementType = parseType(); 1100 if (!elementType) 1101 return nullptr; 1102 1103 // Check that memref is formed from allowed types. 1104 if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>() && 1105 !elementType.isa<ComplexType>()) 1106 return emitError(typeLoc, "invalid memref element type"), nullptr; 1107 1108 // Parse semi-affine-map-composition. 1109 SmallVector<AffineMap, 2> affineMapComposition; 1110 Optional<unsigned> memorySpace; 1111 unsigned numDims = dimensions.size(); 1112 1113 auto parseElt = [&]() -> ParseResult { 1114 // Check for the memory space. 1115 if (getToken().is(Token::integer)) { 1116 if (memorySpace) 1117 return emitError("multiple memory spaces specified in memref type"); 1118 memorySpace = getToken().getUnsignedIntegerValue(); 1119 if (!memorySpace.hasValue()) 1120 return emitError("invalid memory space in memref type"); 1121 consumeToken(Token::integer); 1122 return success(); 1123 } 1124 if (isUnranked) 1125 return emitError("cannot have affine map for unranked memref type"); 1126 if (memorySpace) 1127 return emitError("expected memory space to be last in memref type"); 1128 1129 AffineMap map; 1130 llvm::SMLoc mapLoc = getToken().getLoc(); 1131 if (getToken().is(Token::kw_offset)) { 1132 int64_t offset; 1133 SmallVector<int64_t, 4> strides; 1134 if (failed(parseStridedLayout(offset, strides))) 1135 return failure(); 1136 // Construct strided affine map. 1137 map = makeStridedLinearLayoutMap(strides, offset, state.context); 1138 } else { 1139 // Parse an affine map attribute. 1140 auto affineMap = parseAttribute(); 1141 if (!affineMap) 1142 return failure(); 1143 auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>(); 1144 if (!affineMapAttr) 1145 return emitError("expected affine map in memref type"); 1146 map = affineMapAttr.getValue(); 1147 } 1148 1149 if (map.getNumDims() != numDims) { 1150 size_t i = affineMapComposition.size(); 1151 return emitError(mapLoc, "memref affine map dimension mismatch between ") 1152 << (i == 0 ? Twine("memref rank") : "affine map " + Twine(i)) 1153 << " and affine map" << i + 1 << ": " << numDims 1154 << " != " << map.getNumDims(); 1155 } 1156 numDims = map.getNumResults(); 1157 affineMapComposition.push_back(map); 1158 return success(); 1159 }; 1160 1161 // Parse a list of mappings and address space if present. 1162 if (!consumeIf(Token::greater)) { 1163 // Parse comma separated list of affine maps, followed by memory space. 1164 if (parseToken(Token::comma, "expected ',' or '>' in memref type") || 1165 parseCommaSeparatedListUntil(Token::greater, parseElt, 1166 /*allowEmptyList=*/false)) { 1167 return nullptr; 1168 } 1169 } 1170 1171 if (isUnranked) 1172 return UnrankedMemRefType::get(elementType, memorySpace.getValueOr(0)); 1173 1174 return MemRefType::get(dimensions, elementType, affineMapComposition, 1175 memorySpace.getValueOr(0)); 1176 } 1177 1178 /// Parse any type except the function type. 1179 /// 1180 /// non-function-type ::= integer-type 1181 /// | index-type 1182 /// | float-type 1183 /// | extended-type 1184 /// | vector-type 1185 /// | tensor-type 1186 /// | memref-type 1187 /// | complex-type 1188 /// | tuple-type 1189 /// | none-type 1190 /// 1191 /// index-type ::= `index` 1192 /// float-type ::= `f16` | `bf16` | `f32` | `f64` 1193 /// none-type ::= `none` 1194 /// 1195 Type Parser::parseNonFunctionType() { 1196 switch (getToken().getKind()) { 1197 default: 1198 return (emitError("expected non-function type"), nullptr); 1199 case Token::kw_memref: 1200 return parseMemRefType(); 1201 case Token::kw_tensor: 1202 return parseTensorType(); 1203 case Token::kw_complex: 1204 return parseComplexType(); 1205 case Token::kw_tuple: 1206 return parseTupleType(); 1207 case Token::kw_vector: 1208 return parseVectorType(); 1209 // integer-type 1210 case Token::inttype: { 1211 auto width = getToken().getIntTypeBitwidth(); 1212 if (!width.hasValue()) 1213 return (emitError("invalid integer width"), nullptr); 1214 if (width.getValue() > IntegerType::kMaxWidth) { 1215 emitError(getToken().getLoc(), "integer bitwidth is limited to ") 1216 << IntegerType::kMaxWidth << " bits"; 1217 return nullptr; 1218 } 1219 1220 consumeToken(Token::inttype); 1221 return IntegerType::get(width.getValue(), builder.getContext()); 1222 } 1223 1224 // float-type 1225 case Token::kw_bf16: 1226 consumeToken(Token::kw_bf16); 1227 return builder.getBF16Type(); 1228 case Token::kw_f16: 1229 consumeToken(Token::kw_f16); 1230 return builder.getF16Type(); 1231 case Token::kw_f32: 1232 consumeToken(Token::kw_f32); 1233 return builder.getF32Type(); 1234 case Token::kw_f64: 1235 consumeToken(Token::kw_f64); 1236 return builder.getF64Type(); 1237 1238 // index-type 1239 case Token::kw_index: 1240 consumeToken(Token::kw_index); 1241 return builder.getIndexType(); 1242 1243 // none-type 1244 case Token::kw_none: 1245 consumeToken(Token::kw_none); 1246 return builder.getNoneType(); 1247 1248 // extended type 1249 case Token::exclamation_identifier: 1250 return parseExtendedType(); 1251 } 1252 } 1253 1254 /// Parse a tensor type. 1255 /// 1256 /// tensor-type ::= `tensor` `<` dimension-list type `>` 1257 /// dimension-list ::= dimension-list-ranked | `*x` 1258 /// 1259 Type Parser::parseTensorType() { 1260 consumeToken(Token::kw_tensor); 1261 1262 if (parseToken(Token::less, "expected '<' in tensor type")) 1263 return nullptr; 1264 1265 bool isUnranked; 1266 SmallVector<int64_t, 4> dimensions; 1267 1268 if (consumeIf(Token::star)) { 1269 // This is an unranked tensor type. 1270 isUnranked = true; 1271 1272 if (parseXInDimensionList()) 1273 return nullptr; 1274 1275 } else { 1276 isUnranked = false; 1277 if (parseDimensionListRanked(dimensions)) 1278 return nullptr; 1279 } 1280 1281 // Parse the element type. 1282 auto elementTypeLoc = getToken().getLoc(); 1283 auto elementType = parseType(); 1284 if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) 1285 return nullptr; 1286 if (!TensorType::isValidElementType(elementType)) 1287 return emitError(elementTypeLoc, "invalid tensor element type"), nullptr; 1288 1289 if (isUnranked) 1290 return UnrankedTensorType::get(elementType); 1291 return RankedTensorType::get(dimensions, elementType); 1292 } 1293 1294 /// Parse a tuple type. 1295 /// 1296 /// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>` 1297 /// 1298 Type Parser::parseTupleType() { 1299 consumeToken(Token::kw_tuple); 1300 1301 // Parse the '<'. 1302 if (parseToken(Token::less, "expected '<' in tuple type")) 1303 return nullptr; 1304 1305 // Check for an empty tuple by directly parsing '>'. 1306 if (consumeIf(Token::greater)) 1307 return TupleType::get(getContext()); 1308 1309 // Parse the element types and the '>'. 1310 SmallVector<Type, 4> types; 1311 if (parseTypeListNoParens(types) || 1312 parseToken(Token::greater, "expected '>' in tuple type")) 1313 return nullptr; 1314 1315 return TupleType::get(types, getContext()); 1316 } 1317 1318 /// Parse a vector type. 1319 /// 1320 /// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>` 1321 /// non-empty-static-dimension-list ::= decimal-literal `x` 1322 /// static-dimension-list 1323 /// static-dimension-list ::= (decimal-literal `x`)* 1324 /// 1325 VectorType Parser::parseVectorType() { 1326 consumeToken(Token::kw_vector); 1327 1328 if (parseToken(Token::less, "expected '<' in vector type")) 1329 return nullptr; 1330 1331 SmallVector<int64_t, 4> dimensions; 1332 if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) 1333 return nullptr; 1334 if (dimensions.empty()) 1335 return (emitError("expected dimension size in vector type"), nullptr); 1336 if (any_of(dimensions, [](int64_t i) { return i <= 0; })) 1337 return emitError(getToken().getLoc(), 1338 "vector types must have positive constant sizes"), 1339 nullptr; 1340 1341 // Parse the element type. 1342 auto typeLoc = getToken().getLoc(); 1343 auto elementType = parseType(); 1344 if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) 1345 return nullptr; 1346 if (!VectorType::isValidElementType(elementType)) 1347 return emitError(typeLoc, "vector elements must be int or float type"), 1348 nullptr; 1349 1350 return VectorType::get(dimensions, elementType); 1351 } 1352 1353 /// Parse a dimension list of a tensor or memref type. This populates the 1354 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and 1355 /// errors out on `?` otherwise. 1356 /// 1357 /// dimension-list-ranked ::= (dimension `x`)* 1358 /// dimension ::= `?` | decimal-literal 1359 /// 1360 /// When `allowDynamic` is not set, this is used to parse: 1361 /// 1362 /// static-dimension-list ::= (decimal-literal `x`)* 1363 ParseResult 1364 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 1365 bool allowDynamic) { 1366 while (getToken().isAny(Token::integer, Token::question)) { 1367 if (consumeIf(Token::question)) { 1368 if (!allowDynamic) 1369 return emitError("expected static shape"); 1370 dimensions.push_back(-1); 1371 } else { 1372 // Hexadecimal integer literals (starting with `0x`) are not allowed in 1373 // aggregate type declarations. Therefore, `0xf32` should be processed as 1374 // a sequence of separate elements `0`, `x`, `f32`. 1375 if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { 1376 // We can get here only if the token is an integer literal. Hexadecimal 1377 // integer literals can only start with `0x` (`1x` wouldn't lex as a 1378 // literal, just `1` would, at which point we don't get into this 1379 // branch). 1380 assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); 1381 dimensions.push_back(0); 1382 state.lex.resetPointer(getTokenSpelling().data() + 1); 1383 consumeToken(); 1384 } else { 1385 // Make sure this integer value is in bound and valid. 1386 auto dimension = getToken().getUnsignedIntegerValue(); 1387 if (!dimension.hasValue()) 1388 return emitError("invalid dimension"); 1389 dimensions.push_back((int64_t)dimension.getValue()); 1390 consumeToken(Token::integer); 1391 } 1392 } 1393 1394 // Make sure we have an 'x' or something like 'xbf32'. 1395 if (parseXInDimensionList()) 1396 return failure(); 1397 } 1398 1399 return success(); 1400 } 1401 1402 /// Parse an 'x' token in a dimension list, handling the case where the x is 1403 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next 1404 /// token. 1405 ParseResult Parser::parseXInDimensionList() { 1406 if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') 1407 return emitError("expected 'x' in dimension list"); 1408 1409 // If we had a prefix of 'x', lex the next token immediately after the 'x'. 1410 if (getTokenSpelling().size() != 1) 1411 state.lex.resetPointer(getTokenSpelling().data() + 1); 1412 1413 // Consume the 'x'. 1414 consumeToken(Token::bare_identifier); 1415 1416 return success(); 1417 } 1418 1419 // Parse a comma-separated list of dimensions, possibly empty: 1420 // stride-list ::= `[` (dimension (`,` dimension)*)? `]` 1421 ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) { 1422 if (!consumeIf(Token::l_square)) 1423 return failure(); 1424 // Empty list early exit. 1425 if (consumeIf(Token::r_square)) 1426 return success(); 1427 while (true) { 1428 if (consumeIf(Token::question)) { 1429 dimensions.push_back(MemRefType::getDynamicStrideOrOffset()); 1430 } else { 1431 // This must be an integer value. 1432 int64_t val; 1433 if (getToken().getSpelling().getAsInteger(10, val)) 1434 return emitError("invalid integer value: ") << getToken().getSpelling(); 1435 // Make sure it is not the one value for `?`. 1436 if (ShapedType::isDynamic(val)) 1437 return emitError("invalid integer value: ") 1438 << getToken().getSpelling() 1439 << ", use `?` to specify a dynamic dimension"; 1440 dimensions.push_back(val); 1441 consumeToken(Token::integer); 1442 } 1443 if (!consumeIf(Token::comma)) 1444 break; 1445 } 1446 if (!consumeIf(Token::r_square)) 1447 return failure(); 1448 return success(); 1449 } 1450 1451 //===----------------------------------------------------------------------===// 1452 // Attribute parsing. 1453 //===----------------------------------------------------------------------===// 1454 1455 /// Return the symbol reference referred to by the given token, that is known to 1456 /// be an @-identifier. 1457 static std::string extractSymbolReference(Token tok) { 1458 assert(tok.is(Token::at_identifier) && "expected valid @-identifier"); 1459 StringRef nameStr = tok.getSpelling().drop_front(); 1460 1461 // Check to see if the reference is a string literal, or a bare identifier. 1462 if (nameStr.front() == '"') 1463 return tok.getStringValue(); 1464 return std::string(nameStr); 1465 } 1466 1467 /// Parse an arbitrary attribute. 1468 /// 1469 /// attribute-value ::= `unit` 1470 /// | bool-literal 1471 /// | integer-literal (`:` (index-type | integer-type))? 1472 /// | float-literal (`:` float-type)? 1473 /// | string-literal (`:` type)? 1474 /// | type 1475 /// | `[` (attribute-value (`,` attribute-value)*)? `]` 1476 /// | `{` (attribute-entry (`,` attribute-entry)*)? `}` 1477 /// | symbol-ref-id (`::` symbol-ref-id)* 1478 /// | `dense` `<` attribute-value `>` `:` 1479 /// (tensor-type | vector-type) 1480 /// | `sparse` `<` attribute-value `,` attribute-value `>` 1481 /// `:` (tensor-type | vector-type) 1482 /// | `opaque` `<` dialect-namespace `,` hex-string-literal 1483 /// `>` `:` (tensor-type | vector-type) 1484 /// | extended-attribute 1485 /// 1486 Attribute Parser::parseAttribute(Type type) { 1487 switch (getToken().getKind()) { 1488 // Parse an AffineMap or IntegerSet attribute. 1489 case Token::kw_affine_map: { 1490 consumeToken(Token::kw_affine_map); 1491 1492 AffineMap map; 1493 if (parseToken(Token::less, "expected '<' in affine map") || 1494 parseAffineMapReference(map) || 1495 parseToken(Token::greater, "expected '>' in affine map")) 1496 return Attribute(); 1497 return AffineMapAttr::get(map); 1498 } 1499 case Token::kw_affine_set: { 1500 consumeToken(Token::kw_affine_set); 1501 1502 IntegerSet set; 1503 if (parseToken(Token::less, "expected '<' in integer set") || 1504 parseIntegerSetReference(set) || 1505 parseToken(Token::greater, "expected '>' in integer set")) 1506 return Attribute(); 1507 return IntegerSetAttr::get(set); 1508 } 1509 1510 // Parse an array attribute. 1511 case Token::l_square: { 1512 consumeToken(Token::l_square); 1513 1514 SmallVector<Attribute, 4> elements; 1515 auto parseElt = [&]() -> ParseResult { 1516 elements.push_back(parseAttribute()); 1517 return elements.back() ? success() : failure(); 1518 }; 1519 1520 if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) 1521 return nullptr; 1522 return builder.getArrayAttr(elements); 1523 } 1524 1525 // Parse a boolean attribute. 1526 case Token::kw_false: 1527 consumeToken(Token::kw_false); 1528 return builder.getBoolAttr(false); 1529 case Token::kw_true: 1530 consumeToken(Token::kw_true); 1531 return builder.getBoolAttr(true); 1532 1533 // Parse a dense elements attribute. 1534 case Token::kw_dense: 1535 return parseDenseElementsAttr(type); 1536 1537 // Parse a dictionary attribute. 1538 case Token::l_brace: { 1539 SmallVector<NamedAttribute, 4> elements; 1540 if (parseAttributeDict(elements)) 1541 return nullptr; 1542 return builder.getDictionaryAttr(elements); 1543 } 1544 1545 // Parse an extended attribute, i.e. alias or dialect attribute. 1546 case Token::hash_identifier: 1547 return parseExtendedAttr(type); 1548 1549 // Parse floating point and integer attributes. 1550 case Token::floatliteral: 1551 return parseFloatAttr(type, /*isNegative=*/false); 1552 case Token::integer: 1553 return parseDecOrHexAttr(type, /*isNegative=*/false); 1554 case Token::minus: { 1555 consumeToken(Token::minus); 1556 if (getToken().is(Token::integer)) 1557 return parseDecOrHexAttr(type, /*isNegative=*/true); 1558 if (getToken().is(Token::floatliteral)) 1559 return parseFloatAttr(type, /*isNegative=*/true); 1560 1561 return (emitError("expected constant integer or floating point value"), 1562 nullptr); 1563 } 1564 1565 // Parse a location attribute. 1566 case Token::kw_loc: { 1567 LocationAttr attr; 1568 return failed(parseLocation(attr)) ? Attribute() : attr; 1569 } 1570 1571 // Parse an opaque elements attribute. 1572 case Token::kw_opaque: 1573 return parseOpaqueElementsAttr(type); 1574 1575 // Parse a sparse elements attribute. 1576 case Token::kw_sparse: 1577 return parseSparseElementsAttr(type); 1578 1579 // Parse a string attribute. 1580 case Token::string: { 1581 auto val = getToken().getStringValue(); 1582 consumeToken(Token::string); 1583 // Parse the optional trailing colon type if one wasn't explicitly provided. 1584 if (!type && consumeIf(Token::colon) && !(type = parseType())) 1585 return Attribute(); 1586 1587 return type ? StringAttr::get(val, type) 1588 : StringAttr::get(val, getContext()); 1589 } 1590 1591 // Parse a symbol reference attribute. 1592 case Token::at_identifier: { 1593 std::string nameStr = extractSymbolReference(getToken()); 1594 consumeToken(Token::at_identifier); 1595 1596 // Parse any nested references. 1597 std::vector<FlatSymbolRefAttr> nestedRefs; 1598 while (getToken().is(Token::colon)) { 1599 // Check for the '::' prefix. 1600 const char *curPointer = getToken().getLoc().getPointer(); 1601 consumeToken(Token::colon); 1602 if (!consumeIf(Token::colon)) { 1603 state.lex.resetPointer(curPointer); 1604 consumeToken(); 1605 break; 1606 } 1607 // Parse the reference itself. 1608 auto curLoc = getToken().getLoc(); 1609 if (getToken().isNot(Token::at_identifier)) { 1610 emitError(curLoc, "expected nested symbol reference identifier"); 1611 return Attribute(); 1612 } 1613 1614 std::string nameStr = extractSymbolReference(getToken()); 1615 consumeToken(Token::at_identifier); 1616 nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext())); 1617 } 1618 1619 return builder.getSymbolRefAttr(nameStr, nestedRefs); 1620 } 1621 1622 // Parse a 'unit' attribute. 1623 case Token::kw_unit: 1624 consumeToken(Token::kw_unit); 1625 return builder.getUnitAttr(); 1626 1627 default: 1628 // Parse a type attribute. 1629 if (Type type = parseType()) 1630 return TypeAttr::get(type); 1631 return nullptr; 1632 } 1633 } 1634 1635 /// Attribute dictionary. 1636 /// 1637 /// attribute-dict ::= `{` `}` 1638 /// | `{` attribute-entry (`,` attribute-entry)* `}` 1639 /// attribute-entry ::= bare-id `=` attribute-value 1640 /// 1641 ParseResult 1642 Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) { 1643 if (parseToken(Token::l_brace, "expected '{' in attribute dictionary")) 1644 return failure(); 1645 1646 auto parseElt = [&]() -> ParseResult { 1647 // We allow keywords as attribute names. 1648 if (getToken().isNot(Token::bare_identifier, Token::inttype) && 1649 !getToken().isKeyword()) 1650 return emitError("expected attribute name"); 1651 Identifier nameId = builder.getIdentifier(getTokenSpelling()); 1652 consumeToken(); 1653 1654 // Try to parse the '=' for the attribute value. 1655 if (!consumeIf(Token::equal)) { 1656 // If there is no '=', we treat this as a unit attribute. 1657 attributes.push_back({nameId, builder.getUnitAttr()}); 1658 return success(); 1659 } 1660 1661 auto attr = parseAttribute(); 1662 if (!attr) 1663 return failure(); 1664 1665 attributes.push_back({nameId, attr}); 1666 return success(); 1667 }; 1668 1669 if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) 1670 return failure(); 1671 1672 return success(); 1673 } 1674 1675 /// Parse an extended attribute. 1676 /// 1677 /// extended-attribute ::= (dialect-attribute | attribute-alias) 1678 /// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>` 1679 /// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body? 1680 /// attribute-alias ::= `#` alias-name 1681 /// 1682 Attribute Parser::parseExtendedAttr(Type type) { 1683 Attribute attr = parseExtendedSymbol<Attribute>( 1684 *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions, 1685 [&](StringRef dialectName, StringRef symbolData, 1686 llvm::SMLoc loc) -> Attribute { 1687 // Parse an optional trailing colon type. 1688 Type attrType = type; 1689 if (consumeIf(Token::colon) && !(attrType = parseType())) 1690 return Attribute(); 1691 1692 // If we found a registered dialect, then ask it to parse the attribute. 1693 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1694 return parseSymbol<Attribute>( 1695 symbolData, state.context, state.symbols, [&](Parser &parser) { 1696 CustomDialectAsmParser customParser(symbolData, parser); 1697 return dialect->parseAttribute(customParser, attrType); 1698 }); 1699 } 1700 1701 // Otherwise, form a new opaque attribute. 1702 return OpaqueAttr::getChecked( 1703 Identifier::get(dialectName, state.context), symbolData, 1704 attrType ? attrType : NoneType::get(state.context), 1705 getEncodedSourceLocation(loc)); 1706 }); 1707 1708 // Ensure that the attribute has the same type as requested. 1709 if (attr && type && attr.getType() != type) { 1710 emitError("attribute type different than expected: expected ") 1711 << type << ", but got " << attr.getType(); 1712 return nullptr; 1713 } 1714 return attr; 1715 } 1716 1717 /// Parse a float attribute. 1718 Attribute Parser::parseFloatAttr(Type type, bool isNegative) { 1719 auto val = getToken().getFloatingPointValue(); 1720 if (!val.hasValue()) 1721 return (emitError("floating point value too large for attribute"), nullptr); 1722 consumeToken(Token::floatliteral); 1723 if (!type) { 1724 // Default to F64 when no type is specified. 1725 if (!consumeIf(Token::colon)) 1726 type = builder.getF64Type(); 1727 else if (!(type = parseType())) 1728 return nullptr; 1729 } 1730 if (!type.isa<FloatType>()) 1731 return (emitError("floating point value not valid for specified type"), 1732 nullptr); 1733 return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue()); 1734 } 1735 1736 /// Construct a float attribute bitwise equivalent to the integer literal. 1737 static Optional<APFloat> buildHexadecimalFloatLiteral(Parser *p, FloatType type, 1738 uint64_t value) { 1739 // FIXME: bfloat is currently stored as a double internally because it doesn't 1740 // have valid APFloat semantics. 1741 if (type.isF64() || type.isBF16()) 1742 return APFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value)); 1743 1744 APInt apInt(type.getWidth(), value); 1745 if (apInt != value) { 1746 p->emitError("hexadecimal float constant out of range for type"); 1747 return llvm::None; 1748 } 1749 return APFloat(type.getFloatSemantics(), apInt); 1750 } 1751 1752 /// Parse a decimal or a hexadecimal literal, which can be either an integer 1753 /// or a float attribute. 1754 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) { 1755 auto val = getToken().getUInt64IntegerValue(); 1756 if (!val.hasValue()) 1757 return (emitError("integer constant out of range for attribute"), nullptr); 1758 1759 // Remember if the literal is hexadecimal. 1760 StringRef spelling = getToken().getSpelling(); 1761 auto loc = state.curToken.getLoc(); 1762 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1763 1764 consumeToken(Token::integer); 1765 if (!type) { 1766 // Default to i64 if not type is specified. 1767 if (!consumeIf(Token::colon)) 1768 type = builder.getIntegerType(64); 1769 else if (!(type = parseType())) 1770 return nullptr; 1771 } 1772 1773 if (auto floatType = type.dyn_cast<FloatType>()) { 1774 if (isNegative) 1775 return emitError( 1776 loc, 1777 "hexadecimal float literal should not have a leading minus"), 1778 nullptr; 1779 if (!isHex) { 1780 emitError(loc, "unexpected decimal integer literal for a float attribute") 1781 .attachNote() 1782 << "add a trailing dot to make the literal a float"; 1783 return nullptr; 1784 } 1785 1786 // Construct a float attribute bitwise equivalent to the integer literal. 1787 Optional<APFloat> apVal = 1788 buildHexadecimalFloatLiteral(this, floatType, *val); 1789 return apVal ? FloatAttr::get(floatType, *apVal) : Attribute(); 1790 } 1791 1792 if (!type.isIntOrIndex()) 1793 return emitError(loc, "integer literal not valid for specified type"), 1794 nullptr; 1795 1796 // Parse the integer literal. 1797 int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); 1798 APInt apInt(width, *val, isNegative); 1799 if (apInt != *val) 1800 return emitError(loc, "integer constant out of range for attribute"), 1801 nullptr; 1802 1803 // Otherwise construct an integer attribute. 1804 if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0) 1805 return emitError(loc, "integer constant out of range for attribute"), 1806 nullptr; 1807 1808 return builder.getIntegerAttr(type, isNegative ? -apInt : apInt); 1809 } 1810 1811 /// Parse an opaque elements attribute. 1812 Attribute Parser::parseOpaqueElementsAttr(Type attrType) { 1813 consumeToken(Token::kw_opaque); 1814 if (parseToken(Token::less, "expected '<' after 'opaque'")) 1815 return nullptr; 1816 1817 if (getToken().isNot(Token::string)) 1818 return (emitError("expected dialect namespace"), nullptr); 1819 1820 auto name = getToken().getStringValue(); 1821 auto *dialect = builder.getContext()->getRegisteredDialect(name); 1822 // TODO(shpeisman): Allow for having an unknown dialect on an opaque 1823 // attribute. Otherwise, it can't be roundtripped without having the dialect 1824 // registered. 1825 if (!dialect) 1826 return (emitError("no registered dialect with namespace '" + name + "'"), 1827 nullptr); 1828 1829 consumeToken(Token::string); 1830 if (parseToken(Token::comma, "expected ','")) 1831 return nullptr; 1832 1833 if (getToken().getKind() != Token::string) 1834 return (emitError("opaque string should start with '0x'"), nullptr); 1835 1836 auto val = getToken().getStringValue(); 1837 if (val.size() < 2 || val[0] != '0' || val[1] != 'x') 1838 return (emitError("opaque string should start with '0x'"), nullptr); 1839 1840 val = val.substr(2); 1841 if (!llvm::all_of(val, llvm::isHexDigit)) 1842 return (emitError("opaque string only contains hex digits"), nullptr); 1843 1844 consumeToken(Token::string); 1845 if (parseToken(Token::greater, "expected '>'")) 1846 return nullptr; 1847 1848 auto type = parseElementsLiteralType(attrType); 1849 if (!type) 1850 return nullptr; 1851 1852 return OpaqueElementsAttr::get(dialect, type, llvm::fromHex(val)); 1853 } 1854 1855 namespace { 1856 class TensorLiteralParser { 1857 public: 1858 TensorLiteralParser(Parser &p) : p(p) {} 1859 1860 ParseResult parse() { 1861 if (p.getToken().is(Token::l_square)) 1862 return parseList(shape); 1863 return parseElement(); 1864 } 1865 1866 /// Build a dense attribute instance with the parsed elements and the given 1867 /// shaped type. 1868 DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type); 1869 1870 ArrayRef<int64_t> getShape() const { return shape; } 1871 1872 private: 1873 enum class ElementKind { Boolean, Integer, Float }; 1874 1875 /// Return a string to represent the given element kind. 1876 const char *getElementKindStr(ElementKind kind) { 1877 switch (kind) { 1878 case ElementKind::Boolean: 1879 return "'boolean'"; 1880 case ElementKind::Integer: 1881 return "'integer'"; 1882 case ElementKind::Float: 1883 return "'float'"; 1884 } 1885 llvm_unreachable("unknown element kind"); 1886 } 1887 1888 /// Build a Dense Integer attribute for the given type. 1889 DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type, 1890 IntegerType eltTy); 1891 1892 /// Build a Dense Float attribute for the given type. 1893 DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type, 1894 FloatType eltTy); 1895 1896 /// Parse a single element, returning failure if it isn't a valid element 1897 /// literal. For example: 1898 /// parseElement(1) -> Success, 1 1899 /// parseElement([1]) -> Failure 1900 ParseResult parseElement(); 1901 1902 /// Parse a list of either lists or elements, returning the dimensions of the 1903 /// parsed sub-tensors in dims. For example: 1904 /// parseList([1, 2, 3]) -> Success, [3] 1905 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 1906 /// parseList([[1, 2], 3]) -> Failure 1907 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 1908 ParseResult parseList(SmallVectorImpl<int64_t> &dims); 1909 1910 Parser &p; 1911 1912 /// The shape inferred from the parsed elements. 1913 SmallVector<int64_t, 4> shape; 1914 1915 /// Storage used when parsing elements, this is a pair of <is_negated, token>. 1916 std::vector<std::pair<bool, Token>> storage; 1917 1918 /// A flag that indicates the type of elements that have been parsed. 1919 Optional<ElementKind> knownEltKind; 1920 }; 1921 } // namespace 1922 1923 /// Build a dense attribute instance with the parsed elements and the given 1924 /// shaped type. 1925 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc, 1926 ShapedType type) { 1927 // Check that the parsed storage size has the same number of elements to the 1928 // type, or is a known splat. 1929 if (!shape.empty() && getShape() != type.getShape()) { 1930 p.emitError(loc) << "inferred shape of elements literal ([" << getShape() 1931 << "]) does not match type ([" << type.getShape() << "])"; 1932 return nullptr; 1933 } 1934 1935 // If the type is an integer, build a set of APInt values from the storage 1936 // with the correct bitwidth. 1937 if (auto intTy = type.getElementType().dyn_cast<IntegerType>()) 1938 return getIntAttr(loc, type, intTy); 1939 1940 // Otherwise, this must be a floating point type. 1941 auto floatTy = type.getElementType().dyn_cast<FloatType>(); 1942 if (!floatTy) { 1943 p.emitError(loc) << "expected floating-point or integer element type, got " 1944 << type.getElementType(); 1945 return nullptr; 1946 } 1947 return getFloatAttr(loc, type, floatTy); 1948 } 1949 1950 /// Build a Dense Integer attribute for the given type. 1951 DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc, 1952 ShapedType type, 1953 IntegerType eltTy) { 1954 std::vector<APInt> intElements; 1955 intElements.reserve(storage.size()); 1956 for (const auto &signAndToken : storage) { 1957 bool isNegative = signAndToken.first; 1958 const Token &token = signAndToken.second; 1959 1960 // Check to see if floating point values were parsed. 1961 if (token.is(Token::floatliteral)) { 1962 p.emitError() << "expected integer elements, but parsed floating-point"; 1963 return nullptr; 1964 } 1965 1966 assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) && 1967 "unexpected token type"); 1968 if (token.isAny(Token::kw_true, Token::kw_false)) { 1969 if (!eltTy.isInteger(1)) 1970 p.emitError() << "expected i1 type for 'true' or 'false' values"; 1971 APInt apInt(eltTy.getWidth(), token.is(Token::kw_true), 1972 /*isSigned=*/false); 1973 intElements.push_back(apInt); 1974 continue; 1975 } 1976 1977 // Create APInt values for each element with the correct bitwidth. 1978 auto val = token.getUInt64IntegerValue(); 1979 if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0 1980 : (int64_t)val.getValue() < 0)) { 1981 p.emitError(token.getLoc(), 1982 "integer constant out of range for attribute"); 1983 return nullptr; 1984 } 1985 APInt apInt(eltTy.getWidth(), val.getValue(), isNegative); 1986 if (apInt != val.getValue()) 1987 return (p.emitError("integer constant out of range for type"), nullptr); 1988 intElements.push_back(isNegative ? -apInt : apInt); 1989 } 1990 1991 return DenseElementsAttr::get(type, intElements); 1992 } 1993 1994 /// Build a Dense Float attribute for the given type. 1995 DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc, 1996 ShapedType type, 1997 FloatType eltTy) { 1998 std::vector<APFloat> floatValues; 1999 floatValues.reserve(storage.size()); 2000 for (const auto &signAndToken : storage) { 2001 bool isNegative = signAndToken.first; 2002 const Token &token = signAndToken.second; 2003 2004 // Handle hexadecimal float literals. 2005 if (token.is(Token::integer) && token.getSpelling().startswith("0x")) { 2006 if (isNegative) { 2007 p.emitError(token.getLoc()) 2008 << "hexadecimal float literal should not have a leading minus"; 2009 return nullptr; 2010 } 2011 auto val = token.getUInt64IntegerValue(); 2012 if (!val.hasValue()) { 2013 p.emitError("hexadecimal float constant out of range for attribute"); 2014 return nullptr; 2015 } 2016 Optional<APFloat> apVal = buildHexadecimalFloatLiteral(&p, eltTy, *val); 2017 if (!apVal) 2018 return nullptr; 2019 floatValues.push_back(*apVal); 2020 continue; 2021 } 2022 2023 // Check to see if any decimal integers or booleans were parsed. 2024 if (!token.is(Token::floatliteral)) { 2025 p.emitError() << "expected floating-point elements, but parsed integer"; 2026 return nullptr; 2027 } 2028 2029 // Build the float values from tokens. 2030 auto val = token.getFloatingPointValue(); 2031 if (!val.hasValue()) { 2032 p.emitError("floating point value too large for attribute"); 2033 return nullptr; 2034 } 2035 // Treat BF16 as double because it is not supported in LLVM's APFloat. 2036 APFloat apVal(isNegative ? -*val : *val); 2037 if (!eltTy.isBF16() && !eltTy.isF64()) { 2038 bool unused; 2039 apVal.convert(eltTy.getFloatSemantics(), APFloat::rmNearestTiesToEven, 2040 &unused); 2041 } 2042 floatValues.push_back(apVal); 2043 } 2044 2045 return DenseElementsAttr::get(type, floatValues); 2046 } 2047 2048 ParseResult TensorLiteralParser::parseElement() { 2049 switch (p.getToken().getKind()) { 2050 // Parse a boolean element. 2051 case Token::kw_true: 2052 case Token::kw_false: 2053 case Token::floatliteral: 2054 case Token::integer: 2055 storage.emplace_back(/*isNegative=*/false, p.getToken()); 2056 p.consumeToken(); 2057 break; 2058 2059 // Parse a signed integer or a negative floating-point element. 2060 case Token::minus: 2061 p.consumeToken(Token::minus); 2062 if (!p.getToken().isAny(Token::floatliteral, Token::integer)) 2063 return p.emitError("expected integer or floating point literal"); 2064 storage.emplace_back(/*isNegative=*/true, p.getToken()); 2065 p.consumeToken(); 2066 break; 2067 2068 default: 2069 return p.emitError("expected element literal of primitive type"); 2070 } 2071 2072 return success(); 2073 } 2074 2075 /// Parse a list of either lists or elements, returning the dimensions of the 2076 /// parsed sub-tensors in dims. For example: 2077 /// parseList([1, 2, 3]) -> Success, [3] 2078 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 2079 /// parseList([[1, 2], 3]) -> Failure 2080 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 2081 ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) { 2082 p.consumeToken(Token::l_square); 2083 2084 auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims, 2085 const SmallVectorImpl<int64_t> &newDims) -> ParseResult { 2086 if (prevDims == newDims) 2087 return success(); 2088 return p.emitError("tensor literal is invalid; ranks are not consistent " 2089 "between elements"); 2090 }; 2091 2092 bool first = true; 2093 SmallVector<int64_t, 4> newDims; 2094 unsigned size = 0; 2095 auto parseCommaSeparatedList = [&]() -> ParseResult { 2096 SmallVector<int64_t, 4> thisDims; 2097 if (p.getToken().getKind() == Token::l_square) { 2098 if (parseList(thisDims)) 2099 return failure(); 2100 } else if (parseElement()) { 2101 return failure(); 2102 } 2103 ++size; 2104 if (!first) 2105 return checkDims(newDims, thisDims); 2106 newDims = thisDims; 2107 first = false; 2108 return success(); 2109 }; 2110 if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) 2111 return failure(); 2112 2113 // Return the sublists' dimensions with 'size' prepended. 2114 dims.clear(); 2115 dims.push_back(size); 2116 dims.append(newDims.begin(), newDims.end()); 2117 return success(); 2118 } 2119 2120 /// Parse a dense elements attribute. 2121 Attribute Parser::parseDenseElementsAttr(Type attrType) { 2122 consumeToken(Token::kw_dense); 2123 if (parseToken(Token::less, "expected '<' after 'dense'")) 2124 return nullptr; 2125 2126 // Parse the literal data. 2127 TensorLiteralParser literalParser(*this); 2128 if (literalParser.parse()) 2129 return nullptr; 2130 2131 if (parseToken(Token::greater, "expected '>'")) 2132 return nullptr; 2133 2134 auto typeLoc = getToken().getLoc(); 2135 auto type = parseElementsLiteralType(attrType); 2136 if (!type) 2137 return nullptr; 2138 return literalParser.getAttr(typeLoc, type); 2139 } 2140 2141 /// Shaped type for elements attribute. 2142 /// 2143 /// elements-literal-type ::= vector-type | ranked-tensor-type 2144 /// 2145 /// This method also checks the type has static shape. 2146 ShapedType Parser::parseElementsLiteralType(Type type) { 2147 // If the user didn't provide a type, parse the colon type for the literal. 2148 if (!type) { 2149 if (parseToken(Token::colon, "expected ':'")) 2150 return nullptr; 2151 if (!(type = parseType())) 2152 return nullptr; 2153 } 2154 2155 if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) { 2156 emitError("elements literal must be a ranked tensor or vector type"); 2157 return nullptr; 2158 } 2159 2160 auto sType = type.cast<ShapedType>(); 2161 if (!sType.hasStaticShape()) 2162 return (emitError("elements literal type must have static shape"), nullptr); 2163 2164 return sType; 2165 } 2166 2167 /// Parse a sparse elements attribute. 2168 Attribute Parser::parseSparseElementsAttr(Type attrType) { 2169 consumeToken(Token::kw_sparse); 2170 if (parseToken(Token::less, "Expected '<' after 'sparse'")) 2171 return nullptr; 2172 2173 /// Parse indices 2174 auto indicesLoc = getToken().getLoc(); 2175 TensorLiteralParser indiceParser(*this); 2176 if (indiceParser.parse()) 2177 return nullptr; 2178 2179 if (parseToken(Token::comma, "expected ','")) 2180 return nullptr; 2181 2182 /// Parse values. 2183 auto valuesLoc = getToken().getLoc(); 2184 TensorLiteralParser valuesParser(*this); 2185 if (valuesParser.parse()) 2186 return nullptr; 2187 2188 if (parseToken(Token::greater, "expected '>'")) 2189 return nullptr; 2190 2191 auto type = parseElementsLiteralType(attrType); 2192 if (!type) 2193 return nullptr; 2194 2195 // If the indices are a splat, i.e. the literal parser parsed an element and 2196 // not a list, we set the shape explicitly. The indices are represented by a 2197 // 2-dimensional shape where the second dimension is the rank of the type. 2198 // Given that the parsed indices is a splat, we know that we only have one 2199 // indice and thus one for the first dimension. 2200 auto indiceEltType = builder.getIntegerType(64); 2201 ShapedType indicesType; 2202 if (indiceParser.getShape().empty()) { 2203 indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType); 2204 } else { 2205 // Otherwise, set the shape to the one parsed by the literal parser. 2206 indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType); 2207 } 2208 auto indices = indiceParser.getAttr(indicesLoc, indicesType); 2209 2210 // If the values are a splat, set the shape explicitly based on the number of 2211 // indices. The number of indices is encoded in the first dimension of the 2212 // indice shape type. 2213 auto valuesEltType = type.getElementType(); 2214 ShapedType valuesType = 2215 valuesParser.getShape().empty() 2216 ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType) 2217 : RankedTensorType::get(valuesParser.getShape(), valuesEltType); 2218 auto values = valuesParser.getAttr(valuesLoc, valuesType); 2219 2220 /// Sanity check. 2221 if (valuesType.getRank() != 1) 2222 return (emitError("expected 1-d tensor for values"), nullptr); 2223 2224 auto sameShape = (indicesType.getRank() == 1) || 2225 (type.getRank() == indicesType.getDimSize(1)); 2226 auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); 2227 if (!sameShape || !sameElementNum) { 2228 emitError() << "expected shape ([" << type.getShape() 2229 << "]); inferred shape of indices literal ([" 2230 << indicesType.getShape() 2231 << "]); inferred shape of values literal ([" 2232 << valuesType.getShape() << "])"; 2233 return nullptr; 2234 } 2235 2236 // Build the sparse elements attribute by the indices and values. 2237 return SparseElementsAttr::get(type, indices, values); 2238 } 2239 2240 //===----------------------------------------------------------------------===// 2241 // Location parsing. 2242 //===----------------------------------------------------------------------===// 2243 2244 /// Parse a location. 2245 /// 2246 /// location ::= `loc` inline-location 2247 /// inline-location ::= '(' location-inst ')' 2248 /// 2249 ParseResult Parser::parseLocation(LocationAttr &loc) { 2250 // Check for 'loc' identifier. 2251 if (parseToken(Token::kw_loc, "expected 'loc' keyword")) 2252 return emitError(); 2253 2254 // Parse the inline-location. 2255 if (parseToken(Token::l_paren, "expected '(' in inline location") || 2256 parseLocationInstance(loc) || 2257 parseToken(Token::r_paren, "expected ')' in inline location")) 2258 return failure(); 2259 return success(); 2260 } 2261 2262 /// Specific location instances. 2263 /// 2264 /// location-inst ::= filelinecol-location | 2265 /// name-location | 2266 /// callsite-location | 2267 /// fused-location | 2268 /// unknown-location 2269 /// filelinecol-location ::= string-literal ':' integer-literal 2270 /// ':' integer-literal 2271 /// name-location ::= string-literal 2272 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' 2273 /// fused-location ::= fused ('<' attribute-value '>')? 2274 /// '[' location-inst (location-inst ',')* ']' 2275 /// unknown-location ::= 'unknown' 2276 /// 2277 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) { 2278 consumeToken(Token::bare_identifier); 2279 2280 // Parse the '('. 2281 if (parseToken(Token::l_paren, "expected '(' in callsite location")) 2282 return failure(); 2283 2284 // Parse the callee location. 2285 LocationAttr calleeLoc; 2286 if (parseLocationInstance(calleeLoc)) 2287 return failure(); 2288 2289 // Parse the 'at'. 2290 if (getToken().isNot(Token::bare_identifier) || 2291 getToken().getSpelling() != "at") 2292 return emitError("expected 'at' in callsite location"); 2293 consumeToken(Token::bare_identifier); 2294 2295 // Parse the caller location. 2296 LocationAttr callerLoc; 2297 if (parseLocationInstance(callerLoc)) 2298 return failure(); 2299 2300 // Parse the ')'. 2301 if (parseToken(Token::r_paren, "expected ')' in callsite location")) 2302 return failure(); 2303 2304 // Return the callsite location. 2305 loc = CallSiteLoc::get(calleeLoc, callerLoc); 2306 return success(); 2307 } 2308 2309 ParseResult Parser::parseFusedLocation(LocationAttr &loc) { 2310 consumeToken(Token::bare_identifier); 2311 2312 // Try to parse the optional metadata. 2313 Attribute metadata; 2314 if (consumeIf(Token::less)) { 2315 metadata = parseAttribute(); 2316 if (!metadata) 2317 return emitError("expected valid attribute metadata"); 2318 // Parse the '>' token. 2319 if (parseToken(Token::greater, 2320 "expected '>' after fused location metadata")) 2321 return failure(); 2322 } 2323 2324 SmallVector<Location, 4> locations; 2325 auto parseElt = [&] { 2326 LocationAttr newLoc; 2327 if (parseLocationInstance(newLoc)) 2328 return failure(); 2329 locations.push_back(newLoc); 2330 return success(); 2331 }; 2332 2333 if (parseToken(Token::l_square, "expected '[' in fused location") || 2334 parseCommaSeparatedList(parseElt) || 2335 parseToken(Token::r_square, "expected ']' in fused location")) 2336 return failure(); 2337 2338 // Return the fused location. 2339 loc = FusedLoc::get(locations, metadata, getContext()); 2340 return success(); 2341 } 2342 2343 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) { 2344 auto *ctx = getContext(); 2345 auto str = getToken().getStringValue(); 2346 consumeToken(Token::string); 2347 2348 // If the next token is ':' this is a filelinecol location. 2349 if (consumeIf(Token::colon)) { 2350 // Parse the line number. 2351 if (getToken().isNot(Token::integer)) 2352 return emitError("expected integer line number in FileLineColLoc"); 2353 auto line = getToken().getUnsignedIntegerValue(); 2354 if (!line.hasValue()) 2355 return emitError("expected integer line number in FileLineColLoc"); 2356 consumeToken(Token::integer); 2357 2358 // Parse the ':'. 2359 if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) 2360 return failure(); 2361 2362 // Parse the column number. 2363 if (getToken().isNot(Token::integer)) 2364 return emitError("expected integer column number in FileLineColLoc"); 2365 auto column = getToken().getUnsignedIntegerValue(); 2366 if (!column.hasValue()) 2367 return emitError("expected integer column number in FileLineColLoc"); 2368 consumeToken(Token::integer); 2369 2370 loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx); 2371 return success(); 2372 } 2373 2374 // Otherwise, this is a NameLoc. 2375 2376 // Check for a child location. 2377 if (consumeIf(Token::l_paren)) { 2378 auto childSourceLoc = getToken().getLoc(); 2379 2380 // Parse the child location. 2381 LocationAttr childLoc; 2382 if (parseLocationInstance(childLoc)) 2383 return failure(); 2384 2385 // The child must not be another NameLoc. 2386 if (childLoc.isa<NameLoc>()) 2387 return emitError(childSourceLoc, 2388 "child of NameLoc cannot be another NameLoc"); 2389 loc = NameLoc::get(Identifier::get(str, ctx), childLoc); 2390 2391 // Parse the closing ')'. 2392 if (parseToken(Token::r_paren, 2393 "expected ')' after child location of NameLoc")) 2394 return failure(); 2395 } else { 2396 loc = NameLoc::get(Identifier::get(str, ctx), ctx); 2397 } 2398 2399 return success(); 2400 } 2401 2402 ParseResult Parser::parseLocationInstance(LocationAttr &loc) { 2403 // Handle either name or filelinecol locations. 2404 if (getToken().is(Token::string)) 2405 return parseNameOrFileLineColLocation(loc); 2406 2407 // Bare tokens required for other cases. 2408 if (!getToken().is(Token::bare_identifier)) 2409 return emitError("expected location instance"); 2410 2411 // Check for the 'callsite' signifying a callsite location. 2412 if (getToken().getSpelling() == "callsite") 2413 return parseCallSiteLocation(loc); 2414 2415 // If the token is 'fused', then this is a fused location. 2416 if (getToken().getSpelling() == "fused") 2417 return parseFusedLocation(loc); 2418 2419 // Check for a 'unknown' for an unknown location. 2420 if (getToken().getSpelling() == "unknown") { 2421 consumeToken(Token::bare_identifier); 2422 loc = UnknownLoc::get(getContext()); 2423 return success(); 2424 } 2425 2426 return emitError("expected location instance"); 2427 } 2428 2429 //===----------------------------------------------------------------------===// 2430 // Affine parsing. 2431 //===----------------------------------------------------------------------===// 2432 2433 /// Lower precedence ops (all at the same precedence level). LNoOp is false in 2434 /// the boolean sense. 2435 enum AffineLowPrecOp { 2436 /// Null value. 2437 LNoOp, 2438 Add, 2439 Sub 2440 }; 2441 2442 /// Higher precedence ops - all at the same precedence level. HNoOp is false 2443 /// in the boolean sense. 2444 enum AffineHighPrecOp { 2445 /// Null value. 2446 HNoOp, 2447 Mul, 2448 FloorDiv, 2449 CeilDiv, 2450 Mod 2451 }; 2452 2453 namespace { 2454 /// This is a specialized parser for affine structures (affine maps, affine 2455 /// expressions, and integer sets), maintaining the state transient to their 2456 /// bodies. 2457 class AffineParser : public Parser { 2458 public: 2459 AffineParser(ParserState &state, bool allowParsingSSAIds = false, 2460 function_ref<ParseResult(bool)> parseElement = nullptr) 2461 : Parser(state), allowParsingSSAIds(allowParsingSSAIds), 2462 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {} 2463 2464 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); 2465 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); 2466 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); 2467 ParseResult parseAffineMapOfSSAIds(AffineMap &map, 2468 OpAsmParser::Delimiter delimiter); 2469 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds, 2470 unsigned &numDims); 2471 2472 private: 2473 // Binary affine op parsing. 2474 AffineLowPrecOp consumeIfLowPrecOp(); 2475 AffineHighPrecOp consumeIfHighPrecOp(); 2476 2477 // Identifier lists for polyhedral structures. 2478 ParseResult parseDimIdList(unsigned &numDims); 2479 ParseResult parseSymbolIdList(unsigned &numSymbols); 2480 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, 2481 unsigned &numSymbols); 2482 ParseResult parseIdentifierDefinition(AffineExpr idExpr); 2483 2484 AffineExpr parseAffineExpr(); 2485 AffineExpr parseParentheticalExpr(); 2486 AffineExpr parseNegateExpression(AffineExpr lhs); 2487 AffineExpr parseIntegerExpr(); 2488 AffineExpr parseBareIdExpr(); 2489 AffineExpr parseSSAIdExpr(bool isSymbol); 2490 AffineExpr parseSymbolSSAIdExpr(); 2491 2492 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, 2493 AffineExpr rhs, SMLoc opLoc); 2494 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, 2495 AffineExpr rhs); 2496 AffineExpr parseAffineOperandExpr(AffineExpr lhs); 2497 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); 2498 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, 2499 SMLoc llhsOpLoc); 2500 AffineExpr parseAffineConstraint(bool *isEq); 2501 2502 private: 2503 bool allowParsingSSAIds; 2504 function_ref<ParseResult(bool)> parseElement; 2505 unsigned numDimOperands; 2506 unsigned numSymbolOperands; 2507 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols; 2508 }; 2509 } // end anonymous namespace 2510 2511 /// Create an affine binary high precedence op expression (mul's, div's, mod). 2512 /// opLoc is the location of the op token to be used to report errors 2513 /// for non-conforming expressions. 2514 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, 2515 AffineExpr lhs, AffineExpr rhs, 2516 SMLoc opLoc) { 2517 // TODO: make the error location info accurate. 2518 switch (op) { 2519 case Mul: 2520 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { 2521 emitError(opLoc, "non-affine expression: at least one of the multiply " 2522 "operands has to be either a constant or symbolic"); 2523 return nullptr; 2524 } 2525 return lhs * rhs; 2526 case FloorDiv: 2527 if (!rhs.isSymbolicOrConstant()) { 2528 emitError(opLoc, "non-affine expression: right operand of floordiv " 2529 "has to be either a constant or symbolic"); 2530 return nullptr; 2531 } 2532 return lhs.floorDiv(rhs); 2533 case CeilDiv: 2534 if (!rhs.isSymbolicOrConstant()) { 2535 emitError(opLoc, "non-affine expression: right operand of ceildiv " 2536 "has to be either a constant or symbolic"); 2537 return nullptr; 2538 } 2539 return lhs.ceilDiv(rhs); 2540 case Mod: 2541 if (!rhs.isSymbolicOrConstant()) { 2542 emitError(opLoc, "non-affine expression: right operand of mod " 2543 "has to be either a constant or symbolic"); 2544 return nullptr; 2545 } 2546 return lhs % rhs; 2547 case HNoOp: 2548 llvm_unreachable("can't create affine expression for null high prec op"); 2549 return nullptr; 2550 } 2551 llvm_unreachable("Unknown AffineHighPrecOp"); 2552 } 2553 2554 /// Create an affine binary low precedence op expression (add, sub). 2555 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, 2556 AffineExpr lhs, AffineExpr rhs) { 2557 switch (op) { 2558 case AffineLowPrecOp::Add: 2559 return lhs + rhs; 2560 case AffineLowPrecOp::Sub: 2561 return lhs - rhs; 2562 case AffineLowPrecOp::LNoOp: 2563 llvm_unreachable("can't create affine expression for null low prec op"); 2564 return nullptr; 2565 } 2566 llvm_unreachable("Unknown AffineLowPrecOp"); 2567 } 2568 2569 /// Consume this token if it is a lower precedence affine op (there are only 2570 /// two precedence levels). 2571 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { 2572 switch (getToken().getKind()) { 2573 case Token::plus: 2574 consumeToken(Token::plus); 2575 return AffineLowPrecOp::Add; 2576 case Token::minus: 2577 consumeToken(Token::minus); 2578 return AffineLowPrecOp::Sub; 2579 default: 2580 return AffineLowPrecOp::LNoOp; 2581 } 2582 } 2583 2584 /// Consume this token if it is a higher precedence affine op (there are only 2585 /// two precedence levels) 2586 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { 2587 switch (getToken().getKind()) { 2588 case Token::star: 2589 consumeToken(Token::star); 2590 return Mul; 2591 case Token::kw_floordiv: 2592 consumeToken(Token::kw_floordiv); 2593 return FloorDiv; 2594 case Token::kw_ceildiv: 2595 consumeToken(Token::kw_ceildiv); 2596 return CeilDiv; 2597 case Token::kw_mod: 2598 consumeToken(Token::kw_mod); 2599 return Mod; 2600 default: 2601 return HNoOp; 2602 } 2603 } 2604 2605 /// Parse a high precedence op expression list: mul, div, and mod are high 2606 /// precedence binary ops, i.e., parse a 2607 /// expr_1 op_1 expr_2 op_2 ... expr_n 2608 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). 2609 /// All affine binary ops are left associative. 2610 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is 2611 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is 2612 /// null. llhsOpLoc is the location of the llhsOp token that will be used to 2613 /// report an error for non-conforming expressions. 2614 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, 2615 AffineHighPrecOp llhsOp, 2616 SMLoc llhsOpLoc) { 2617 AffineExpr lhs = parseAffineOperandExpr(llhs); 2618 if (!lhs) 2619 return nullptr; 2620 2621 // Found an LHS. Parse the remaining expression. 2622 auto opLoc = getToken().getLoc(); 2623 if (AffineHighPrecOp op = consumeIfHighPrecOp()) { 2624 if (llhs) { 2625 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); 2626 if (!expr) 2627 return nullptr; 2628 return parseAffineHighPrecOpExpr(expr, op, opLoc); 2629 } 2630 // No LLHS, get RHS 2631 return parseAffineHighPrecOpExpr(lhs, op, opLoc); 2632 } 2633 2634 // This is the last operand in this expression. 2635 if (llhs) 2636 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); 2637 2638 // No llhs, 'lhs' itself is the expression. 2639 return lhs; 2640 } 2641 2642 /// Parse an affine expression inside parentheses. 2643 /// 2644 /// affine-expr ::= `(` affine-expr `)` 2645 AffineExpr AffineParser::parseParentheticalExpr() { 2646 if (parseToken(Token::l_paren, "expected '('")) 2647 return nullptr; 2648 if (getToken().is(Token::r_paren)) 2649 return (emitError("no expression inside parentheses"), nullptr); 2650 2651 auto expr = parseAffineExpr(); 2652 if (!expr) 2653 return nullptr; 2654 if (parseToken(Token::r_paren, "expected ')'")) 2655 return nullptr; 2656 2657 return expr; 2658 } 2659 2660 /// Parse the negation expression. 2661 /// 2662 /// affine-expr ::= `-` affine-expr 2663 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { 2664 if (parseToken(Token::minus, "expected '-'")) 2665 return nullptr; 2666 2667 AffineExpr operand = parseAffineOperandExpr(lhs); 2668 // Since negation has the highest precedence of all ops (including high 2669 // precedence ops) but lower than parentheses, we are only going to use 2670 // parseAffineOperandExpr instead of parseAffineExpr here. 2671 if (!operand) 2672 // Extra error message although parseAffineOperandExpr would have 2673 // complained. Leads to a better diagnostic. 2674 return (emitError("missing operand of negation"), nullptr); 2675 return (-1) * operand; 2676 } 2677 2678 /// Parse a bare id that may appear in an affine expression. 2679 /// 2680 /// affine-expr ::= bare-id 2681 AffineExpr AffineParser::parseBareIdExpr() { 2682 if (getToken().isNot(Token::bare_identifier)) 2683 return (emitError("expected bare identifier"), nullptr); 2684 2685 StringRef sRef = getTokenSpelling(); 2686 for (auto entry : dimsAndSymbols) { 2687 if (entry.first == sRef) { 2688 consumeToken(Token::bare_identifier); 2689 return entry.second; 2690 } 2691 } 2692 2693 return (emitError("use of undeclared identifier"), nullptr); 2694 } 2695 2696 /// Parse an SSA id which may appear in an affine expression. 2697 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) { 2698 if (!allowParsingSSAIds) 2699 return (emitError("unexpected ssa identifier"), nullptr); 2700 if (getToken().isNot(Token::percent_identifier)) 2701 return (emitError("expected ssa identifier"), nullptr); 2702 auto name = getTokenSpelling(); 2703 // Check if we already parsed this SSA id. 2704 for (auto entry : dimsAndSymbols) { 2705 if (entry.first == name) { 2706 consumeToken(Token::percent_identifier); 2707 return entry.second; 2708 } 2709 } 2710 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it. 2711 if (parseElement(isSymbol)) 2712 return (emitError("failed to parse ssa identifier"), nullptr); 2713 auto idExpr = isSymbol 2714 ? getAffineSymbolExpr(numSymbolOperands++, getContext()) 2715 : getAffineDimExpr(numDimOperands++, getContext()); 2716 dimsAndSymbols.push_back({name, idExpr}); 2717 return idExpr; 2718 } 2719 2720 AffineExpr AffineParser::parseSymbolSSAIdExpr() { 2721 if (parseToken(Token::kw_symbol, "expected symbol keyword") || 2722 parseToken(Token::l_paren, "expected '(' at start of SSA symbol")) 2723 return nullptr; 2724 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true); 2725 if (!symbolExpr) 2726 return nullptr; 2727 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol")) 2728 return nullptr; 2729 return symbolExpr; 2730 } 2731 2732 /// Parse a positive integral constant appearing in an affine expression. 2733 /// 2734 /// affine-expr ::= integer-literal 2735 AffineExpr AffineParser::parseIntegerExpr() { 2736 auto val = getToken().getUInt64IntegerValue(); 2737 if (!val.hasValue() || (int64_t)val.getValue() < 0) 2738 return (emitError("constant too large for index"), nullptr); 2739 2740 consumeToken(Token::integer); 2741 return builder.getAffineConstantExpr((int64_t)val.getValue()); 2742 } 2743 2744 /// Parses an expression that can be a valid operand of an affine expression. 2745 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary 2746 /// operator, the rhs of which is being parsed. This is used to determine 2747 /// whether an error should be emitted for a missing right operand. 2748 // Eg: for an expression without parentheses (like i + j + k + l), each 2749 // of the four identifiers is an operand. For i + j*k + l, j*k is not an 2750 // operand expression, it's an op expression and will be parsed via 2751 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and 2752 // -l are valid operands that will be parsed by this function. 2753 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { 2754 switch (getToken().getKind()) { 2755 case Token::bare_identifier: 2756 return parseBareIdExpr(); 2757 case Token::kw_symbol: 2758 return parseSymbolSSAIdExpr(); 2759 case Token::percent_identifier: 2760 return parseSSAIdExpr(/*isSymbol=*/false); 2761 case Token::integer: 2762 return parseIntegerExpr(); 2763 case Token::l_paren: 2764 return parseParentheticalExpr(); 2765 case Token::minus: 2766 return parseNegateExpression(lhs); 2767 case Token::kw_ceildiv: 2768 case Token::kw_floordiv: 2769 case Token::kw_mod: 2770 case Token::plus: 2771 case Token::star: 2772 if (lhs) 2773 emitError("missing right operand of binary operator"); 2774 else 2775 emitError("missing left operand of binary operator"); 2776 return nullptr; 2777 default: 2778 if (lhs) 2779 emitError("missing right operand of binary operator"); 2780 else 2781 emitError("expected affine expression"); 2782 return nullptr; 2783 } 2784 } 2785 2786 /// Parse affine expressions that are bare-id's, integer constants, 2787 /// parenthetical affine expressions, and affine op expressions that are a 2788 /// composition of those. 2789 /// 2790 /// All binary op's associate from left to right. 2791 /// 2792 /// {add, sub} have lower precedence than {mul, div, and mod}. 2793 /// 2794 /// Add, sub'are themselves at the same precedence level. Mul, floordiv, 2795 /// ceildiv, and mod are at the same higher precedence level. Negation has 2796 /// higher precedence than any binary op. 2797 /// 2798 /// llhs: the affine expression appearing on the left of the one being parsed. 2799 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, 2800 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned 2801 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left 2802 /// associativity. 2803 /// 2804 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function 2805 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where 2806 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). 2807 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, 2808 AffineLowPrecOp llhsOp) { 2809 AffineExpr lhs; 2810 if (!(lhs = parseAffineOperandExpr(llhs))) 2811 return nullptr; 2812 2813 // Found an LHS. Deal with the ops. 2814 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { 2815 if (llhs) { 2816 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2817 return parseAffineLowPrecOpExpr(sum, lOp); 2818 } 2819 // No LLHS, get RHS and form the expression. 2820 return parseAffineLowPrecOpExpr(lhs, lOp); 2821 } 2822 auto opLoc = getToken().getLoc(); 2823 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { 2824 // We have a higher precedence op here. Get the rhs operand for the llhs 2825 // through parseAffineHighPrecOpExpr. 2826 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); 2827 if (!highRes) 2828 return nullptr; 2829 2830 // If llhs is null, the product forms the first operand of the yet to be 2831 // found expression. If non-null, the op to associate with llhs is llhsOp. 2832 AffineExpr expr = 2833 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; 2834 2835 // Recurse for subsequent low prec op's after the affine high prec op 2836 // expression. 2837 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) 2838 return parseAffineLowPrecOpExpr(expr, nextOp); 2839 return expr; 2840 } 2841 // Last operand in the expression list. 2842 if (llhs) 2843 return getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2844 // No llhs, 'lhs' itself is the expression. 2845 return lhs; 2846 } 2847 2848 /// Parse an affine expression. 2849 /// affine-expr ::= `(` affine-expr `)` 2850 /// | `-` affine-expr 2851 /// | affine-expr `+` affine-expr 2852 /// | affine-expr `-` affine-expr 2853 /// | affine-expr `*` affine-expr 2854 /// | affine-expr `floordiv` affine-expr 2855 /// | affine-expr `ceildiv` affine-expr 2856 /// | affine-expr `mod` affine-expr 2857 /// | bare-id 2858 /// | integer-literal 2859 /// 2860 /// Additional conditions are checked depending on the production. For eg., 2861 /// one of the operands for `*` has to be either constant/symbolic; the second 2862 /// operand for floordiv, ceildiv, and mod has to be a positive integer. 2863 AffineExpr AffineParser::parseAffineExpr() { 2864 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); 2865 } 2866 2867 /// Parse a dim or symbol from the lists appearing before the actual 2868 /// expressions of the affine map. Update our state to store the 2869 /// dimensional/symbolic identifier. 2870 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { 2871 if (getToken().isNot(Token::bare_identifier)) 2872 return emitError("expected bare identifier"); 2873 2874 auto name = getTokenSpelling(); 2875 for (auto entry : dimsAndSymbols) { 2876 if (entry.first == name) 2877 return emitError("redefinition of identifier '" + name + "'"); 2878 } 2879 consumeToken(Token::bare_identifier); 2880 2881 dimsAndSymbols.push_back({name, idExpr}); 2882 return success(); 2883 } 2884 2885 /// Parse the list of dimensional identifiers to an affine map. 2886 ParseResult AffineParser::parseDimIdList(unsigned &numDims) { 2887 if (parseToken(Token::l_paren, 2888 "expected '(' at start of dimensional identifiers list")) { 2889 return failure(); 2890 } 2891 2892 auto parseElt = [&]() -> ParseResult { 2893 auto dimension = getAffineDimExpr(numDims++, getContext()); 2894 return parseIdentifierDefinition(dimension); 2895 }; 2896 return parseCommaSeparatedListUntil(Token::r_paren, parseElt); 2897 } 2898 2899 /// Parse the list of symbolic identifiers to an affine map. 2900 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { 2901 consumeToken(Token::l_square); 2902 auto parseElt = [&]() -> ParseResult { 2903 auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); 2904 return parseIdentifierDefinition(symbol); 2905 }; 2906 return parseCommaSeparatedListUntil(Token::r_square, parseElt); 2907 } 2908 2909 /// Parse the list of symbolic identifiers to an affine map. 2910 ParseResult 2911 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, 2912 unsigned &numSymbols) { 2913 if (parseDimIdList(numDims)) { 2914 return failure(); 2915 } 2916 if (!getToken().is(Token::l_square)) { 2917 numSymbols = 0; 2918 return success(); 2919 } 2920 return parseSymbolIdList(numSymbols); 2921 } 2922 2923 /// Parses an ambiguous affine map or integer set definition inline. 2924 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, 2925 IntegerSet &set) { 2926 unsigned numDims = 0, numSymbols = 0; 2927 2928 // List of dimensional and optional symbol identifiers. 2929 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { 2930 return failure(); 2931 } 2932 2933 // This is needed for parsing attributes as we wouldn't know whether we would 2934 // be parsing an integer set attribute or an affine map attribute. 2935 bool isArrow = getToken().is(Token::arrow); 2936 bool isColon = getToken().is(Token::colon); 2937 if (!isArrow && !isColon) { 2938 return emitError("expected '->' or ':'"); 2939 } else if (isArrow) { 2940 parseToken(Token::arrow, "expected '->' or '['"); 2941 map = parseAffineMapRange(numDims, numSymbols); 2942 return map ? success() : failure(); 2943 } else if (parseToken(Token::colon, "expected ':' or '['")) { 2944 return failure(); 2945 } 2946 2947 if ((set = parseIntegerSetConstraints(numDims, numSymbols))) 2948 return success(); 2949 2950 return failure(); 2951 } 2952 2953 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 2954 ParseResult 2955 AffineParser::parseAffineMapOfSSAIds(AffineMap &map, 2956 OpAsmParser::Delimiter delimiter) { 2957 Token::Kind rightToken; 2958 switch (delimiter) { 2959 case OpAsmParser::Delimiter::Square: 2960 if (parseToken(Token::l_square, "expected '['")) 2961 return failure(); 2962 rightToken = Token::r_square; 2963 break; 2964 case OpAsmParser::Delimiter::Paren: 2965 if (parseToken(Token::l_paren, "expected '('")) 2966 return failure(); 2967 rightToken = Token::r_paren; 2968 break; 2969 default: 2970 return emitError("unexpected delimiter"); 2971 } 2972 2973 SmallVector<AffineExpr, 4> exprs; 2974 auto parseElt = [&]() -> ParseResult { 2975 auto elt = parseAffineExpr(); 2976 exprs.push_back(elt); 2977 return elt ? success() : failure(); 2978 }; 2979 2980 // Parse a multi-dimensional affine expression (a comma-separated list of 2981 // 1-d affine expressions); the list cannot be empty. Grammar: 2982 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 2983 if (parseCommaSeparatedListUntil(rightToken, parseElt, 2984 /*allowEmptyList=*/true)) 2985 return failure(); 2986 // Parsed a valid affine map. 2987 if (exprs.empty()) 2988 map = AffineMap::get(getContext()); 2989 else 2990 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 2991 exprs); 2992 return success(); 2993 } 2994 2995 /// Parse the range and sizes affine map definition inline. 2996 /// 2997 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr 2998 /// 2999 /// multi-dim-affine-expr ::= `(` `)` 3000 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)` 3001 AffineMap AffineParser::parseAffineMapRange(unsigned numDims, 3002 unsigned numSymbols) { 3003 parseToken(Token::l_paren, "expected '(' at start of affine map range"); 3004 3005 SmallVector<AffineExpr, 4> exprs; 3006 auto parseElt = [&]() -> ParseResult { 3007 auto elt = parseAffineExpr(); 3008 ParseResult res = elt ? success() : failure(); 3009 exprs.push_back(elt); 3010 return res; 3011 }; 3012 3013 // Parse a multi-dimensional affine expression (a comma-separated list of 3014 // 1-d affine expressions); the list cannot be empty. Grammar: 3015 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 3016 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3017 return AffineMap(); 3018 3019 if (exprs.empty()) 3020 return AffineMap::get(getContext()); 3021 3022 // Parsed a valid affine map. 3023 return AffineMap::get(numDims, numSymbols, exprs); 3024 } 3025 3026 /// Parse an affine constraint. 3027 /// affine-constraint ::= affine-expr `>=` `0` 3028 /// | affine-expr `==` `0` 3029 /// 3030 /// isEq is set to true if the parsed constraint is an equality, false if it 3031 /// is an inequality (greater than or equal). 3032 /// 3033 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { 3034 AffineExpr expr = parseAffineExpr(); 3035 if (!expr) 3036 return nullptr; 3037 3038 if (consumeIf(Token::greater) && consumeIf(Token::equal) && 3039 getToken().is(Token::integer)) { 3040 auto dim = getToken().getUnsignedIntegerValue(); 3041 if (dim.hasValue() && dim.getValue() == 0) { 3042 consumeToken(Token::integer); 3043 *isEq = false; 3044 return expr; 3045 } 3046 return (emitError("expected '0' after '>='"), nullptr); 3047 } 3048 3049 if (consumeIf(Token::equal) && consumeIf(Token::equal) && 3050 getToken().is(Token::integer)) { 3051 auto dim = getToken().getUnsignedIntegerValue(); 3052 if (dim.hasValue() && dim.getValue() == 0) { 3053 consumeToken(Token::integer); 3054 *isEq = true; 3055 return expr; 3056 } 3057 return (emitError("expected '0' after '=='"), nullptr); 3058 } 3059 3060 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), 3061 nullptr); 3062 } 3063 3064 /// Parse the constraints that are part of an integer set definition. 3065 /// integer-set-inline 3066 /// ::= dim-and-symbol-id-lists `:` 3067 /// '(' affine-constraint-conjunction? ')' 3068 /// affine-constraint-conjunction ::= affine-constraint (`,` 3069 /// affine-constraint)* 3070 /// 3071 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, 3072 unsigned numSymbols) { 3073 if (parseToken(Token::l_paren, 3074 "expected '(' at start of integer set constraint list")) 3075 return IntegerSet(); 3076 3077 SmallVector<AffineExpr, 4> constraints; 3078 SmallVector<bool, 4> isEqs; 3079 auto parseElt = [&]() -> ParseResult { 3080 bool isEq; 3081 auto elt = parseAffineConstraint(&isEq); 3082 ParseResult res = elt ? success() : failure(); 3083 if (elt) { 3084 constraints.push_back(elt); 3085 isEqs.push_back(isEq); 3086 } 3087 return res; 3088 }; 3089 3090 // Parse a list of affine constraints (comma-separated). 3091 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3092 return IntegerSet(); 3093 3094 // If no constraints were parsed, then treat this as a degenerate 'true' case. 3095 if (constraints.empty()) { 3096 /* 0 == 0 */ 3097 auto zero = getAffineConstantExpr(0, getContext()); 3098 return IntegerSet::get(numDims, numSymbols, zero, true); 3099 } 3100 3101 // Parsed a valid integer set. 3102 return IntegerSet::get(numDims, numSymbols, constraints, isEqs); 3103 } 3104 3105 /// Parse an ambiguous reference to either and affine map or an integer set. 3106 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, 3107 IntegerSet &set) { 3108 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); 3109 } 3110 ParseResult Parser::parseAffineMapReference(AffineMap &map) { 3111 llvm::SMLoc curLoc = getToken().getLoc(); 3112 IntegerSet set; 3113 if (parseAffineMapOrIntegerSetReference(map, set)) 3114 return failure(); 3115 if (set) 3116 return emitError(curLoc, "expected AffineMap, but got IntegerSet"); 3117 return success(); 3118 } 3119 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) { 3120 llvm::SMLoc curLoc = getToken().getLoc(); 3121 AffineMap map; 3122 if (parseAffineMapOrIntegerSetReference(map, set)) 3123 return failure(); 3124 if (map) 3125 return emitError(curLoc, "expected IntegerSet, but got AffineMap"); 3126 return success(); 3127 } 3128 3129 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to 3130 /// parse SSA value uses encountered while parsing affine expressions. 3131 ParseResult 3132 Parser::parseAffineMapOfSSAIds(AffineMap &map, 3133 function_ref<ParseResult(bool)> parseElement, 3134 OpAsmParser::Delimiter delimiter) { 3135 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement) 3136 .parseAffineMapOfSSAIds(map, delimiter); 3137 } 3138 3139 //===----------------------------------------------------------------------===// 3140 // OperationParser 3141 //===----------------------------------------------------------------------===// 3142 3143 namespace { 3144 /// This class provides support for parsing operations and regions of 3145 /// operations. 3146 class OperationParser : public Parser { 3147 public: 3148 OperationParser(ParserState &state, ModuleOp moduleOp) 3149 : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) { 3150 } 3151 3152 ~OperationParser(); 3153 3154 /// After parsing is finished, this function must be called to see if there 3155 /// are any remaining issues. 3156 ParseResult finalize(); 3157 3158 //===--------------------------------------------------------------------===// 3159 // SSA Value Handling 3160 //===--------------------------------------------------------------------===// 3161 3162 /// This represents a use of an SSA value in the program. The first two 3163 /// entries in the tuple are the name and result number of a reference. The 3164 /// third is the location of the reference, which is used in case this ends 3165 /// up being a use of an undefined value. 3166 struct SSAUseInfo { 3167 StringRef name; // Value name, e.g. %42 or %abc 3168 unsigned number; // Number, specified with #12 3169 SMLoc loc; // Location of first definition or use. 3170 }; 3171 3172 /// Push a new SSA name scope to the parser. 3173 void pushSSANameScope(bool isIsolated); 3174 3175 /// Pop the last SSA name scope from the parser. 3176 ParseResult popSSANameScope(); 3177 3178 /// Register a definition of a value with the symbol table. 3179 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 3180 3181 /// Parse an optional list of SSA uses into 'results'. 3182 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 3183 3184 /// Parse a single SSA use into 'result'. 3185 ParseResult parseSSAUse(SSAUseInfo &result); 3186 3187 /// Given a reference to an SSA value and its type, return a reference. This 3188 /// returns null on failure. 3189 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 3190 3191 ParseResult parseSSADefOrUseAndType( 3192 const std::function<ParseResult(SSAUseInfo, Type)> &action); 3193 3194 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 3195 3196 /// Return the location of the value identified by its name and number if it 3197 /// has been already reference. 3198 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 3199 auto &values = isolatedNameScopes.back().values; 3200 if (!values.count(name) || number >= values[name].size()) 3201 return {}; 3202 if (values[name][number].first) 3203 return values[name][number].second; 3204 return {}; 3205 } 3206 3207 //===--------------------------------------------------------------------===// 3208 // Operation Parsing 3209 //===--------------------------------------------------------------------===// 3210 3211 /// Parse an operation instance. 3212 ParseResult parseOperation(); 3213 3214 /// Parse a single operation successor and its operand list. 3215 ParseResult parseSuccessorAndUseList(Block *&dest, 3216 SmallVectorImpl<Value> &operands); 3217 3218 /// Parse a comma-separated list of operation successors in brackets. 3219 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations, 3220 SmallVectorImpl<SmallVector<Value, 4>> &operands); 3221 3222 /// Parse an operation instance that is in the generic form. 3223 Operation *parseGenericOperation(); 3224 3225 /// Parse an operation instance that is in the generic form and insert it at 3226 /// the provided insertion point. 3227 Operation *parseGenericOperation(Block *insertBlock, 3228 Block::iterator insertPt); 3229 3230 /// Parse an operation instance that is in the op-defined custom form. 3231 Operation *parseCustomOperation(); 3232 3233 //===--------------------------------------------------------------------===// 3234 // Region Parsing 3235 //===--------------------------------------------------------------------===// 3236 3237 /// Parse a region into 'region' with the provided entry block arguments. 3238 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 3239 /// isolated from those above. 3240 ParseResult parseRegion(Region ®ion, 3241 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 3242 bool isIsolatedNameScope = false); 3243 3244 /// Parse a region body into 'region'. 3245 ParseResult parseRegionBody(Region ®ion); 3246 3247 //===--------------------------------------------------------------------===// 3248 // Block Parsing 3249 //===--------------------------------------------------------------------===// 3250 3251 /// Parse a new block into 'block'. 3252 ParseResult parseBlock(Block *&block); 3253 3254 /// Parse a list of operations into 'block'. 3255 ParseResult parseBlockBody(Block *block); 3256 3257 /// Parse a (possibly empty) list of block arguments. 3258 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results, 3259 Block *owner); 3260 3261 /// Get the block with the specified name, creating it if it doesn't 3262 /// already exist. The location specified is the point of use, which allows 3263 /// us to diagnose references to blocks that are not defined precisely. 3264 Block *getBlockNamed(StringRef name, SMLoc loc); 3265 3266 /// Define the block with the specified name. Returns the Block* or nullptr in 3267 /// the case of redefinition. 3268 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 3269 3270 private: 3271 /// Returns the info for a block at the current scope for the given name. 3272 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 3273 return blocksByName.back()[name]; 3274 } 3275 3276 /// Insert a new forward reference to the given block. 3277 void insertForwardRef(Block *block, SMLoc loc) { 3278 forwardRef.back().try_emplace(block, loc); 3279 } 3280 3281 /// Erase any forward reference to the given block. 3282 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 3283 3284 /// Record that a definition was added at the current scope. 3285 void recordDefinition(StringRef def); 3286 3287 /// Get the value entry for the given SSA name. 3288 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name); 3289 3290 /// Create a forward reference placeholder value with the given location and 3291 /// result type. 3292 Value createForwardRefPlaceholder(SMLoc loc, Type type); 3293 3294 /// Return true if this is a forward reference. 3295 bool isForwardRefPlaceholder(Value value) { 3296 return forwardRefPlaceholders.count(value); 3297 } 3298 3299 /// This struct represents an isolated SSA name scope. This scope may contain 3300 /// other nested non-isolated scopes. These scopes are used for operations 3301 /// that are known to be isolated to allow for reusing names within their 3302 /// regions, even if those names are used above. 3303 struct IsolatedSSANameScope { 3304 /// Record that a definition was added at the current scope. 3305 void recordDefinition(StringRef def) { 3306 definitionsPerScope.back().insert(def); 3307 } 3308 3309 /// Push a nested name scope. 3310 void pushSSANameScope() { definitionsPerScope.push_back({}); } 3311 3312 /// Pop a nested name scope. 3313 void popSSANameScope() { 3314 for (auto &def : definitionsPerScope.pop_back_val()) 3315 values.erase(def.getKey()); 3316 } 3317 3318 /// This keeps track of all of the SSA values we are tracking for each name 3319 /// scope, indexed by their name. This has one entry per result number. 3320 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values; 3321 3322 /// This keeps track of all of the values defined by a specific name scope. 3323 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 3324 }; 3325 3326 /// A list of isolated name scopes. 3327 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 3328 3329 /// This keeps track of the block names as well as the location of the first 3330 /// reference for each nested name scope. This is used to diagnose invalid 3331 /// block references and memorize them. 3332 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 3333 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 3334 3335 /// These are all of the placeholders we've made along with the location of 3336 /// their first reference, to allow checking for use of undefined values. 3337 DenseMap<Value, SMLoc> forwardRefPlaceholders; 3338 3339 /// The builder used when creating parsed operation instances. 3340 OpBuilder opBuilder; 3341 3342 /// The top level module operation. 3343 ModuleOp moduleOp; 3344 }; 3345 } // end anonymous namespace 3346 3347 OperationParser::~OperationParser() { 3348 for (auto &fwd : forwardRefPlaceholders) { 3349 // Drop all uses of undefined forward declared reference and destroy 3350 // defining operation. 3351 fwd.first.dropAllUses(); 3352 fwd.first.getDefiningOp()->destroy(); 3353 } 3354 } 3355 3356 /// After parsing is finished, this function must be called to see if there are 3357 /// any remaining issues. 3358 ParseResult OperationParser::finalize() { 3359 // Check for any forward references that are left. If we find any, error 3360 // out. 3361 if (!forwardRefPlaceholders.empty()) { 3362 SmallVector<std::pair<const char *, Value>, 4> errors; 3363 // Iteration over the map isn't deterministic, so sort by source location. 3364 for (auto entry : forwardRefPlaceholders) 3365 errors.push_back({entry.second.getPointer(), entry.first}); 3366 llvm::array_pod_sort(errors.begin(), errors.end()); 3367 3368 for (auto entry : errors) { 3369 auto loc = SMLoc::getFromPointer(entry.first); 3370 emitError(loc, "use of undeclared SSA value name"); 3371 } 3372 return failure(); 3373 } 3374 3375 return success(); 3376 } 3377 3378 //===----------------------------------------------------------------------===// 3379 // SSA Value Handling 3380 //===----------------------------------------------------------------------===// 3381 3382 void OperationParser::pushSSANameScope(bool isIsolated) { 3383 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 3384 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 3385 3386 // Push back a new name definition scope. 3387 if (isIsolated) 3388 isolatedNameScopes.push_back({}); 3389 isolatedNameScopes.back().pushSSANameScope(); 3390 } 3391 3392 ParseResult OperationParser::popSSANameScope() { 3393 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 3394 3395 // Verify that all referenced blocks were defined. 3396 if (!forwardRefInCurrentScope.empty()) { 3397 SmallVector<std::pair<const char *, Block *>, 4> errors; 3398 // Iteration over the map isn't deterministic, so sort by source location. 3399 for (auto entry : forwardRefInCurrentScope) { 3400 errors.push_back({entry.second.getPointer(), entry.first}); 3401 // Add this block to the top-level region to allow for automatic cleanup. 3402 moduleOp.getOperation()->getRegion(0).push_back(entry.first); 3403 } 3404 llvm::array_pod_sort(errors.begin(), errors.end()); 3405 3406 for (auto entry : errors) { 3407 auto loc = SMLoc::getFromPointer(entry.first); 3408 emitError(loc, "reference to an undefined block"); 3409 } 3410 return failure(); 3411 } 3412 3413 // Pop the next nested namescope. If there is only one internal namescope, 3414 // just pop the isolated scope. 3415 auto ¤tNameScope = isolatedNameScopes.back(); 3416 if (currentNameScope.definitionsPerScope.size() == 1) 3417 isolatedNameScopes.pop_back(); 3418 else 3419 currentNameScope.popSSANameScope(); 3420 3421 blocksByName.pop_back(); 3422 return success(); 3423 } 3424 3425 /// Register a definition of a value with the symbol table. 3426 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 3427 auto &entries = getSSAValueEntry(useInfo.name); 3428 3429 // Make sure there is a slot for this value. 3430 if (entries.size() <= useInfo.number) 3431 entries.resize(useInfo.number + 1); 3432 3433 // If we already have an entry for this, check to see if it was a definition 3434 // or a forward reference. 3435 if (auto existing = entries[useInfo.number].first) { 3436 if (!isForwardRefPlaceholder(existing)) { 3437 return emitError(useInfo.loc) 3438 .append("redefinition of SSA value '", useInfo.name, "'") 3439 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3440 .append("previously defined here"); 3441 } 3442 3443 // If it was a forward reference, update everything that used it to use 3444 // the actual definition instead, delete the forward ref, and remove it 3445 // from our set of forward references we track. 3446 existing.replaceAllUsesWith(value); 3447 existing.getDefiningOp()->destroy(); 3448 forwardRefPlaceholders.erase(existing); 3449 } 3450 3451 /// Record this definition for the current scope. 3452 entries[useInfo.number] = {value, useInfo.loc}; 3453 recordDefinition(useInfo.name); 3454 return success(); 3455 } 3456 3457 /// Parse a (possibly empty) list of SSA operands. 3458 /// 3459 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 3460 /// ssa-use-list-opt ::= ssa-use-list? 3461 /// 3462 ParseResult 3463 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 3464 if (getToken().isNot(Token::percent_identifier)) 3465 return success(); 3466 return parseCommaSeparatedList([&]() -> ParseResult { 3467 SSAUseInfo result; 3468 if (parseSSAUse(result)) 3469 return failure(); 3470 results.push_back(result); 3471 return success(); 3472 }); 3473 } 3474 3475 /// Parse a SSA operand for an operation. 3476 /// 3477 /// ssa-use ::= ssa-id 3478 /// 3479 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 3480 result.name = getTokenSpelling(); 3481 result.number = 0; 3482 result.loc = getToken().getLoc(); 3483 if (parseToken(Token::percent_identifier, "expected SSA operand")) 3484 return failure(); 3485 3486 // If we have an attribute ID, it is a result number. 3487 if (getToken().is(Token::hash_identifier)) { 3488 if (auto value = getToken().getHashIdentifierNumber()) 3489 result.number = value.getValue(); 3490 else 3491 return emitError("invalid SSA value result number"); 3492 consumeToken(Token::hash_identifier); 3493 } 3494 3495 return success(); 3496 } 3497 3498 /// Given an unbound reference to an SSA value and its type, return the value 3499 /// it specifies. This returns null on failure. 3500 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 3501 auto &entries = getSSAValueEntry(useInfo.name); 3502 3503 // If we have already seen a value of this name, return it. 3504 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 3505 auto result = entries[useInfo.number].first; 3506 // Check that the type matches the other uses. 3507 if (result.getType() == type) 3508 return result; 3509 3510 emitError(useInfo.loc, "use of value '") 3511 .append(useInfo.name, 3512 "' expects different type than prior uses: ", type, " vs ", 3513 result.getType()) 3514 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3515 .append("prior use here"); 3516 return nullptr; 3517 } 3518 3519 // Make sure we have enough slots for this. 3520 if (entries.size() <= useInfo.number) 3521 entries.resize(useInfo.number + 1); 3522 3523 // If the value has already been defined and this is an overly large result 3524 // number, diagnose that. 3525 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 3526 return (emitError(useInfo.loc, "reference to invalid result number"), 3527 nullptr); 3528 3529 // Otherwise, this is a forward reference. Create a placeholder and remember 3530 // that we did so. 3531 auto result = createForwardRefPlaceholder(useInfo.loc, type); 3532 entries[useInfo.number].first = result; 3533 entries[useInfo.number].second = useInfo.loc; 3534 return result; 3535 } 3536 3537 /// Parse an SSA use with an associated type. 3538 /// 3539 /// ssa-use-and-type ::= ssa-use `:` type 3540 ParseResult OperationParser::parseSSADefOrUseAndType( 3541 const std::function<ParseResult(SSAUseInfo, Type)> &action) { 3542 SSAUseInfo useInfo; 3543 if (parseSSAUse(useInfo) || 3544 parseToken(Token::colon, "expected ':' and type for SSA operand")) 3545 return failure(); 3546 3547 auto type = parseType(); 3548 if (!type) 3549 return failure(); 3550 3551 return action(useInfo, type); 3552 } 3553 3554 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 3555 /// followed by a type list. 3556 /// 3557 /// ssa-use-and-type-list 3558 /// ::= ssa-use-list ':' type-list-no-parens 3559 /// 3560 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 3561 SmallVectorImpl<Value> &results) { 3562 SmallVector<SSAUseInfo, 4> valueIDs; 3563 if (parseOptionalSSAUseList(valueIDs)) 3564 return failure(); 3565 3566 // If there were no operands, then there is no colon or type lists. 3567 if (valueIDs.empty()) 3568 return success(); 3569 3570 SmallVector<Type, 4> types; 3571 if (parseToken(Token::colon, "expected ':' in operand list") || 3572 parseTypeListNoParens(types)) 3573 return failure(); 3574 3575 if (valueIDs.size() != types.size()) 3576 return emitError("expected ") 3577 << valueIDs.size() << " types to match operand list"; 3578 3579 results.reserve(valueIDs.size()); 3580 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 3581 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 3582 results.push_back(value); 3583 else 3584 return failure(); 3585 } 3586 3587 return success(); 3588 } 3589 3590 /// Record that a definition was added at the current scope. 3591 void OperationParser::recordDefinition(StringRef def) { 3592 isolatedNameScopes.back().recordDefinition(def); 3593 } 3594 3595 /// Get the value entry for the given SSA name. 3596 SmallVectorImpl<std::pair<Value, SMLoc>> & 3597 OperationParser::getSSAValueEntry(StringRef name) { 3598 return isolatedNameScopes.back().values[name]; 3599 } 3600 3601 /// Create and remember a new placeholder for a forward reference. 3602 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 3603 // Forward references are always created as operations, because we just need 3604 // something with a def/use chain. 3605 // 3606 // We create these placeholders as having an empty name, which we know 3607 // cannot be created through normal user input, allowing us to distinguish 3608 // them. 3609 auto name = OperationName("placeholder", getContext()); 3610 auto *op = Operation::create( 3611 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 3612 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0, 3613 /*resizableOperandList=*/false); 3614 forwardRefPlaceholders[op->getResult(0)] = loc; 3615 return op->getResult(0); 3616 } 3617 3618 //===----------------------------------------------------------------------===// 3619 // Operation Parsing 3620 //===----------------------------------------------------------------------===// 3621 3622 /// Parse an operation. 3623 /// 3624 /// operation ::= op-result-list? 3625 /// (generic-operation | custom-operation) 3626 /// trailing-location? 3627 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 3628 /// successor-list? (`(` region-list `)`)? 3629 /// attribute-dict? `:` function-type 3630 /// custom-operation ::= bare-id custom-operation-format 3631 /// op-result-list ::= op-result (`,` op-result)* `=` 3632 /// op-result ::= ssa-id (`:` integer-literal) 3633 /// 3634 ParseResult OperationParser::parseOperation() { 3635 auto loc = getToken().getLoc(); 3636 SmallVector<std::tuple<StringRef, unsigned, SMLoc>, 1> resultIDs; 3637 size_t numExpectedResults = 0; 3638 if (getToken().is(Token::percent_identifier)) { 3639 // Parse the group of result ids. 3640 auto parseNextResult = [&]() -> ParseResult { 3641 // Parse the next result id. 3642 if (!getToken().is(Token::percent_identifier)) 3643 return emitError("expected valid ssa identifier"); 3644 3645 Token nameTok = getToken(); 3646 consumeToken(Token::percent_identifier); 3647 3648 // If the next token is a ':', we parse the expected result count. 3649 size_t expectedSubResults = 1; 3650 if (consumeIf(Token::colon)) { 3651 // Check that the next token is an integer. 3652 if (!getToken().is(Token::integer)) 3653 return emitError("expected integer number of results"); 3654 3655 // Check that number of results is > 0. 3656 auto val = getToken().getUInt64IntegerValue(); 3657 if (!val.hasValue() || val.getValue() < 1) 3658 return emitError("expected named operation to have atleast 1 result"); 3659 consumeToken(Token::integer); 3660 expectedSubResults = *val; 3661 } 3662 3663 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 3664 nameTok.getLoc()); 3665 numExpectedResults += expectedSubResults; 3666 return success(); 3667 }; 3668 if (parseCommaSeparatedList(parseNextResult)) 3669 return failure(); 3670 3671 if (parseToken(Token::equal, "expected '=' after SSA name")) 3672 return failure(); 3673 } 3674 3675 Operation *op; 3676 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 3677 op = parseCustomOperation(); 3678 else if (getToken().is(Token::string)) 3679 op = parseGenericOperation(); 3680 else 3681 return emitError("expected operation name in quotes"); 3682 3683 // If parsing of the basic operation failed, then this whole thing fails. 3684 if (!op) 3685 return failure(); 3686 3687 // If the operation had a name, register it. 3688 if (!resultIDs.empty()) { 3689 if (op->getNumResults() == 0) 3690 return emitError(loc, "cannot name an operation with no results"); 3691 if (numExpectedResults != op->getNumResults()) 3692 return emitError(loc, "operation defines ") 3693 << op->getNumResults() << " results but was provided " 3694 << numExpectedResults << " to bind"; 3695 3696 // Add definitions for each of the result groups. 3697 unsigned opResI = 0; 3698 for (std::tuple<StringRef, unsigned, SMLoc> &resIt : resultIDs) { 3699 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 3700 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 3701 op->getResult(opResI++))) 3702 return failure(); 3703 } 3704 } 3705 } 3706 3707 return success(); 3708 } 3709 3710 /// Parse a single operation successor and its operand list. 3711 /// 3712 /// successor ::= block-id branch-use-list? 3713 /// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)` 3714 /// 3715 ParseResult 3716 OperationParser::parseSuccessorAndUseList(Block *&dest, 3717 SmallVectorImpl<Value> &operands) { 3718 // Verify branch is identifier and get the matching block. 3719 if (!getToken().is(Token::caret_identifier)) 3720 return emitError("expected block name"); 3721 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 3722 consumeToken(); 3723 3724 // Handle optional arguments. 3725 if (consumeIf(Token::l_paren) && 3726 (parseOptionalSSAUseAndTypeList(operands) || 3727 parseToken(Token::r_paren, "expected ')' to close argument list"))) { 3728 return failure(); 3729 } 3730 3731 return success(); 3732 } 3733 3734 /// Parse a comma-separated list of operation successors in brackets. 3735 /// 3736 /// successor-list ::= `[` successor (`,` successor )* `]` 3737 /// 3738 ParseResult OperationParser::parseSuccessors( 3739 SmallVectorImpl<Block *> &destinations, 3740 SmallVectorImpl<SmallVector<Value, 4>> &operands) { 3741 if (parseToken(Token::l_square, "expected '['")) 3742 return failure(); 3743 3744 auto parseElt = [this, &destinations, &operands]() { 3745 Block *dest; 3746 SmallVector<Value, 4> destOperands; 3747 auto res = parseSuccessorAndUseList(dest, destOperands); 3748 destinations.push_back(dest); 3749 operands.push_back(destOperands); 3750 return res; 3751 }; 3752 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 3753 /*allowEmptyList=*/false); 3754 } 3755 3756 namespace { 3757 // RAII-style guard for cleaning up the regions in the operation state before 3758 // deleting them. Within the parser, regions may get deleted if parsing failed, 3759 // and other errors may be present, in particular undominated uses. This makes 3760 // sure such uses are deleted. 3761 struct CleanupOpStateRegions { 3762 ~CleanupOpStateRegions() { 3763 SmallVector<Region *, 4> regionsToClean; 3764 regionsToClean.reserve(state.regions.size()); 3765 for (auto ®ion : state.regions) 3766 if (region) 3767 for (auto &block : *region) 3768 block.dropAllDefinedValueUses(); 3769 } 3770 OperationState &state; 3771 }; 3772 } // namespace 3773 3774 Operation *OperationParser::parseGenericOperation() { 3775 // Get location information for the operation. 3776 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 3777 3778 auto name = getToken().getStringValue(); 3779 if (name.empty()) 3780 return (emitError("empty operation name is invalid"), nullptr); 3781 if (name.find('\0') != StringRef::npos) 3782 return (emitError("null character not allowed in operation name"), nullptr); 3783 3784 consumeToken(Token::string); 3785 3786 OperationState result(srcLocation, name); 3787 3788 // Generic operations have a resizable operation list. 3789 result.setOperandListToResizable(); 3790 3791 // Parse the operand list. 3792 SmallVector<SSAUseInfo, 8> operandInfos; 3793 3794 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 3795 parseOptionalSSAUseList(operandInfos) || 3796 parseToken(Token::r_paren, "expected ')' to end operand list")) { 3797 return nullptr; 3798 } 3799 3800 // Parse the successor list but don't add successors to the result yet to 3801 // avoid messing up with the argument order. 3802 SmallVector<Block *, 2> successors; 3803 SmallVector<SmallVector<Value, 4>, 2> successorOperands; 3804 if (getToken().is(Token::l_square)) { 3805 // Check if the operation is a known terminator. 3806 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 3807 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) 3808 return emitError("successors in non-terminator"), nullptr; 3809 if (parseSuccessors(successors, successorOperands)) 3810 return nullptr; 3811 } 3812 3813 // Parse the region list. 3814 CleanupOpStateRegions guard{result}; 3815 if (consumeIf(Token::l_paren)) { 3816 do { 3817 // Create temporary regions with the top level region as parent. 3818 result.regions.emplace_back(new Region(moduleOp)); 3819 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 3820 return nullptr; 3821 } while (consumeIf(Token::comma)); 3822 if (parseToken(Token::r_paren, "expected ')' to end region list")) 3823 return nullptr; 3824 } 3825 3826 if (getToken().is(Token::l_brace)) { 3827 if (parseAttributeDict(result.attributes)) 3828 return nullptr; 3829 } 3830 3831 if (parseToken(Token::colon, "expected ':' followed by operation type")) 3832 return nullptr; 3833 3834 auto typeLoc = getToken().getLoc(); 3835 auto type = parseType(); 3836 if (!type) 3837 return nullptr; 3838 auto fnType = type.dyn_cast<FunctionType>(); 3839 if (!fnType) 3840 return (emitError(typeLoc, "expected function type"), nullptr); 3841 3842 result.addTypes(fnType.getResults()); 3843 3844 // Check that we have the right number of types for the operands. 3845 auto operandTypes = fnType.getInputs(); 3846 if (operandTypes.size() != operandInfos.size()) { 3847 auto plural = "s"[operandInfos.size() == 1]; 3848 return (emitError(typeLoc, "expected ") 3849 << operandInfos.size() << " operand type" << plural 3850 << " but had " << operandTypes.size(), 3851 nullptr); 3852 } 3853 3854 // Resolve all of the operands. 3855 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 3856 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 3857 if (!result.operands.back()) 3858 return nullptr; 3859 } 3860 3861 // Add the successors, and their operands after the proper operands. 3862 for (auto succ : llvm::zip(successors, successorOperands)) { 3863 Block *successor = std::get<0>(succ); 3864 const SmallVector<Value, 4> &operands = std::get<1>(succ); 3865 result.addSuccessor(successor, operands); 3866 } 3867 3868 // Parse a location if one is present. 3869 if (parseOptionalTrailingLocation(result.location)) 3870 return nullptr; 3871 3872 return opBuilder.createOperation(result); 3873 } 3874 3875 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 3876 Block::iterator insertPt) { 3877 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 3878 opBuilder.setInsertionPoint(insertBlock, insertPt); 3879 return parseGenericOperation(); 3880 } 3881 3882 namespace { 3883 class CustomOpAsmParser : public OpAsmParser { 3884 public: 3885 CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition, 3886 OperationParser &parser) 3887 : nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {} 3888 3889 /// Parse an instance of the operation described by 'opDefinition' into the 3890 /// provided operation state. 3891 ParseResult parseOperation(OperationState &opState) { 3892 if (opDefinition->parseAssembly(*this, opState)) 3893 return failure(); 3894 return success(); 3895 } 3896 3897 Operation *parseGenericOperation(Block *insertBlock, 3898 Block::iterator insertPt) final { 3899 return parser.parseGenericOperation(insertBlock, insertPt); 3900 } 3901 3902 //===--------------------------------------------------------------------===// 3903 // Utilities 3904 //===--------------------------------------------------------------------===// 3905 3906 /// Return if any errors were emitted during parsing. 3907 bool didEmitError() const { return emittedError; } 3908 3909 /// Emit a diagnostic at the specified location and return failure. 3910 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 3911 emittedError = true; 3912 return parser.emitError(loc, "custom op '" + opDefinition->name + "' " + 3913 message); 3914 } 3915 3916 llvm::SMLoc getCurrentLocation() override { 3917 return parser.getToken().getLoc(); 3918 } 3919 3920 Builder &getBuilder() const override { return parser.builder; } 3921 3922 llvm::SMLoc getNameLoc() const override { return nameLoc; } 3923 3924 //===--------------------------------------------------------------------===// 3925 // Token Parsing 3926 //===--------------------------------------------------------------------===// 3927 3928 /// Parse a `->` token. 3929 ParseResult parseArrow() override { 3930 return parser.parseToken(Token::arrow, "expected '->'"); 3931 } 3932 3933 /// Parses a `->` if present. 3934 ParseResult parseOptionalArrow() override { 3935 return success(parser.consumeIf(Token::arrow)); 3936 } 3937 3938 /// Parse a `:` token. 3939 ParseResult parseColon() override { 3940 return parser.parseToken(Token::colon, "expected ':'"); 3941 } 3942 3943 /// Parse a `:` token if present. 3944 ParseResult parseOptionalColon() override { 3945 return success(parser.consumeIf(Token::colon)); 3946 } 3947 3948 /// Parse a `,` token. 3949 ParseResult parseComma() override { 3950 return parser.parseToken(Token::comma, "expected ','"); 3951 } 3952 3953 /// Parse a `,` token if present. 3954 ParseResult parseOptionalComma() override { 3955 return success(parser.consumeIf(Token::comma)); 3956 } 3957 3958 /// Parses a `...` if present. 3959 ParseResult parseOptionalEllipsis() override { 3960 return success(parser.consumeIf(Token::ellipsis)); 3961 } 3962 3963 /// Parse a `=` token. 3964 ParseResult parseEqual() override { 3965 return parser.parseToken(Token::equal, "expected '='"); 3966 } 3967 3968 /// Parse a '<' token. 3969 ParseResult parseLess() override { 3970 return parser.parseToken(Token::less, "expected '<'"); 3971 } 3972 3973 /// Parse a '>' token. 3974 ParseResult parseGreater() override { 3975 return parser.parseToken(Token::greater, "expected '>'"); 3976 } 3977 3978 /// Parse a `(` token. 3979 ParseResult parseLParen() override { 3980 return parser.parseToken(Token::l_paren, "expected '('"); 3981 } 3982 3983 /// Parses a '(' if present. 3984 ParseResult parseOptionalLParen() override { 3985 return success(parser.consumeIf(Token::l_paren)); 3986 } 3987 3988 /// Parse a `)` token. 3989 ParseResult parseRParen() override { 3990 return parser.parseToken(Token::r_paren, "expected ')'"); 3991 } 3992 3993 /// Parses a ')' if present. 3994 ParseResult parseOptionalRParen() override { 3995 return success(parser.consumeIf(Token::r_paren)); 3996 } 3997 3998 /// Parse a `[` token. 3999 ParseResult parseLSquare() override { 4000 return parser.parseToken(Token::l_square, "expected '['"); 4001 } 4002 4003 /// Parses a '[' if present. 4004 ParseResult parseOptionalLSquare() override { 4005 return success(parser.consumeIf(Token::l_square)); 4006 } 4007 4008 /// Parse a `]` token. 4009 ParseResult parseRSquare() override { 4010 return parser.parseToken(Token::r_square, "expected ']'"); 4011 } 4012 4013 /// Parses a ']' if present. 4014 ParseResult parseOptionalRSquare() override { 4015 return success(parser.consumeIf(Token::r_square)); 4016 } 4017 4018 //===--------------------------------------------------------------------===// 4019 // Attribute Parsing 4020 //===--------------------------------------------------------------------===// 4021 4022 /// Parse an arbitrary attribute of a given type and return it in result. This 4023 /// also adds the attribute to the specified attribute list with the specified 4024 /// name. 4025 ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName, 4026 SmallVectorImpl<NamedAttribute> &attrs) override { 4027 result = parser.parseAttribute(type); 4028 if (!result) 4029 return failure(); 4030 4031 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 4032 return success(); 4033 } 4034 4035 /// Parse a named dictionary into 'result' if it is present. 4036 ParseResult 4037 parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override { 4038 if (parser.getToken().isNot(Token::l_brace)) 4039 return success(); 4040 return parser.parseAttributeDict(result); 4041 } 4042 4043 /// Parse a named dictionary into 'result' if the `attributes` keyword is 4044 /// present. 4045 ParseResult parseOptionalAttrDictWithKeyword( 4046 SmallVectorImpl<NamedAttribute> &result) override { 4047 if (failed(parseOptionalKeyword("attributes"))) 4048 return success(); 4049 return parser.parseAttributeDict(result); 4050 } 4051 4052 /// Parse an affine map instance into 'map'. 4053 ParseResult parseAffineMap(AffineMap &map) override { 4054 return parser.parseAffineMapReference(map); 4055 } 4056 4057 /// Parse an integer set instance into 'set'. 4058 ParseResult printIntegerSet(IntegerSet &set) override { 4059 return parser.parseIntegerSetReference(set); 4060 } 4061 4062 //===--------------------------------------------------------------------===// 4063 // Identifier Parsing 4064 //===--------------------------------------------------------------------===// 4065 4066 /// Returns if the current token corresponds to a keyword. 4067 bool isCurrentTokenAKeyword() const { 4068 return parser.getToken().is(Token::bare_identifier) || 4069 parser.getToken().isKeyword(); 4070 } 4071 4072 /// Parse the given keyword if present. 4073 ParseResult parseOptionalKeyword(StringRef keyword) override { 4074 // Check that the current token has the same spelling. 4075 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 4076 return failure(); 4077 parser.consumeToken(); 4078 return success(); 4079 } 4080 4081 /// Parse a keyword, if present, into 'keyword'. 4082 ParseResult parseOptionalKeyword(StringRef *keyword) override { 4083 // Check that the current token is a keyword. 4084 if (!isCurrentTokenAKeyword()) 4085 return failure(); 4086 4087 *keyword = parser.getTokenSpelling(); 4088 parser.consumeToken(); 4089 return success(); 4090 } 4091 4092 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 4093 /// string attribute named 'attrName'. 4094 ParseResult 4095 parseOptionalSymbolName(StringAttr &result, StringRef attrName, 4096 SmallVectorImpl<NamedAttribute> &attrs) override { 4097 Token atToken = parser.getToken(); 4098 if (atToken.isNot(Token::at_identifier)) 4099 return failure(); 4100 4101 result = getBuilder().getStringAttr(extractSymbolReference(atToken)); 4102 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 4103 parser.consumeToken(); 4104 return success(); 4105 } 4106 4107 //===--------------------------------------------------------------------===// 4108 // Operand Parsing 4109 //===--------------------------------------------------------------------===// 4110 4111 /// Parse a single operand. 4112 ParseResult parseOperand(OperandType &result) override { 4113 OperationParser::SSAUseInfo useInfo; 4114 if (parser.parseSSAUse(useInfo)) 4115 return failure(); 4116 4117 result = {useInfo.loc, useInfo.name, useInfo.number}; 4118 return success(); 4119 } 4120 4121 /// Parse zero or more SSA comma-separated operand references with a specified 4122 /// surrounding delimiter, and an optional required operand count. 4123 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 4124 int requiredOperandCount = -1, 4125 Delimiter delimiter = Delimiter::None) override { 4126 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 4127 requiredOperandCount, delimiter); 4128 } 4129 4130 /// Parse zero or more SSA comma-separated operand or region arguments with 4131 /// optional surrounding delimiter and required operand count. 4132 ParseResult 4133 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 4134 bool isOperandList, int requiredOperandCount = -1, 4135 Delimiter delimiter = Delimiter::None) { 4136 auto startLoc = parser.getToken().getLoc(); 4137 4138 // Handle delimiters. 4139 switch (delimiter) { 4140 case Delimiter::None: 4141 // Don't check for the absence of a delimiter if the number of operands 4142 // is unknown (and hence the operand list could be empty). 4143 if (requiredOperandCount == -1) 4144 break; 4145 // Token already matches an identifier and so can't be a delimiter. 4146 if (parser.getToken().is(Token::percent_identifier)) 4147 break; 4148 // Test against known delimiters. 4149 if (parser.getToken().is(Token::l_paren) || 4150 parser.getToken().is(Token::l_square)) 4151 return emitError(startLoc, "unexpected delimiter"); 4152 return emitError(startLoc, "invalid operand"); 4153 case Delimiter::OptionalParen: 4154 if (parser.getToken().isNot(Token::l_paren)) 4155 return success(); 4156 LLVM_FALLTHROUGH; 4157 case Delimiter::Paren: 4158 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 4159 return failure(); 4160 break; 4161 case Delimiter::OptionalSquare: 4162 if (parser.getToken().isNot(Token::l_square)) 4163 return success(); 4164 LLVM_FALLTHROUGH; 4165 case Delimiter::Square: 4166 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 4167 return failure(); 4168 break; 4169 } 4170 4171 // Check for zero operands. 4172 if (parser.getToken().is(Token::percent_identifier)) { 4173 do { 4174 OperandType operandOrArg; 4175 if (isOperandList ? parseOperand(operandOrArg) 4176 : parseRegionArgument(operandOrArg)) 4177 return failure(); 4178 result.push_back(operandOrArg); 4179 } while (parser.consumeIf(Token::comma)); 4180 } 4181 4182 // Handle delimiters. If we reach here, the optional delimiters were 4183 // present, so we need to parse their closing one. 4184 switch (delimiter) { 4185 case Delimiter::None: 4186 break; 4187 case Delimiter::OptionalParen: 4188 case Delimiter::Paren: 4189 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 4190 return failure(); 4191 break; 4192 case Delimiter::OptionalSquare: 4193 case Delimiter::Square: 4194 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 4195 return failure(); 4196 break; 4197 } 4198 4199 if (requiredOperandCount != -1 && 4200 result.size() != static_cast<size_t>(requiredOperandCount)) 4201 return emitError(startLoc, "expected ") 4202 << requiredOperandCount << " operands"; 4203 return success(); 4204 } 4205 4206 /// Parse zero or more trailing SSA comma-separated trailing operand 4207 /// references with a specified surrounding delimiter, and an optional 4208 /// required operand count. A leading comma is expected before the operands. 4209 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 4210 int requiredOperandCount, 4211 Delimiter delimiter) override { 4212 if (parser.getToken().is(Token::comma)) { 4213 parseComma(); 4214 return parseOperandList(result, requiredOperandCount, delimiter); 4215 } 4216 if (requiredOperandCount != -1) 4217 return emitError(parser.getToken().getLoc(), "expected ") 4218 << requiredOperandCount << " operands"; 4219 return success(); 4220 } 4221 4222 /// Resolve an operand to an SSA value, emitting an error on failure. 4223 ParseResult resolveOperand(const OperandType &operand, Type type, 4224 SmallVectorImpl<Value> &result) override { 4225 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4226 operand.location}; 4227 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 4228 result.push_back(value); 4229 return success(); 4230 } 4231 return failure(); 4232 } 4233 4234 /// Parse an AffineMap of SSA ids. 4235 ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 4236 Attribute &mapAttr, StringRef attrName, 4237 SmallVectorImpl<NamedAttribute> &attrs, 4238 Delimiter delimiter) override { 4239 SmallVector<OperandType, 2> dimOperands; 4240 SmallVector<OperandType, 1> symOperands; 4241 4242 auto parseElement = [&](bool isSymbol) -> ParseResult { 4243 OperandType operand; 4244 if (parseOperand(operand)) 4245 return failure(); 4246 if (isSymbol) 4247 symOperands.push_back(operand); 4248 else 4249 dimOperands.push_back(operand); 4250 return success(); 4251 }; 4252 4253 AffineMap map; 4254 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 4255 return failure(); 4256 // Add AffineMap attribute. 4257 if (map) { 4258 mapAttr = AffineMapAttr::get(map); 4259 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 4260 } 4261 4262 // Add dim operands before symbol operands in 'operands'. 4263 operands.assign(dimOperands.begin(), dimOperands.end()); 4264 operands.append(symOperands.begin(), symOperands.end()); 4265 return success(); 4266 } 4267 4268 //===--------------------------------------------------------------------===// 4269 // Region Parsing 4270 //===--------------------------------------------------------------------===// 4271 4272 /// Parse a region that takes `arguments` of `argTypes` types. This 4273 /// effectively defines the SSA values of `arguments` and assigns their type. 4274 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 4275 ArrayRef<Type> argTypes, 4276 bool enableNameShadowing) override { 4277 assert(arguments.size() == argTypes.size() && 4278 "mismatching number of arguments and types"); 4279 4280 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 4281 regionArguments; 4282 for (auto pair : llvm::zip(arguments, argTypes)) { 4283 const OperandType &operand = std::get<0>(pair); 4284 Type type = std::get<1>(pair); 4285 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4286 operand.location}; 4287 regionArguments.emplace_back(operandInfo, type); 4288 } 4289 4290 // Try to parse the region. 4291 assert((!enableNameShadowing || 4292 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) && 4293 "name shadowing is only allowed on isolated regions"); 4294 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 4295 return failure(); 4296 return success(); 4297 } 4298 4299 /// Parses a region if present. 4300 ParseResult parseOptionalRegion(Region ®ion, 4301 ArrayRef<OperandType> arguments, 4302 ArrayRef<Type> argTypes, 4303 bool enableNameShadowing) override { 4304 if (parser.getToken().isNot(Token::l_brace)) 4305 return success(); 4306 return parseRegion(region, arguments, argTypes, enableNameShadowing); 4307 } 4308 4309 /// Parse a region argument. The type of the argument will be resolved later 4310 /// by a call to `parseRegion`. 4311 ParseResult parseRegionArgument(OperandType &argument) override { 4312 return parseOperand(argument); 4313 } 4314 4315 /// Parse a region argument if present. 4316 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 4317 if (parser.getToken().isNot(Token::percent_identifier)) 4318 return success(); 4319 return parseRegionArgument(argument); 4320 } 4321 4322 ParseResult 4323 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 4324 int requiredOperandCount = -1, 4325 Delimiter delimiter = Delimiter::None) override { 4326 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 4327 requiredOperandCount, delimiter); 4328 } 4329 4330 //===--------------------------------------------------------------------===// 4331 // Successor Parsing 4332 //===--------------------------------------------------------------------===// 4333 4334 /// Parse a single operation successor and its operand list. 4335 ParseResult 4336 parseSuccessorAndUseList(Block *&dest, 4337 SmallVectorImpl<Value> &operands) override { 4338 return parser.parseSuccessorAndUseList(dest, operands); 4339 } 4340 4341 //===--------------------------------------------------------------------===// 4342 // Type Parsing 4343 //===--------------------------------------------------------------------===// 4344 4345 /// Parse a type. 4346 ParseResult parseType(Type &result) override { 4347 return failure(!(result = parser.parseType())); 4348 } 4349 4350 /// Parse an optional arrow followed by a type list. 4351 ParseResult 4352 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 4353 if (!parser.consumeIf(Token::arrow)) 4354 return success(); 4355 return parser.parseFunctionResultTypes(result); 4356 } 4357 4358 /// Parse a colon followed by a type. 4359 ParseResult parseColonType(Type &result) override { 4360 return failure(parser.parseToken(Token::colon, "expected ':'") || 4361 !(result = parser.parseType())); 4362 } 4363 4364 /// Parse a colon followed by a type list, which must have at least one type. 4365 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 4366 if (parser.parseToken(Token::colon, "expected ':'")) 4367 return failure(); 4368 return parser.parseTypeListNoParens(result); 4369 } 4370 4371 /// Parse an optional colon followed by a type list, which if present must 4372 /// have at least one type. 4373 ParseResult 4374 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 4375 if (!parser.consumeIf(Token::colon)) 4376 return success(); 4377 return parser.parseTypeListNoParens(result); 4378 } 4379 4380 private: 4381 /// The source location of the operation name. 4382 SMLoc nameLoc; 4383 4384 /// The abstract information of the operation. 4385 const AbstractOperation *opDefinition; 4386 4387 /// The main operation parser. 4388 OperationParser &parser; 4389 4390 /// A flag that indicates if any errors were emitted during parsing. 4391 bool emittedError = false; 4392 }; 4393 } // end anonymous namespace. 4394 4395 Operation *OperationParser::parseCustomOperation() { 4396 auto opLoc = getToken().getLoc(); 4397 auto opName = getTokenSpelling(); 4398 4399 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 4400 if (!opDefinition && !opName.contains('.')) { 4401 // If the operation name has no namespace prefix we treat it as a standard 4402 // operation and prefix it with "std". 4403 // TODO: Would it be better to just build a mapping of the registered 4404 // operations in the standard dialect? 4405 opDefinition = 4406 AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); 4407 } 4408 4409 if (!opDefinition) { 4410 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 4411 return nullptr; 4412 } 4413 4414 consumeToken(); 4415 4416 // If the custom op parser crashes, produce some indication to help 4417 // debugging. 4418 std::string opNameStr = opName.str(); 4419 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 4420 opNameStr.c_str()); 4421 4422 // Get location information for the operation. 4423 auto srcLocation = getEncodedSourceLocation(opLoc); 4424 4425 // Have the op implementation take a crack and parsing this. 4426 OperationState opState(srcLocation, opDefinition->name); 4427 CleanupOpStateRegions guard{opState}; 4428 CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this); 4429 if (opAsmParser.parseOperation(opState)) 4430 return nullptr; 4431 4432 // If it emitted an error, we failed. 4433 if (opAsmParser.didEmitError()) 4434 return nullptr; 4435 4436 // Parse a location if one is present. 4437 if (parseOptionalTrailingLocation(opState.location)) 4438 return nullptr; 4439 4440 // Otherwise, we succeeded. Use the state it parsed as our op information. 4441 return opBuilder.createOperation(opState); 4442 } 4443 4444 //===----------------------------------------------------------------------===// 4445 // Region Parsing 4446 //===----------------------------------------------------------------------===// 4447 4448 /// Region. 4449 /// 4450 /// region ::= '{' region-body 4451 /// 4452 ParseResult OperationParser::parseRegion( 4453 Region ®ion, 4454 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 4455 bool isIsolatedNameScope) { 4456 // Parse the '{'. 4457 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 4458 return failure(); 4459 4460 // Check for an empty region. 4461 if (entryArguments.empty() && consumeIf(Token::r_brace)) 4462 return success(); 4463 auto currentPt = opBuilder.saveInsertionPoint(); 4464 4465 // Push a new named value scope. 4466 pushSSANameScope(isIsolatedNameScope); 4467 4468 // Parse the first block directly to allow for it to be unnamed. 4469 Block *block = new Block(); 4470 4471 // Add arguments to the entry block. 4472 if (!entryArguments.empty()) { 4473 for (auto &placeholderArgPair : entryArguments) { 4474 auto &argInfo = placeholderArgPair.first; 4475 // Ensure that the argument was not already defined. 4476 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 4477 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 4478 "' is already in use") 4479 .attachNote(getEncodedSourceLocation(*defLoc)) 4480 << "previously referenced here"; 4481 } 4482 if (addDefinition(placeholderArgPair.first, 4483 block->addArgument(placeholderArgPair.second))) { 4484 delete block; 4485 return failure(); 4486 } 4487 } 4488 4489 // If we had named arguments, then don't allow a block name. 4490 if (getToken().is(Token::caret_identifier)) 4491 return emitError("invalid block name in region with named arguments"); 4492 } 4493 4494 if (parseBlock(block)) { 4495 delete block; 4496 return failure(); 4497 } 4498 4499 // Verify that no other arguments were parsed. 4500 if (!entryArguments.empty() && 4501 block->getNumArguments() > entryArguments.size()) { 4502 delete block; 4503 return emitError("entry block arguments were already defined"); 4504 } 4505 4506 // Parse the rest of the region. 4507 region.push_back(block); 4508 if (parseRegionBody(region)) 4509 return failure(); 4510 4511 // Pop the SSA value scope for this region. 4512 if (popSSANameScope()) 4513 return failure(); 4514 4515 // Reset the original insertion point. 4516 opBuilder.restoreInsertionPoint(currentPt); 4517 return success(); 4518 } 4519 4520 /// Region. 4521 /// 4522 /// region-body ::= block* '}' 4523 /// 4524 ParseResult OperationParser::parseRegionBody(Region ®ion) { 4525 // Parse the list of blocks. 4526 while (!consumeIf(Token::r_brace)) { 4527 Block *newBlock = nullptr; 4528 if (parseBlock(newBlock)) 4529 return failure(); 4530 region.push_back(newBlock); 4531 } 4532 return success(); 4533 } 4534 4535 //===----------------------------------------------------------------------===// 4536 // Block Parsing 4537 //===----------------------------------------------------------------------===// 4538 4539 /// Block declaration. 4540 /// 4541 /// block ::= block-label? operation* 4542 /// block-label ::= block-id block-arg-list? `:` 4543 /// block-id ::= caret-id 4544 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 4545 /// 4546 ParseResult OperationParser::parseBlock(Block *&block) { 4547 // The first block of a region may already exist, if it does the caret 4548 // identifier is optional. 4549 if (block && getToken().isNot(Token::caret_identifier)) 4550 return parseBlockBody(block); 4551 4552 SMLoc nameLoc = getToken().getLoc(); 4553 auto name = getTokenSpelling(); 4554 if (parseToken(Token::caret_identifier, "expected block name")) 4555 return failure(); 4556 4557 block = defineBlockNamed(name, nameLoc, block); 4558 4559 // Fail if the block was already defined. 4560 if (!block) 4561 return emitError(nameLoc, "redefinition of block '") << name << "'"; 4562 4563 // If an argument list is present, parse it. 4564 if (consumeIf(Token::l_paren)) { 4565 SmallVector<BlockArgument, 8> bbArgs; 4566 if (parseOptionalBlockArgList(bbArgs, block) || 4567 parseToken(Token::r_paren, "expected ')' to end argument list")) 4568 return failure(); 4569 } 4570 4571 if (parseToken(Token::colon, "expected ':' after block name")) 4572 return failure(); 4573 4574 return parseBlockBody(block); 4575 } 4576 4577 ParseResult OperationParser::parseBlockBody(Block *block) { 4578 // Set the insertion point to the end of the block to parse. 4579 opBuilder.setInsertionPointToEnd(block); 4580 4581 // Parse the list of operations that make up the body of the block. 4582 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 4583 if (parseOperation()) 4584 return failure(); 4585 4586 return success(); 4587 } 4588 4589 /// Get the block with the specified name, creating it if it doesn't already 4590 /// exist. The location specified is the point of use, which allows 4591 /// us to diagnose references to blocks that are not defined precisely. 4592 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 4593 auto &blockAndLoc = getBlockInfoByName(name); 4594 if (!blockAndLoc.first) { 4595 blockAndLoc = {new Block(), loc}; 4596 insertForwardRef(blockAndLoc.first, loc); 4597 } 4598 4599 return blockAndLoc.first; 4600 } 4601 4602 /// Define the block with the specified name. Returns the Block* or nullptr in 4603 /// the case of redefinition. 4604 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 4605 Block *existing) { 4606 auto &blockAndLoc = getBlockInfoByName(name); 4607 if (!blockAndLoc.first) { 4608 // If the caller provided a block, use it. Otherwise create a new one. 4609 if (!existing) 4610 existing = new Block(); 4611 blockAndLoc.first = existing; 4612 blockAndLoc.second = loc; 4613 return blockAndLoc.first; 4614 } 4615 4616 // Forward declarations are removed once defined, so if we are defining a 4617 // existing block and it is not a forward declaration, then it is a 4618 // redeclaration. 4619 if (!eraseForwardRef(blockAndLoc.first)) 4620 return nullptr; 4621 return blockAndLoc.first; 4622 } 4623 4624 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 4625 /// 4626 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 4627 /// 4628 ParseResult OperationParser::parseOptionalBlockArgList( 4629 SmallVectorImpl<BlockArgument> &results, Block *owner) { 4630 if (getToken().is(Token::r_brace)) 4631 return success(); 4632 4633 // If the block already has arguments, then we're handling the entry block. 4634 // Parse and register the names for the arguments, but do not add them. 4635 bool definingExistingArgs = owner->getNumArguments() != 0; 4636 unsigned nextArgument = 0; 4637 4638 return parseCommaSeparatedList([&]() -> ParseResult { 4639 return parseSSADefOrUseAndType( 4640 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 4641 // If this block did not have existing arguments, define a new one. 4642 if (!definingExistingArgs) 4643 return addDefinition(useInfo, owner->addArgument(type)); 4644 4645 // Otherwise, ensure that this argument has already been created. 4646 if (nextArgument >= owner->getNumArguments()) 4647 return emitError("too many arguments specified in argument list"); 4648 4649 // Finally, make sure the existing argument has the correct type. 4650 auto arg = owner->getArgument(nextArgument++); 4651 if (arg.getType() != type) 4652 return emitError("argument and block argument type mismatch"); 4653 return addDefinition(useInfo, arg); 4654 }); 4655 }); 4656 } 4657 4658 //===----------------------------------------------------------------------===// 4659 // Top-level entity parsing. 4660 //===----------------------------------------------------------------------===// 4661 4662 namespace { 4663 /// This parser handles entities that are only valid at the top level of the 4664 /// file. 4665 class ModuleParser : public Parser { 4666 public: 4667 explicit ModuleParser(ParserState &state) : Parser(state) {} 4668 4669 ParseResult parseModule(ModuleOp module); 4670 4671 private: 4672 /// Parse an attribute alias declaration. 4673 ParseResult parseAttributeAliasDef(); 4674 4675 /// Parse an attribute alias declaration. 4676 ParseResult parseTypeAliasDef(); 4677 }; 4678 } // end anonymous namespace 4679 4680 /// Parses an attribute alias declaration. 4681 /// 4682 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 4683 /// 4684 ParseResult ModuleParser::parseAttributeAliasDef() { 4685 assert(getToken().is(Token::hash_identifier)); 4686 StringRef aliasName = getTokenSpelling().drop_front(); 4687 4688 // Check for redefinitions. 4689 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 4690 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 4691 4692 // Make sure this isn't invading the dialect attribute namespace. 4693 if (aliasName.contains('.')) 4694 return emitError("attribute names with a '.' are reserved for " 4695 "dialect-defined names"); 4696 4697 consumeToken(Token::hash_identifier); 4698 4699 // Parse the '='. 4700 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 4701 return failure(); 4702 4703 // Parse the attribute value. 4704 Attribute attr = parseAttribute(); 4705 if (!attr) 4706 return failure(); 4707 4708 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 4709 return success(); 4710 } 4711 4712 /// Parse a type alias declaration. 4713 /// 4714 /// type-alias-def ::= '!' alias-name `=` 'type' type 4715 /// 4716 ParseResult ModuleParser::parseTypeAliasDef() { 4717 assert(getToken().is(Token::exclamation_identifier)); 4718 StringRef aliasName = getTokenSpelling().drop_front(); 4719 4720 // Check for redefinitions. 4721 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 4722 return emitError("redefinition of type alias id '" + aliasName + "'"); 4723 4724 // Make sure this isn't invading the dialect type namespace. 4725 if (aliasName.contains('.')) 4726 return emitError("type names with a '.' are reserved for " 4727 "dialect-defined names"); 4728 4729 consumeToken(Token::exclamation_identifier); 4730 4731 // Parse the '=' and 'type'. 4732 if (parseToken(Token::equal, "expected '=' in type alias definition") || 4733 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 4734 return failure(); 4735 4736 // Parse the type. 4737 Type aliasedType = parseType(); 4738 if (!aliasedType) 4739 return failure(); 4740 4741 // Register this alias with the parser state. 4742 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 4743 return success(); 4744 } 4745 4746 /// This is the top-level module parser. 4747 ParseResult ModuleParser::parseModule(ModuleOp module) { 4748 OperationParser opParser(getState(), module); 4749 4750 // Module itself is a name scope. 4751 opParser.pushSSANameScope(/*isIsolated=*/true); 4752 4753 while (true) { 4754 switch (getToken().getKind()) { 4755 default: 4756 // Parse a top-level operation. 4757 if (opParser.parseOperation()) 4758 return failure(); 4759 break; 4760 4761 // If we got to the end of the file, then we're done. 4762 case Token::eof: { 4763 if (opParser.finalize()) 4764 return failure(); 4765 4766 // Handle the case where the top level module was explicitly defined. 4767 auto &bodyBlocks = module.getBodyRegion().getBlocks(); 4768 auto &operations = bodyBlocks.front().getOperations(); 4769 assert(!operations.empty() && "expected a valid module terminator"); 4770 4771 // Check that the first operation is a module, and it is the only 4772 // non-terminator operation. 4773 ModuleOp nested = dyn_cast<ModuleOp>(operations.front()); 4774 if (nested && std::next(operations.begin(), 2) == operations.end()) { 4775 // Merge the data of the nested module operation into 'module'. 4776 module.setLoc(nested.getLoc()); 4777 module.setAttrs(nested.getOperation()->getAttrList()); 4778 bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks()); 4779 4780 // Erase the original module body. 4781 bodyBlocks.pop_front(); 4782 } 4783 4784 return opParser.popSSANameScope(); 4785 } 4786 4787 // If we got an error token, then the lexer already emitted an error, just 4788 // stop. Someday we could introduce error recovery if there was demand 4789 // for it. 4790 case Token::error: 4791 return failure(); 4792 4793 // Parse an attribute alias. 4794 case Token::hash_identifier: 4795 if (parseAttributeAliasDef()) 4796 return failure(); 4797 break; 4798 4799 // Parse a type alias. 4800 case Token::exclamation_identifier: 4801 if (parseTypeAliasDef()) 4802 return failure(); 4803 break; 4804 } 4805 } 4806 } 4807 4808 //===----------------------------------------------------------------------===// 4809 4810 /// This parses the file specified by the indicated SourceMgr and returns an 4811 /// MLIR module if it was valid. If not, it emits diagnostics and returns 4812 /// null. 4813 OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 4814 MLIRContext *context) { 4815 auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 4816 4817 // This is the result module we are parsing into. 4818 OwningModuleRef module(ModuleOp::create(FileLineColLoc::get( 4819 sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context))); 4820 4821 SymbolState aliasState; 4822 ParserState state(sourceMgr, context, aliasState); 4823 if (ModuleParser(state).parseModule(*module)) 4824 return nullptr; 4825 4826 // Make sure the parse module has no other structural problems detected by 4827 // the verifier. 4828 if (failed(verify(*module))) 4829 return nullptr; 4830 4831 return module; 4832 } 4833 4834 /// This parses the file specified by the indicated filename and returns an 4835 /// MLIR module if it was valid. If not, the error message is emitted through 4836 /// the error handler registered in the context, and a null pointer is returned. 4837 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4838 MLIRContext *context) { 4839 llvm::SourceMgr sourceMgr; 4840 return parseSourceFile(filename, sourceMgr, context); 4841 } 4842 4843 /// This parses the file specified by the indicated filename using the provided 4844 /// SourceMgr and returns an MLIR module if it was valid. If not, the error 4845 /// message is emitted through the error handler registered in the context, and 4846 /// a null pointer is returned. 4847 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4848 llvm::SourceMgr &sourceMgr, 4849 MLIRContext *context) { 4850 if (sourceMgr.getNumBuffers() != 0) { 4851 // TODO(b/136086478): Extend to support multiple buffers. 4852 emitError(mlir::UnknownLoc::get(context), 4853 "only main buffer parsed at the moment"); 4854 return nullptr; 4855 } 4856 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 4857 if (std::error_code error = file_or_err.getError()) { 4858 emitError(mlir::UnknownLoc::get(context), 4859 "could not open input file " + filename); 4860 return nullptr; 4861 } 4862 4863 // Load the MLIR module. 4864 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 4865 return parseSourceFile(sourceMgr, context); 4866 } 4867 4868 /// This parses the program string to a MLIR module if it was valid. If not, 4869 /// it emits diagnostics and returns null. 4870 OwningModuleRef mlir::parseSourceString(StringRef moduleStr, 4871 MLIRContext *context) { 4872 auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); 4873 if (!memBuffer) 4874 return nullptr; 4875 4876 SourceMgr sourceMgr; 4877 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 4878 return parseSourceFile(sourceMgr, context); 4879 } 4880 4881 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 4882 /// parsing failed, nullptr is returned. The number of bytes read from the input 4883 /// string is returned in 'numRead'. 4884 template <typename T, typename ParserFn> 4885 static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead, 4886 ParserFn &&parserFn) { 4887 SymbolState aliasState; 4888 return parseSymbol<T>( 4889 inputStr, context, aliasState, 4890 [&](Parser &parser) { 4891 SourceMgrDiagnosticHandler handler( 4892 const_cast<llvm::SourceMgr &>(parser.getSourceMgr()), 4893 parser.getContext()); 4894 return parserFn(parser); 4895 }, 4896 &numRead); 4897 } 4898 4899 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) { 4900 size_t numRead = 0; 4901 return parseAttribute(attrStr, context, numRead); 4902 } 4903 Attribute mlir::parseAttribute(StringRef attrStr, Type type) { 4904 size_t numRead = 0; 4905 return parseAttribute(attrStr, type, numRead); 4906 } 4907 4908 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context, 4909 size_t &numRead) { 4910 return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) { 4911 return parser.parseAttribute(); 4912 }); 4913 } 4914 Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) { 4915 return parseSymbol<Attribute>( 4916 attrStr, type.getContext(), numRead, 4917 [type](Parser &parser) { return parser.parseAttribute(type); }); 4918 } 4919 4920 Type mlir::parseType(StringRef typeStr, MLIRContext *context) { 4921 size_t numRead = 0; 4922 return parseType(typeStr, context, numRead); 4923 } 4924 4925 Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) { 4926 return parseSymbol<Type>(typeStr, context, numRead, 4927 [](Parser &parser) { return parser.parseType(); }); 4928 } 4929