1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Parser.h" 14 #include "Lexer.h" 15 #include "mlir/IR/AffineExpr.h" 16 #include "mlir/IR/AffineMap.h" 17 #include "mlir/IR/Attributes.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/Dialect.h" 20 #include "mlir/IR/DialectImplementation.h" 21 #include "mlir/IR/IntegerSet.h" 22 #include "mlir/IR/Location.h" 23 #include "mlir/IR/MLIRContext.h" 24 #include "mlir/IR/Module.h" 25 #include "mlir/IR/OpImplementation.h" 26 #include "mlir/IR/StandardTypes.h" 27 #include "mlir/IR/Verifier.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/ADT/bit.h" 33 #include "llvm/Support/PrettyStackTrace.h" 34 #include "llvm/Support/SMLoc.h" 35 #include "llvm/Support/SourceMgr.h" 36 #include <algorithm> 37 using namespace mlir; 38 using llvm::MemoryBuffer; 39 using llvm::SMLoc; 40 using llvm::SourceMgr; 41 42 namespace { 43 class Parser; 44 45 //===----------------------------------------------------------------------===// 46 // SymbolState 47 //===----------------------------------------------------------------------===// 48 49 /// This class contains record of any parsed top-level symbols. 50 struct SymbolState { 51 // A map from attribute alias identifier to Attribute. 52 llvm::StringMap<Attribute> attributeAliasDefinitions; 53 54 // A map from type alias identifier to Type. 55 llvm::StringMap<Type> typeAliasDefinitions; 56 57 /// A set of locations into the main parser memory buffer for each of the 58 /// active nested parsers. Given that some nested parsers, i.e. custom dialect 59 /// parsers, operate on a temporary memory buffer, this provides an anchor 60 /// point for emitting diagnostics. 61 SmallVector<llvm::SMLoc, 1> nestedParserLocs; 62 63 /// The top-level lexer that contains the original memory buffer provided by 64 /// the user. This is used by nested parsers to get a properly encoded source 65 /// location. 66 Lexer *topLevelLexer = nullptr; 67 }; 68 69 //===----------------------------------------------------------------------===// 70 // ParserState 71 //===----------------------------------------------------------------------===// 72 73 /// This class refers to all of the state maintained globally by the parser, 74 /// such as the current lexer position etc. 75 struct ParserState { 76 ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx, 77 SymbolState &symbols) 78 : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()), 79 symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) { 80 // Set the top level lexer for the symbol state if one doesn't exist. 81 if (!symbols.topLevelLexer) 82 symbols.topLevelLexer = &lex; 83 } 84 ~ParserState() { 85 // Reset the top level lexer if it refers the lexer in our state. 86 if (symbols.topLevelLexer == &lex) 87 symbols.topLevelLexer = nullptr; 88 } 89 ParserState(const ParserState &) = delete; 90 void operator=(const ParserState &) = delete; 91 92 /// The context we're parsing into. 93 MLIRContext *const context; 94 95 /// The lexer for the source file we're parsing. 96 Lexer lex; 97 98 /// This is the next token that hasn't been consumed yet. 99 Token curToken; 100 101 /// The current state for symbol parsing. 102 SymbolState &symbols; 103 104 /// The depth of this parser in the nested parsing stack. 105 size_t parserDepth; 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // Parser 110 //===----------------------------------------------------------------------===// 111 112 /// This class implement support for parsing global entities like types and 113 /// shared entities like SSA names. It is intended to be subclassed by 114 /// specialized subparsers that include state, e.g. when a local symbol table. 115 class Parser { 116 public: 117 Builder builder; 118 119 Parser(ParserState &state) : builder(state.context), state(state) {} 120 121 // Helper methods to get stuff from the parser-global state. 122 ParserState &getState() const { return state; } 123 MLIRContext *getContext() const { return state.context; } 124 const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } 125 126 /// Parse a comma-separated list of elements up until the specified end token. 127 ParseResult 128 parseCommaSeparatedListUntil(Token::Kind rightToken, 129 const std::function<ParseResult()> &parseElement, 130 bool allowEmptyList = true); 131 132 /// Parse a comma separated list of elements that must have at least one entry 133 /// in it. 134 ParseResult 135 parseCommaSeparatedList(const std::function<ParseResult()> &parseElement); 136 137 ParseResult parsePrettyDialectSymbolName(StringRef &prettyName); 138 139 // We have two forms of parsing methods - those that return a non-null 140 // pointer on success, and those that return a ParseResult to indicate whether 141 // they returned a failure. The second class fills in by-reference arguments 142 // as the results of their action. 143 144 //===--------------------------------------------------------------------===// 145 // Error Handling 146 //===--------------------------------------------------------------------===// 147 148 /// Emit an error and return failure. 149 InFlightDiagnostic emitError(const Twine &message = {}) { 150 return emitError(state.curToken.getLoc(), message); 151 } 152 InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {}); 153 154 /// Encode the specified source location information into an attribute for 155 /// attachment to the IR. 156 Location getEncodedSourceLocation(llvm::SMLoc loc) { 157 // If there are no active nested parsers, we can get the encoded source 158 // location directly. 159 if (state.parserDepth == 0) 160 return state.lex.getEncodedSourceLocation(loc); 161 // Otherwise, we need to re-encode it to point to the top level buffer. 162 return state.symbols.topLevelLexer->getEncodedSourceLocation( 163 remapLocationToTopLevelBuffer(loc)); 164 } 165 166 /// Remaps the given SMLoc to the top level lexer of the parser. This is used 167 /// to adjust locations of potentially nested parsers to ensure that they can 168 /// be emitted properly as diagnostics. 169 llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) { 170 // If there are no active nested parsers, we can return location directly. 171 SymbolState &symbols = state.symbols; 172 if (state.parserDepth == 0) 173 return loc; 174 assert(symbols.topLevelLexer && "expected valid top-level lexer"); 175 176 // Otherwise, we need to remap the location to the main parser. This is 177 // simply offseting the location onto the location of the last nested 178 // parser. 179 size_t offset = loc.getPointer() - state.lex.getBufferBegin(); 180 auto *rawLoc = 181 symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset; 182 return llvm::SMLoc::getFromPointer(rawLoc); 183 } 184 185 //===--------------------------------------------------------------------===// 186 // Token Parsing 187 //===--------------------------------------------------------------------===// 188 189 /// Return the current token the parser is inspecting. 190 const Token &getToken() const { return state.curToken; } 191 StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } 192 193 /// If the current token has the specified kind, consume it and return true. 194 /// If not, return false. 195 bool consumeIf(Token::Kind kind) { 196 if (state.curToken.isNot(kind)) 197 return false; 198 consumeToken(kind); 199 return true; 200 } 201 202 /// Advance the current lexer onto the next token. 203 void consumeToken() { 204 assert(state.curToken.isNot(Token::eof, Token::error) && 205 "shouldn't advance past EOF or errors"); 206 state.curToken = state.lex.lexToken(); 207 } 208 209 /// Advance the current lexer onto the next token, asserting what the expected 210 /// current token is. This is preferred to the above method because it leads 211 /// to more self-documenting code with better checking. 212 void consumeToken(Token::Kind kind) { 213 assert(state.curToken.is(kind) && "consumed an unexpected token"); 214 consumeToken(); 215 } 216 217 /// Consume the specified token if present and return success. On failure, 218 /// output a diagnostic and return failure. 219 ParseResult parseToken(Token::Kind expectedToken, const Twine &message); 220 221 //===--------------------------------------------------------------------===// 222 // Type Parsing 223 //===--------------------------------------------------------------------===// 224 225 ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements); 226 ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements); 227 ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements); 228 229 /// Optionally parse a type. 230 OptionalParseResult parseOptionalType(Type &type); 231 232 /// Parse an arbitrary type. 233 Type parseType(); 234 235 /// Parse a complex type. 236 Type parseComplexType(); 237 238 /// Parse an extended type. 239 Type parseExtendedType(); 240 241 /// Parse a function type. 242 Type parseFunctionType(); 243 244 /// Parse a memref type. 245 Type parseMemRefType(); 246 247 /// Parse a non function type. 248 Type parseNonFunctionType(); 249 250 /// Parse a tensor type. 251 Type parseTensorType(); 252 253 /// Parse a tuple type. 254 Type parseTupleType(); 255 256 /// Parse a vector type. 257 VectorType parseVectorType(); 258 ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 259 bool allowDynamic = true); 260 ParseResult parseXInDimensionList(); 261 262 /// Parse strided layout specification. 263 ParseResult parseStridedLayout(int64_t &offset, 264 SmallVectorImpl<int64_t> &strides); 265 266 // Parse a brace-delimiter list of comma-separated integers with `?` as an 267 // unknown marker. 268 ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions); 269 270 //===--------------------------------------------------------------------===// 271 // Attribute Parsing 272 //===--------------------------------------------------------------------===// 273 274 /// Parse an arbitrary attribute with an optional type. 275 Attribute parseAttribute(Type type = {}); 276 277 /// Parse an attribute dictionary. 278 ParseResult parseAttributeDict(NamedAttrList &attributes); 279 280 /// Parse an extended attribute. 281 Attribute parseExtendedAttr(Type type); 282 283 /// Parse a float attribute. 284 Attribute parseFloatAttr(Type type, bool isNegative); 285 286 /// Parse a decimal or a hexadecimal literal, which can be either an integer 287 /// or a float attribute. 288 Attribute parseDecOrHexAttr(Type type, bool isNegative); 289 290 /// Parse an opaque elements attribute. 291 Attribute parseOpaqueElementsAttr(Type attrType); 292 293 /// Parse a dense elements attribute. 294 Attribute parseDenseElementsAttr(Type attrType); 295 ShapedType parseElementsLiteralType(Type type); 296 297 /// Parse a sparse elements attribute. 298 Attribute parseSparseElementsAttr(Type attrType); 299 300 //===--------------------------------------------------------------------===// 301 // Location Parsing 302 //===--------------------------------------------------------------------===// 303 304 /// Parse an inline location. 305 ParseResult parseLocation(LocationAttr &loc); 306 307 /// Parse a raw location instance. 308 ParseResult parseLocationInstance(LocationAttr &loc); 309 310 /// Parse a callsite location instance. 311 ParseResult parseCallSiteLocation(LocationAttr &loc); 312 313 /// Parse a fused location instance. 314 ParseResult parseFusedLocation(LocationAttr &loc); 315 316 /// Parse a name or FileLineCol location instance. 317 ParseResult parseNameOrFileLineColLocation(LocationAttr &loc); 318 319 /// Parse an optional trailing location. 320 /// 321 /// trailing-location ::= (`loc` `(` location `)`)? 322 /// 323 ParseResult parseOptionalTrailingLocation(Location &loc) { 324 // If there is a 'loc' we parse a trailing location. 325 if (!getToken().is(Token::kw_loc)) 326 return success(); 327 328 // Parse the location. 329 LocationAttr directLoc; 330 if (parseLocation(directLoc)) 331 return failure(); 332 loc = directLoc; 333 return success(); 334 } 335 336 //===--------------------------------------------------------------------===// 337 // Affine Parsing 338 //===--------------------------------------------------------------------===// 339 340 /// Parse a reference to either an affine map, or an integer set. 341 ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, 342 IntegerSet &set); 343 ParseResult parseAffineMapReference(AffineMap &map); 344 ParseResult parseIntegerSetReference(IntegerSet &set); 345 346 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 347 ParseResult 348 parseAffineMapOfSSAIds(AffineMap &map, 349 function_ref<ParseResult(bool)> parseElement, 350 OpAsmParser::Delimiter delimiter); 351 352 private: 353 /// The Parser is subclassed and reinstantiated. Do not add additional 354 /// non-trivial state here, add it to the ParserState class. 355 ParserState &state; 356 }; 357 } // end anonymous namespace 358 359 //===----------------------------------------------------------------------===// 360 // Helper methods. 361 //===----------------------------------------------------------------------===// 362 363 /// Parse a comma separated list of elements that must have at least one entry 364 /// in it. 365 ParseResult Parser::parseCommaSeparatedList( 366 const std::function<ParseResult()> &parseElement) { 367 // Non-empty case starts with an element. 368 if (parseElement()) 369 return failure(); 370 371 // Otherwise we have a list of comma separated elements. 372 while (consumeIf(Token::comma)) { 373 if (parseElement()) 374 return failure(); 375 } 376 return success(); 377 } 378 379 /// Parse a comma-separated list of elements, terminated with an arbitrary 380 /// token. This allows empty lists if allowEmptyList is true. 381 /// 382 /// abstract-list ::= rightToken // if allowEmptyList == true 383 /// abstract-list ::= element (',' element)* rightToken 384 /// 385 ParseResult Parser::parseCommaSeparatedListUntil( 386 Token::Kind rightToken, const std::function<ParseResult()> &parseElement, 387 bool allowEmptyList) { 388 // Handle the empty case. 389 if (getToken().is(rightToken)) { 390 if (!allowEmptyList) 391 return emitError("expected list element"); 392 consumeToken(rightToken); 393 return success(); 394 } 395 396 if (parseCommaSeparatedList(parseElement) || 397 parseToken(rightToken, "expected ',' or '" + 398 Token::getTokenSpelling(rightToken) + "'")) 399 return failure(); 400 401 return success(); 402 } 403 404 //===----------------------------------------------------------------------===// 405 // DialectAsmParser 406 //===----------------------------------------------------------------------===// 407 408 namespace { 409 /// This class provides the main implementation of the DialectAsmParser that 410 /// allows for dialects to parse attributes and types. This allows for dialect 411 /// hooking into the main MLIR parsing logic. 412 class CustomDialectAsmParser : public DialectAsmParser { 413 public: 414 CustomDialectAsmParser(StringRef fullSpec, Parser &parser) 415 : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()), 416 parser(parser) {} 417 ~CustomDialectAsmParser() override {} 418 419 /// Emit a diagnostic at the specified location and return failure. 420 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 421 return parser.emitError(loc, message); 422 } 423 424 /// Return a builder which provides useful access to MLIRContext, global 425 /// objects like types and attributes. 426 Builder &getBuilder() const override { return parser.builder; } 427 428 /// Get the location of the next token and store it into the argument. This 429 /// always succeeds. 430 llvm::SMLoc getCurrentLocation() override { 431 return parser.getToken().getLoc(); 432 } 433 434 /// Return the location of the original name token. 435 llvm::SMLoc getNameLoc() const override { return nameLoc; } 436 437 /// Re-encode the given source location as an MLIR location and return it. 438 Location getEncodedSourceLoc(llvm::SMLoc loc) override { 439 return parser.getEncodedSourceLocation(loc); 440 } 441 442 /// Returns the full specification of the symbol being parsed. This allows 443 /// for using a separate parser if necessary. 444 StringRef getFullSymbolSpec() const override { return fullSpec; } 445 446 /// Parse a floating point value from the stream. 447 ParseResult parseFloat(double &result) override { 448 bool negative = parser.consumeIf(Token::minus); 449 Token curTok = parser.getToken(); 450 451 // Check for a floating point value. 452 if (curTok.is(Token::floatliteral)) { 453 auto val = curTok.getFloatingPointValue(); 454 if (!val.hasValue()) 455 return emitError(curTok.getLoc(), "floating point value too large"); 456 parser.consumeToken(Token::floatliteral); 457 result = negative ? -*val : *val; 458 return success(); 459 } 460 461 // TODO(riverriddle) support hex floating point values. 462 return emitError(getCurrentLocation(), "expected floating point literal"); 463 } 464 465 /// Parse an optional integer value from the stream. 466 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 467 Token curToken = parser.getToken(); 468 if (curToken.isNot(Token::integer, Token::minus)) 469 return llvm::None; 470 471 bool negative = parser.consumeIf(Token::minus); 472 Token curTok = parser.getToken(); 473 if (parser.parseToken(Token::integer, "expected integer value")) 474 return failure(); 475 476 auto val = curTok.getUInt64IntegerValue(); 477 if (!val) 478 return emitError(curTok.getLoc(), "integer value too large"); 479 result = negative ? -*val : *val; 480 return success(); 481 } 482 483 //===--------------------------------------------------------------------===// 484 // Token Parsing 485 //===--------------------------------------------------------------------===// 486 487 /// Parse a `->` token. 488 ParseResult parseArrow() override { 489 return parser.parseToken(Token::arrow, "expected '->'"); 490 } 491 492 /// Parses a `->` if present. 493 ParseResult parseOptionalArrow() override { 494 return success(parser.consumeIf(Token::arrow)); 495 } 496 497 /// Parse a '{' token. 498 ParseResult parseLBrace() override { 499 return parser.parseToken(Token::l_brace, "expected '{'"); 500 } 501 502 /// Parse a '{' token if present 503 ParseResult parseOptionalLBrace() override { 504 return success(parser.consumeIf(Token::l_brace)); 505 } 506 507 /// Parse a `}` token. 508 ParseResult parseRBrace() override { 509 return parser.parseToken(Token::r_brace, "expected '}'"); 510 } 511 512 /// Parse a `}` token if present 513 ParseResult parseOptionalRBrace() override { 514 return success(parser.consumeIf(Token::r_brace)); 515 } 516 517 /// Parse a `:` token. 518 ParseResult parseColon() override { 519 return parser.parseToken(Token::colon, "expected ':'"); 520 } 521 522 /// Parse a `:` token if present. 523 ParseResult parseOptionalColon() override { 524 return success(parser.consumeIf(Token::colon)); 525 } 526 527 /// Parse a `,` token. 528 ParseResult parseComma() override { 529 return parser.parseToken(Token::comma, "expected ','"); 530 } 531 532 /// Parse a `,` token if present. 533 ParseResult parseOptionalComma() override { 534 return success(parser.consumeIf(Token::comma)); 535 } 536 537 /// Parses a `...` if present. 538 ParseResult parseOptionalEllipsis() override { 539 return success(parser.consumeIf(Token::ellipsis)); 540 } 541 542 /// Parse a `=` token. 543 ParseResult parseEqual() override { 544 return parser.parseToken(Token::equal, "expected '='"); 545 } 546 547 /// Parse a '<' token. 548 ParseResult parseLess() override { 549 return parser.parseToken(Token::less, "expected '<'"); 550 } 551 552 /// Parse a `<` token if present. 553 ParseResult parseOptionalLess() override { 554 return success(parser.consumeIf(Token::less)); 555 } 556 557 /// Parse a '>' token. 558 ParseResult parseGreater() override { 559 return parser.parseToken(Token::greater, "expected '>'"); 560 } 561 562 /// Parse a `>` token if present. 563 ParseResult parseOptionalGreater() override { 564 return success(parser.consumeIf(Token::greater)); 565 } 566 567 /// Parse a `(` token. 568 ParseResult parseLParen() override { 569 return parser.parseToken(Token::l_paren, "expected '('"); 570 } 571 572 /// Parses a '(' if present. 573 ParseResult parseOptionalLParen() override { 574 return success(parser.consumeIf(Token::l_paren)); 575 } 576 577 /// Parse a `)` token. 578 ParseResult parseRParen() override { 579 return parser.parseToken(Token::r_paren, "expected ')'"); 580 } 581 582 /// Parses a ')' if present. 583 ParseResult parseOptionalRParen() override { 584 return success(parser.consumeIf(Token::r_paren)); 585 } 586 587 /// Parse a `[` token. 588 ParseResult parseLSquare() override { 589 return parser.parseToken(Token::l_square, "expected '['"); 590 } 591 592 /// Parses a '[' if present. 593 ParseResult parseOptionalLSquare() override { 594 return success(parser.consumeIf(Token::l_square)); 595 } 596 597 /// Parse a `]` token. 598 ParseResult parseRSquare() override { 599 return parser.parseToken(Token::r_square, "expected ']'"); 600 } 601 602 /// Parses a ']' if present. 603 ParseResult parseOptionalRSquare() override { 604 return success(parser.consumeIf(Token::r_square)); 605 } 606 607 /// Parses a '?' if present. 608 ParseResult parseOptionalQuestion() override { 609 return success(parser.consumeIf(Token::question)); 610 } 611 612 /// Parses a '*' if present. 613 ParseResult parseOptionalStar() override { 614 return success(parser.consumeIf(Token::star)); 615 } 616 617 /// Returns if the current token corresponds to a keyword. 618 bool isCurrentTokenAKeyword() const { 619 return parser.getToken().is(Token::bare_identifier) || 620 parser.getToken().isKeyword(); 621 } 622 623 /// Parse the given keyword if present. 624 ParseResult parseOptionalKeyword(StringRef keyword) override { 625 // Check that the current token has the same spelling. 626 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 627 return failure(); 628 parser.consumeToken(); 629 return success(); 630 } 631 632 /// Parse a keyword, if present, into 'keyword'. 633 ParseResult parseOptionalKeyword(StringRef *keyword) override { 634 // Check that the current token is a keyword. 635 if (!isCurrentTokenAKeyword()) 636 return failure(); 637 638 *keyword = parser.getTokenSpelling(); 639 parser.consumeToken(); 640 return success(); 641 } 642 643 //===--------------------------------------------------------------------===// 644 // Attribute Parsing 645 //===--------------------------------------------------------------------===// 646 647 /// Parse an arbitrary attribute and return it in result. 648 ParseResult parseAttribute(Attribute &result, Type type) override { 649 result = parser.parseAttribute(type); 650 return success(static_cast<bool>(result)); 651 } 652 653 /// Parse an affine map instance into 'map'. 654 ParseResult parseAffineMap(AffineMap &map) override { 655 return parser.parseAffineMapReference(map); 656 } 657 658 /// Parse an integer set instance into 'set'. 659 ParseResult printIntegerSet(IntegerSet &set) override { 660 return parser.parseIntegerSetReference(set); 661 } 662 663 //===--------------------------------------------------------------------===// 664 // Type Parsing 665 //===--------------------------------------------------------------------===// 666 667 ParseResult parseType(Type &result) override { 668 result = parser.parseType(); 669 return success(static_cast<bool>(result)); 670 } 671 672 ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions, 673 bool allowDynamic) override { 674 return parser.parseDimensionListRanked(dimensions, allowDynamic); 675 } 676 677 private: 678 /// The full symbol specification. 679 StringRef fullSpec; 680 681 /// The source location of the dialect symbol. 682 SMLoc nameLoc; 683 684 /// The main parser. 685 Parser &parser; 686 }; 687 } // namespace 688 689 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s, 690 /// and may be recursive. Return with the 'prettyName' StringRef encompassing 691 /// the entire pretty name. 692 /// 693 /// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>' 694 /// pretty-dialect-sym-contents ::= pretty-dialect-sym-body 695 /// | '(' pretty-dialect-sym-contents+ ')' 696 /// | '[' pretty-dialect-sym-contents+ ']' 697 /// | '{' pretty-dialect-sym-contents+ '}' 698 /// | '[^[<({>\])}\0]+' 699 /// 700 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) { 701 // Pretty symbol names are a relatively unstructured format that contains a 702 // series of properly nested punctuation, with anything else in the middle. 703 // Scan ahead to find it and consume it if successful, otherwise emit an 704 // error. 705 auto *curPtr = getTokenSpelling().data(); 706 707 SmallVector<char, 8> nestedPunctuation; 708 709 // Scan over the nested punctuation, bailing out on error and consuming until 710 // we find the end. We know that we're currently looking at the '<', so we 711 // can go until we find the matching '>' character. 712 assert(*curPtr == '<'); 713 do { 714 char c = *curPtr++; 715 switch (c) { 716 case '\0': 717 // This also handles the EOF case. 718 return emitError("unexpected nul or EOF in pretty dialect name"); 719 case '<': 720 case '[': 721 case '(': 722 case '{': 723 nestedPunctuation.push_back(c); 724 continue; 725 726 case '-': 727 // The sequence `->` is treated as special token. 728 if (*curPtr == '>') 729 ++curPtr; 730 continue; 731 732 case '>': 733 if (nestedPunctuation.pop_back_val() != '<') 734 return emitError("unbalanced '>' character in pretty dialect name"); 735 break; 736 case ']': 737 if (nestedPunctuation.pop_back_val() != '[') 738 return emitError("unbalanced ']' character in pretty dialect name"); 739 break; 740 case ')': 741 if (nestedPunctuation.pop_back_val() != '(') 742 return emitError("unbalanced ')' character in pretty dialect name"); 743 break; 744 case '}': 745 if (nestedPunctuation.pop_back_val() != '{') 746 return emitError("unbalanced '}' character in pretty dialect name"); 747 break; 748 749 default: 750 continue; 751 } 752 } while (!nestedPunctuation.empty()); 753 754 // Ok, we succeeded, remember where we stopped, reset the lexer to know it is 755 // consuming all this stuff, and return. 756 state.lex.resetPointer(curPtr); 757 758 unsigned length = curPtr - prettyName.begin(); 759 prettyName = StringRef(prettyName.begin(), length); 760 consumeToken(); 761 return success(); 762 } 763 764 /// Parse an extended dialect symbol. 765 template <typename Symbol, typename SymbolAliasMap, typename CreateFn> 766 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok, 767 SymbolAliasMap &aliases, 768 CreateFn &&createSymbol) { 769 // Parse the dialect namespace. 770 StringRef identifier = p.getTokenSpelling().drop_front(); 771 auto loc = p.getToken().getLoc(); 772 p.consumeToken(identifierTok); 773 774 // If there is no '<' token following this, and if the typename contains no 775 // dot, then we are parsing a symbol alias. 776 if (p.getToken().isNot(Token::less) && !identifier.contains('.')) { 777 // Check for an alias for this type. 778 auto aliasIt = aliases.find(identifier); 779 if (aliasIt == aliases.end()) 780 return (p.emitError("undefined symbol alias id '" + identifier + "'"), 781 nullptr); 782 return aliasIt->second; 783 } 784 785 // Otherwise, we are parsing a dialect-specific symbol. If the name contains 786 // a dot, then this is the "pretty" form. If not, it is the verbose form that 787 // looks like <"...">. 788 std::string symbolData; 789 auto dialectName = identifier; 790 791 // Handle the verbose form, where "identifier" is a simple dialect name. 792 if (!identifier.contains('.')) { 793 // Consume the '<'. 794 if (p.parseToken(Token::less, "expected '<' in dialect type")) 795 return nullptr; 796 797 // Parse the symbol specific data. 798 if (p.getToken().isNot(Token::string)) 799 return (p.emitError("expected string literal data in dialect symbol"), 800 nullptr); 801 symbolData = p.getToken().getStringValue(); 802 loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1); 803 p.consumeToken(Token::string); 804 805 // Consume the '>'. 806 if (p.parseToken(Token::greater, "expected '>' in dialect symbol")) 807 return nullptr; 808 } else { 809 // Ok, the dialect name is the part of the identifier before the dot, the 810 // part after the dot is the dialect's symbol, or the start thereof. 811 auto dotHalves = identifier.split('.'); 812 dialectName = dotHalves.first; 813 auto prettyName = dotHalves.second; 814 loc = llvm::SMLoc::getFromPointer(prettyName.data()); 815 816 // If the dialect's symbol is followed immediately by a <, then lex the body 817 // of it into prettyName. 818 if (p.getToken().is(Token::less) && 819 prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) { 820 if (p.parsePrettyDialectSymbolName(prettyName)) 821 return nullptr; 822 } 823 824 symbolData = prettyName.str(); 825 } 826 827 // Record the name location of the type remapped to the top level buffer. 828 llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc); 829 p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer); 830 831 // Call into the provided symbol construction function. 832 Symbol sym = createSymbol(dialectName, symbolData, loc); 833 834 // Pop the last parser location. 835 p.getState().symbols.nestedParserLocs.pop_back(); 836 return sym; 837 } 838 839 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 840 /// parsing failed, nullptr is returned. The number of bytes read from the input 841 /// string is returned in 'numRead'. 842 template <typename T, typename ParserFn> 843 static T parseSymbol(StringRef inputStr, MLIRContext *context, 844 SymbolState &symbolState, ParserFn &&parserFn, 845 size_t *numRead = nullptr) { 846 SourceMgr sourceMgr; 847 auto memBuffer = MemoryBuffer::getMemBuffer( 848 inputStr, /*BufferName=*/"<mlir_parser_buffer>", 849 /*RequiresNullTerminator=*/false); 850 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 851 ParserState state(sourceMgr, context, symbolState); 852 Parser parser(state); 853 854 Token startTok = parser.getToken(); 855 T symbol = parserFn(parser); 856 if (!symbol) 857 return T(); 858 859 // If 'numRead' is valid, then provide the number of bytes that were read. 860 Token endTok = parser.getToken(); 861 if (numRead) { 862 *numRead = static_cast<size_t>(endTok.getLoc().getPointer() - 863 startTok.getLoc().getPointer()); 864 865 // Otherwise, ensure that all of the tokens were parsed. 866 } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) { 867 parser.emitError(endTok.getLoc(), "encountered unexpected token"); 868 return T(); 869 } 870 return symbol; 871 } 872 873 //===----------------------------------------------------------------------===// 874 // Error Handling 875 //===----------------------------------------------------------------------===// 876 877 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 878 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 879 880 // If we hit a parse error in response to a lexer error, then the lexer 881 // already reported the error. 882 if (getToken().is(Token::error)) 883 diag.abandon(); 884 return diag; 885 } 886 887 //===----------------------------------------------------------------------===// 888 // Token Parsing 889 //===----------------------------------------------------------------------===// 890 891 /// Consume the specified token if present and return success. On failure, 892 /// output a diagnostic and return failure. 893 ParseResult Parser::parseToken(Token::Kind expectedToken, 894 const Twine &message) { 895 if (consumeIf(expectedToken)) 896 return success(); 897 return emitError(message); 898 } 899 900 //===----------------------------------------------------------------------===// 901 // Type Parsing 902 //===----------------------------------------------------------------------===// 903 904 /// Optionally parse a type. 905 OptionalParseResult Parser::parseOptionalType(Type &type) { 906 // There are many different starting tokens for a type, check them here. 907 switch (getToken().getKind()) { 908 case Token::l_paren: 909 case Token::kw_memref: 910 case Token::kw_tensor: 911 case Token::kw_complex: 912 case Token::kw_tuple: 913 case Token::kw_vector: 914 case Token::inttype: 915 case Token::kw_bf16: 916 case Token::kw_f16: 917 case Token::kw_f32: 918 case Token::kw_f64: 919 case Token::kw_index: 920 case Token::kw_none: 921 case Token::exclamation_identifier: 922 return failure(!(type = parseType())); 923 924 default: 925 return llvm::None; 926 } 927 } 928 929 /// Parse an arbitrary type. 930 /// 931 /// type ::= function-type 932 /// | non-function-type 933 /// 934 Type Parser::parseType() { 935 if (getToken().is(Token::l_paren)) 936 return parseFunctionType(); 937 return parseNonFunctionType(); 938 } 939 940 /// Parse a function result type. 941 /// 942 /// function-result-type ::= type-list-parens 943 /// | non-function-type 944 /// 945 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) { 946 if (getToken().is(Token::l_paren)) 947 return parseTypeListParens(elements); 948 949 Type t = parseNonFunctionType(); 950 if (!t) 951 return failure(); 952 elements.push_back(t); 953 return success(); 954 } 955 956 /// Parse a list of types without an enclosing parenthesis. The list must have 957 /// at least one member. 958 /// 959 /// type-list-no-parens ::= type (`,` type)* 960 /// 961 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) { 962 auto parseElt = [&]() -> ParseResult { 963 auto elt = parseType(); 964 elements.push_back(elt); 965 return elt ? success() : failure(); 966 }; 967 968 return parseCommaSeparatedList(parseElt); 969 } 970 971 /// Parse a parenthesized list of types. 972 /// 973 /// type-list-parens ::= `(` `)` 974 /// | `(` type-list-no-parens `)` 975 /// 976 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) { 977 if (parseToken(Token::l_paren, "expected '('")) 978 return failure(); 979 980 // Handle empty lists. 981 if (getToken().is(Token::r_paren)) 982 return consumeToken(), success(); 983 984 if (parseTypeListNoParens(elements) || 985 parseToken(Token::r_paren, "expected ')'")) 986 return failure(); 987 return success(); 988 } 989 990 /// Parse a complex type. 991 /// 992 /// complex-type ::= `complex` `<` type `>` 993 /// 994 Type Parser::parseComplexType() { 995 consumeToken(Token::kw_complex); 996 997 // Parse the '<'. 998 if (parseToken(Token::less, "expected '<' in complex type")) 999 return nullptr; 1000 1001 llvm::SMLoc elementTypeLoc = getToken().getLoc(); 1002 auto elementType = parseType(); 1003 if (!elementType || 1004 parseToken(Token::greater, "expected '>' in complex type")) 1005 return nullptr; 1006 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) 1007 return emitError(elementTypeLoc, "invalid element type for complex"), 1008 nullptr; 1009 1010 return ComplexType::get(elementType); 1011 } 1012 1013 /// Parse an extended type. 1014 /// 1015 /// extended-type ::= (dialect-type | type-alias) 1016 /// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>` 1017 /// dialect-type ::= `!` alias-name pretty-dialect-attribute-body? 1018 /// type-alias ::= `!` alias-name 1019 /// 1020 Type Parser::parseExtendedType() { 1021 return parseExtendedSymbol<Type>( 1022 *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions, 1023 [&](StringRef dialectName, StringRef symbolData, 1024 llvm::SMLoc loc) -> Type { 1025 // If we found a registered dialect, then ask it to parse the type. 1026 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1027 return parseSymbol<Type>( 1028 symbolData, state.context, state.symbols, [&](Parser &parser) { 1029 CustomDialectAsmParser customParser(symbolData, parser); 1030 return dialect->parseType(customParser); 1031 }); 1032 } 1033 1034 // Otherwise, form a new opaque type. 1035 return OpaqueType::getChecked( 1036 Identifier::get(dialectName, state.context), symbolData, 1037 state.context, getEncodedSourceLocation(loc)); 1038 }); 1039 } 1040 1041 /// Parse a function type. 1042 /// 1043 /// function-type ::= type-list-parens `->` function-result-type 1044 /// 1045 Type Parser::parseFunctionType() { 1046 assert(getToken().is(Token::l_paren)); 1047 1048 SmallVector<Type, 4> arguments, results; 1049 if (parseTypeListParens(arguments) || 1050 parseToken(Token::arrow, "expected '->' in function type") || 1051 parseFunctionResultTypes(results)) 1052 return nullptr; 1053 1054 return builder.getFunctionType(arguments, results); 1055 } 1056 1057 /// Parse the offset and strides from a strided layout specification. 1058 /// 1059 /// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list 1060 /// 1061 ParseResult Parser::parseStridedLayout(int64_t &offset, 1062 SmallVectorImpl<int64_t> &strides) { 1063 // Parse offset. 1064 consumeToken(Token::kw_offset); 1065 if (!consumeIf(Token::colon)) 1066 return emitError("expected colon after `offset` keyword"); 1067 auto maybeOffset = getToken().getUnsignedIntegerValue(); 1068 bool question = getToken().is(Token::question); 1069 if (!maybeOffset && !question) 1070 return emitError("invalid offset"); 1071 offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue()) 1072 : MemRefType::getDynamicStrideOrOffset(); 1073 consumeToken(); 1074 1075 if (!consumeIf(Token::comma)) 1076 return emitError("expected comma after offset value"); 1077 1078 // Parse stride list. 1079 if (!consumeIf(Token::kw_strides)) 1080 return emitError("expected `strides` keyword after offset specification"); 1081 if (!consumeIf(Token::colon)) 1082 return emitError("expected colon after `strides` keyword"); 1083 if (failed(parseStrideList(strides))) 1084 return emitError("invalid braces-enclosed stride list"); 1085 if (llvm::any_of(strides, [](int64_t st) { return st == 0; })) 1086 return emitError("invalid memref stride"); 1087 1088 return success(); 1089 } 1090 1091 /// Parse a memref type. 1092 /// 1093 /// memref-type ::= ranked-memref-type | unranked-memref-type 1094 /// 1095 /// ranked-memref-type ::= `memref` `<` dimension-list-ranked type 1096 /// (`,` semi-affine-map-composition)? (`,` 1097 /// memory-space)? `>` 1098 /// 1099 /// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>` 1100 /// 1101 /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map 1102 /// memory-space ::= integer-literal /* | TODO: address-space-id */ 1103 /// 1104 Type Parser::parseMemRefType() { 1105 consumeToken(Token::kw_memref); 1106 1107 if (parseToken(Token::less, "expected '<' in memref type")) 1108 return nullptr; 1109 1110 bool isUnranked; 1111 SmallVector<int64_t, 4> dimensions; 1112 1113 if (consumeIf(Token::star)) { 1114 // This is an unranked memref type. 1115 isUnranked = true; 1116 if (parseXInDimensionList()) 1117 return nullptr; 1118 1119 } else { 1120 isUnranked = false; 1121 if (parseDimensionListRanked(dimensions)) 1122 return nullptr; 1123 } 1124 1125 // Parse the element type. 1126 auto typeLoc = getToken().getLoc(); 1127 auto elementType = parseType(); 1128 if (!elementType) 1129 return nullptr; 1130 1131 // Check that memref is formed from allowed types. 1132 if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>() && 1133 !elementType.isa<ComplexType>()) 1134 return emitError(typeLoc, "invalid memref element type"), nullptr; 1135 1136 // Parse semi-affine-map-composition. 1137 SmallVector<AffineMap, 2> affineMapComposition; 1138 Optional<unsigned> memorySpace; 1139 unsigned numDims = dimensions.size(); 1140 1141 auto parseElt = [&]() -> ParseResult { 1142 // Check for the memory space. 1143 if (getToken().is(Token::integer)) { 1144 if (memorySpace) 1145 return emitError("multiple memory spaces specified in memref type"); 1146 memorySpace = getToken().getUnsignedIntegerValue(); 1147 if (!memorySpace.hasValue()) 1148 return emitError("invalid memory space in memref type"); 1149 consumeToken(Token::integer); 1150 return success(); 1151 } 1152 if (isUnranked) 1153 return emitError("cannot have affine map for unranked memref type"); 1154 if (memorySpace) 1155 return emitError("expected memory space to be last in memref type"); 1156 1157 AffineMap map; 1158 llvm::SMLoc mapLoc = getToken().getLoc(); 1159 if (getToken().is(Token::kw_offset)) { 1160 int64_t offset; 1161 SmallVector<int64_t, 4> strides; 1162 if (failed(parseStridedLayout(offset, strides))) 1163 return failure(); 1164 // Construct strided affine map. 1165 map = makeStridedLinearLayoutMap(strides, offset, state.context); 1166 } else { 1167 // Parse an affine map attribute. 1168 auto affineMap = parseAttribute(); 1169 if (!affineMap) 1170 return failure(); 1171 auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>(); 1172 if (!affineMapAttr) 1173 return emitError("expected affine map in memref type"); 1174 map = affineMapAttr.getValue(); 1175 } 1176 1177 if (map.getNumDims() != numDims) { 1178 size_t i = affineMapComposition.size(); 1179 return emitError(mapLoc, "memref affine map dimension mismatch between ") 1180 << (i == 0 ? Twine("memref rank") : "affine map " + Twine(i)) 1181 << " and affine map" << i + 1 << ": " << numDims 1182 << " != " << map.getNumDims(); 1183 } 1184 numDims = map.getNumResults(); 1185 affineMapComposition.push_back(map); 1186 return success(); 1187 }; 1188 1189 // Parse a list of mappings and address space if present. 1190 if (!consumeIf(Token::greater)) { 1191 // Parse comma separated list of affine maps, followed by memory space. 1192 if (parseToken(Token::comma, "expected ',' or '>' in memref type") || 1193 parseCommaSeparatedListUntil(Token::greater, parseElt, 1194 /*allowEmptyList=*/false)) { 1195 return nullptr; 1196 } 1197 } 1198 1199 if (isUnranked) 1200 return UnrankedMemRefType::get(elementType, memorySpace.getValueOr(0)); 1201 1202 return MemRefType::get(dimensions, elementType, affineMapComposition, 1203 memorySpace.getValueOr(0)); 1204 } 1205 1206 /// Parse any type except the function type. 1207 /// 1208 /// non-function-type ::= integer-type 1209 /// | index-type 1210 /// | float-type 1211 /// | extended-type 1212 /// | vector-type 1213 /// | tensor-type 1214 /// | memref-type 1215 /// | complex-type 1216 /// | tuple-type 1217 /// | none-type 1218 /// 1219 /// index-type ::= `index` 1220 /// float-type ::= `f16` | `bf16` | `f32` | `f64` 1221 /// none-type ::= `none` 1222 /// 1223 Type Parser::parseNonFunctionType() { 1224 switch (getToken().getKind()) { 1225 default: 1226 return (emitError("expected non-function type"), nullptr); 1227 case Token::kw_memref: 1228 return parseMemRefType(); 1229 case Token::kw_tensor: 1230 return parseTensorType(); 1231 case Token::kw_complex: 1232 return parseComplexType(); 1233 case Token::kw_tuple: 1234 return parseTupleType(); 1235 case Token::kw_vector: 1236 return parseVectorType(); 1237 // integer-type 1238 case Token::inttype: { 1239 auto width = getToken().getIntTypeBitwidth(); 1240 if (!width.hasValue()) 1241 return (emitError("invalid integer width"), nullptr); 1242 if (width.getValue() > IntegerType::kMaxWidth) { 1243 emitError(getToken().getLoc(), "integer bitwidth is limited to ") 1244 << IntegerType::kMaxWidth << " bits"; 1245 return nullptr; 1246 } 1247 1248 IntegerType::SignednessSemantics signSemantics = IntegerType::Signless; 1249 if (Optional<bool> signedness = getToken().getIntTypeSignedness()) 1250 signSemantics = *signedness ? IntegerType::Signed : IntegerType::Unsigned; 1251 1252 auto loc = getEncodedSourceLocation(getToken().getLoc()); 1253 consumeToken(Token::inttype); 1254 return IntegerType::getChecked(width.getValue(), signSemantics, loc); 1255 } 1256 1257 // float-type 1258 case Token::kw_bf16: 1259 consumeToken(Token::kw_bf16); 1260 return builder.getBF16Type(); 1261 case Token::kw_f16: 1262 consumeToken(Token::kw_f16); 1263 return builder.getF16Type(); 1264 case Token::kw_f32: 1265 consumeToken(Token::kw_f32); 1266 return builder.getF32Type(); 1267 case Token::kw_f64: 1268 consumeToken(Token::kw_f64); 1269 return builder.getF64Type(); 1270 1271 // index-type 1272 case Token::kw_index: 1273 consumeToken(Token::kw_index); 1274 return builder.getIndexType(); 1275 1276 // none-type 1277 case Token::kw_none: 1278 consumeToken(Token::kw_none); 1279 return builder.getNoneType(); 1280 1281 // extended type 1282 case Token::exclamation_identifier: 1283 return parseExtendedType(); 1284 } 1285 } 1286 1287 /// Parse a tensor type. 1288 /// 1289 /// tensor-type ::= `tensor` `<` dimension-list type `>` 1290 /// dimension-list ::= dimension-list-ranked | `*x` 1291 /// 1292 Type Parser::parseTensorType() { 1293 consumeToken(Token::kw_tensor); 1294 1295 if (parseToken(Token::less, "expected '<' in tensor type")) 1296 return nullptr; 1297 1298 bool isUnranked; 1299 SmallVector<int64_t, 4> dimensions; 1300 1301 if (consumeIf(Token::star)) { 1302 // This is an unranked tensor type. 1303 isUnranked = true; 1304 1305 if (parseXInDimensionList()) 1306 return nullptr; 1307 1308 } else { 1309 isUnranked = false; 1310 if (parseDimensionListRanked(dimensions)) 1311 return nullptr; 1312 } 1313 1314 // Parse the element type. 1315 auto elementTypeLoc = getToken().getLoc(); 1316 auto elementType = parseType(); 1317 if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) 1318 return nullptr; 1319 if (!TensorType::isValidElementType(elementType)) 1320 return emitError(elementTypeLoc, "invalid tensor element type"), nullptr; 1321 1322 if (isUnranked) 1323 return UnrankedTensorType::get(elementType); 1324 return RankedTensorType::get(dimensions, elementType); 1325 } 1326 1327 /// Parse a tuple type. 1328 /// 1329 /// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>` 1330 /// 1331 Type Parser::parseTupleType() { 1332 consumeToken(Token::kw_tuple); 1333 1334 // Parse the '<'. 1335 if (parseToken(Token::less, "expected '<' in tuple type")) 1336 return nullptr; 1337 1338 // Check for an empty tuple by directly parsing '>'. 1339 if (consumeIf(Token::greater)) 1340 return TupleType::get(getContext()); 1341 1342 // Parse the element types and the '>'. 1343 SmallVector<Type, 4> types; 1344 if (parseTypeListNoParens(types) || 1345 parseToken(Token::greater, "expected '>' in tuple type")) 1346 return nullptr; 1347 1348 return TupleType::get(types, getContext()); 1349 } 1350 1351 /// Parse a vector type. 1352 /// 1353 /// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>` 1354 /// non-empty-static-dimension-list ::= decimal-literal `x` 1355 /// static-dimension-list 1356 /// static-dimension-list ::= (decimal-literal `x`)* 1357 /// 1358 VectorType Parser::parseVectorType() { 1359 consumeToken(Token::kw_vector); 1360 1361 if (parseToken(Token::less, "expected '<' in vector type")) 1362 return nullptr; 1363 1364 SmallVector<int64_t, 4> dimensions; 1365 if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) 1366 return nullptr; 1367 if (dimensions.empty()) 1368 return (emitError("expected dimension size in vector type"), nullptr); 1369 if (any_of(dimensions, [](int64_t i) { return i <= 0; })) 1370 return emitError(getToken().getLoc(), 1371 "vector types must have positive constant sizes"), 1372 nullptr; 1373 1374 // Parse the element type. 1375 auto typeLoc = getToken().getLoc(); 1376 auto elementType = parseType(); 1377 if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) 1378 return nullptr; 1379 if (!VectorType::isValidElementType(elementType)) 1380 return emitError(typeLoc, "vector elements must be int or float type"), 1381 nullptr; 1382 1383 return VectorType::get(dimensions, elementType); 1384 } 1385 1386 /// Parse a dimension list of a tensor or memref type. This populates the 1387 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and 1388 /// errors out on `?` otherwise. 1389 /// 1390 /// dimension-list-ranked ::= (dimension `x`)* 1391 /// dimension ::= `?` | decimal-literal 1392 /// 1393 /// When `allowDynamic` is not set, this is used to parse: 1394 /// 1395 /// static-dimension-list ::= (decimal-literal `x`)* 1396 ParseResult 1397 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 1398 bool allowDynamic) { 1399 while (getToken().isAny(Token::integer, Token::question)) { 1400 if (consumeIf(Token::question)) { 1401 if (!allowDynamic) 1402 return emitError("expected static shape"); 1403 dimensions.push_back(-1); 1404 } else { 1405 // Hexadecimal integer literals (starting with `0x`) are not allowed in 1406 // aggregate type declarations. Therefore, `0xf32` should be processed as 1407 // a sequence of separate elements `0`, `x`, `f32`. 1408 if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { 1409 // We can get here only if the token is an integer literal. Hexadecimal 1410 // integer literals can only start with `0x` (`1x` wouldn't lex as a 1411 // literal, just `1` would, at which point we don't get into this 1412 // branch). 1413 assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); 1414 dimensions.push_back(0); 1415 state.lex.resetPointer(getTokenSpelling().data() + 1); 1416 consumeToken(); 1417 } else { 1418 // Make sure this integer value is in bound and valid. 1419 auto dimension = getToken().getUnsignedIntegerValue(); 1420 if (!dimension.hasValue()) 1421 return emitError("invalid dimension"); 1422 dimensions.push_back((int64_t)dimension.getValue()); 1423 consumeToken(Token::integer); 1424 } 1425 } 1426 1427 // Make sure we have an 'x' or something like 'xbf32'. 1428 if (parseXInDimensionList()) 1429 return failure(); 1430 } 1431 1432 return success(); 1433 } 1434 1435 /// Parse an 'x' token in a dimension list, handling the case where the x is 1436 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next 1437 /// token. 1438 ParseResult Parser::parseXInDimensionList() { 1439 if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') 1440 return emitError("expected 'x' in dimension list"); 1441 1442 // If we had a prefix of 'x', lex the next token immediately after the 'x'. 1443 if (getTokenSpelling().size() != 1) 1444 state.lex.resetPointer(getTokenSpelling().data() + 1); 1445 1446 // Consume the 'x'. 1447 consumeToken(Token::bare_identifier); 1448 1449 return success(); 1450 } 1451 1452 // Parse a comma-separated list of dimensions, possibly empty: 1453 // stride-list ::= `[` (dimension (`,` dimension)*)? `]` 1454 ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) { 1455 if (!consumeIf(Token::l_square)) 1456 return failure(); 1457 // Empty list early exit. 1458 if (consumeIf(Token::r_square)) 1459 return success(); 1460 while (true) { 1461 if (consumeIf(Token::question)) { 1462 dimensions.push_back(MemRefType::getDynamicStrideOrOffset()); 1463 } else { 1464 // This must be an integer value. 1465 int64_t val; 1466 if (getToken().getSpelling().getAsInteger(10, val)) 1467 return emitError("invalid integer value: ") << getToken().getSpelling(); 1468 // Make sure it is not the one value for `?`. 1469 if (ShapedType::isDynamic(val)) 1470 return emitError("invalid integer value: ") 1471 << getToken().getSpelling() 1472 << ", use `?` to specify a dynamic dimension"; 1473 dimensions.push_back(val); 1474 consumeToken(Token::integer); 1475 } 1476 if (!consumeIf(Token::comma)) 1477 break; 1478 } 1479 if (!consumeIf(Token::r_square)) 1480 return failure(); 1481 return success(); 1482 } 1483 1484 //===----------------------------------------------------------------------===// 1485 // Attribute parsing. 1486 //===----------------------------------------------------------------------===// 1487 1488 /// Return the symbol reference referred to by the given token, that is known to 1489 /// be an @-identifier. 1490 static std::string extractSymbolReference(Token tok) { 1491 assert(tok.is(Token::at_identifier) && "expected valid @-identifier"); 1492 StringRef nameStr = tok.getSpelling().drop_front(); 1493 1494 // Check to see if the reference is a string literal, or a bare identifier. 1495 if (nameStr.front() == '"') 1496 return tok.getStringValue(); 1497 return std::string(nameStr); 1498 } 1499 1500 /// Parse an arbitrary attribute. 1501 /// 1502 /// attribute-value ::= `unit` 1503 /// | bool-literal 1504 /// | integer-literal (`:` (index-type | integer-type))? 1505 /// | float-literal (`:` float-type)? 1506 /// | string-literal (`:` type)? 1507 /// | type 1508 /// | `[` (attribute-value (`,` attribute-value)*)? `]` 1509 /// | `{` (attribute-entry (`,` attribute-entry)*)? `}` 1510 /// | symbol-ref-id (`::` symbol-ref-id)* 1511 /// | `dense` `<` attribute-value `>` `:` 1512 /// (tensor-type | vector-type) 1513 /// | `sparse` `<` attribute-value `,` attribute-value `>` 1514 /// `:` (tensor-type | vector-type) 1515 /// | `opaque` `<` dialect-namespace `,` hex-string-literal 1516 /// `>` `:` (tensor-type | vector-type) 1517 /// | extended-attribute 1518 /// 1519 Attribute Parser::parseAttribute(Type type) { 1520 switch (getToken().getKind()) { 1521 // Parse an AffineMap or IntegerSet attribute. 1522 case Token::kw_affine_map: { 1523 consumeToken(Token::kw_affine_map); 1524 1525 AffineMap map; 1526 if (parseToken(Token::less, "expected '<' in affine map") || 1527 parseAffineMapReference(map) || 1528 parseToken(Token::greater, "expected '>' in affine map")) 1529 return Attribute(); 1530 return AffineMapAttr::get(map); 1531 } 1532 case Token::kw_affine_set: { 1533 consumeToken(Token::kw_affine_set); 1534 1535 IntegerSet set; 1536 if (parseToken(Token::less, "expected '<' in integer set") || 1537 parseIntegerSetReference(set) || 1538 parseToken(Token::greater, "expected '>' in integer set")) 1539 return Attribute(); 1540 return IntegerSetAttr::get(set); 1541 } 1542 1543 // Parse an array attribute. 1544 case Token::l_square: { 1545 consumeToken(Token::l_square); 1546 1547 SmallVector<Attribute, 4> elements; 1548 auto parseElt = [&]() -> ParseResult { 1549 elements.push_back(parseAttribute()); 1550 return elements.back() ? success() : failure(); 1551 }; 1552 1553 if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) 1554 return nullptr; 1555 return builder.getArrayAttr(elements); 1556 } 1557 1558 // Parse a boolean attribute. 1559 case Token::kw_false: 1560 consumeToken(Token::kw_false); 1561 return builder.getBoolAttr(false); 1562 case Token::kw_true: 1563 consumeToken(Token::kw_true); 1564 return builder.getBoolAttr(true); 1565 1566 // Parse a dense elements attribute. 1567 case Token::kw_dense: 1568 return parseDenseElementsAttr(type); 1569 1570 // Parse a dictionary attribute. 1571 case Token::l_brace: { 1572 NamedAttrList elements; 1573 if (parseAttributeDict(elements)) 1574 return nullptr; 1575 return elements.getDictionary(getContext()); 1576 } 1577 1578 // Parse an extended attribute, i.e. alias or dialect attribute. 1579 case Token::hash_identifier: 1580 return parseExtendedAttr(type); 1581 1582 // Parse floating point and integer attributes. 1583 case Token::floatliteral: 1584 return parseFloatAttr(type, /*isNegative=*/false); 1585 case Token::integer: 1586 return parseDecOrHexAttr(type, /*isNegative=*/false); 1587 case Token::minus: { 1588 consumeToken(Token::minus); 1589 if (getToken().is(Token::integer)) 1590 return parseDecOrHexAttr(type, /*isNegative=*/true); 1591 if (getToken().is(Token::floatliteral)) 1592 return parseFloatAttr(type, /*isNegative=*/true); 1593 1594 return (emitError("expected constant integer or floating point value"), 1595 nullptr); 1596 } 1597 1598 // Parse a location attribute. 1599 case Token::kw_loc: { 1600 LocationAttr attr; 1601 return failed(parseLocation(attr)) ? Attribute() : attr; 1602 } 1603 1604 // Parse an opaque elements attribute. 1605 case Token::kw_opaque: 1606 return parseOpaqueElementsAttr(type); 1607 1608 // Parse a sparse elements attribute. 1609 case Token::kw_sparse: 1610 return parseSparseElementsAttr(type); 1611 1612 // Parse a string attribute. 1613 case Token::string: { 1614 auto val = getToken().getStringValue(); 1615 consumeToken(Token::string); 1616 // Parse the optional trailing colon type if one wasn't explicitly provided. 1617 if (!type && consumeIf(Token::colon) && !(type = parseType())) 1618 return Attribute(); 1619 1620 return type ? StringAttr::get(val, type) 1621 : StringAttr::get(val, getContext()); 1622 } 1623 1624 // Parse a symbol reference attribute. 1625 case Token::at_identifier: { 1626 std::string nameStr = extractSymbolReference(getToken()); 1627 consumeToken(Token::at_identifier); 1628 1629 // Parse any nested references. 1630 std::vector<FlatSymbolRefAttr> nestedRefs; 1631 while (getToken().is(Token::colon)) { 1632 // Check for the '::' prefix. 1633 const char *curPointer = getToken().getLoc().getPointer(); 1634 consumeToken(Token::colon); 1635 if (!consumeIf(Token::colon)) { 1636 state.lex.resetPointer(curPointer); 1637 consumeToken(); 1638 break; 1639 } 1640 // Parse the reference itself. 1641 auto curLoc = getToken().getLoc(); 1642 if (getToken().isNot(Token::at_identifier)) { 1643 emitError(curLoc, "expected nested symbol reference identifier"); 1644 return Attribute(); 1645 } 1646 1647 std::string nameStr = extractSymbolReference(getToken()); 1648 consumeToken(Token::at_identifier); 1649 nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext())); 1650 } 1651 1652 return builder.getSymbolRefAttr(nameStr, nestedRefs); 1653 } 1654 1655 // Parse a 'unit' attribute. 1656 case Token::kw_unit: 1657 consumeToken(Token::kw_unit); 1658 return builder.getUnitAttr(); 1659 1660 default: 1661 // Parse a type attribute. 1662 if (Type type = parseType()) 1663 return TypeAttr::get(type); 1664 return nullptr; 1665 } 1666 } 1667 1668 /// Attribute dictionary. 1669 /// 1670 /// attribute-dict ::= `{` `}` 1671 /// | `{` attribute-entry (`,` attribute-entry)* `}` 1672 /// attribute-entry ::= (bare-id | string-literal) `=` attribute-value 1673 /// 1674 ParseResult Parser::parseAttributeDict(NamedAttrList &attributes) { 1675 if (parseToken(Token::l_brace, "expected '{' in attribute dictionary")) 1676 return failure(); 1677 1678 llvm::SmallDenseSet<Identifier> seenKeys; 1679 auto parseElt = [&]() -> ParseResult { 1680 // The name of an attribute can either be a bare identifier, or a string. 1681 Optional<Identifier> nameId; 1682 if (getToken().is(Token::string)) 1683 nameId = builder.getIdentifier(getToken().getStringValue()); 1684 else if (getToken().isAny(Token::bare_identifier, Token::inttype) || 1685 getToken().isKeyword()) 1686 nameId = builder.getIdentifier(getTokenSpelling()); 1687 else 1688 return emitError("expected attribute name"); 1689 if (!seenKeys.insert(*nameId).second) 1690 return emitError("duplicate key in dictionary attribute"); 1691 consumeToken(); 1692 1693 // Try to parse the '=' for the attribute value. 1694 if (!consumeIf(Token::equal)) { 1695 // If there is no '=', we treat this as a unit attribute. 1696 attributes.push_back({*nameId, builder.getUnitAttr()}); 1697 return success(); 1698 } 1699 1700 auto attr = parseAttribute(); 1701 if (!attr) 1702 return failure(); 1703 attributes.push_back({*nameId, attr}); 1704 return success(); 1705 }; 1706 1707 if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) 1708 return failure(); 1709 1710 return success(); 1711 } 1712 1713 /// Parse an extended attribute. 1714 /// 1715 /// extended-attribute ::= (dialect-attribute | attribute-alias) 1716 /// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>` 1717 /// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body? 1718 /// attribute-alias ::= `#` alias-name 1719 /// 1720 Attribute Parser::parseExtendedAttr(Type type) { 1721 Attribute attr = parseExtendedSymbol<Attribute>( 1722 *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions, 1723 [&](StringRef dialectName, StringRef symbolData, 1724 llvm::SMLoc loc) -> Attribute { 1725 // Parse an optional trailing colon type. 1726 Type attrType = type; 1727 if (consumeIf(Token::colon) && !(attrType = parseType())) 1728 return Attribute(); 1729 1730 // If we found a registered dialect, then ask it to parse the attribute. 1731 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1732 return parseSymbol<Attribute>( 1733 symbolData, state.context, state.symbols, [&](Parser &parser) { 1734 CustomDialectAsmParser customParser(symbolData, parser); 1735 return dialect->parseAttribute(customParser, attrType); 1736 }); 1737 } 1738 1739 // Otherwise, form a new opaque attribute. 1740 return OpaqueAttr::getChecked( 1741 Identifier::get(dialectName, state.context), symbolData, 1742 attrType ? attrType : NoneType::get(state.context), 1743 getEncodedSourceLocation(loc)); 1744 }); 1745 1746 // Ensure that the attribute has the same type as requested. 1747 if (attr && type && attr.getType() != type) { 1748 emitError("attribute type different than expected: expected ") 1749 << type << ", but got " << attr.getType(); 1750 return nullptr; 1751 } 1752 return attr; 1753 } 1754 1755 /// Parse a float attribute. 1756 Attribute Parser::parseFloatAttr(Type type, bool isNegative) { 1757 auto val = getToken().getFloatingPointValue(); 1758 if (!val.hasValue()) 1759 return (emitError("floating point value too large for attribute"), nullptr); 1760 consumeToken(Token::floatliteral); 1761 if (!type) { 1762 // Default to F64 when no type is specified. 1763 if (!consumeIf(Token::colon)) 1764 type = builder.getF64Type(); 1765 else if (!(type = parseType())) 1766 return nullptr; 1767 } 1768 if (!type.isa<FloatType>()) 1769 return (emitError("floating point value not valid for specified type"), 1770 nullptr); 1771 return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue()); 1772 } 1773 1774 /// Construct a float attribute bitwise equivalent to the integer literal. 1775 static Optional<APFloat> buildHexadecimalFloatLiteral(Parser *p, FloatType type, 1776 uint64_t value) { 1777 if (type.isF64()) 1778 return APFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value)); 1779 1780 APInt apInt(type.getWidth(), value); 1781 if (apInt != value) { 1782 p->emitError("hexadecimal float constant out of range for type"); 1783 return llvm::None; 1784 } 1785 return APFloat(type.getFloatSemantics(), apInt); 1786 } 1787 1788 /// Construct an APint from a parsed value, a known attribute type and 1789 /// sign. 1790 static Optional<APInt> buildAttributeAPInt(Type type, bool isNegative, 1791 StringRef spelling) { 1792 // Parse the integer value into an APInt that is big enough to hold the value. 1793 APInt result; 1794 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1795 if (spelling.getAsInteger(isHex ? 0 : 10, result)) 1796 return llvm::None; 1797 1798 // Extend or truncate the bitwidth to the right size. 1799 unsigned width = type.isIndex() ? IndexType::kInternalStorageBitWidth 1800 : type.getIntOrFloatBitWidth(); 1801 if (width > result.getBitWidth()) { 1802 result = result.zext(width); 1803 } else if (width < result.getBitWidth()) { 1804 // The parser can return an unnecessarily wide result with leading zeros. 1805 // This isn't a problem, but truncating off bits is bad. 1806 if (result.countLeadingZeros() < result.getBitWidth() - width) 1807 return llvm::None; 1808 1809 result = result.trunc(width); 1810 } 1811 1812 if (isNegative) { 1813 // The value is negative, we have an overflow if the sign bit is not set 1814 // in the negated apInt. 1815 result.negate(); 1816 if (!result.isSignBitSet()) 1817 return llvm::None; 1818 } else if ((type.isSignedInteger() || type.isIndex()) && 1819 result.isSignBitSet()) { 1820 // The value is a positive signed integer or index, 1821 // we have an overflow if the sign bit is set. 1822 return llvm::None; 1823 } 1824 1825 return result; 1826 } 1827 1828 /// Parse a decimal or a hexadecimal literal, which can be either an integer 1829 /// or a float attribute. 1830 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) { 1831 // Remember if the literal is hexadecimal. 1832 StringRef spelling = getToken().getSpelling(); 1833 auto loc = state.curToken.getLoc(); 1834 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1835 1836 consumeToken(Token::integer); 1837 if (!type) { 1838 // Default to i64 if not type is specified. 1839 if (!consumeIf(Token::colon)) 1840 type = builder.getIntegerType(64); 1841 else if (!(type = parseType())) 1842 return nullptr; 1843 } 1844 1845 if (auto floatType = type.dyn_cast<FloatType>()) { 1846 if (isNegative) 1847 return emitError( 1848 loc, 1849 "hexadecimal float literal should not have a leading minus"), 1850 nullptr; 1851 if (!isHex) { 1852 emitError(loc, "unexpected decimal integer literal for a float attribute") 1853 .attachNote() 1854 << "add a trailing dot to make the literal a float"; 1855 return nullptr; 1856 } 1857 1858 auto val = Token::getUInt64IntegerValue(spelling); 1859 if (!val.hasValue()) 1860 return emitError("integer constant out of range for attribute"), nullptr; 1861 1862 // Construct a float attribute bitwise equivalent to the integer literal. 1863 Optional<APFloat> apVal = 1864 buildHexadecimalFloatLiteral(this, floatType, *val); 1865 return apVal ? FloatAttr::get(floatType, *apVal) : Attribute(); 1866 } 1867 1868 if (!type.isa<IntegerType>() && !type.isa<IndexType>()) 1869 return emitError(loc, "integer literal not valid for specified type"), 1870 nullptr; 1871 1872 if (isNegative && type.isUnsignedInteger()) { 1873 emitError(loc, 1874 "negative integer literal not valid for unsigned integer type"); 1875 return nullptr; 1876 } 1877 1878 Optional<APInt> apInt = buildAttributeAPInt(type, isNegative, spelling); 1879 if (!apInt) 1880 return emitError(loc, "integer constant out of range for attribute"), 1881 nullptr; 1882 return builder.getIntegerAttr(type, *apInt); 1883 } 1884 1885 /// Parse elements values stored within a hex etring. On success, the values are 1886 /// stored into 'result'. 1887 static ParseResult parseElementAttrHexValues(Parser &parser, Token tok, 1888 std::string &result) { 1889 std::string val = tok.getStringValue(); 1890 if (val.size() < 2 || val[0] != '0' || val[1] != 'x') 1891 return parser.emitError(tok.getLoc(), 1892 "elements hex string should start with '0x'"); 1893 1894 StringRef hexValues = StringRef(val).drop_front(2); 1895 if (!llvm::all_of(hexValues, llvm::isHexDigit)) 1896 return parser.emitError(tok.getLoc(), 1897 "elements hex string only contains hex digits"); 1898 1899 result = llvm::fromHex(hexValues); 1900 return success(); 1901 } 1902 1903 /// Parse an opaque elements attribute. 1904 Attribute Parser::parseOpaqueElementsAttr(Type attrType) { 1905 consumeToken(Token::kw_opaque); 1906 if (parseToken(Token::less, "expected '<' after 'opaque'")) 1907 return nullptr; 1908 1909 if (getToken().isNot(Token::string)) 1910 return (emitError("expected dialect namespace"), nullptr); 1911 1912 auto name = getToken().getStringValue(); 1913 auto *dialect = builder.getContext()->getRegisteredDialect(name); 1914 // TODO(shpeisman): Allow for having an unknown dialect on an opaque 1915 // attribute. Otherwise, it can't be roundtripped without having the dialect 1916 // registered. 1917 if (!dialect) 1918 return (emitError("no registered dialect with namespace '" + name + "'"), 1919 nullptr); 1920 consumeToken(Token::string); 1921 1922 if (parseToken(Token::comma, "expected ','")) 1923 return nullptr; 1924 1925 Token hexTok = getToken(); 1926 if (parseToken(Token::string, "elements hex string should start with '0x'") || 1927 parseToken(Token::greater, "expected '>'")) 1928 return nullptr; 1929 auto type = parseElementsLiteralType(attrType); 1930 if (!type) 1931 return nullptr; 1932 1933 std::string data; 1934 if (parseElementAttrHexValues(*this, hexTok, data)) 1935 return nullptr; 1936 return OpaqueElementsAttr::get(dialect, type, data); 1937 } 1938 1939 namespace { 1940 class TensorLiteralParser { 1941 public: 1942 TensorLiteralParser(Parser &p) : p(p) {} 1943 1944 /// Parse the elements of a tensor literal. If 'allowHex' is true, the parser 1945 /// may also parse a tensor literal that is store as a hex string. 1946 ParseResult parse(bool allowHex); 1947 1948 /// Build a dense attribute instance with the parsed elements and the given 1949 /// shaped type. 1950 DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type); 1951 1952 ArrayRef<int64_t> getShape() const { return shape; } 1953 1954 private: 1955 /// Get the parsed elements for an integer attribute. 1956 ParseResult getIntAttrElements(llvm::SMLoc loc, Type eltTy, 1957 std::vector<APInt> &intValues); 1958 1959 /// Get the parsed elements for a float attribute. 1960 ParseResult getFloatAttrElements(llvm::SMLoc loc, FloatType eltTy, 1961 std::vector<APFloat> &floatValues); 1962 1963 /// Build a Dense String attribute for the given type. 1964 DenseElementsAttr getStringAttr(llvm::SMLoc loc, ShapedType type, Type eltTy); 1965 1966 /// Build a Dense attribute with hex data for the given type. 1967 DenseElementsAttr getHexAttr(llvm::SMLoc loc, ShapedType type); 1968 1969 /// Parse a single element, returning failure if it isn't a valid element 1970 /// literal. For example: 1971 /// parseElement(1) -> Success, 1 1972 /// parseElement([1]) -> Failure 1973 ParseResult parseElement(); 1974 1975 /// Parse a list of either lists or elements, returning the dimensions of the 1976 /// parsed sub-tensors in dims. For example: 1977 /// parseList([1, 2, 3]) -> Success, [3] 1978 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 1979 /// parseList([[1, 2], 3]) -> Failure 1980 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 1981 ParseResult parseList(SmallVectorImpl<int64_t> &dims); 1982 1983 /// Parse a literal that was printed as a hex string. 1984 ParseResult parseHexElements(); 1985 1986 Parser &p; 1987 1988 /// The shape inferred from the parsed elements. 1989 SmallVector<int64_t, 4> shape; 1990 1991 /// Storage used when parsing elements, this is a pair of <is_negated, token>. 1992 std::vector<std::pair<bool, Token>> storage; 1993 1994 /// Storage used when parsing elements that were stored as hex values. 1995 Optional<Token> hexStorage; 1996 }; 1997 } // namespace 1998 1999 /// Parse the elements of a tensor literal. If 'allowHex' is true, the parser 2000 /// may also parse a tensor literal that is store as a hex string. 2001 ParseResult TensorLiteralParser::parse(bool allowHex) { 2002 // If hex is allowed, check for a string literal. 2003 if (allowHex && p.getToken().is(Token::string)) { 2004 hexStorage = p.getToken(); 2005 p.consumeToken(Token::string); 2006 return success(); 2007 } 2008 // Otherwise, parse a list or an individual element. 2009 if (p.getToken().is(Token::l_square)) 2010 return parseList(shape); 2011 return parseElement(); 2012 } 2013 2014 /// Build a dense attribute instance with the parsed elements and the given 2015 /// shaped type. 2016 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc, 2017 ShapedType type) { 2018 Type eltType = type.getElementType(); 2019 2020 // Check to see if we parse the literal from a hex string. 2021 if (hexStorage.hasValue() && 2022 (eltType.isIntOrFloat() || eltType.isa<ComplexType>())) 2023 return getHexAttr(loc, type); 2024 2025 // Check that the parsed storage size has the same number of elements to the 2026 // type, or is a known splat. 2027 if (!shape.empty() && getShape() != type.getShape()) { 2028 p.emitError(loc) << "inferred shape of elements literal ([" << getShape() 2029 << "]) does not match type ([" << type.getShape() << "])"; 2030 return nullptr; 2031 } 2032 2033 // Handle complex types in the specific element type cases below. 2034 bool isComplex = false; 2035 if (ComplexType complexTy = eltType.dyn_cast<ComplexType>()) { 2036 eltType = complexTy.getElementType(); 2037 isComplex = true; 2038 } 2039 2040 // Handle integer and index types. 2041 if (eltType.isIntOrIndex()) { 2042 std::vector<APInt> intValues; 2043 if (failed(getIntAttrElements(loc, eltType, intValues))) 2044 return nullptr; 2045 if (isComplex) { 2046 // If this is a complex, treat the parsed values as complex values. 2047 auto complexData = llvm::makeArrayRef( 2048 reinterpret_cast<std::complex<APInt> *>(intValues.data()), 2049 intValues.size() / 2); 2050 return DenseElementsAttr::get(type, complexData); 2051 } 2052 return DenseElementsAttr::get(type, intValues); 2053 } 2054 // Handle floating point types. 2055 if (FloatType floatTy = eltType.dyn_cast<FloatType>()) { 2056 std::vector<APFloat> floatValues; 2057 if (failed(getFloatAttrElements(loc, floatTy, floatValues))) 2058 return nullptr; 2059 if (isComplex) { 2060 // If this is a complex, treat the parsed values as complex values. 2061 auto complexData = llvm::makeArrayRef( 2062 reinterpret_cast<std::complex<APFloat> *>(floatValues.data()), 2063 floatValues.size() / 2); 2064 return DenseElementsAttr::get(type, complexData); 2065 } 2066 return DenseElementsAttr::get(type, floatValues); 2067 } 2068 2069 // Other types are assumed to be string representations. 2070 return getStringAttr(loc, type, type.getElementType()); 2071 } 2072 2073 /// Build a Dense Integer attribute for the given type. 2074 ParseResult 2075 TensorLiteralParser::getIntAttrElements(llvm::SMLoc loc, Type eltTy, 2076 std::vector<APInt> &intValues) { 2077 intValues.reserve(storage.size()); 2078 bool isUintType = eltTy.isUnsignedInteger(); 2079 for (const auto &signAndToken : storage) { 2080 bool isNegative = signAndToken.first; 2081 const Token &token = signAndToken.second; 2082 auto tokenLoc = token.getLoc(); 2083 2084 if (isNegative && isUintType) { 2085 return p.emitError(tokenLoc) 2086 << "expected unsigned integer elements, but parsed negative value"; 2087 } 2088 2089 // Check to see if floating point values were parsed. 2090 if (token.is(Token::floatliteral)) { 2091 return p.emitError(tokenLoc) 2092 << "expected integer elements, but parsed floating-point"; 2093 } 2094 2095 assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) && 2096 "unexpected token type"); 2097 if (token.isAny(Token::kw_true, Token::kw_false)) { 2098 if (!eltTy.isInteger(1)) { 2099 return p.emitError(tokenLoc) 2100 << "expected i1 type for 'true' or 'false' values"; 2101 } 2102 APInt apInt(1, token.is(Token::kw_true), /*isSigned=*/false); 2103 intValues.push_back(apInt); 2104 continue; 2105 } 2106 2107 // Create APInt values for each element with the correct bitwidth. 2108 Optional<APInt> apInt = 2109 buildAttributeAPInt(eltTy, isNegative, token.getSpelling()); 2110 if (!apInt) 2111 return p.emitError(tokenLoc, "integer constant out of range for type"); 2112 intValues.push_back(*apInt); 2113 } 2114 return success(); 2115 } 2116 2117 /// Build a Dense Float attribute for the given type. 2118 ParseResult 2119 TensorLiteralParser::getFloatAttrElements(llvm::SMLoc loc, FloatType eltTy, 2120 std::vector<APFloat> &floatValues) { 2121 floatValues.reserve(storage.size()); 2122 for (const auto &signAndToken : storage) { 2123 bool isNegative = signAndToken.first; 2124 const Token &token = signAndToken.second; 2125 2126 // Handle hexadecimal float literals. 2127 if (token.is(Token::integer) && token.getSpelling().startswith("0x")) { 2128 if (isNegative) { 2129 return p.emitError(token.getLoc()) 2130 << "hexadecimal float literal should not have a leading minus"; 2131 } 2132 auto val = token.getUInt64IntegerValue(); 2133 if (!val.hasValue()) { 2134 return p.emitError( 2135 "hexadecimal float constant out of range for attribute"); 2136 } 2137 Optional<APFloat> apVal = buildHexadecimalFloatLiteral(&p, eltTy, *val); 2138 if (!apVal) 2139 return failure(); 2140 floatValues.push_back(*apVal); 2141 continue; 2142 } 2143 2144 // Check to see if any decimal integers or booleans were parsed. 2145 if (!token.is(Token::floatliteral)) 2146 return p.emitError() 2147 << "expected floating-point elements, but parsed integer"; 2148 2149 // Build the float values from tokens. 2150 auto val = token.getFloatingPointValue(); 2151 if (!val.hasValue()) 2152 return p.emitError("floating point value too large for attribute"); 2153 2154 APFloat apVal(isNegative ? -*val : *val); 2155 if (!eltTy.isF64()) { 2156 bool unused; 2157 apVal.convert(eltTy.getFloatSemantics(), APFloat::rmNearestTiesToEven, 2158 &unused); 2159 } 2160 floatValues.push_back(apVal); 2161 } 2162 return success(); 2163 } 2164 2165 /// Build a Dense String attribute for the given type. 2166 DenseElementsAttr TensorLiteralParser::getStringAttr(llvm::SMLoc loc, 2167 ShapedType type, 2168 Type eltTy) { 2169 if (hexStorage.hasValue()) { 2170 auto stringValue = hexStorage.getValue().getStringValue(); 2171 return DenseStringElementsAttr::get(type, {stringValue}); 2172 } 2173 2174 std::vector<std::string> stringValues; 2175 std::vector<StringRef> stringRefValues; 2176 stringValues.reserve(storage.size()); 2177 stringRefValues.reserve(storage.size()); 2178 2179 for (auto val : storage) { 2180 stringValues.push_back(val.second.getStringValue()); 2181 stringRefValues.push_back(stringValues.back()); 2182 } 2183 2184 return DenseStringElementsAttr::get(type, stringRefValues); 2185 } 2186 2187 /// Build a Dense attribute with hex data for the given type. 2188 DenseElementsAttr TensorLiteralParser::getHexAttr(llvm::SMLoc loc, 2189 ShapedType type) { 2190 Type elementType = type.getElementType(); 2191 if (!elementType.isIntOrIndexOrFloat() && !elementType.isa<ComplexType>()) { 2192 p.emitError(loc) 2193 << "expected floating-point, integer, or complex element type, got " 2194 << elementType; 2195 return nullptr; 2196 } 2197 2198 std::string data; 2199 if (parseElementAttrHexValues(p, hexStorage.getValue(), data)) 2200 return nullptr; 2201 2202 ArrayRef<char> rawData(data.data(), data.size()); 2203 bool detectedSplat = false; 2204 if (!DenseElementsAttr::isValidRawBuffer(type, rawData, detectedSplat)) { 2205 p.emitError(loc) << "elements hex data size is invalid for provided type: " 2206 << type; 2207 return nullptr; 2208 } 2209 2210 return DenseElementsAttr::getFromRawBuffer(type, rawData, detectedSplat); 2211 } 2212 2213 ParseResult TensorLiteralParser::parseElement() { 2214 switch (p.getToken().getKind()) { 2215 // Parse a boolean element. 2216 case Token::kw_true: 2217 case Token::kw_false: 2218 case Token::floatliteral: 2219 case Token::integer: 2220 storage.emplace_back(/*isNegative=*/false, p.getToken()); 2221 p.consumeToken(); 2222 break; 2223 2224 // Parse a signed integer or a negative floating-point element. 2225 case Token::minus: 2226 p.consumeToken(Token::minus); 2227 if (!p.getToken().isAny(Token::floatliteral, Token::integer)) 2228 return p.emitError("expected integer or floating point literal"); 2229 storage.emplace_back(/*isNegative=*/true, p.getToken()); 2230 p.consumeToken(); 2231 break; 2232 2233 case Token::string: 2234 storage.emplace_back(/*isNegative=*/ false, p.getToken()); 2235 p.consumeToken(); 2236 break; 2237 2238 // Parse a complex element of the form '(' element ',' element ')'. 2239 case Token::l_paren: 2240 p.consumeToken(Token::l_paren); 2241 if (parseElement() || 2242 p.parseToken(Token::comma, "expected ',' between complex elements") || 2243 parseElement() || 2244 p.parseToken(Token::r_paren, "expected ')' after complex elements")) 2245 return failure(); 2246 break; 2247 2248 default: 2249 return p.emitError("expected element literal of primitive type"); 2250 } 2251 2252 return success(); 2253 } 2254 2255 /// Parse a list of either lists or elements, returning the dimensions of the 2256 /// parsed sub-tensors in dims. For example: 2257 /// parseList([1, 2, 3]) -> Success, [3] 2258 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 2259 /// parseList([[1, 2], 3]) -> Failure 2260 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 2261 ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) { 2262 p.consumeToken(Token::l_square); 2263 2264 auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims, 2265 const SmallVectorImpl<int64_t> &newDims) -> ParseResult { 2266 if (prevDims == newDims) 2267 return success(); 2268 return p.emitError("tensor literal is invalid; ranks are not consistent " 2269 "between elements"); 2270 }; 2271 2272 bool first = true; 2273 SmallVector<int64_t, 4> newDims; 2274 unsigned size = 0; 2275 auto parseCommaSeparatedList = [&]() -> ParseResult { 2276 SmallVector<int64_t, 4> thisDims; 2277 if (p.getToken().getKind() == Token::l_square) { 2278 if (parseList(thisDims)) 2279 return failure(); 2280 } else if (parseElement()) { 2281 return failure(); 2282 } 2283 ++size; 2284 if (!first) 2285 return checkDims(newDims, thisDims); 2286 newDims = thisDims; 2287 first = false; 2288 return success(); 2289 }; 2290 if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) 2291 return failure(); 2292 2293 // Return the sublists' dimensions with 'size' prepended. 2294 dims.clear(); 2295 dims.push_back(size); 2296 dims.append(newDims.begin(), newDims.end()); 2297 return success(); 2298 } 2299 2300 /// Parse a dense elements attribute. 2301 Attribute Parser::parseDenseElementsAttr(Type attrType) { 2302 consumeToken(Token::kw_dense); 2303 if (parseToken(Token::less, "expected '<' after 'dense'")) 2304 return nullptr; 2305 2306 // Parse the literal data. 2307 TensorLiteralParser literalParser(*this); 2308 if (literalParser.parse(/*allowHex=*/true)) 2309 return nullptr; 2310 2311 if (parseToken(Token::greater, "expected '>'")) 2312 return nullptr; 2313 2314 auto typeLoc = getToken().getLoc(); 2315 auto type = parseElementsLiteralType(attrType); 2316 if (!type) 2317 return nullptr; 2318 return literalParser.getAttr(typeLoc, type); 2319 } 2320 2321 /// Shaped type for elements attribute. 2322 /// 2323 /// elements-literal-type ::= vector-type | ranked-tensor-type 2324 /// 2325 /// This method also checks the type has static shape. 2326 ShapedType Parser::parseElementsLiteralType(Type type) { 2327 // If the user didn't provide a type, parse the colon type for the literal. 2328 if (!type) { 2329 if (parseToken(Token::colon, "expected ':'")) 2330 return nullptr; 2331 if (!(type = parseType())) 2332 return nullptr; 2333 } 2334 2335 if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) { 2336 emitError("elements literal must be a ranked tensor or vector type"); 2337 return nullptr; 2338 } 2339 2340 auto sType = type.cast<ShapedType>(); 2341 if (!sType.hasStaticShape()) 2342 return (emitError("elements literal type must have static shape"), nullptr); 2343 2344 return sType; 2345 } 2346 2347 /// Parse a sparse elements attribute. 2348 Attribute Parser::parseSparseElementsAttr(Type attrType) { 2349 consumeToken(Token::kw_sparse); 2350 if (parseToken(Token::less, "Expected '<' after 'sparse'")) 2351 return nullptr; 2352 2353 /// Parse the indices. We don't allow hex values here as we may need to use 2354 /// the inferred shape. 2355 auto indicesLoc = getToken().getLoc(); 2356 TensorLiteralParser indiceParser(*this); 2357 if (indiceParser.parse(/*allowHex=*/false)) 2358 return nullptr; 2359 2360 if (parseToken(Token::comma, "expected ','")) 2361 return nullptr; 2362 2363 /// Parse the values. 2364 auto valuesLoc = getToken().getLoc(); 2365 TensorLiteralParser valuesParser(*this); 2366 if (valuesParser.parse(/*allowHex=*/true)) 2367 return nullptr; 2368 2369 if (parseToken(Token::greater, "expected '>'")) 2370 return nullptr; 2371 2372 auto type = parseElementsLiteralType(attrType); 2373 if (!type) 2374 return nullptr; 2375 2376 // If the indices are a splat, i.e. the literal parser parsed an element and 2377 // not a list, we set the shape explicitly. The indices are represented by a 2378 // 2-dimensional shape where the second dimension is the rank of the type. 2379 // Given that the parsed indices is a splat, we know that we only have one 2380 // indice and thus one for the first dimension. 2381 auto indiceEltType = builder.getIntegerType(64); 2382 ShapedType indicesType; 2383 if (indiceParser.getShape().empty()) { 2384 indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType); 2385 } else { 2386 // Otherwise, set the shape to the one parsed by the literal parser. 2387 indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType); 2388 } 2389 auto indices = indiceParser.getAttr(indicesLoc, indicesType); 2390 2391 // If the values are a splat, set the shape explicitly based on the number of 2392 // indices. The number of indices is encoded in the first dimension of the 2393 // indice shape type. 2394 auto valuesEltType = type.getElementType(); 2395 ShapedType valuesType = 2396 valuesParser.getShape().empty() 2397 ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType) 2398 : RankedTensorType::get(valuesParser.getShape(), valuesEltType); 2399 auto values = valuesParser.getAttr(valuesLoc, valuesType); 2400 2401 /// Sanity check. 2402 if (valuesType.getRank() != 1) 2403 return (emitError("expected 1-d tensor for values"), nullptr); 2404 2405 auto sameShape = (indicesType.getRank() == 1) || 2406 (type.getRank() == indicesType.getDimSize(1)); 2407 auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); 2408 if (!sameShape || !sameElementNum) { 2409 emitError() << "expected shape ([" << type.getShape() 2410 << "]); inferred shape of indices literal ([" 2411 << indicesType.getShape() 2412 << "]); inferred shape of values literal ([" 2413 << valuesType.getShape() << "])"; 2414 return nullptr; 2415 } 2416 2417 // Build the sparse elements attribute by the indices and values. 2418 return SparseElementsAttr::get(type, indices, values); 2419 } 2420 2421 //===----------------------------------------------------------------------===// 2422 // Location parsing. 2423 //===----------------------------------------------------------------------===// 2424 2425 /// Parse a location. 2426 /// 2427 /// location ::= `loc` inline-location 2428 /// inline-location ::= '(' location-inst ')' 2429 /// 2430 ParseResult Parser::parseLocation(LocationAttr &loc) { 2431 // Check for 'loc' identifier. 2432 if (parseToken(Token::kw_loc, "expected 'loc' keyword")) 2433 return emitError(); 2434 2435 // Parse the inline-location. 2436 if (parseToken(Token::l_paren, "expected '(' in inline location") || 2437 parseLocationInstance(loc) || 2438 parseToken(Token::r_paren, "expected ')' in inline location")) 2439 return failure(); 2440 return success(); 2441 } 2442 2443 /// Specific location instances. 2444 /// 2445 /// location-inst ::= filelinecol-location | 2446 /// name-location | 2447 /// callsite-location | 2448 /// fused-location | 2449 /// unknown-location 2450 /// filelinecol-location ::= string-literal ':' integer-literal 2451 /// ':' integer-literal 2452 /// name-location ::= string-literal 2453 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' 2454 /// fused-location ::= fused ('<' attribute-value '>')? 2455 /// '[' location-inst (location-inst ',')* ']' 2456 /// unknown-location ::= 'unknown' 2457 /// 2458 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) { 2459 consumeToken(Token::bare_identifier); 2460 2461 // Parse the '('. 2462 if (parseToken(Token::l_paren, "expected '(' in callsite location")) 2463 return failure(); 2464 2465 // Parse the callee location. 2466 LocationAttr calleeLoc; 2467 if (parseLocationInstance(calleeLoc)) 2468 return failure(); 2469 2470 // Parse the 'at'. 2471 if (getToken().isNot(Token::bare_identifier) || 2472 getToken().getSpelling() != "at") 2473 return emitError("expected 'at' in callsite location"); 2474 consumeToken(Token::bare_identifier); 2475 2476 // Parse the caller location. 2477 LocationAttr callerLoc; 2478 if (parseLocationInstance(callerLoc)) 2479 return failure(); 2480 2481 // Parse the ')'. 2482 if (parseToken(Token::r_paren, "expected ')' in callsite location")) 2483 return failure(); 2484 2485 // Return the callsite location. 2486 loc = CallSiteLoc::get(calleeLoc, callerLoc); 2487 return success(); 2488 } 2489 2490 ParseResult Parser::parseFusedLocation(LocationAttr &loc) { 2491 consumeToken(Token::bare_identifier); 2492 2493 // Try to parse the optional metadata. 2494 Attribute metadata; 2495 if (consumeIf(Token::less)) { 2496 metadata = parseAttribute(); 2497 if (!metadata) 2498 return emitError("expected valid attribute metadata"); 2499 // Parse the '>' token. 2500 if (parseToken(Token::greater, 2501 "expected '>' after fused location metadata")) 2502 return failure(); 2503 } 2504 2505 SmallVector<Location, 4> locations; 2506 auto parseElt = [&] { 2507 LocationAttr newLoc; 2508 if (parseLocationInstance(newLoc)) 2509 return failure(); 2510 locations.push_back(newLoc); 2511 return success(); 2512 }; 2513 2514 if (parseToken(Token::l_square, "expected '[' in fused location") || 2515 parseCommaSeparatedList(parseElt) || 2516 parseToken(Token::r_square, "expected ']' in fused location")) 2517 return failure(); 2518 2519 // Return the fused location. 2520 loc = FusedLoc::get(locations, metadata, getContext()); 2521 return success(); 2522 } 2523 2524 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) { 2525 auto *ctx = getContext(); 2526 auto str = getToken().getStringValue(); 2527 consumeToken(Token::string); 2528 2529 // If the next token is ':' this is a filelinecol location. 2530 if (consumeIf(Token::colon)) { 2531 // Parse the line number. 2532 if (getToken().isNot(Token::integer)) 2533 return emitError("expected integer line number in FileLineColLoc"); 2534 auto line = getToken().getUnsignedIntegerValue(); 2535 if (!line.hasValue()) 2536 return emitError("expected integer line number in FileLineColLoc"); 2537 consumeToken(Token::integer); 2538 2539 // Parse the ':'. 2540 if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) 2541 return failure(); 2542 2543 // Parse the column number. 2544 if (getToken().isNot(Token::integer)) 2545 return emitError("expected integer column number in FileLineColLoc"); 2546 auto column = getToken().getUnsignedIntegerValue(); 2547 if (!column.hasValue()) 2548 return emitError("expected integer column number in FileLineColLoc"); 2549 consumeToken(Token::integer); 2550 2551 loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx); 2552 return success(); 2553 } 2554 2555 // Otherwise, this is a NameLoc. 2556 2557 // Check for a child location. 2558 if (consumeIf(Token::l_paren)) { 2559 auto childSourceLoc = getToken().getLoc(); 2560 2561 // Parse the child location. 2562 LocationAttr childLoc; 2563 if (parseLocationInstance(childLoc)) 2564 return failure(); 2565 2566 // The child must not be another NameLoc. 2567 if (childLoc.isa<NameLoc>()) 2568 return emitError(childSourceLoc, 2569 "child of NameLoc cannot be another NameLoc"); 2570 loc = NameLoc::get(Identifier::get(str, ctx), childLoc); 2571 2572 // Parse the closing ')'. 2573 if (parseToken(Token::r_paren, 2574 "expected ')' after child location of NameLoc")) 2575 return failure(); 2576 } else { 2577 loc = NameLoc::get(Identifier::get(str, ctx), ctx); 2578 } 2579 2580 return success(); 2581 } 2582 2583 ParseResult Parser::parseLocationInstance(LocationAttr &loc) { 2584 // Handle either name or filelinecol locations. 2585 if (getToken().is(Token::string)) 2586 return parseNameOrFileLineColLocation(loc); 2587 2588 // Bare tokens required for other cases. 2589 if (!getToken().is(Token::bare_identifier)) 2590 return emitError("expected location instance"); 2591 2592 // Check for the 'callsite' signifying a callsite location. 2593 if (getToken().getSpelling() == "callsite") 2594 return parseCallSiteLocation(loc); 2595 2596 // If the token is 'fused', then this is a fused location. 2597 if (getToken().getSpelling() == "fused") 2598 return parseFusedLocation(loc); 2599 2600 // Check for a 'unknown' for an unknown location. 2601 if (getToken().getSpelling() == "unknown") { 2602 consumeToken(Token::bare_identifier); 2603 loc = UnknownLoc::get(getContext()); 2604 return success(); 2605 } 2606 2607 return emitError("expected location instance"); 2608 } 2609 2610 //===----------------------------------------------------------------------===// 2611 // Affine parsing. 2612 //===----------------------------------------------------------------------===// 2613 2614 /// Lower precedence ops (all at the same precedence level). LNoOp is false in 2615 /// the boolean sense. 2616 enum AffineLowPrecOp { 2617 /// Null value. 2618 LNoOp, 2619 Add, 2620 Sub 2621 }; 2622 2623 /// Higher precedence ops - all at the same precedence level. HNoOp is false 2624 /// in the boolean sense. 2625 enum AffineHighPrecOp { 2626 /// Null value. 2627 HNoOp, 2628 Mul, 2629 FloorDiv, 2630 CeilDiv, 2631 Mod 2632 }; 2633 2634 namespace { 2635 /// This is a specialized parser for affine structures (affine maps, affine 2636 /// expressions, and integer sets), maintaining the state transient to their 2637 /// bodies. 2638 class AffineParser : public Parser { 2639 public: 2640 AffineParser(ParserState &state, bool allowParsingSSAIds = false, 2641 function_ref<ParseResult(bool)> parseElement = nullptr) 2642 : Parser(state), allowParsingSSAIds(allowParsingSSAIds), 2643 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {} 2644 2645 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); 2646 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); 2647 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); 2648 ParseResult parseAffineMapOfSSAIds(AffineMap &map, 2649 OpAsmParser::Delimiter delimiter); 2650 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds, 2651 unsigned &numDims); 2652 2653 private: 2654 // Binary affine op parsing. 2655 AffineLowPrecOp consumeIfLowPrecOp(); 2656 AffineHighPrecOp consumeIfHighPrecOp(); 2657 2658 // Identifier lists for polyhedral structures. 2659 ParseResult parseDimIdList(unsigned &numDims); 2660 ParseResult parseSymbolIdList(unsigned &numSymbols); 2661 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, 2662 unsigned &numSymbols); 2663 ParseResult parseIdentifierDefinition(AffineExpr idExpr); 2664 2665 AffineExpr parseAffineExpr(); 2666 AffineExpr parseParentheticalExpr(); 2667 AffineExpr parseNegateExpression(AffineExpr lhs); 2668 AffineExpr parseIntegerExpr(); 2669 AffineExpr parseBareIdExpr(); 2670 AffineExpr parseSSAIdExpr(bool isSymbol); 2671 AffineExpr parseSymbolSSAIdExpr(); 2672 2673 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, 2674 AffineExpr rhs, SMLoc opLoc); 2675 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, 2676 AffineExpr rhs); 2677 AffineExpr parseAffineOperandExpr(AffineExpr lhs); 2678 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); 2679 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, 2680 SMLoc llhsOpLoc); 2681 AffineExpr parseAffineConstraint(bool *isEq); 2682 2683 private: 2684 bool allowParsingSSAIds; 2685 function_ref<ParseResult(bool)> parseElement; 2686 unsigned numDimOperands; 2687 unsigned numSymbolOperands; 2688 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols; 2689 }; 2690 } // end anonymous namespace 2691 2692 /// Create an affine binary high precedence op expression (mul's, div's, mod). 2693 /// opLoc is the location of the op token to be used to report errors 2694 /// for non-conforming expressions. 2695 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, 2696 AffineExpr lhs, AffineExpr rhs, 2697 SMLoc opLoc) { 2698 // TODO: make the error location info accurate. 2699 switch (op) { 2700 case Mul: 2701 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { 2702 emitError(opLoc, "non-affine expression: at least one of the multiply " 2703 "operands has to be either a constant or symbolic"); 2704 return nullptr; 2705 } 2706 return lhs * rhs; 2707 case FloorDiv: 2708 if (!rhs.isSymbolicOrConstant()) { 2709 emitError(opLoc, "non-affine expression: right operand of floordiv " 2710 "has to be either a constant or symbolic"); 2711 return nullptr; 2712 } 2713 return lhs.floorDiv(rhs); 2714 case CeilDiv: 2715 if (!rhs.isSymbolicOrConstant()) { 2716 emitError(opLoc, "non-affine expression: right operand of ceildiv " 2717 "has to be either a constant or symbolic"); 2718 return nullptr; 2719 } 2720 return lhs.ceilDiv(rhs); 2721 case Mod: 2722 if (!rhs.isSymbolicOrConstant()) { 2723 emitError(opLoc, "non-affine expression: right operand of mod " 2724 "has to be either a constant or symbolic"); 2725 return nullptr; 2726 } 2727 return lhs % rhs; 2728 case HNoOp: 2729 llvm_unreachable("can't create affine expression for null high prec op"); 2730 return nullptr; 2731 } 2732 llvm_unreachable("Unknown AffineHighPrecOp"); 2733 } 2734 2735 /// Create an affine binary low precedence op expression (add, sub). 2736 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, 2737 AffineExpr lhs, AffineExpr rhs) { 2738 switch (op) { 2739 case AffineLowPrecOp::Add: 2740 return lhs + rhs; 2741 case AffineLowPrecOp::Sub: 2742 return lhs - rhs; 2743 case AffineLowPrecOp::LNoOp: 2744 llvm_unreachable("can't create affine expression for null low prec op"); 2745 return nullptr; 2746 } 2747 llvm_unreachable("Unknown AffineLowPrecOp"); 2748 } 2749 2750 /// Consume this token if it is a lower precedence affine op (there are only 2751 /// two precedence levels). 2752 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { 2753 switch (getToken().getKind()) { 2754 case Token::plus: 2755 consumeToken(Token::plus); 2756 return AffineLowPrecOp::Add; 2757 case Token::minus: 2758 consumeToken(Token::minus); 2759 return AffineLowPrecOp::Sub; 2760 default: 2761 return AffineLowPrecOp::LNoOp; 2762 } 2763 } 2764 2765 /// Consume this token if it is a higher precedence affine op (there are only 2766 /// two precedence levels) 2767 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { 2768 switch (getToken().getKind()) { 2769 case Token::star: 2770 consumeToken(Token::star); 2771 return Mul; 2772 case Token::kw_floordiv: 2773 consumeToken(Token::kw_floordiv); 2774 return FloorDiv; 2775 case Token::kw_ceildiv: 2776 consumeToken(Token::kw_ceildiv); 2777 return CeilDiv; 2778 case Token::kw_mod: 2779 consumeToken(Token::kw_mod); 2780 return Mod; 2781 default: 2782 return HNoOp; 2783 } 2784 } 2785 2786 /// Parse a high precedence op expression list: mul, div, and mod are high 2787 /// precedence binary ops, i.e., parse a 2788 /// expr_1 op_1 expr_2 op_2 ... expr_n 2789 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). 2790 /// All affine binary ops are left associative. 2791 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is 2792 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is 2793 /// null. llhsOpLoc is the location of the llhsOp token that will be used to 2794 /// report an error for non-conforming expressions. 2795 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, 2796 AffineHighPrecOp llhsOp, 2797 SMLoc llhsOpLoc) { 2798 AffineExpr lhs = parseAffineOperandExpr(llhs); 2799 if (!lhs) 2800 return nullptr; 2801 2802 // Found an LHS. Parse the remaining expression. 2803 auto opLoc = getToken().getLoc(); 2804 if (AffineHighPrecOp op = consumeIfHighPrecOp()) { 2805 if (llhs) { 2806 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); 2807 if (!expr) 2808 return nullptr; 2809 return parseAffineHighPrecOpExpr(expr, op, opLoc); 2810 } 2811 // No LLHS, get RHS 2812 return parseAffineHighPrecOpExpr(lhs, op, opLoc); 2813 } 2814 2815 // This is the last operand in this expression. 2816 if (llhs) 2817 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); 2818 2819 // No llhs, 'lhs' itself is the expression. 2820 return lhs; 2821 } 2822 2823 /// Parse an affine expression inside parentheses. 2824 /// 2825 /// affine-expr ::= `(` affine-expr `)` 2826 AffineExpr AffineParser::parseParentheticalExpr() { 2827 if (parseToken(Token::l_paren, "expected '('")) 2828 return nullptr; 2829 if (getToken().is(Token::r_paren)) 2830 return (emitError("no expression inside parentheses"), nullptr); 2831 2832 auto expr = parseAffineExpr(); 2833 if (!expr) 2834 return nullptr; 2835 if (parseToken(Token::r_paren, "expected ')'")) 2836 return nullptr; 2837 2838 return expr; 2839 } 2840 2841 /// Parse the negation expression. 2842 /// 2843 /// affine-expr ::= `-` affine-expr 2844 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { 2845 if (parseToken(Token::minus, "expected '-'")) 2846 return nullptr; 2847 2848 AffineExpr operand = parseAffineOperandExpr(lhs); 2849 // Since negation has the highest precedence of all ops (including high 2850 // precedence ops) but lower than parentheses, we are only going to use 2851 // parseAffineOperandExpr instead of parseAffineExpr here. 2852 if (!operand) 2853 // Extra error message although parseAffineOperandExpr would have 2854 // complained. Leads to a better diagnostic. 2855 return (emitError("missing operand of negation"), nullptr); 2856 return (-1) * operand; 2857 } 2858 2859 /// Parse a bare id that may appear in an affine expression. 2860 /// 2861 /// affine-expr ::= bare-id 2862 AffineExpr AffineParser::parseBareIdExpr() { 2863 if (getToken().isNot(Token::bare_identifier)) 2864 return (emitError("expected bare identifier"), nullptr); 2865 2866 StringRef sRef = getTokenSpelling(); 2867 for (auto entry : dimsAndSymbols) { 2868 if (entry.first == sRef) { 2869 consumeToken(Token::bare_identifier); 2870 return entry.second; 2871 } 2872 } 2873 2874 return (emitError("use of undeclared identifier"), nullptr); 2875 } 2876 2877 /// Parse an SSA id which may appear in an affine expression. 2878 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) { 2879 if (!allowParsingSSAIds) 2880 return (emitError("unexpected ssa identifier"), nullptr); 2881 if (getToken().isNot(Token::percent_identifier)) 2882 return (emitError("expected ssa identifier"), nullptr); 2883 auto name = getTokenSpelling(); 2884 // Check if we already parsed this SSA id. 2885 for (auto entry : dimsAndSymbols) { 2886 if (entry.first == name) { 2887 consumeToken(Token::percent_identifier); 2888 return entry.second; 2889 } 2890 } 2891 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it. 2892 if (parseElement(isSymbol)) 2893 return (emitError("failed to parse ssa identifier"), nullptr); 2894 auto idExpr = isSymbol 2895 ? getAffineSymbolExpr(numSymbolOperands++, getContext()) 2896 : getAffineDimExpr(numDimOperands++, getContext()); 2897 dimsAndSymbols.push_back({name, idExpr}); 2898 return idExpr; 2899 } 2900 2901 AffineExpr AffineParser::parseSymbolSSAIdExpr() { 2902 if (parseToken(Token::kw_symbol, "expected symbol keyword") || 2903 parseToken(Token::l_paren, "expected '(' at start of SSA symbol")) 2904 return nullptr; 2905 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true); 2906 if (!symbolExpr) 2907 return nullptr; 2908 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol")) 2909 return nullptr; 2910 return symbolExpr; 2911 } 2912 2913 /// Parse a positive integral constant appearing in an affine expression. 2914 /// 2915 /// affine-expr ::= integer-literal 2916 AffineExpr AffineParser::parseIntegerExpr() { 2917 auto val = getToken().getUInt64IntegerValue(); 2918 if (!val.hasValue() || (int64_t)val.getValue() < 0) 2919 return (emitError("constant too large for index"), nullptr); 2920 2921 consumeToken(Token::integer); 2922 return builder.getAffineConstantExpr((int64_t)val.getValue()); 2923 } 2924 2925 /// Parses an expression that can be a valid operand of an affine expression. 2926 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary 2927 /// operator, the rhs of which is being parsed. This is used to determine 2928 /// whether an error should be emitted for a missing right operand. 2929 // Eg: for an expression without parentheses (like i + j + k + l), each 2930 // of the four identifiers is an operand. For i + j*k + l, j*k is not an 2931 // operand expression, it's an op expression and will be parsed via 2932 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and 2933 // -l are valid operands that will be parsed by this function. 2934 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { 2935 switch (getToken().getKind()) { 2936 case Token::bare_identifier: 2937 return parseBareIdExpr(); 2938 case Token::kw_symbol: 2939 return parseSymbolSSAIdExpr(); 2940 case Token::percent_identifier: 2941 return parseSSAIdExpr(/*isSymbol=*/false); 2942 case Token::integer: 2943 return parseIntegerExpr(); 2944 case Token::l_paren: 2945 return parseParentheticalExpr(); 2946 case Token::minus: 2947 return parseNegateExpression(lhs); 2948 case Token::kw_ceildiv: 2949 case Token::kw_floordiv: 2950 case Token::kw_mod: 2951 case Token::plus: 2952 case Token::star: 2953 if (lhs) 2954 emitError("missing right operand of binary operator"); 2955 else 2956 emitError("missing left operand of binary operator"); 2957 return nullptr; 2958 default: 2959 if (lhs) 2960 emitError("missing right operand of binary operator"); 2961 else 2962 emitError("expected affine expression"); 2963 return nullptr; 2964 } 2965 } 2966 2967 /// Parse affine expressions that are bare-id's, integer constants, 2968 /// parenthetical affine expressions, and affine op expressions that are a 2969 /// composition of those. 2970 /// 2971 /// All binary op's associate from left to right. 2972 /// 2973 /// {add, sub} have lower precedence than {mul, div, and mod}. 2974 /// 2975 /// Add, sub'are themselves at the same precedence level. Mul, floordiv, 2976 /// ceildiv, and mod are at the same higher precedence level. Negation has 2977 /// higher precedence than any binary op. 2978 /// 2979 /// llhs: the affine expression appearing on the left of the one being parsed. 2980 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, 2981 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned 2982 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left 2983 /// associativity. 2984 /// 2985 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function 2986 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where 2987 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). 2988 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, 2989 AffineLowPrecOp llhsOp) { 2990 AffineExpr lhs; 2991 if (!(lhs = parseAffineOperandExpr(llhs))) 2992 return nullptr; 2993 2994 // Found an LHS. Deal with the ops. 2995 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { 2996 if (llhs) { 2997 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2998 return parseAffineLowPrecOpExpr(sum, lOp); 2999 } 3000 // No LLHS, get RHS and form the expression. 3001 return parseAffineLowPrecOpExpr(lhs, lOp); 3002 } 3003 auto opLoc = getToken().getLoc(); 3004 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { 3005 // We have a higher precedence op here. Get the rhs operand for the llhs 3006 // through parseAffineHighPrecOpExpr. 3007 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); 3008 if (!highRes) 3009 return nullptr; 3010 3011 // If llhs is null, the product forms the first operand of the yet to be 3012 // found expression. If non-null, the op to associate with llhs is llhsOp. 3013 AffineExpr expr = 3014 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; 3015 3016 // Recurse for subsequent low prec op's after the affine high prec op 3017 // expression. 3018 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) 3019 return parseAffineLowPrecOpExpr(expr, nextOp); 3020 return expr; 3021 } 3022 // Last operand in the expression list. 3023 if (llhs) 3024 return getAffineBinaryOpExpr(llhsOp, llhs, lhs); 3025 // No llhs, 'lhs' itself is the expression. 3026 return lhs; 3027 } 3028 3029 /// Parse an affine expression. 3030 /// affine-expr ::= `(` affine-expr `)` 3031 /// | `-` affine-expr 3032 /// | affine-expr `+` affine-expr 3033 /// | affine-expr `-` affine-expr 3034 /// | affine-expr `*` affine-expr 3035 /// | affine-expr `floordiv` affine-expr 3036 /// | affine-expr `ceildiv` affine-expr 3037 /// | affine-expr `mod` affine-expr 3038 /// | bare-id 3039 /// | integer-literal 3040 /// 3041 /// Additional conditions are checked depending on the production. For eg., 3042 /// one of the operands for `*` has to be either constant/symbolic; the second 3043 /// operand for floordiv, ceildiv, and mod has to be a positive integer. 3044 AffineExpr AffineParser::parseAffineExpr() { 3045 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); 3046 } 3047 3048 /// Parse a dim or symbol from the lists appearing before the actual 3049 /// expressions of the affine map. Update our state to store the 3050 /// dimensional/symbolic identifier. 3051 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { 3052 if (getToken().isNot(Token::bare_identifier)) 3053 return emitError("expected bare identifier"); 3054 3055 auto name = getTokenSpelling(); 3056 for (auto entry : dimsAndSymbols) { 3057 if (entry.first == name) 3058 return emitError("redefinition of identifier '" + name + "'"); 3059 } 3060 consumeToken(Token::bare_identifier); 3061 3062 dimsAndSymbols.push_back({name, idExpr}); 3063 return success(); 3064 } 3065 3066 /// Parse the list of dimensional identifiers to an affine map. 3067 ParseResult AffineParser::parseDimIdList(unsigned &numDims) { 3068 if (parseToken(Token::l_paren, 3069 "expected '(' at start of dimensional identifiers list")) { 3070 return failure(); 3071 } 3072 3073 auto parseElt = [&]() -> ParseResult { 3074 auto dimension = getAffineDimExpr(numDims++, getContext()); 3075 return parseIdentifierDefinition(dimension); 3076 }; 3077 return parseCommaSeparatedListUntil(Token::r_paren, parseElt); 3078 } 3079 3080 /// Parse the list of symbolic identifiers to an affine map. 3081 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { 3082 consumeToken(Token::l_square); 3083 auto parseElt = [&]() -> ParseResult { 3084 auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); 3085 return parseIdentifierDefinition(symbol); 3086 }; 3087 return parseCommaSeparatedListUntil(Token::r_square, parseElt); 3088 } 3089 3090 /// Parse the list of symbolic identifiers to an affine map. 3091 ParseResult 3092 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, 3093 unsigned &numSymbols) { 3094 if (parseDimIdList(numDims)) { 3095 return failure(); 3096 } 3097 if (!getToken().is(Token::l_square)) { 3098 numSymbols = 0; 3099 return success(); 3100 } 3101 return parseSymbolIdList(numSymbols); 3102 } 3103 3104 /// Parses an ambiguous affine map or integer set definition inline. 3105 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, 3106 IntegerSet &set) { 3107 unsigned numDims = 0, numSymbols = 0; 3108 3109 // List of dimensional and optional symbol identifiers. 3110 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { 3111 return failure(); 3112 } 3113 3114 // This is needed for parsing attributes as we wouldn't know whether we would 3115 // be parsing an integer set attribute or an affine map attribute. 3116 bool isArrow = getToken().is(Token::arrow); 3117 bool isColon = getToken().is(Token::colon); 3118 if (!isArrow && !isColon) { 3119 return emitError("expected '->' or ':'"); 3120 } else if (isArrow) { 3121 parseToken(Token::arrow, "expected '->' or '['"); 3122 map = parseAffineMapRange(numDims, numSymbols); 3123 return map ? success() : failure(); 3124 } else if (parseToken(Token::colon, "expected ':' or '['")) { 3125 return failure(); 3126 } 3127 3128 if ((set = parseIntegerSetConstraints(numDims, numSymbols))) 3129 return success(); 3130 3131 return failure(); 3132 } 3133 3134 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 3135 ParseResult 3136 AffineParser::parseAffineMapOfSSAIds(AffineMap &map, 3137 OpAsmParser::Delimiter delimiter) { 3138 Token::Kind rightToken; 3139 switch (delimiter) { 3140 case OpAsmParser::Delimiter::Square: 3141 if (parseToken(Token::l_square, "expected '['")) 3142 return failure(); 3143 rightToken = Token::r_square; 3144 break; 3145 case OpAsmParser::Delimiter::Paren: 3146 if (parseToken(Token::l_paren, "expected '('")) 3147 return failure(); 3148 rightToken = Token::r_paren; 3149 break; 3150 default: 3151 return emitError("unexpected delimiter"); 3152 } 3153 3154 SmallVector<AffineExpr, 4> exprs; 3155 auto parseElt = [&]() -> ParseResult { 3156 auto elt = parseAffineExpr(); 3157 exprs.push_back(elt); 3158 return elt ? success() : failure(); 3159 }; 3160 3161 // Parse a multi-dimensional affine expression (a comma-separated list of 3162 // 1-d affine expressions); the list can be empty. Grammar: 3163 // multi-dim-affine-expr ::= `(` `)` 3164 // | `(` affine-expr (`,` affine-expr)* `)` 3165 if (parseCommaSeparatedListUntil(rightToken, parseElt, 3166 /*allowEmptyList=*/true)) 3167 return failure(); 3168 // Parsed a valid affine map. 3169 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 3170 exprs, getContext()); 3171 return success(); 3172 } 3173 3174 /// Parse the range and sizes affine map definition inline. 3175 /// 3176 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr 3177 /// 3178 /// multi-dim-affine-expr ::= `(` `)` 3179 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)` 3180 AffineMap AffineParser::parseAffineMapRange(unsigned numDims, 3181 unsigned numSymbols) { 3182 parseToken(Token::l_paren, "expected '(' at start of affine map range"); 3183 3184 SmallVector<AffineExpr, 4> exprs; 3185 auto parseElt = [&]() -> ParseResult { 3186 auto elt = parseAffineExpr(); 3187 ParseResult res = elt ? success() : failure(); 3188 exprs.push_back(elt); 3189 return res; 3190 }; 3191 3192 // Parse a multi-dimensional affine expression (a comma-separated list of 3193 // 1-d affine expressions). Grammar: 3194 // multi-dim-affine-expr ::= `(` `)` 3195 // | `(` affine-expr (`,` affine-expr)* `)` 3196 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3197 return AffineMap(); 3198 3199 // Parsed a valid affine map. 3200 return AffineMap::get(numDims, numSymbols, exprs, getContext()); 3201 } 3202 3203 /// Parse an affine constraint. 3204 /// affine-constraint ::= affine-expr `>=` `0` 3205 /// | affine-expr `==` `0` 3206 /// 3207 /// isEq is set to true if the parsed constraint is an equality, false if it 3208 /// is an inequality (greater than or equal). 3209 /// 3210 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { 3211 AffineExpr expr = parseAffineExpr(); 3212 if (!expr) 3213 return nullptr; 3214 3215 if (consumeIf(Token::greater) && consumeIf(Token::equal) && 3216 getToken().is(Token::integer)) { 3217 auto dim = getToken().getUnsignedIntegerValue(); 3218 if (dim.hasValue() && dim.getValue() == 0) { 3219 consumeToken(Token::integer); 3220 *isEq = false; 3221 return expr; 3222 } 3223 return (emitError("expected '0' after '>='"), nullptr); 3224 } 3225 3226 if (consumeIf(Token::equal) && consumeIf(Token::equal) && 3227 getToken().is(Token::integer)) { 3228 auto dim = getToken().getUnsignedIntegerValue(); 3229 if (dim.hasValue() && dim.getValue() == 0) { 3230 consumeToken(Token::integer); 3231 *isEq = true; 3232 return expr; 3233 } 3234 return (emitError("expected '0' after '=='"), nullptr); 3235 } 3236 3237 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), 3238 nullptr); 3239 } 3240 3241 /// Parse the constraints that are part of an integer set definition. 3242 /// integer-set-inline 3243 /// ::= dim-and-symbol-id-lists `:` 3244 /// '(' affine-constraint-conjunction? ')' 3245 /// affine-constraint-conjunction ::= affine-constraint (`,` 3246 /// affine-constraint)* 3247 /// 3248 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, 3249 unsigned numSymbols) { 3250 if (parseToken(Token::l_paren, 3251 "expected '(' at start of integer set constraint list")) 3252 return IntegerSet(); 3253 3254 SmallVector<AffineExpr, 4> constraints; 3255 SmallVector<bool, 4> isEqs; 3256 auto parseElt = [&]() -> ParseResult { 3257 bool isEq; 3258 auto elt = parseAffineConstraint(&isEq); 3259 ParseResult res = elt ? success() : failure(); 3260 if (elt) { 3261 constraints.push_back(elt); 3262 isEqs.push_back(isEq); 3263 } 3264 return res; 3265 }; 3266 3267 // Parse a list of affine constraints (comma-separated). 3268 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3269 return IntegerSet(); 3270 3271 // If no constraints were parsed, then treat this as a degenerate 'true' case. 3272 if (constraints.empty()) { 3273 /* 0 == 0 */ 3274 auto zero = getAffineConstantExpr(0, getContext()); 3275 return IntegerSet::get(numDims, numSymbols, zero, true); 3276 } 3277 3278 // Parsed a valid integer set. 3279 return IntegerSet::get(numDims, numSymbols, constraints, isEqs); 3280 } 3281 3282 /// Parse an ambiguous reference to either and affine map or an integer set. 3283 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, 3284 IntegerSet &set) { 3285 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); 3286 } 3287 ParseResult Parser::parseAffineMapReference(AffineMap &map) { 3288 llvm::SMLoc curLoc = getToken().getLoc(); 3289 IntegerSet set; 3290 if (parseAffineMapOrIntegerSetReference(map, set)) 3291 return failure(); 3292 if (set) 3293 return emitError(curLoc, "expected AffineMap, but got IntegerSet"); 3294 return success(); 3295 } 3296 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) { 3297 llvm::SMLoc curLoc = getToken().getLoc(); 3298 AffineMap map; 3299 if (parseAffineMapOrIntegerSetReference(map, set)) 3300 return failure(); 3301 if (map) 3302 return emitError(curLoc, "expected IntegerSet, but got AffineMap"); 3303 return success(); 3304 } 3305 3306 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to 3307 /// parse SSA value uses encountered while parsing affine expressions. 3308 ParseResult 3309 Parser::parseAffineMapOfSSAIds(AffineMap &map, 3310 function_ref<ParseResult(bool)> parseElement, 3311 OpAsmParser::Delimiter delimiter) { 3312 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement) 3313 .parseAffineMapOfSSAIds(map, delimiter); 3314 } 3315 3316 //===----------------------------------------------------------------------===// 3317 // OperationParser 3318 //===----------------------------------------------------------------------===// 3319 3320 namespace { 3321 /// This class provides support for parsing operations and regions of 3322 /// operations. 3323 class OperationParser : public Parser { 3324 public: 3325 OperationParser(ParserState &state, ModuleOp moduleOp) 3326 : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) { 3327 } 3328 3329 ~OperationParser(); 3330 3331 /// After parsing is finished, this function must be called to see if there 3332 /// are any remaining issues. 3333 ParseResult finalize(); 3334 3335 //===--------------------------------------------------------------------===// 3336 // SSA Value Handling 3337 //===--------------------------------------------------------------------===// 3338 3339 /// This represents a use of an SSA value in the program. The first two 3340 /// entries in the tuple are the name and result number of a reference. The 3341 /// third is the location of the reference, which is used in case this ends 3342 /// up being a use of an undefined value. 3343 struct SSAUseInfo { 3344 StringRef name; // Value name, e.g. %42 or %abc 3345 unsigned number; // Number, specified with #12 3346 SMLoc loc; // Location of first definition or use. 3347 }; 3348 3349 /// Push a new SSA name scope to the parser. 3350 void pushSSANameScope(bool isIsolated); 3351 3352 /// Pop the last SSA name scope from the parser. 3353 ParseResult popSSANameScope(); 3354 3355 /// Register a definition of a value with the symbol table. 3356 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 3357 3358 /// Parse an optional list of SSA uses into 'results'. 3359 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 3360 3361 /// Parse a single SSA use into 'result'. 3362 ParseResult parseSSAUse(SSAUseInfo &result); 3363 3364 /// Given a reference to an SSA value and its type, return a reference. This 3365 /// returns null on failure. 3366 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 3367 3368 ParseResult parseSSADefOrUseAndType( 3369 const std::function<ParseResult(SSAUseInfo, Type)> &action); 3370 3371 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 3372 3373 /// Return the location of the value identified by its name and number if it 3374 /// has been already reference. 3375 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 3376 auto &values = isolatedNameScopes.back().values; 3377 if (!values.count(name) || number >= values[name].size()) 3378 return {}; 3379 if (values[name][number].first) 3380 return values[name][number].second; 3381 return {}; 3382 } 3383 3384 //===--------------------------------------------------------------------===// 3385 // Operation Parsing 3386 //===--------------------------------------------------------------------===// 3387 3388 /// Parse an operation instance. 3389 ParseResult parseOperation(); 3390 3391 /// Parse a single operation successor. 3392 ParseResult parseSuccessor(Block *&dest); 3393 3394 /// Parse a comma-separated list of operation successors in brackets. 3395 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations); 3396 3397 /// Parse an operation instance that is in the generic form. 3398 Operation *parseGenericOperation(); 3399 3400 /// Parse an operation instance that is in the generic form and insert it at 3401 /// the provided insertion point. 3402 Operation *parseGenericOperation(Block *insertBlock, 3403 Block::iterator insertPt); 3404 3405 /// This is the structure of a result specifier in the assembly syntax, 3406 /// including the name, number of results, and location. 3407 typedef std::tuple<StringRef, unsigned, SMLoc> ResultRecord; 3408 3409 /// Parse an operation instance that is in the op-defined custom form. 3410 /// resultInfo specifies information about the "%name =" specifiers. 3411 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultInfo); 3412 3413 //===--------------------------------------------------------------------===// 3414 // Region Parsing 3415 //===--------------------------------------------------------------------===// 3416 3417 /// Parse a region into 'region' with the provided entry block arguments. 3418 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 3419 /// isolated from those above. 3420 ParseResult parseRegion(Region ®ion, 3421 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 3422 bool isIsolatedNameScope = false); 3423 3424 /// Parse a region body into 'region'. 3425 ParseResult parseRegionBody(Region ®ion); 3426 3427 //===--------------------------------------------------------------------===// 3428 // Block Parsing 3429 //===--------------------------------------------------------------------===// 3430 3431 /// Parse a new block into 'block'. 3432 ParseResult parseBlock(Block *&block); 3433 3434 /// Parse a list of operations into 'block'. 3435 ParseResult parseBlockBody(Block *block); 3436 3437 /// Parse a (possibly empty) list of block arguments. 3438 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results, 3439 Block *owner); 3440 3441 /// Get the block with the specified name, creating it if it doesn't 3442 /// already exist. The location specified is the point of use, which allows 3443 /// us to diagnose references to blocks that are not defined precisely. 3444 Block *getBlockNamed(StringRef name, SMLoc loc); 3445 3446 /// Define the block with the specified name. Returns the Block* or nullptr in 3447 /// the case of redefinition. 3448 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 3449 3450 private: 3451 /// Returns the info for a block at the current scope for the given name. 3452 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 3453 return blocksByName.back()[name]; 3454 } 3455 3456 /// Insert a new forward reference to the given block. 3457 void insertForwardRef(Block *block, SMLoc loc) { 3458 forwardRef.back().try_emplace(block, loc); 3459 } 3460 3461 /// Erase any forward reference to the given block. 3462 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 3463 3464 /// Record that a definition was added at the current scope. 3465 void recordDefinition(StringRef def); 3466 3467 /// Get the value entry for the given SSA name. 3468 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name); 3469 3470 /// Create a forward reference placeholder value with the given location and 3471 /// result type. 3472 Value createForwardRefPlaceholder(SMLoc loc, Type type); 3473 3474 /// Return true if this is a forward reference. 3475 bool isForwardRefPlaceholder(Value value) { 3476 return forwardRefPlaceholders.count(value); 3477 } 3478 3479 /// This struct represents an isolated SSA name scope. This scope may contain 3480 /// other nested non-isolated scopes. These scopes are used for operations 3481 /// that are known to be isolated to allow for reusing names within their 3482 /// regions, even if those names are used above. 3483 struct IsolatedSSANameScope { 3484 /// Record that a definition was added at the current scope. 3485 void recordDefinition(StringRef def) { 3486 definitionsPerScope.back().insert(def); 3487 } 3488 3489 /// Push a nested name scope. 3490 void pushSSANameScope() { definitionsPerScope.push_back({}); } 3491 3492 /// Pop a nested name scope. 3493 void popSSANameScope() { 3494 for (auto &def : definitionsPerScope.pop_back_val()) 3495 values.erase(def.getKey()); 3496 } 3497 3498 /// This keeps track of all of the SSA values we are tracking for each name 3499 /// scope, indexed by their name. This has one entry per result number. 3500 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values; 3501 3502 /// This keeps track of all of the values defined by a specific name scope. 3503 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 3504 }; 3505 3506 /// A list of isolated name scopes. 3507 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 3508 3509 /// This keeps track of the block names as well as the location of the first 3510 /// reference for each nested name scope. This is used to diagnose invalid 3511 /// block references and memorize them. 3512 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 3513 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 3514 3515 /// These are all of the placeholders we've made along with the location of 3516 /// their first reference, to allow checking for use of undefined values. 3517 DenseMap<Value, SMLoc> forwardRefPlaceholders; 3518 3519 /// The builder used when creating parsed operation instances. 3520 OpBuilder opBuilder; 3521 3522 /// The top level module operation. 3523 ModuleOp moduleOp; 3524 }; 3525 } // end anonymous namespace 3526 3527 OperationParser::~OperationParser() { 3528 for (auto &fwd : forwardRefPlaceholders) { 3529 // Drop all uses of undefined forward declared reference and destroy 3530 // defining operation. 3531 fwd.first.dropAllUses(); 3532 fwd.first.getDefiningOp()->destroy(); 3533 } 3534 } 3535 3536 /// After parsing is finished, this function must be called to see if there are 3537 /// any remaining issues. 3538 ParseResult OperationParser::finalize() { 3539 // Check for any forward references that are left. If we find any, error 3540 // out. 3541 if (!forwardRefPlaceholders.empty()) { 3542 SmallVector<const char *, 4> errors; 3543 // Iteration over the map isn't deterministic, so sort by source location. 3544 for (auto entry : forwardRefPlaceholders) 3545 errors.push_back(entry.second.getPointer()); 3546 llvm::array_pod_sort(errors.begin(), errors.end()); 3547 3548 for (auto entry : errors) { 3549 auto loc = SMLoc::getFromPointer(entry); 3550 emitError(loc, "use of undeclared SSA value name"); 3551 } 3552 return failure(); 3553 } 3554 3555 return success(); 3556 } 3557 3558 //===----------------------------------------------------------------------===// 3559 // SSA Value Handling 3560 //===----------------------------------------------------------------------===// 3561 3562 void OperationParser::pushSSANameScope(bool isIsolated) { 3563 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 3564 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 3565 3566 // Push back a new name definition scope. 3567 if (isIsolated) 3568 isolatedNameScopes.push_back({}); 3569 isolatedNameScopes.back().pushSSANameScope(); 3570 } 3571 3572 ParseResult OperationParser::popSSANameScope() { 3573 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 3574 3575 // Verify that all referenced blocks were defined. 3576 if (!forwardRefInCurrentScope.empty()) { 3577 SmallVector<std::pair<const char *, Block *>, 4> errors; 3578 // Iteration over the map isn't deterministic, so sort by source location. 3579 for (auto entry : forwardRefInCurrentScope) { 3580 errors.push_back({entry.second.getPointer(), entry.first}); 3581 // Add this block to the top-level region to allow for automatic cleanup. 3582 moduleOp.getOperation()->getRegion(0).push_back(entry.first); 3583 } 3584 llvm::array_pod_sort(errors.begin(), errors.end()); 3585 3586 for (auto entry : errors) { 3587 auto loc = SMLoc::getFromPointer(entry.first); 3588 emitError(loc, "reference to an undefined block"); 3589 } 3590 return failure(); 3591 } 3592 3593 // Pop the next nested namescope. If there is only one internal namescope, 3594 // just pop the isolated scope. 3595 auto ¤tNameScope = isolatedNameScopes.back(); 3596 if (currentNameScope.definitionsPerScope.size() == 1) 3597 isolatedNameScopes.pop_back(); 3598 else 3599 currentNameScope.popSSANameScope(); 3600 3601 blocksByName.pop_back(); 3602 return success(); 3603 } 3604 3605 /// Register a definition of a value with the symbol table. 3606 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 3607 auto &entries = getSSAValueEntry(useInfo.name); 3608 3609 // Make sure there is a slot for this value. 3610 if (entries.size() <= useInfo.number) 3611 entries.resize(useInfo.number + 1); 3612 3613 // If we already have an entry for this, check to see if it was a definition 3614 // or a forward reference. 3615 if (auto existing = entries[useInfo.number].first) { 3616 if (!isForwardRefPlaceholder(existing)) { 3617 return emitError(useInfo.loc) 3618 .append("redefinition of SSA value '", useInfo.name, "'") 3619 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3620 .append("previously defined here"); 3621 } 3622 3623 if (existing.getType() != value.getType()) { 3624 return emitError(useInfo.loc) 3625 .append("definition of SSA value '", useInfo.name, "#", 3626 useInfo.number, "' has type ", value.getType()) 3627 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3628 .append("previously used here with type ", existing.getType()); 3629 } 3630 3631 // If it was a forward reference, update everything that used it to use 3632 // the actual definition instead, delete the forward ref, and remove it 3633 // from our set of forward references we track. 3634 existing.replaceAllUsesWith(value); 3635 existing.getDefiningOp()->destroy(); 3636 forwardRefPlaceholders.erase(existing); 3637 } 3638 3639 /// Record this definition for the current scope. 3640 entries[useInfo.number] = {value, useInfo.loc}; 3641 recordDefinition(useInfo.name); 3642 return success(); 3643 } 3644 3645 /// Parse a (possibly empty) list of SSA operands. 3646 /// 3647 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 3648 /// ssa-use-list-opt ::= ssa-use-list? 3649 /// 3650 ParseResult 3651 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 3652 if (getToken().isNot(Token::percent_identifier)) 3653 return success(); 3654 return parseCommaSeparatedList([&]() -> ParseResult { 3655 SSAUseInfo result; 3656 if (parseSSAUse(result)) 3657 return failure(); 3658 results.push_back(result); 3659 return success(); 3660 }); 3661 } 3662 3663 /// Parse a SSA operand for an operation. 3664 /// 3665 /// ssa-use ::= ssa-id 3666 /// 3667 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 3668 result.name = getTokenSpelling(); 3669 result.number = 0; 3670 result.loc = getToken().getLoc(); 3671 if (parseToken(Token::percent_identifier, "expected SSA operand")) 3672 return failure(); 3673 3674 // If we have an attribute ID, it is a result number. 3675 if (getToken().is(Token::hash_identifier)) { 3676 if (auto value = getToken().getHashIdentifierNumber()) 3677 result.number = value.getValue(); 3678 else 3679 return emitError("invalid SSA value result number"); 3680 consumeToken(Token::hash_identifier); 3681 } 3682 3683 return success(); 3684 } 3685 3686 /// Given an unbound reference to an SSA value and its type, return the value 3687 /// it specifies. This returns null on failure. 3688 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 3689 auto &entries = getSSAValueEntry(useInfo.name); 3690 3691 // If we have already seen a value of this name, return it. 3692 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 3693 auto result = entries[useInfo.number].first; 3694 // Check that the type matches the other uses. 3695 if (result.getType() == type) 3696 return result; 3697 3698 emitError(useInfo.loc, "use of value '") 3699 .append(useInfo.name, 3700 "' expects different type than prior uses: ", type, " vs ", 3701 result.getType()) 3702 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3703 .append("prior use here"); 3704 return nullptr; 3705 } 3706 3707 // Make sure we have enough slots for this. 3708 if (entries.size() <= useInfo.number) 3709 entries.resize(useInfo.number + 1); 3710 3711 // If the value has already been defined and this is an overly large result 3712 // number, diagnose that. 3713 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 3714 return (emitError(useInfo.loc, "reference to invalid result number"), 3715 nullptr); 3716 3717 // Otherwise, this is a forward reference. Create a placeholder and remember 3718 // that we did so. 3719 auto result = createForwardRefPlaceholder(useInfo.loc, type); 3720 entries[useInfo.number].first = result; 3721 entries[useInfo.number].second = useInfo.loc; 3722 return result; 3723 } 3724 3725 /// Parse an SSA use with an associated type. 3726 /// 3727 /// ssa-use-and-type ::= ssa-use `:` type 3728 ParseResult OperationParser::parseSSADefOrUseAndType( 3729 const std::function<ParseResult(SSAUseInfo, Type)> &action) { 3730 SSAUseInfo useInfo; 3731 if (parseSSAUse(useInfo) || 3732 parseToken(Token::colon, "expected ':' and type for SSA operand")) 3733 return failure(); 3734 3735 auto type = parseType(); 3736 if (!type) 3737 return failure(); 3738 3739 return action(useInfo, type); 3740 } 3741 3742 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 3743 /// followed by a type list. 3744 /// 3745 /// ssa-use-and-type-list 3746 /// ::= ssa-use-list ':' type-list-no-parens 3747 /// 3748 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 3749 SmallVectorImpl<Value> &results) { 3750 SmallVector<SSAUseInfo, 4> valueIDs; 3751 if (parseOptionalSSAUseList(valueIDs)) 3752 return failure(); 3753 3754 // If there were no operands, then there is no colon or type lists. 3755 if (valueIDs.empty()) 3756 return success(); 3757 3758 SmallVector<Type, 4> types; 3759 if (parseToken(Token::colon, "expected ':' in operand list") || 3760 parseTypeListNoParens(types)) 3761 return failure(); 3762 3763 if (valueIDs.size() != types.size()) 3764 return emitError("expected ") 3765 << valueIDs.size() << " types to match operand list"; 3766 3767 results.reserve(valueIDs.size()); 3768 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 3769 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 3770 results.push_back(value); 3771 else 3772 return failure(); 3773 } 3774 3775 return success(); 3776 } 3777 3778 /// Record that a definition was added at the current scope. 3779 void OperationParser::recordDefinition(StringRef def) { 3780 isolatedNameScopes.back().recordDefinition(def); 3781 } 3782 3783 /// Get the value entry for the given SSA name. 3784 SmallVectorImpl<std::pair<Value, SMLoc>> & 3785 OperationParser::getSSAValueEntry(StringRef name) { 3786 return isolatedNameScopes.back().values[name]; 3787 } 3788 3789 /// Create and remember a new placeholder for a forward reference. 3790 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 3791 // Forward references are always created as operations, because we just need 3792 // something with a def/use chain. 3793 // 3794 // We create these placeholders as having an empty name, which we know 3795 // cannot be created through normal user input, allowing us to distinguish 3796 // them. 3797 auto name = OperationName("placeholder", getContext()); 3798 auto *op = Operation::create( 3799 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 3800 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0); 3801 forwardRefPlaceholders[op->getResult(0)] = loc; 3802 return op->getResult(0); 3803 } 3804 3805 //===----------------------------------------------------------------------===// 3806 // Operation Parsing 3807 //===----------------------------------------------------------------------===// 3808 3809 /// Parse an operation. 3810 /// 3811 /// operation ::= op-result-list? 3812 /// (generic-operation | custom-operation) 3813 /// trailing-location? 3814 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 3815 /// successor-list? (`(` region-list `)`)? 3816 /// attribute-dict? `:` function-type 3817 /// custom-operation ::= bare-id custom-operation-format 3818 /// op-result-list ::= op-result (`,` op-result)* `=` 3819 /// op-result ::= ssa-id (`:` integer-literal) 3820 /// 3821 ParseResult OperationParser::parseOperation() { 3822 auto loc = getToken().getLoc(); 3823 SmallVector<ResultRecord, 1> resultIDs; 3824 size_t numExpectedResults = 0; 3825 if (getToken().is(Token::percent_identifier)) { 3826 // Parse the group of result ids. 3827 auto parseNextResult = [&]() -> ParseResult { 3828 // Parse the next result id. 3829 if (!getToken().is(Token::percent_identifier)) 3830 return emitError("expected valid ssa identifier"); 3831 3832 Token nameTok = getToken(); 3833 consumeToken(Token::percent_identifier); 3834 3835 // If the next token is a ':', we parse the expected result count. 3836 size_t expectedSubResults = 1; 3837 if (consumeIf(Token::colon)) { 3838 // Check that the next token is an integer. 3839 if (!getToken().is(Token::integer)) 3840 return emitError("expected integer number of results"); 3841 3842 // Check that number of results is > 0. 3843 auto val = getToken().getUInt64IntegerValue(); 3844 if (!val.hasValue() || val.getValue() < 1) 3845 return emitError("expected named operation to have atleast 1 result"); 3846 consumeToken(Token::integer); 3847 expectedSubResults = *val; 3848 } 3849 3850 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 3851 nameTok.getLoc()); 3852 numExpectedResults += expectedSubResults; 3853 return success(); 3854 }; 3855 if (parseCommaSeparatedList(parseNextResult)) 3856 return failure(); 3857 3858 if (parseToken(Token::equal, "expected '=' after SSA name")) 3859 return failure(); 3860 } 3861 3862 Operation *op; 3863 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 3864 op = parseCustomOperation(resultIDs); 3865 else if (getToken().is(Token::string)) 3866 op = parseGenericOperation(); 3867 else 3868 return emitError("expected operation name in quotes"); 3869 3870 // If parsing of the basic operation failed, then this whole thing fails. 3871 if (!op) 3872 return failure(); 3873 3874 // If the operation had a name, register it. 3875 if (!resultIDs.empty()) { 3876 if (op->getNumResults() == 0) 3877 return emitError(loc, "cannot name an operation with no results"); 3878 if (numExpectedResults != op->getNumResults()) 3879 return emitError(loc, "operation defines ") 3880 << op->getNumResults() << " results but was provided " 3881 << numExpectedResults << " to bind"; 3882 3883 // Add definitions for each of the result groups. 3884 unsigned opResI = 0; 3885 for (ResultRecord &resIt : resultIDs) { 3886 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 3887 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 3888 op->getResult(opResI++))) 3889 return failure(); 3890 } 3891 } 3892 } 3893 3894 return success(); 3895 } 3896 3897 /// Parse a single operation successor. 3898 /// 3899 /// successor ::= block-id 3900 /// 3901 ParseResult OperationParser::parseSuccessor(Block *&dest) { 3902 // Verify branch is identifier and get the matching block. 3903 if (!getToken().is(Token::caret_identifier)) 3904 return emitError("expected block name"); 3905 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 3906 consumeToken(); 3907 return success(); 3908 } 3909 3910 /// Parse a comma-separated list of operation successors in brackets. 3911 /// 3912 /// successor-list ::= `[` successor (`,` successor )* `]` 3913 /// 3914 ParseResult 3915 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) { 3916 if (parseToken(Token::l_square, "expected '['")) 3917 return failure(); 3918 3919 auto parseElt = [this, &destinations] { 3920 Block *dest; 3921 ParseResult res = parseSuccessor(dest); 3922 destinations.push_back(dest); 3923 return res; 3924 }; 3925 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 3926 /*allowEmptyList=*/false); 3927 } 3928 3929 namespace { 3930 // RAII-style guard for cleaning up the regions in the operation state before 3931 // deleting them. Within the parser, regions may get deleted if parsing failed, 3932 // and other errors may be present, in particular undominated uses. This makes 3933 // sure such uses are deleted. 3934 struct CleanupOpStateRegions { 3935 ~CleanupOpStateRegions() { 3936 SmallVector<Region *, 4> regionsToClean; 3937 regionsToClean.reserve(state.regions.size()); 3938 for (auto ®ion : state.regions) 3939 if (region) 3940 for (auto &block : *region) 3941 block.dropAllDefinedValueUses(); 3942 } 3943 OperationState &state; 3944 }; 3945 } // namespace 3946 3947 Operation *OperationParser::parseGenericOperation() { 3948 // Get location information for the operation. 3949 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 3950 3951 auto name = getToken().getStringValue(); 3952 if (name.empty()) 3953 return (emitError("empty operation name is invalid"), nullptr); 3954 if (name.find('\0') != StringRef::npos) 3955 return (emitError("null character not allowed in operation name"), nullptr); 3956 3957 consumeToken(Token::string); 3958 3959 OperationState result(srcLocation, name); 3960 3961 // Parse the operand list. 3962 SmallVector<SSAUseInfo, 8> operandInfos; 3963 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 3964 parseOptionalSSAUseList(operandInfos) || 3965 parseToken(Token::r_paren, "expected ')' to end operand list")) { 3966 return nullptr; 3967 } 3968 3969 // Parse the successor list. 3970 if (getToken().is(Token::l_square)) { 3971 // Check if the operation is a known terminator. 3972 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 3973 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) 3974 return emitError("successors in non-terminator"), nullptr; 3975 3976 SmallVector<Block *, 2> successors; 3977 if (parseSuccessors(successors)) 3978 return nullptr; 3979 result.addSuccessors(successors); 3980 } 3981 3982 // Parse the region list. 3983 CleanupOpStateRegions guard{result}; 3984 if (consumeIf(Token::l_paren)) { 3985 do { 3986 // Create temporary regions with the top level region as parent. 3987 result.regions.emplace_back(new Region(moduleOp)); 3988 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 3989 return nullptr; 3990 } while (consumeIf(Token::comma)); 3991 if (parseToken(Token::r_paren, "expected ')' to end region list")) 3992 return nullptr; 3993 } 3994 3995 if (getToken().is(Token::l_brace)) { 3996 if (parseAttributeDict(result.attributes)) 3997 return nullptr; 3998 } 3999 4000 if (parseToken(Token::colon, "expected ':' followed by operation type")) 4001 return nullptr; 4002 4003 auto typeLoc = getToken().getLoc(); 4004 auto type = parseType(); 4005 if (!type) 4006 return nullptr; 4007 auto fnType = type.dyn_cast<FunctionType>(); 4008 if (!fnType) 4009 return (emitError(typeLoc, "expected function type"), nullptr); 4010 4011 result.addTypes(fnType.getResults()); 4012 4013 // Check that we have the right number of types for the operands. 4014 auto operandTypes = fnType.getInputs(); 4015 if (operandTypes.size() != operandInfos.size()) { 4016 auto plural = "s"[operandInfos.size() == 1]; 4017 return (emitError(typeLoc, "expected ") 4018 << operandInfos.size() << " operand type" << plural 4019 << " but had " << operandTypes.size(), 4020 nullptr); 4021 } 4022 4023 // Resolve all of the operands. 4024 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 4025 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 4026 if (!result.operands.back()) 4027 return nullptr; 4028 } 4029 4030 // Parse a location if one is present. 4031 if (parseOptionalTrailingLocation(result.location)) 4032 return nullptr; 4033 4034 return opBuilder.createOperation(result); 4035 } 4036 4037 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 4038 Block::iterator insertPt) { 4039 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 4040 opBuilder.setInsertionPoint(insertBlock, insertPt); 4041 return parseGenericOperation(); 4042 } 4043 4044 namespace { 4045 class CustomOpAsmParser : public OpAsmParser { 4046 public: 4047 CustomOpAsmParser(SMLoc nameLoc, 4048 ArrayRef<OperationParser::ResultRecord> resultIDs, 4049 const AbstractOperation *opDefinition, 4050 OperationParser &parser) 4051 : nameLoc(nameLoc), resultIDs(resultIDs), opDefinition(opDefinition), 4052 parser(parser) {} 4053 4054 /// Parse an instance of the operation described by 'opDefinition' into the 4055 /// provided operation state. 4056 ParseResult parseOperation(OperationState &opState) { 4057 if (opDefinition->parseAssembly(*this, opState)) 4058 return failure(); 4059 return success(); 4060 } 4061 4062 Operation *parseGenericOperation(Block *insertBlock, 4063 Block::iterator insertPt) final { 4064 return parser.parseGenericOperation(insertBlock, insertPt); 4065 } 4066 4067 //===--------------------------------------------------------------------===// 4068 // Utilities 4069 //===--------------------------------------------------------------------===// 4070 4071 /// Return if any errors were emitted during parsing. 4072 bool didEmitError() const { return emittedError; } 4073 4074 /// Emit a diagnostic at the specified location and return failure. 4075 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 4076 emittedError = true; 4077 return parser.emitError(loc, "custom op '" + opDefinition->name + "' " + 4078 message); 4079 } 4080 4081 llvm::SMLoc getCurrentLocation() override { 4082 return parser.getToken().getLoc(); 4083 } 4084 4085 Builder &getBuilder() const override { return parser.builder; } 4086 4087 /// Return the name of the specified result in the specified syntax, as well 4088 /// as the subelement in the name. For example, in this operation: 4089 /// 4090 /// %x, %y:2, %z = foo.op 4091 /// 4092 /// getResultName(0) == {"x", 0 } 4093 /// getResultName(1) == {"y", 0 } 4094 /// getResultName(2) == {"y", 1 } 4095 /// getResultName(3) == {"z", 0 } 4096 std::pair<StringRef, unsigned> 4097 getResultName(unsigned resultNo) const override { 4098 // Scan for the resultID that contains this result number. 4099 for (unsigned nameID = 0, e = resultIDs.size(); nameID != e; ++nameID) { 4100 const auto &entry = resultIDs[nameID]; 4101 if (resultNo < std::get<1>(entry)) { 4102 // Don't pass on the leading %. 4103 StringRef name = std::get<0>(entry).drop_front(); 4104 return {name, resultNo}; 4105 } 4106 resultNo -= std::get<1>(entry); 4107 } 4108 4109 // Invalid result number. 4110 return {"", ~0U}; 4111 } 4112 4113 /// Return the number of declared SSA results. This returns 4 for the foo.op 4114 /// example in the comment for getResultName. 4115 size_t getNumResults() const override { 4116 size_t count = 0; 4117 for (auto &entry : resultIDs) 4118 count += std::get<1>(entry); 4119 return count; 4120 } 4121 4122 llvm::SMLoc getNameLoc() const override { return nameLoc; } 4123 4124 //===--------------------------------------------------------------------===// 4125 // Token Parsing 4126 //===--------------------------------------------------------------------===// 4127 4128 /// Parse a `->` token. 4129 ParseResult parseArrow() override { 4130 return parser.parseToken(Token::arrow, "expected '->'"); 4131 } 4132 4133 /// Parses a `->` if present. 4134 ParseResult parseOptionalArrow() override { 4135 return success(parser.consumeIf(Token::arrow)); 4136 } 4137 4138 /// Parse a `:` token. 4139 ParseResult parseColon() override { 4140 return parser.parseToken(Token::colon, "expected ':'"); 4141 } 4142 4143 /// Parse a `:` token if present. 4144 ParseResult parseOptionalColon() override { 4145 return success(parser.consumeIf(Token::colon)); 4146 } 4147 4148 /// Parse a `,` token. 4149 ParseResult parseComma() override { 4150 return parser.parseToken(Token::comma, "expected ','"); 4151 } 4152 4153 /// Parse a `,` token if present. 4154 ParseResult parseOptionalComma() override { 4155 return success(parser.consumeIf(Token::comma)); 4156 } 4157 4158 /// Parses a `...` if present. 4159 ParseResult parseOptionalEllipsis() override { 4160 return success(parser.consumeIf(Token::ellipsis)); 4161 } 4162 4163 /// Parse a `=` token. 4164 ParseResult parseEqual() override { 4165 return parser.parseToken(Token::equal, "expected '='"); 4166 } 4167 4168 /// Parse a '<' token. 4169 ParseResult parseLess() override { 4170 return parser.parseToken(Token::less, "expected '<'"); 4171 } 4172 4173 /// Parse a '>' token. 4174 ParseResult parseGreater() override { 4175 return parser.parseToken(Token::greater, "expected '>'"); 4176 } 4177 4178 /// Parse a `(` token. 4179 ParseResult parseLParen() override { 4180 return parser.parseToken(Token::l_paren, "expected '('"); 4181 } 4182 4183 /// Parses a '(' if present. 4184 ParseResult parseOptionalLParen() override { 4185 return success(parser.consumeIf(Token::l_paren)); 4186 } 4187 4188 /// Parse a `)` token. 4189 ParseResult parseRParen() override { 4190 return parser.parseToken(Token::r_paren, "expected ')'"); 4191 } 4192 4193 /// Parses a ')' if present. 4194 ParseResult parseOptionalRParen() override { 4195 return success(parser.consumeIf(Token::r_paren)); 4196 } 4197 4198 /// Parse a `[` token. 4199 ParseResult parseLSquare() override { 4200 return parser.parseToken(Token::l_square, "expected '['"); 4201 } 4202 4203 /// Parses a '[' if present. 4204 ParseResult parseOptionalLSquare() override { 4205 return success(parser.consumeIf(Token::l_square)); 4206 } 4207 4208 /// Parse a `]` token. 4209 ParseResult parseRSquare() override { 4210 return parser.parseToken(Token::r_square, "expected ']'"); 4211 } 4212 4213 /// Parses a ']' if present. 4214 ParseResult parseOptionalRSquare() override { 4215 return success(parser.consumeIf(Token::r_square)); 4216 } 4217 4218 //===--------------------------------------------------------------------===// 4219 // Attribute Parsing 4220 //===--------------------------------------------------------------------===// 4221 4222 /// Parse an arbitrary attribute of a given type and return it in result. This 4223 /// also adds the attribute to the specified attribute list with the specified 4224 /// name. 4225 ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName, 4226 NamedAttrList &attrs) override { 4227 result = parser.parseAttribute(type); 4228 if (!result) 4229 return failure(); 4230 4231 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 4232 return success(); 4233 } 4234 4235 /// Parse a named dictionary into 'result' if it is present. 4236 ParseResult parseOptionalAttrDict(NamedAttrList &result) override { 4237 if (parser.getToken().isNot(Token::l_brace)) 4238 return success(); 4239 return parser.parseAttributeDict(result); 4240 } 4241 4242 /// Parse a named dictionary into 'result' if the `attributes` keyword is 4243 /// present. 4244 ParseResult parseOptionalAttrDictWithKeyword(NamedAttrList &result) override { 4245 if (failed(parseOptionalKeyword("attributes"))) 4246 return success(); 4247 return parser.parseAttributeDict(result); 4248 } 4249 4250 /// Parse an affine map instance into 'map'. 4251 ParseResult parseAffineMap(AffineMap &map) override { 4252 return parser.parseAffineMapReference(map); 4253 } 4254 4255 /// Parse an integer set instance into 'set'. 4256 ParseResult printIntegerSet(IntegerSet &set) override { 4257 return parser.parseIntegerSetReference(set); 4258 } 4259 4260 //===--------------------------------------------------------------------===// 4261 // Identifier Parsing 4262 //===--------------------------------------------------------------------===// 4263 4264 /// Returns if the current token corresponds to a keyword. 4265 bool isCurrentTokenAKeyword() const { 4266 return parser.getToken().is(Token::bare_identifier) || 4267 parser.getToken().isKeyword(); 4268 } 4269 4270 /// Parse the given keyword if present. 4271 ParseResult parseOptionalKeyword(StringRef keyword) override { 4272 // Check that the current token has the same spelling. 4273 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 4274 return failure(); 4275 parser.consumeToken(); 4276 return success(); 4277 } 4278 4279 /// Parse a keyword, if present, into 'keyword'. 4280 ParseResult parseOptionalKeyword(StringRef *keyword) override { 4281 // Check that the current token is a keyword. 4282 if (!isCurrentTokenAKeyword()) 4283 return failure(); 4284 4285 *keyword = parser.getTokenSpelling(); 4286 parser.consumeToken(); 4287 return success(); 4288 } 4289 4290 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 4291 /// string attribute named 'attrName'. 4292 ParseResult parseOptionalSymbolName(StringAttr &result, StringRef attrName, 4293 NamedAttrList &attrs) override { 4294 Token atToken = parser.getToken(); 4295 if (atToken.isNot(Token::at_identifier)) 4296 return failure(); 4297 4298 result = getBuilder().getStringAttr(extractSymbolReference(atToken)); 4299 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 4300 parser.consumeToken(); 4301 return success(); 4302 } 4303 4304 //===--------------------------------------------------------------------===// 4305 // Operand Parsing 4306 //===--------------------------------------------------------------------===// 4307 4308 /// Parse a single operand. 4309 ParseResult parseOperand(OperandType &result) override { 4310 OperationParser::SSAUseInfo useInfo; 4311 if (parser.parseSSAUse(useInfo)) 4312 return failure(); 4313 4314 result = {useInfo.loc, useInfo.name, useInfo.number}; 4315 return success(); 4316 } 4317 4318 /// Parse a single operand if present. 4319 OptionalParseResult parseOptionalOperand(OperandType &result) override { 4320 if (parser.getToken().is(Token::percent_identifier)) 4321 return parseOperand(result); 4322 return llvm::None; 4323 } 4324 4325 /// Parse zero or more SSA comma-separated operand references with a specified 4326 /// surrounding delimiter, and an optional required operand count. 4327 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 4328 int requiredOperandCount = -1, 4329 Delimiter delimiter = Delimiter::None) override { 4330 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 4331 requiredOperandCount, delimiter); 4332 } 4333 4334 /// Parse zero or more SSA comma-separated operand or region arguments with 4335 /// optional surrounding delimiter and required operand count. 4336 ParseResult 4337 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 4338 bool isOperandList, int requiredOperandCount = -1, 4339 Delimiter delimiter = Delimiter::None) { 4340 auto startLoc = parser.getToken().getLoc(); 4341 4342 // Handle delimiters. 4343 switch (delimiter) { 4344 case Delimiter::None: 4345 // Don't check for the absence of a delimiter if the number of operands 4346 // is unknown (and hence the operand list could be empty). 4347 if (requiredOperandCount == -1) 4348 break; 4349 // Token already matches an identifier and so can't be a delimiter. 4350 if (parser.getToken().is(Token::percent_identifier)) 4351 break; 4352 // Test against known delimiters. 4353 if (parser.getToken().is(Token::l_paren) || 4354 parser.getToken().is(Token::l_square)) 4355 return emitError(startLoc, "unexpected delimiter"); 4356 return emitError(startLoc, "invalid operand"); 4357 case Delimiter::OptionalParen: 4358 if (parser.getToken().isNot(Token::l_paren)) 4359 return success(); 4360 LLVM_FALLTHROUGH; 4361 case Delimiter::Paren: 4362 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 4363 return failure(); 4364 break; 4365 case Delimiter::OptionalSquare: 4366 if (parser.getToken().isNot(Token::l_square)) 4367 return success(); 4368 LLVM_FALLTHROUGH; 4369 case Delimiter::Square: 4370 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 4371 return failure(); 4372 break; 4373 } 4374 4375 // Check for zero operands. 4376 if (parser.getToken().is(Token::percent_identifier)) { 4377 do { 4378 OperandType operandOrArg; 4379 if (isOperandList ? parseOperand(operandOrArg) 4380 : parseRegionArgument(operandOrArg)) 4381 return failure(); 4382 result.push_back(operandOrArg); 4383 } while (parser.consumeIf(Token::comma)); 4384 } 4385 4386 // Handle delimiters. If we reach here, the optional delimiters were 4387 // present, so we need to parse their closing one. 4388 switch (delimiter) { 4389 case Delimiter::None: 4390 break; 4391 case Delimiter::OptionalParen: 4392 case Delimiter::Paren: 4393 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 4394 return failure(); 4395 break; 4396 case Delimiter::OptionalSquare: 4397 case Delimiter::Square: 4398 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 4399 return failure(); 4400 break; 4401 } 4402 4403 if (requiredOperandCount != -1 && 4404 result.size() != static_cast<size_t>(requiredOperandCount)) 4405 return emitError(startLoc, "expected ") 4406 << requiredOperandCount << " operands"; 4407 return success(); 4408 } 4409 4410 /// Parse zero or more trailing SSA comma-separated trailing operand 4411 /// references with a specified surrounding delimiter, and an optional 4412 /// required operand count. A leading comma is expected before the operands. 4413 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 4414 int requiredOperandCount, 4415 Delimiter delimiter) override { 4416 if (parser.getToken().is(Token::comma)) { 4417 parseComma(); 4418 return parseOperandList(result, requiredOperandCount, delimiter); 4419 } 4420 if (requiredOperandCount != -1) 4421 return emitError(parser.getToken().getLoc(), "expected ") 4422 << requiredOperandCount << " operands"; 4423 return success(); 4424 } 4425 4426 /// Resolve an operand to an SSA value, emitting an error on failure. 4427 ParseResult resolveOperand(const OperandType &operand, Type type, 4428 SmallVectorImpl<Value> &result) override { 4429 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4430 operand.location}; 4431 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 4432 result.push_back(value); 4433 return success(); 4434 } 4435 return failure(); 4436 } 4437 4438 /// Parse an AffineMap of SSA ids. 4439 ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 4440 Attribute &mapAttr, StringRef attrName, 4441 NamedAttrList &attrs, 4442 Delimiter delimiter) override { 4443 SmallVector<OperandType, 2> dimOperands; 4444 SmallVector<OperandType, 1> symOperands; 4445 4446 auto parseElement = [&](bool isSymbol) -> ParseResult { 4447 OperandType operand; 4448 if (parseOperand(operand)) 4449 return failure(); 4450 if (isSymbol) 4451 symOperands.push_back(operand); 4452 else 4453 dimOperands.push_back(operand); 4454 return success(); 4455 }; 4456 4457 AffineMap map; 4458 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 4459 return failure(); 4460 // Add AffineMap attribute. 4461 if (map) { 4462 mapAttr = AffineMapAttr::get(map); 4463 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 4464 } 4465 4466 // Add dim operands before symbol operands in 'operands'. 4467 operands.assign(dimOperands.begin(), dimOperands.end()); 4468 operands.append(symOperands.begin(), symOperands.end()); 4469 return success(); 4470 } 4471 4472 //===--------------------------------------------------------------------===// 4473 // Region Parsing 4474 //===--------------------------------------------------------------------===// 4475 4476 /// Parse a region that takes `arguments` of `argTypes` types. This 4477 /// effectively defines the SSA values of `arguments` and assigns their type. 4478 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 4479 ArrayRef<Type> argTypes, 4480 bool enableNameShadowing) override { 4481 assert(arguments.size() == argTypes.size() && 4482 "mismatching number of arguments and types"); 4483 4484 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 4485 regionArguments; 4486 for (auto pair : llvm::zip(arguments, argTypes)) { 4487 const OperandType &operand = std::get<0>(pair); 4488 Type type = std::get<1>(pair); 4489 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4490 operand.location}; 4491 regionArguments.emplace_back(operandInfo, type); 4492 } 4493 4494 // Try to parse the region. 4495 assert((!enableNameShadowing || 4496 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) && 4497 "name shadowing is only allowed on isolated regions"); 4498 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 4499 return failure(); 4500 return success(); 4501 } 4502 4503 /// Parses a region if present. 4504 ParseResult parseOptionalRegion(Region ®ion, 4505 ArrayRef<OperandType> arguments, 4506 ArrayRef<Type> argTypes, 4507 bool enableNameShadowing) override { 4508 if (parser.getToken().isNot(Token::l_brace)) 4509 return success(); 4510 return parseRegion(region, arguments, argTypes, enableNameShadowing); 4511 } 4512 4513 /// Parse a region argument. The type of the argument will be resolved later 4514 /// by a call to `parseRegion`. 4515 ParseResult parseRegionArgument(OperandType &argument) override { 4516 return parseOperand(argument); 4517 } 4518 4519 /// Parse a region argument if present. 4520 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 4521 if (parser.getToken().isNot(Token::percent_identifier)) 4522 return success(); 4523 return parseRegionArgument(argument); 4524 } 4525 4526 ParseResult 4527 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 4528 int requiredOperandCount = -1, 4529 Delimiter delimiter = Delimiter::None) override { 4530 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 4531 requiredOperandCount, delimiter); 4532 } 4533 4534 //===--------------------------------------------------------------------===// 4535 // Successor Parsing 4536 //===--------------------------------------------------------------------===// 4537 4538 /// Parse a single operation successor. 4539 ParseResult parseSuccessor(Block *&dest) override { 4540 return parser.parseSuccessor(dest); 4541 } 4542 4543 /// Parse an optional operation successor and its operand list. 4544 OptionalParseResult parseOptionalSuccessor(Block *&dest) override { 4545 if (parser.getToken().isNot(Token::caret_identifier)) 4546 return llvm::None; 4547 return parseSuccessor(dest); 4548 } 4549 4550 /// Parse a single operation successor and its operand list. 4551 ParseResult 4552 parseSuccessorAndUseList(Block *&dest, 4553 SmallVectorImpl<Value> &operands) override { 4554 if (parseSuccessor(dest)) 4555 return failure(); 4556 4557 // Handle optional arguments. 4558 if (succeeded(parseOptionalLParen()) && 4559 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) { 4560 return failure(); 4561 } 4562 return success(); 4563 } 4564 4565 //===--------------------------------------------------------------------===// 4566 // Type Parsing 4567 //===--------------------------------------------------------------------===// 4568 4569 /// Parse a type. 4570 ParseResult parseType(Type &result) override { 4571 return failure(!(result = parser.parseType())); 4572 } 4573 4574 /// Parse an optional type. 4575 OptionalParseResult parseOptionalType(Type &result) override { 4576 return parser.parseOptionalType(result); 4577 } 4578 4579 /// Parse an arrow followed by a type list. 4580 ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override { 4581 if (parseArrow() || parser.parseFunctionResultTypes(result)) 4582 return failure(); 4583 return success(); 4584 } 4585 4586 /// Parse an optional arrow followed by a type list. 4587 ParseResult 4588 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 4589 if (!parser.consumeIf(Token::arrow)) 4590 return success(); 4591 return parser.parseFunctionResultTypes(result); 4592 } 4593 4594 /// Parse a colon followed by a type. 4595 ParseResult parseColonType(Type &result) override { 4596 return failure(parser.parseToken(Token::colon, "expected ':'") || 4597 !(result = parser.parseType())); 4598 } 4599 4600 /// Parse a colon followed by a type list, which must have at least one type. 4601 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 4602 if (parser.parseToken(Token::colon, "expected ':'")) 4603 return failure(); 4604 return parser.parseTypeListNoParens(result); 4605 } 4606 4607 /// Parse an optional colon followed by a type list, which if present must 4608 /// have at least one type. 4609 ParseResult 4610 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 4611 if (!parser.consumeIf(Token::colon)) 4612 return success(); 4613 return parser.parseTypeListNoParens(result); 4614 } 4615 4616 /// Parse a list of assignments of the form 4617 /// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...). 4618 /// The list must contain at least one entry 4619 ParseResult parseAssignmentList(SmallVectorImpl<OperandType> &lhs, 4620 SmallVectorImpl<OperandType> &rhs) override { 4621 auto parseElt = [&]() -> ParseResult { 4622 OperandType regionArg, operand; 4623 if (parseRegionArgument(regionArg) || parseEqual() || 4624 parseOperand(operand)) 4625 return failure(); 4626 lhs.push_back(regionArg); 4627 rhs.push_back(operand); 4628 return success(); 4629 }; 4630 if (parseLParen()) 4631 return failure(); 4632 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 4633 } 4634 4635 private: 4636 /// The source location of the operation name. 4637 SMLoc nameLoc; 4638 4639 /// Information about the result name specifiers. 4640 ArrayRef<OperationParser::ResultRecord> resultIDs; 4641 4642 /// The abstract information of the operation. 4643 const AbstractOperation *opDefinition; 4644 4645 /// The main operation parser. 4646 OperationParser &parser; 4647 4648 /// A flag that indicates if any errors were emitted during parsing. 4649 bool emittedError = false; 4650 }; 4651 } // end anonymous namespace. 4652 4653 Operation * 4654 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) { 4655 auto opLoc = getToken().getLoc(); 4656 auto opName = getTokenSpelling(); 4657 4658 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 4659 if (!opDefinition && !opName.contains('.')) { 4660 // If the operation name has no namespace prefix we treat it as a standard 4661 // operation and prefix it with "std". 4662 // TODO: Would it be better to just build a mapping of the registered 4663 // operations in the standard dialect? 4664 opDefinition = 4665 AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); 4666 } 4667 4668 if (!opDefinition) { 4669 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 4670 return nullptr; 4671 } 4672 4673 consumeToken(); 4674 4675 // If the custom op parser crashes, produce some indication to help 4676 // debugging. 4677 std::string opNameStr = opName.str(); 4678 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 4679 opNameStr.c_str()); 4680 4681 // Get location information for the operation. 4682 auto srcLocation = getEncodedSourceLocation(opLoc); 4683 4684 // Have the op implementation take a crack and parsing this. 4685 OperationState opState(srcLocation, opDefinition->name); 4686 CleanupOpStateRegions guard{opState}; 4687 CustomOpAsmParser opAsmParser(opLoc, resultIDs, opDefinition, *this); 4688 if (opAsmParser.parseOperation(opState)) 4689 return nullptr; 4690 4691 // If it emitted an error, we failed. 4692 if (opAsmParser.didEmitError()) 4693 return nullptr; 4694 4695 // Parse a location if one is present. 4696 if (parseOptionalTrailingLocation(opState.location)) 4697 return nullptr; 4698 4699 // Otherwise, we succeeded. Use the state it parsed as our op information. 4700 return opBuilder.createOperation(opState); 4701 } 4702 4703 //===----------------------------------------------------------------------===// 4704 // Region Parsing 4705 //===----------------------------------------------------------------------===// 4706 4707 /// Region. 4708 /// 4709 /// region ::= '{' region-body 4710 /// 4711 ParseResult OperationParser::parseRegion( 4712 Region ®ion, 4713 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 4714 bool isIsolatedNameScope) { 4715 // Parse the '{'. 4716 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 4717 return failure(); 4718 4719 // Check for an empty region. 4720 if (entryArguments.empty() && consumeIf(Token::r_brace)) 4721 return success(); 4722 auto currentPt = opBuilder.saveInsertionPoint(); 4723 4724 // Push a new named value scope. 4725 pushSSANameScope(isIsolatedNameScope); 4726 4727 // Parse the first block directly to allow for it to be unnamed. 4728 Block *block = new Block(); 4729 4730 // Add arguments to the entry block. 4731 if (!entryArguments.empty()) { 4732 for (auto &placeholderArgPair : entryArguments) { 4733 auto &argInfo = placeholderArgPair.first; 4734 // Ensure that the argument was not already defined. 4735 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 4736 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 4737 "' is already in use") 4738 .attachNote(getEncodedSourceLocation(*defLoc)) 4739 << "previously referenced here"; 4740 } 4741 if (addDefinition(placeholderArgPair.first, 4742 block->addArgument(placeholderArgPair.second))) { 4743 delete block; 4744 return failure(); 4745 } 4746 } 4747 4748 // If we had named arguments, then don't allow a block name. 4749 if (getToken().is(Token::caret_identifier)) 4750 return emitError("invalid block name in region with named arguments"); 4751 } 4752 4753 if (parseBlock(block)) { 4754 delete block; 4755 return failure(); 4756 } 4757 4758 // Verify that no other arguments were parsed. 4759 if (!entryArguments.empty() && 4760 block->getNumArguments() > entryArguments.size()) { 4761 delete block; 4762 return emitError("entry block arguments were already defined"); 4763 } 4764 4765 // Parse the rest of the region. 4766 region.push_back(block); 4767 if (parseRegionBody(region)) 4768 return failure(); 4769 4770 // Pop the SSA value scope for this region. 4771 if (popSSANameScope()) 4772 return failure(); 4773 4774 // Reset the original insertion point. 4775 opBuilder.restoreInsertionPoint(currentPt); 4776 return success(); 4777 } 4778 4779 /// Region. 4780 /// 4781 /// region-body ::= block* '}' 4782 /// 4783 ParseResult OperationParser::parseRegionBody(Region ®ion) { 4784 // Parse the list of blocks. 4785 while (!consumeIf(Token::r_brace)) { 4786 Block *newBlock = nullptr; 4787 if (parseBlock(newBlock)) 4788 return failure(); 4789 region.push_back(newBlock); 4790 } 4791 return success(); 4792 } 4793 4794 //===----------------------------------------------------------------------===// 4795 // Block Parsing 4796 //===----------------------------------------------------------------------===// 4797 4798 /// Block declaration. 4799 /// 4800 /// block ::= block-label? operation* 4801 /// block-label ::= block-id block-arg-list? `:` 4802 /// block-id ::= caret-id 4803 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 4804 /// 4805 ParseResult OperationParser::parseBlock(Block *&block) { 4806 // The first block of a region may already exist, if it does the caret 4807 // identifier is optional. 4808 if (block && getToken().isNot(Token::caret_identifier)) 4809 return parseBlockBody(block); 4810 4811 SMLoc nameLoc = getToken().getLoc(); 4812 auto name = getTokenSpelling(); 4813 if (parseToken(Token::caret_identifier, "expected block name")) 4814 return failure(); 4815 4816 block = defineBlockNamed(name, nameLoc, block); 4817 4818 // Fail if the block was already defined. 4819 if (!block) 4820 return emitError(nameLoc, "redefinition of block '") << name << "'"; 4821 4822 // If an argument list is present, parse it. 4823 if (consumeIf(Token::l_paren)) { 4824 SmallVector<BlockArgument, 8> bbArgs; 4825 if (parseOptionalBlockArgList(bbArgs, block) || 4826 parseToken(Token::r_paren, "expected ')' to end argument list")) 4827 return failure(); 4828 } 4829 4830 if (parseToken(Token::colon, "expected ':' after block name")) 4831 return failure(); 4832 4833 return parseBlockBody(block); 4834 } 4835 4836 ParseResult OperationParser::parseBlockBody(Block *block) { 4837 // Set the insertion point to the end of the block to parse. 4838 opBuilder.setInsertionPointToEnd(block); 4839 4840 // Parse the list of operations that make up the body of the block. 4841 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 4842 if (parseOperation()) 4843 return failure(); 4844 4845 return success(); 4846 } 4847 4848 /// Get the block with the specified name, creating it if it doesn't already 4849 /// exist. The location specified is the point of use, which allows 4850 /// us to diagnose references to blocks that are not defined precisely. 4851 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 4852 auto &blockAndLoc = getBlockInfoByName(name); 4853 if (!blockAndLoc.first) { 4854 blockAndLoc = {new Block(), loc}; 4855 insertForwardRef(blockAndLoc.first, loc); 4856 } 4857 4858 return blockAndLoc.first; 4859 } 4860 4861 /// Define the block with the specified name. Returns the Block* or nullptr in 4862 /// the case of redefinition. 4863 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 4864 Block *existing) { 4865 auto &blockAndLoc = getBlockInfoByName(name); 4866 if (!blockAndLoc.first) { 4867 // If the caller provided a block, use it. Otherwise create a new one. 4868 if (!existing) 4869 existing = new Block(); 4870 blockAndLoc.first = existing; 4871 blockAndLoc.second = loc; 4872 return blockAndLoc.first; 4873 } 4874 4875 // Forward declarations are removed once defined, so if we are defining a 4876 // existing block and it is not a forward declaration, then it is a 4877 // redeclaration. 4878 if (!eraseForwardRef(blockAndLoc.first)) 4879 return nullptr; 4880 return blockAndLoc.first; 4881 } 4882 4883 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 4884 /// 4885 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 4886 /// 4887 ParseResult OperationParser::parseOptionalBlockArgList( 4888 SmallVectorImpl<BlockArgument> &results, Block *owner) { 4889 if (getToken().is(Token::r_brace)) 4890 return success(); 4891 4892 // If the block already has arguments, then we're handling the entry block. 4893 // Parse and register the names for the arguments, but do not add them. 4894 bool definingExistingArgs = owner->getNumArguments() != 0; 4895 unsigned nextArgument = 0; 4896 4897 return parseCommaSeparatedList([&]() -> ParseResult { 4898 return parseSSADefOrUseAndType( 4899 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 4900 // If this block did not have existing arguments, define a new one. 4901 if (!definingExistingArgs) 4902 return addDefinition(useInfo, owner->addArgument(type)); 4903 4904 // Otherwise, ensure that this argument has already been created. 4905 if (nextArgument >= owner->getNumArguments()) 4906 return emitError("too many arguments specified in argument list"); 4907 4908 // Finally, make sure the existing argument has the correct type. 4909 auto arg = owner->getArgument(nextArgument++); 4910 if (arg.getType() != type) 4911 return emitError("argument and block argument type mismatch"); 4912 return addDefinition(useInfo, arg); 4913 }); 4914 }); 4915 } 4916 4917 //===----------------------------------------------------------------------===// 4918 // Top-level entity parsing. 4919 //===----------------------------------------------------------------------===// 4920 4921 namespace { 4922 /// This parser handles entities that are only valid at the top level of the 4923 /// file. 4924 class ModuleParser : public Parser { 4925 public: 4926 explicit ModuleParser(ParserState &state) : Parser(state) {} 4927 4928 ParseResult parseModule(ModuleOp module); 4929 4930 private: 4931 /// Parse an attribute alias declaration. 4932 ParseResult parseAttributeAliasDef(); 4933 4934 /// Parse an attribute alias declaration. 4935 ParseResult parseTypeAliasDef(); 4936 }; 4937 } // end anonymous namespace 4938 4939 /// Parses an attribute alias declaration. 4940 /// 4941 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 4942 /// 4943 ParseResult ModuleParser::parseAttributeAliasDef() { 4944 assert(getToken().is(Token::hash_identifier)); 4945 StringRef aliasName = getTokenSpelling().drop_front(); 4946 4947 // Check for redefinitions. 4948 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 4949 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 4950 4951 // Make sure this isn't invading the dialect attribute namespace. 4952 if (aliasName.contains('.')) 4953 return emitError("attribute names with a '.' are reserved for " 4954 "dialect-defined names"); 4955 4956 consumeToken(Token::hash_identifier); 4957 4958 // Parse the '='. 4959 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 4960 return failure(); 4961 4962 // Parse the attribute value. 4963 Attribute attr = parseAttribute(); 4964 if (!attr) 4965 return failure(); 4966 4967 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 4968 return success(); 4969 } 4970 4971 /// Parse a type alias declaration. 4972 /// 4973 /// type-alias-def ::= '!' alias-name `=` 'type' type 4974 /// 4975 ParseResult ModuleParser::parseTypeAliasDef() { 4976 assert(getToken().is(Token::exclamation_identifier)); 4977 StringRef aliasName = getTokenSpelling().drop_front(); 4978 4979 // Check for redefinitions. 4980 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 4981 return emitError("redefinition of type alias id '" + aliasName + "'"); 4982 4983 // Make sure this isn't invading the dialect type namespace. 4984 if (aliasName.contains('.')) 4985 return emitError("type names with a '.' are reserved for " 4986 "dialect-defined names"); 4987 4988 consumeToken(Token::exclamation_identifier); 4989 4990 // Parse the '=' and 'type'. 4991 if (parseToken(Token::equal, "expected '=' in type alias definition") || 4992 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 4993 return failure(); 4994 4995 // Parse the type. 4996 Type aliasedType = parseType(); 4997 if (!aliasedType) 4998 return failure(); 4999 5000 // Register this alias with the parser state. 5001 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 5002 return success(); 5003 } 5004 5005 /// This is the top-level module parser. 5006 ParseResult ModuleParser::parseModule(ModuleOp module) { 5007 OperationParser opParser(getState(), module); 5008 5009 // Module itself is a name scope. 5010 opParser.pushSSANameScope(/*isIsolated=*/true); 5011 5012 while (true) { 5013 switch (getToken().getKind()) { 5014 default: 5015 // Parse a top-level operation. 5016 if (opParser.parseOperation()) 5017 return failure(); 5018 break; 5019 5020 // If we got to the end of the file, then we're done. 5021 case Token::eof: { 5022 if (opParser.finalize()) 5023 return failure(); 5024 5025 // Handle the case where the top level module was explicitly defined. 5026 auto &bodyBlocks = module.getBodyRegion().getBlocks(); 5027 auto &operations = bodyBlocks.front().getOperations(); 5028 assert(!operations.empty() && "expected a valid module terminator"); 5029 5030 // Check that the first operation is a module, and it is the only 5031 // non-terminator operation. 5032 ModuleOp nested = dyn_cast<ModuleOp>(operations.front()); 5033 if (nested && std::next(operations.begin(), 2) == operations.end()) { 5034 // Merge the data of the nested module operation into 'module'. 5035 module.setLoc(nested.getLoc()); 5036 module.setAttrs(nested.getOperation()->getMutableAttrDict()); 5037 bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks()); 5038 5039 // Erase the original module body. 5040 bodyBlocks.pop_front(); 5041 } 5042 5043 return opParser.popSSANameScope(); 5044 } 5045 5046 // If we got an error token, then the lexer already emitted an error, just 5047 // stop. Someday we could introduce error recovery if there was demand 5048 // for it. 5049 case Token::error: 5050 return failure(); 5051 5052 // Parse an attribute alias. 5053 case Token::hash_identifier: 5054 if (parseAttributeAliasDef()) 5055 return failure(); 5056 break; 5057 5058 // Parse a type alias. 5059 case Token::exclamation_identifier: 5060 if (parseTypeAliasDef()) 5061 return failure(); 5062 break; 5063 } 5064 } 5065 } 5066 5067 //===----------------------------------------------------------------------===// 5068 5069 /// This parses the file specified by the indicated SourceMgr and returns an 5070 /// MLIR module if it was valid. If not, it emits diagnostics and returns 5071 /// null. 5072 OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 5073 MLIRContext *context) { 5074 auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 5075 5076 // This is the result module we are parsing into. 5077 OwningModuleRef module(ModuleOp::create(FileLineColLoc::get( 5078 sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context))); 5079 5080 SymbolState aliasState; 5081 ParserState state(sourceMgr, context, aliasState); 5082 if (ModuleParser(state).parseModule(*module)) 5083 return nullptr; 5084 5085 // Make sure the parse module has no other structural problems detected by 5086 // the verifier. 5087 if (failed(verify(*module))) 5088 return nullptr; 5089 5090 return module; 5091 } 5092 5093 /// This parses the file specified by the indicated filename and returns an 5094 /// MLIR module if it was valid. If not, the error message is emitted through 5095 /// the error handler registered in the context, and a null pointer is returned. 5096 OwningModuleRef mlir::parseSourceFile(StringRef filename, 5097 MLIRContext *context) { 5098 llvm::SourceMgr sourceMgr; 5099 return parseSourceFile(filename, sourceMgr, context); 5100 } 5101 5102 /// This parses the file specified by the indicated filename using the provided 5103 /// SourceMgr and returns an MLIR module if it was valid. If not, the error 5104 /// message is emitted through the error handler registered in the context, and 5105 /// a null pointer is returned. 5106 OwningModuleRef mlir::parseSourceFile(StringRef filename, 5107 llvm::SourceMgr &sourceMgr, 5108 MLIRContext *context) { 5109 if (sourceMgr.getNumBuffers() != 0) { 5110 // TODO(b/136086478): Extend to support multiple buffers. 5111 emitError(mlir::UnknownLoc::get(context), 5112 "only main buffer parsed at the moment"); 5113 return nullptr; 5114 } 5115 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 5116 if (std::error_code error = file_or_err.getError()) { 5117 emitError(mlir::UnknownLoc::get(context), 5118 "could not open input file " + filename); 5119 return nullptr; 5120 } 5121 5122 // Load the MLIR module. 5123 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 5124 return parseSourceFile(sourceMgr, context); 5125 } 5126 5127 /// This parses the program string to a MLIR module if it was valid. If not, 5128 /// it emits diagnostics and returns null. 5129 OwningModuleRef mlir::parseSourceString(StringRef moduleStr, 5130 MLIRContext *context) { 5131 auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); 5132 if (!memBuffer) 5133 return nullptr; 5134 5135 SourceMgr sourceMgr; 5136 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 5137 return parseSourceFile(sourceMgr, context); 5138 } 5139 5140 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 5141 /// parsing failed, nullptr is returned. The number of bytes read from the input 5142 /// string is returned in 'numRead'. 5143 template <typename T, typename ParserFn> 5144 static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead, 5145 ParserFn &&parserFn) { 5146 SymbolState aliasState; 5147 return parseSymbol<T>( 5148 inputStr, context, aliasState, 5149 [&](Parser &parser) { 5150 SourceMgrDiagnosticHandler handler( 5151 const_cast<llvm::SourceMgr &>(parser.getSourceMgr()), 5152 parser.getContext()); 5153 return parserFn(parser); 5154 }, 5155 &numRead); 5156 } 5157 5158 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) { 5159 size_t numRead = 0; 5160 return parseAttribute(attrStr, context, numRead); 5161 } 5162 Attribute mlir::parseAttribute(StringRef attrStr, Type type) { 5163 size_t numRead = 0; 5164 return parseAttribute(attrStr, type, numRead); 5165 } 5166 5167 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context, 5168 size_t &numRead) { 5169 return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) { 5170 return parser.parseAttribute(); 5171 }); 5172 } 5173 Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) { 5174 return parseSymbol<Attribute>( 5175 attrStr, type.getContext(), numRead, 5176 [type](Parser &parser) { return parser.parseAttribute(type); }); 5177 } 5178 5179 Type mlir::parseType(StringRef typeStr, MLIRContext *context) { 5180 size_t numRead = 0; 5181 return parseType(typeStr, context, numRead); 5182 } 5183 5184 Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) { 5185 return parseSymbol<Type>(typeStr, context, numRead, 5186 [](Parser &parser) { return parser.parseType(); }); 5187 } 5188