1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Parser.h" 14 #include "Lexer.h" 15 #include "mlir/Analysis/Verifier.h" 16 #include "mlir/IR/AffineExpr.h" 17 #include "mlir/IR/AffineMap.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/Dialect.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/IntegerSet.h" 23 #include "mlir/IR/Location.h" 24 #include "mlir/IR/MLIRContext.h" 25 #include "mlir/IR/Module.h" 26 #include "mlir/IR/OpImplementation.h" 27 #include "mlir/IR/StandardTypes.h" 28 #include "mlir/Support/STLExtras.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/ADT/bit.h" 33 #include "llvm/Support/PrettyStackTrace.h" 34 #include "llvm/Support/SMLoc.h" 35 #include "llvm/Support/SourceMgr.h" 36 #include <algorithm> 37 using namespace mlir; 38 using llvm::MemoryBuffer; 39 using llvm::SMLoc; 40 using llvm::SourceMgr; 41 42 namespace { 43 class Parser; 44 45 //===----------------------------------------------------------------------===// 46 // SymbolState 47 //===----------------------------------------------------------------------===// 48 49 /// This class contains record of any parsed top-level symbols. 50 struct SymbolState { 51 // A map from attribute alias identifier to Attribute. 52 llvm::StringMap<Attribute> attributeAliasDefinitions; 53 54 // A map from type alias identifier to Type. 55 llvm::StringMap<Type> typeAliasDefinitions; 56 57 /// A set of locations into the main parser memory buffer for each of the 58 /// active nested parsers. Given that some nested parsers, i.e. custom dialect 59 /// parsers, operate on a temporary memory buffer, this provides an anchor 60 /// point for emitting diagnostics. 61 SmallVector<llvm::SMLoc, 1> nestedParserLocs; 62 63 /// The top-level lexer that contains the original memory buffer provided by 64 /// the user. This is used by nested parsers to get a properly encoded source 65 /// location. 66 Lexer *topLevelLexer = nullptr; 67 }; 68 69 //===----------------------------------------------------------------------===// 70 // ParserState 71 //===----------------------------------------------------------------------===// 72 73 /// This class refers to all of the state maintained globally by the parser, 74 /// such as the current lexer position etc. 75 struct ParserState { 76 ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx, 77 SymbolState &symbols) 78 : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()), 79 symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) { 80 // Set the top level lexer for the symbol state if one doesn't exist. 81 if (!symbols.topLevelLexer) 82 symbols.topLevelLexer = &lex; 83 } 84 ~ParserState() { 85 // Reset the top level lexer if it refers the lexer in our state. 86 if (symbols.topLevelLexer == &lex) 87 symbols.topLevelLexer = nullptr; 88 } 89 ParserState(const ParserState &) = delete; 90 void operator=(const ParserState &) = delete; 91 92 /// The context we're parsing into. 93 MLIRContext *const context; 94 95 /// The lexer for the source file we're parsing. 96 Lexer lex; 97 98 /// This is the next token that hasn't been consumed yet. 99 Token curToken; 100 101 /// The current state for symbol parsing. 102 SymbolState &symbols; 103 104 /// The depth of this parser in the nested parsing stack. 105 size_t parserDepth; 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // Parser 110 //===----------------------------------------------------------------------===// 111 112 /// This class implement support for parsing global entities like types and 113 /// shared entities like SSA names. It is intended to be subclassed by 114 /// specialized subparsers that include state, e.g. when a local symbol table. 115 class Parser { 116 public: 117 Builder builder; 118 119 Parser(ParserState &state) : builder(state.context), state(state) {} 120 121 // Helper methods to get stuff from the parser-global state. 122 ParserState &getState() const { return state; } 123 MLIRContext *getContext() const { return state.context; } 124 const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } 125 126 /// Parse a comma-separated list of elements up until the specified end token. 127 ParseResult 128 parseCommaSeparatedListUntil(Token::Kind rightToken, 129 const std::function<ParseResult()> &parseElement, 130 bool allowEmptyList = true); 131 132 /// Parse a comma separated list of elements that must have at least one entry 133 /// in it. 134 ParseResult 135 parseCommaSeparatedList(const std::function<ParseResult()> &parseElement); 136 137 ParseResult parsePrettyDialectSymbolName(StringRef &prettyName); 138 139 // We have two forms of parsing methods - those that return a non-null 140 // pointer on success, and those that return a ParseResult to indicate whether 141 // they returned a failure. The second class fills in by-reference arguments 142 // as the results of their action. 143 144 //===--------------------------------------------------------------------===// 145 // Error Handling 146 //===--------------------------------------------------------------------===// 147 148 /// Emit an error and return failure. 149 InFlightDiagnostic emitError(const Twine &message = {}) { 150 return emitError(state.curToken.getLoc(), message); 151 } 152 InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {}); 153 154 /// Encode the specified source location information into an attribute for 155 /// attachment to the IR. 156 Location getEncodedSourceLocation(llvm::SMLoc loc) { 157 // If there are no active nested parsers, we can get the encoded source 158 // location directly. 159 if (state.parserDepth == 0) 160 return state.lex.getEncodedSourceLocation(loc); 161 // Otherwise, we need to re-encode it to point to the top level buffer. 162 return state.symbols.topLevelLexer->getEncodedSourceLocation( 163 remapLocationToTopLevelBuffer(loc)); 164 } 165 166 /// Remaps the given SMLoc to the top level lexer of the parser. This is used 167 /// to adjust locations of potentially nested parsers to ensure that they can 168 /// be emitted properly as diagnostics. 169 llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) { 170 // If there are no active nested parsers, we can return location directly. 171 SymbolState &symbols = state.symbols; 172 if (state.parserDepth == 0) 173 return loc; 174 assert(symbols.topLevelLexer && "expected valid top-level lexer"); 175 176 // Otherwise, we need to remap the location to the main parser. This is 177 // simply offseting the location onto the location of the last nested 178 // parser. 179 size_t offset = loc.getPointer() - state.lex.getBufferBegin(); 180 auto *rawLoc = 181 symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset; 182 return llvm::SMLoc::getFromPointer(rawLoc); 183 } 184 185 //===--------------------------------------------------------------------===// 186 // Token Parsing 187 //===--------------------------------------------------------------------===// 188 189 /// Return the current token the parser is inspecting. 190 const Token &getToken() const { return state.curToken; } 191 StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } 192 193 /// If the current token has the specified kind, consume it and return true. 194 /// If not, return false. 195 bool consumeIf(Token::Kind kind) { 196 if (state.curToken.isNot(kind)) 197 return false; 198 consumeToken(kind); 199 return true; 200 } 201 202 /// Advance the current lexer onto the next token. 203 void consumeToken() { 204 assert(state.curToken.isNot(Token::eof, Token::error) && 205 "shouldn't advance past EOF or errors"); 206 state.curToken = state.lex.lexToken(); 207 } 208 209 /// Advance the current lexer onto the next token, asserting what the expected 210 /// current token is. This is preferred to the above method because it leads 211 /// to more self-documenting code with better checking. 212 void consumeToken(Token::Kind kind) { 213 assert(state.curToken.is(kind) && "consumed an unexpected token"); 214 consumeToken(); 215 } 216 217 /// Consume the specified token if present and return success. On failure, 218 /// output a diagnostic and return failure. 219 ParseResult parseToken(Token::Kind expectedToken, const Twine &message); 220 221 //===--------------------------------------------------------------------===// 222 // Type Parsing 223 //===--------------------------------------------------------------------===// 224 225 ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements); 226 ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements); 227 ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements); 228 229 /// Parse an arbitrary type. 230 Type parseType(); 231 232 /// Parse a complex type. 233 Type parseComplexType(); 234 235 /// Parse an extended type. 236 Type parseExtendedType(); 237 238 /// Parse a function type. 239 Type parseFunctionType(); 240 241 /// Parse a memref type. 242 Type parseMemRefType(); 243 244 /// Parse a non function type. 245 Type parseNonFunctionType(); 246 247 /// Parse a tensor type. 248 Type parseTensorType(); 249 250 /// Parse a tuple type. 251 Type parseTupleType(); 252 253 /// Parse a vector type. 254 VectorType parseVectorType(); 255 ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 256 bool allowDynamic = true); 257 ParseResult parseXInDimensionList(); 258 259 /// Parse strided layout specification. 260 ParseResult parseStridedLayout(int64_t &offset, 261 SmallVectorImpl<int64_t> &strides); 262 263 // Parse a brace-delimiter list of comma-separated integers with `?` as an 264 // unknown marker. 265 ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions); 266 267 //===--------------------------------------------------------------------===// 268 // Attribute Parsing 269 //===--------------------------------------------------------------------===// 270 271 /// Parse an arbitrary attribute with an optional type. 272 Attribute parseAttribute(Type type = {}); 273 274 /// Parse an attribute dictionary. 275 ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes); 276 277 /// Parse an extended attribute. 278 Attribute parseExtendedAttr(Type type); 279 280 /// Parse a float attribute. 281 Attribute parseFloatAttr(Type type, bool isNegative); 282 283 /// Parse a decimal or a hexadecimal literal, which can be either an integer 284 /// or a float attribute. 285 Attribute parseDecOrHexAttr(Type type, bool isNegative); 286 287 /// Parse an opaque elements attribute. 288 Attribute parseOpaqueElementsAttr(Type attrType); 289 290 /// Parse a dense elements attribute. 291 Attribute parseDenseElementsAttr(Type attrType); 292 ShapedType parseElementsLiteralType(Type type); 293 294 /// Parse a sparse elements attribute. 295 Attribute parseSparseElementsAttr(Type attrType); 296 297 //===--------------------------------------------------------------------===// 298 // Location Parsing 299 //===--------------------------------------------------------------------===// 300 301 /// Parse an inline location. 302 ParseResult parseLocation(LocationAttr &loc); 303 304 /// Parse a raw location instance. 305 ParseResult parseLocationInstance(LocationAttr &loc); 306 307 /// Parse a callsite location instance. 308 ParseResult parseCallSiteLocation(LocationAttr &loc); 309 310 /// Parse a fused location instance. 311 ParseResult parseFusedLocation(LocationAttr &loc); 312 313 /// Parse a name or FileLineCol location instance. 314 ParseResult parseNameOrFileLineColLocation(LocationAttr &loc); 315 316 /// Parse an optional trailing location. 317 /// 318 /// trailing-location ::= (`loc` `(` location `)`)? 319 /// 320 ParseResult parseOptionalTrailingLocation(Location &loc) { 321 // If there is a 'loc' we parse a trailing location. 322 if (!getToken().is(Token::kw_loc)) 323 return success(); 324 325 // Parse the location. 326 LocationAttr directLoc; 327 if (parseLocation(directLoc)) 328 return failure(); 329 loc = directLoc; 330 return success(); 331 } 332 333 //===--------------------------------------------------------------------===// 334 // Affine Parsing 335 //===--------------------------------------------------------------------===// 336 337 /// Parse a reference to either an affine map, or an integer set. 338 ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, 339 IntegerSet &set); 340 ParseResult parseAffineMapReference(AffineMap &map); 341 ParseResult parseIntegerSetReference(IntegerSet &set); 342 343 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 344 ParseResult 345 parseAffineMapOfSSAIds(AffineMap &map, 346 function_ref<ParseResult(bool)> parseElement, 347 OpAsmParser::Delimiter delimiter); 348 349 private: 350 /// The Parser is subclassed and reinstantiated. Do not add additional 351 /// non-trivial state here, add it to the ParserState class. 352 ParserState &state; 353 }; 354 } // end anonymous namespace 355 356 //===----------------------------------------------------------------------===// 357 // Helper methods. 358 //===----------------------------------------------------------------------===// 359 360 /// Parse a comma separated list of elements that must have at least one entry 361 /// in it. 362 ParseResult Parser::parseCommaSeparatedList( 363 const std::function<ParseResult()> &parseElement) { 364 // Non-empty case starts with an element. 365 if (parseElement()) 366 return failure(); 367 368 // Otherwise we have a list of comma separated elements. 369 while (consumeIf(Token::comma)) { 370 if (parseElement()) 371 return failure(); 372 } 373 return success(); 374 } 375 376 /// Parse a comma-separated list of elements, terminated with an arbitrary 377 /// token. This allows empty lists if allowEmptyList is true. 378 /// 379 /// abstract-list ::= rightToken // if allowEmptyList == true 380 /// abstract-list ::= element (',' element)* rightToken 381 /// 382 ParseResult Parser::parseCommaSeparatedListUntil( 383 Token::Kind rightToken, const std::function<ParseResult()> &parseElement, 384 bool allowEmptyList) { 385 // Handle the empty case. 386 if (getToken().is(rightToken)) { 387 if (!allowEmptyList) 388 return emitError("expected list element"); 389 consumeToken(rightToken); 390 return success(); 391 } 392 393 if (parseCommaSeparatedList(parseElement) || 394 parseToken(rightToken, "expected ',' or '" + 395 Token::getTokenSpelling(rightToken) + "'")) 396 return failure(); 397 398 return success(); 399 } 400 401 //===----------------------------------------------------------------------===// 402 // DialectAsmParser 403 //===----------------------------------------------------------------------===// 404 405 namespace { 406 /// This class provides the main implementation of the DialectAsmParser that 407 /// allows for dialects to parse attributes and types. This allows for dialect 408 /// hooking into the main MLIR parsing logic. 409 class CustomDialectAsmParser : public DialectAsmParser { 410 public: 411 CustomDialectAsmParser(StringRef fullSpec, Parser &parser) 412 : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()), 413 parser(parser) {} 414 ~CustomDialectAsmParser() override {} 415 416 /// Emit a diagnostic at the specified location and return failure. 417 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 418 return parser.emitError(loc, message); 419 } 420 421 /// Return a builder which provides useful access to MLIRContext, global 422 /// objects like types and attributes. 423 Builder &getBuilder() const override { return parser.builder; } 424 425 /// Get the location of the next token and store it into the argument. This 426 /// always succeeds. 427 llvm::SMLoc getCurrentLocation() override { 428 return parser.getToken().getLoc(); 429 } 430 431 /// Return the location of the original name token. 432 llvm::SMLoc getNameLoc() const override { return nameLoc; } 433 434 /// Re-encode the given source location as an MLIR location and return it. 435 Location getEncodedSourceLoc(llvm::SMLoc loc) override { 436 return parser.getEncodedSourceLocation(loc); 437 } 438 439 /// Returns the full specification of the symbol being parsed. This allows 440 /// for using a separate parser if necessary. 441 StringRef getFullSymbolSpec() const override { return fullSpec; } 442 443 /// Parse a floating point value from the stream. 444 ParseResult parseFloat(double &result) override { 445 bool negative = parser.consumeIf(Token::minus); 446 Token curTok = parser.getToken(); 447 448 // Check for a floating point value. 449 if (curTok.is(Token::floatliteral)) { 450 auto val = curTok.getFloatingPointValue(); 451 if (!val.hasValue()) 452 return emitError(curTok.getLoc(), "floating point value too large"); 453 parser.consumeToken(Token::floatliteral); 454 result = negative ? -*val : *val; 455 return success(); 456 } 457 458 // TODO(riverriddle) support hex floating point values. 459 return emitError(getCurrentLocation(), "expected floating point literal"); 460 } 461 462 /// Parse an optional integer value from the stream. 463 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 464 Token curToken = parser.getToken(); 465 if (curToken.isNot(Token::integer, Token::minus)) 466 return llvm::None; 467 468 bool negative = parser.consumeIf(Token::minus); 469 Token curTok = parser.getToken(); 470 if (parser.parseToken(Token::integer, "expected integer value")) 471 return failure(); 472 473 auto val = curTok.getUInt64IntegerValue(); 474 if (!val) 475 return emitError(curTok.getLoc(), "integer value too large"); 476 result = negative ? -*val : *val; 477 return success(); 478 } 479 480 //===--------------------------------------------------------------------===// 481 // Token Parsing 482 //===--------------------------------------------------------------------===// 483 484 /// Parse a `->` token. 485 ParseResult parseArrow() override { 486 return parser.parseToken(Token::arrow, "expected '->'"); 487 } 488 489 /// Parses a `->` if present. 490 ParseResult parseOptionalArrow() override { 491 return success(parser.consumeIf(Token::arrow)); 492 } 493 494 /// Parse a '{' token. 495 ParseResult parseLBrace() override { 496 return parser.parseToken(Token::l_brace, "expected '{'"); 497 } 498 499 /// Parse a '{' token if present 500 ParseResult parseOptionalLBrace() override { 501 return success(parser.consumeIf(Token::l_brace)); 502 } 503 504 /// Parse a `}` token. 505 ParseResult parseRBrace() override { 506 return parser.parseToken(Token::r_brace, "expected '}'"); 507 } 508 509 /// Parse a `}` token if present 510 ParseResult parseOptionalRBrace() override { 511 return success(parser.consumeIf(Token::r_brace)); 512 } 513 514 /// Parse a `:` token. 515 ParseResult parseColon() override { 516 return parser.parseToken(Token::colon, "expected ':'"); 517 } 518 519 /// Parse a `:` token if present. 520 ParseResult parseOptionalColon() override { 521 return success(parser.consumeIf(Token::colon)); 522 } 523 524 /// Parse a `,` token. 525 ParseResult parseComma() override { 526 return parser.parseToken(Token::comma, "expected ','"); 527 } 528 529 /// Parse a `,` token if present. 530 ParseResult parseOptionalComma() override { 531 return success(parser.consumeIf(Token::comma)); 532 } 533 534 /// Parses a `...` if present. 535 ParseResult parseOptionalEllipsis() override { 536 return success(parser.consumeIf(Token::ellipsis)); 537 } 538 539 /// Parse a `=` token. 540 ParseResult parseEqual() override { 541 return parser.parseToken(Token::equal, "expected '='"); 542 } 543 544 /// Parse a '<' token. 545 ParseResult parseLess() override { 546 return parser.parseToken(Token::less, "expected '<'"); 547 } 548 549 /// Parse a `<` token if present. 550 ParseResult parseOptionalLess() override { 551 return success(parser.consumeIf(Token::less)); 552 } 553 554 /// Parse a '>' token. 555 ParseResult parseGreater() override { 556 return parser.parseToken(Token::greater, "expected '>'"); 557 } 558 559 /// Parse a `>` token if present. 560 ParseResult parseOptionalGreater() override { 561 return success(parser.consumeIf(Token::greater)); 562 } 563 564 /// Parse a `(` token. 565 ParseResult parseLParen() override { 566 return parser.parseToken(Token::l_paren, "expected '('"); 567 } 568 569 /// Parses a '(' if present. 570 ParseResult parseOptionalLParen() override { 571 return success(parser.consumeIf(Token::l_paren)); 572 } 573 574 /// Parse a `)` token. 575 ParseResult parseRParen() override { 576 return parser.parseToken(Token::r_paren, "expected ')'"); 577 } 578 579 /// Parses a ')' if present. 580 ParseResult parseOptionalRParen() override { 581 return success(parser.consumeIf(Token::r_paren)); 582 } 583 584 /// Parse a `[` token. 585 ParseResult parseLSquare() override { 586 return parser.parseToken(Token::l_square, "expected '['"); 587 } 588 589 /// Parses a '[' if present. 590 ParseResult parseOptionalLSquare() override { 591 return success(parser.consumeIf(Token::l_square)); 592 } 593 594 /// Parse a `]` token. 595 ParseResult parseRSquare() override { 596 return parser.parseToken(Token::r_square, "expected ']'"); 597 } 598 599 /// Parses a ']' if present. 600 ParseResult parseOptionalRSquare() override { 601 return success(parser.consumeIf(Token::r_square)); 602 } 603 604 /// Parses a '?' if present. 605 ParseResult parseOptionalQuestion() override { 606 return success(parser.consumeIf(Token::question)); 607 } 608 609 /// Parses a '*' if present. 610 ParseResult parseOptionalStar() override { 611 return success(parser.consumeIf(Token::star)); 612 } 613 614 /// Returns if the current token corresponds to a keyword. 615 bool isCurrentTokenAKeyword() const { 616 return parser.getToken().is(Token::bare_identifier) || 617 parser.getToken().isKeyword(); 618 } 619 620 /// Parse the given keyword if present. 621 ParseResult parseOptionalKeyword(StringRef keyword) override { 622 // Check that the current token has the same spelling. 623 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 624 return failure(); 625 parser.consumeToken(); 626 return success(); 627 } 628 629 /// Parse a keyword, if present, into 'keyword'. 630 ParseResult parseOptionalKeyword(StringRef *keyword) override { 631 // Check that the current token is a keyword. 632 if (!isCurrentTokenAKeyword()) 633 return failure(); 634 635 *keyword = parser.getTokenSpelling(); 636 parser.consumeToken(); 637 return success(); 638 } 639 640 //===--------------------------------------------------------------------===// 641 // Attribute Parsing 642 //===--------------------------------------------------------------------===// 643 644 /// Parse an arbitrary attribute and return it in result. 645 ParseResult parseAttribute(Attribute &result, Type type) override { 646 result = parser.parseAttribute(type); 647 return success(static_cast<bool>(result)); 648 } 649 650 /// Parse an affine map instance into 'map'. 651 ParseResult parseAffineMap(AffineMap &map) override { 652 return parser.parseAffineMapReference(map); 653 } 654 655 /// Parse an integer set instance into 'set'. 656 ParseResult printIntegerSet(IntegerSet &set) override { 657 return parser.parseIntegerSetReference(set); 658 } 659 660 //===--------------------------------------------------------------------===// 661 // Type Parsing 662 //===--------------------------------------------------------------------===// 663 664 ParseResult parseType(Type &result) override { 665 result = parser.parseType(); 666 return success(static_cast<bool>(result)); 667 } 668 669 ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions, 670 bool allowDynamic) override { 671 return parser.parseDimensionListRanked(dimensions, allowDynamic); 672 } 673 674 private: 675 /// The full symbol specification. 676 StringRef fullSpec; 677 678 /// The source location of the dialect symbol. 679 SMLoc nameLoc; 680 681 /// The main parser. 682 Parser &parser; 683 }; 684 } // namespace 685 686 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s, 687 /// and may be recursive. Return with the 'prettyName' StringRef encompassing 688 /// the entire pretty name. 689 /// 690 /// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>' 691 /// pretty-dialect-sym-contents ::= pretty-dialect-sym-body 692 /// | '(' pretty-dialect-sym-contents+ ')' 693 /// | '[' pretty-dialect-sym-contents+ ']' 694 /// | '{' pretty-dialect-sym-contents+ '}' 695 /// | '[^[<({>\])}\0]+' 696 /// 697 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) { 698 // Pretty symbol names are a relatively unstructured format that contains a 699 // series of properly nested punctuation, with anything else in the middle. 700 // Scan ahead to find it and consume it if successful, otherwise emit an 701 // error. 702 auto *curPtr = getTokenSpelling().data(); 703 704 SmallVector<char, 8> nestedPunctuation; 705 706 // Scan over the nested punctuation, bailing out on error and consuming until 707 // we find the end. We know that we're currently looking at the '<', so we 708 // can go until we find the matching '>' character. 709 assert(*curPtr == '<'); 710 do { 711 char c = *curPtr++; 712 switch (c) { 713 case '\0': 714 // This also handles the EOF case. 715 return emitError("unexpected nul or EOF in pretty dialect name"); 716 case '<': 717 case '[': 718 case '(': 719 case '{': 720 nestedPunctuation.push_back(c); 721 continue; 722 723 case '-': 724 // The sequence `->` is treated as special token. 725 if (*curPtr == '>') 726 ++curPtr; 727 continue; 728 729 case '>': 730 if (nestedPunctuation.pop_back_val() != '<') 731 return emitError("unbalanced '>' character in pretty dialect name"); 732 break; 733 case ']': 734 if (nestedPunctuation.pop_back_val() != '[') 735 return emitError("unbalanced ']' character in pretty dialect name"); 736 break; 737 case ')': 738 if (nestedPunctuation.pop_back_val() != '(') 739 return emitError("unbalanced ')' character in pretty dialect name"); 740 break; 741 case '}': 742 if (nestedPunctuation.pop_back_val() != '{') 743 return emitError("unbalanced '}' character in pretty dialect name"); 744 break; 745 746 default: 747 continue; 748 } 749 } while (!nestedPunctuation.empty()); 750 751 // Ok, we succeeded, remember where we stopped, reset the lexer to know it is 752 // consuming all this stuff, and return. 753 state.lex.resetPointer(curPtr); 754 755 unsigned length = curPtr - prettyName.begin(); 756 prettyName = StringRef(prettyName.begin(), length); 757 consumeToken(); 758 return success(); 759 } 760 761 /// Parse an extended dialect symbol. 762 template <typename Symbol, typename SymbolAliasMap, typename CreateFn> 763 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok, 764 SymbolAliasMap &aliases, 765 CreateFn &&createSymbol) { 766 // Parse the dialect namespace. 767 StringRef identifier = p.getTokenSpelling().drop_front(); 768 auto loc = p.getToken().getLoc(); 769 p.consumeToken(identifierTok); 770 771 // If there is no '<' token following this, and if the typename contains no 772 // dot, then we are parsing a symbol alias. 773 if (p.getToken().isNot(Token::less) && !identifier.contains('.')) { 774 // Check for an alias for this type. 775 auto aliasIt = aliases.find(identifier); 776 if (aliasIt == aliases.end()) 777 return (p.emitError("undefined symbol alias id '" + identifier + "'"), 778 nullptr); 779 return aliasIt->second; 780 } 781 782 // Otherwise, we are parsing a dialect-specific symbol. If the name contains 783 // a dot, then this is the "pretty" form. If not, it is the verbose form that 784 // looks like <"...">. 785 std::string symbolData; 786 auto dialectName = identifier; 787 788 // Handle the verbose form, where "identifier" is a simple dialect name. 789 if (!identifier.contains('.')) { 790 // Consume the '<'. 791 if (p.parseToken(Token::less, "expected '<' in dialect type")) 792 return nullptr; 793 794 // Parse the symbol specific data. 795 if (p.getToken().isNot(Token::string)) 796 return (p.emitError("expected string literal data in dialect symbol"), 797 nullptr); 798 symbolData = p.getToken().getStringValue(); 799 loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1); 800 p.consumeToken(Token::string); 801 802 // Consume the '>'. 803 if (p.parseToken(Token::greater, "expected '>' in dialect symbol")) 804 return nullptr; 805 } else { 806 // Ok, the dialect name is the part of the identifier before the dot, the 807 // part after the dot is the dialect's symbol, or the start thereof. 808 auto dotHalves = identifier.split('.'); 809 dialectName = dotHalves.first; 810 auto prettyName = dotHalves.second; 811 loc = llvm::SMLoc::getFromPointer(prettyName.data()); 812 813 // If the dialect's symbol is followed immediately by a <, then lex the body 814 // of it into prettyName. 815 if (p.getToken().is(Token::less) && 816 prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) { 817 if (p.parsePrettyDialectSymbolName(prettyName)) 818 return nullptr; 819 } 820 821 symbolData = prettyName.str(); 822 } 823 824 // Record the name location of the type remapped to the top level buffer. 825 llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc); 826 p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer); 827 828 // Call into the provided symbol construction function. 829 Symbol sym = createSymbol(dialectName, symbolData, loc); 830 831 // Pop the last parser location. 832 p.getState().symbols.nestedParserLocs.pop_back(); 833 return sym; 834 } 835 836 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 837 /// parsing failed, nullptr is returned. The number of bytes read from the input 838 /// string is returned in 'numRead'. 839 template <typename T, typename ParserFn> 840 static T parseSymbol(StringRef inputStr, MLIRContext *context, 841 SymbolState &symbolState, ParserFn &&parserFn, 842 size_t *numRead = nullptr) { 843 SourceMgr sourceMgr; 844 auto memBuffer = MemoryBuffer::getMemBuffer( 845 inputStr, /*BufferName=*/"<mlir_parser_buffer>", 846 /*RequiresNullTerminator=*/false); 847 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 848 ParserState state(sourceMgr, context, symbolState); 849 Parser parser(state); 850 851 Token startTok = parser.getToken(); 852 T symbol = parserFn(parser); 853 if (!symbol) 854 return T(); 855 856 // If 'numRead' is valid, then provide the number of bytes that were read. 857 Token endTok = parser.getToken(); 858 if (numRead) { 859 *numRead = static_cast<size_t>(endTok.getLoc().getPointer() - 860 startTok.getLoc().getPointer()); 861 862 // Otherwise, ensure that all of the tokens were parsed. 863 } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) { 864 parser.emitError(endTok.getLoc(), "encountered unexpected token"); 865 return T(); 866 } 867 return symbol; 868 } 869 870 //===----------------------------------------------------------------------===// 871 // Error Handling 872 //===----------------------------------------------------------------------===// 873 874 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 875 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 876 877 // If we hit a parse error in response to a lexer error, then the lexer 878 // already reported the error. 879 if (getToken().is(Token::error)) 880 diag.abandon(); 881 return diag; 882 } 883 884 //===----------------------------------------------------------------------===// 885 // Token Parsing 886 //===----------------------------------------------------------------------===// 887 888 /// Consume the specified token if present and return success. On failure, 889 /// output a diagnostic and return failure. 890 ParseResult Parser::parseToken(Token::Kind expectedToken, 891 const Twine &message) { 892 if (consumeIf(expectedToken)) 893 return success(); 894 return emitError(message); 895 } 896 897 //===----------------------------------------------------------------------===// 898 // Type Parsing 899 //===----------------------------------------------------------------------===// 900 901 /// Parse an arbitrary type. 902 /// 903 /// type ::= function-type 904 /// | non-function-type 905 /// 906 Type Parser::parseType() { 907 if (getToken().is(Token::l_paren)) 908 return parseFunctionType(); 909 return parseNonFunctionType(); 910 } 911 912 /// Parse a function result type. 913 /// 914 /// function-result-type ::= type-list-parens 915 /// | non-function-type 916 /// 917 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) { 918 if (getToken().is(Token::l_paren)) 919 return parseTypeListParens(elements); 920 921 Type t = parseNonFunctionType(); 922 if (!t) 923 return failure(); 924 elements.push_back(t); 925 return success(); 926 } 927 928 /// Parse a list of types without an enclosing parenthesis. The list must have 929 /// at least one member. 930 /// 931 /// type-list-no-parens ::= type (`,` type)* 932 /// 933 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) { 934 auto parseElt = [&]() -> ParseResult { 935 auto elt = parseType(); 936 elements.push_back(elt); 937 return elt ? success() : failure(); 938 }; 939 940 return parseCommaSeparatedList(parseElt); 941 } 942 943 /// Parse a parenthesized list of types. 944 /// 945 /// type-list-parens ::= `(` `)` 946 /// | `(` type-list-no-parens `)` 947 /// 948 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) { 949 if (parseToken(Token::l_paren, "expected '('")) 950 return failure(); 951 952 // Handle empty lists. 953 if (getToken().is(Token::r_paren)) 954 return consumeToken(), success(); 955 956 if (parseTypeListNoParens(elements) || 957 parseToken(Token::r_paren, "expected ')'")) 958 return failure(); 959 return success(); 960 } 961 962 /// Parse a complex type. 963 /// 964 /// complex-type ::= `complex` `<` type `>` 965 /// 966 Type Parser::parseComplexType() { 967 consumeToken(Token::kw_complex); 968 969 // Parse the '<'. 970 if (parseToken(Token::less, "expected '<' in complex type")) 971 return nullptr; 972 973 llvm::SMLoc elementTypeLoc = getToken().getLoc(); 974 auto elementType = parseType(); 975 if (!elementType || 976 parseToken(Token::greater, "expected '>' in complex type")) 977 return nullptr; 978 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) 979 return emitError(elementTypeLoc, "invalid element type for complex"), 980 nullptr; 981 982 return ComplexType::get(elementType); 983 } 984 985 /// Parse an extended type. 986 /// 987 /// extended-type ::= (dialect-type | type-alias) 988 /// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>` 989 /// dialect-type ::= `!` alias-name pretty-dialect-attribute-body? 990 /// type-alias ::= `!` alias-name 991 /// 992 Type Parser::parseExtendedType() { 993 return parseExtendedSymbol<Type>( 994 *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions, 995 [&](StringRef dialectName, StringRef symbolData, 996 llvm::SMLoc loc) -> Type { 997 // If we found a registered dialect, then ask it to parse the type. 998 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 999 return parseSymbol<Type>( 1000 symbolData, state.context, state.symbols, [&](Parser &parser) { 1001 CustomDialectAsmParser customParser(symbolData, parser); 1002 return dialect->parseType(customParser); 1003 }); 1004 } 1005 1006 // Otherwise, form a new opaque type. 1007 return OpaqueType::getChecked( 1008 Identifier::get(dialectName, state.context), symbolData, 1009 state.context, getEncodedSourceLocation(loc)); 1010 }); 1011 } 1012 1013 /// Parse a function type. 1014 /// 1015 /// function-type ::= type-list-parens `->` function-result-type 1016 /// 1017 Type Parser::parseFunctionType() { 1018 assert(getToken().is(Token::l_paren)); 1019 1020 SmallVector<Type, 4> arguments, results; 1021 if (parseTypeListParens(arguments) || 1022 parseToken(Token::arrow, "expected '->' in function type") || 1023 parseFunctionResultTypes(results)) 1024 return nullptr; 1025 1026 return builder.getFunctionType(arguments, results); 1027 } 1028 1029 /// Parse the offset and strides from a strided layout specification. 1030 /// 1031 /// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list 1032 /// 1033 ParseResult Parser::parseStridedLayout(int64_t &offset, 1034 SmallVectorImpl<int64_t> &strides) { 1035 // Parse offset. 1036 consumeToken(Token::kw_offset); 1037 if (!consumeIf(Token::colon)) 1038 return emitError("expected colon after `offset` keyword"); 1039 auto maybeOffset = getToken().getUnsignedIntegerValue(); 1040 bool question = getToken().is(Token::question); 1041 if (!maybeOffset && !question) 1042 return emitError("invalid offset"); 1043 offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue()) 1044 : MemRefType::getDynamicStrideOrOffset(); 1045 consumeToken(); 1046 1047 if (!consumeIf(Token::comma)) 1048 return emitError("expected comma after offset value"); 1049 1050 // Parse stride list. 1051 if (!consumeIf(Token::kw_strides)) 1052 return emitError("expected `strides` keyword after offset specification"); 1053 if (!consumeIf(Token::colon)) 1054 return emitError("expected colon after `strides` keyword"); 1055 if (failed(parseStrideList(strides))) 1056 return emitError("invalid braces-enclosed stride list"); 1057 if (llvm::any_of(strides, [](int64_t st) { return st == 0; })) 1058 return emitError("invalid memref stride"); 1059 1060 return success(); 1061 } 1062 1063 /// Parse a memref type. 1064 /// 1065 /// memref-type ::= ranked-memref-type | unranked-memref-type 1066 /// 1067 /// ranked-memref-type ::= `memref` `<` dimension-list-ranked type 1068 /// (`,` semi-affine-map-composition)? (`,` 1069 /// memory-space)? `>` 1070 /// 1071 /// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>` 1072 /// 1073 /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map 1074 /// memory-space ::= integer-literal /* | TODO: address-space-id */ 1075 /// 1076 Type Parser::parseMemRefType() { 1077 consumeToken(Token::kw_memref); 1078 1079 if (parseToken(Token::less, "expected '<' in memref type")) 1080 return nullptr; 1081 1082 bool isUnranked; 1083 SmallVector<int64_t, 4> dimensions; 1084 1085 if (consumeIf(Token::star)) { 1086 // This is an unranked memref type. 1087 isUnranked = true; 1088 if (parseXInDimensionList()) 1089 return nullptr; 1090 1091 } else { 1092 isUnranked = false; 1093 if (parseDimensionListRanked(dimensions)) 1094 return nullptr; 1095 } 1096 1097 // Parse the element type. 1098 auto typeLoc = getToken().getLoc(); 1099 auto elementType = parseType(); 1100 if (!elementType) 1101 return nullptr; 1102 1103 // Check that memref is formed from allowed types. 1104 if (!elementType.isSignlessIntOrFloat() && !elementType.isa<VectorType>() && 1105 !elementType.isa<ComplexType>()) 1106 return emitError(typeLoc, "invalid memref element type"), nullptr; 1107 1108 // Parse semi-affine-map-composition. 1109 SmallVector<AffineMap, 2> affineMapComposition; 1110 Optional<unsigned> memorySpace; 1111 unsigned numDims = dimensions.size(); 1112 1113 auto parseElt = [&]() -> ParseResult { 1114 // Check for the memory space. 1115 if (getToken().is(Token::integer)) { 1116 if (memorySpace) 1117 return emitError("multiple memory spaces specified in memref type"); 1118 memorySpace = getToken().getUnsignedIntegerValue(); 1119 if (!memorySpace.hasValue()) 1120 return emitError("invalid memory space in memref type"); 1121 consumeToken(Token::integer); 1122 return success(); 1123 } 1124 if (isUnranked) 1125 return emitError("cannot have affine map for unranked memref type"); 1126 if (memorySpace) 1127 return emitError("expected memory space to be last in memref type"); 1128 1129 AffineMap map; 1130 llvm::SMLoc mapLoc = getToken().getLoc(); 1131 if (getToken().is(Token::kw_offset)) { 1132 int64_t offset; 1133 SmallVector<int64_t, 4> strides; 1134 if (failed(parseStridedLayout(offset, strides))) 1135 return failure(); 1136 // Construct strided affine map. 1137 map = makeStridedLinearLayoutMap(strides, offset, state.context); 1138 } else { 1139 // Parse an affine map attribute. 1140 auto affineMap = parseAttribute(); 1141 if (!affineMap) 1142 return failure(); 1143 auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>(); 1144 if (!affineMapAttr) 1145 return emitError("expected affine map in memref type"); 1146 map = affineMapAttr.getValue(); 1147 } 1148 1149 if (map.getNumDims() != numDims) { 1150 size_t i = affineMapComposition.size(); 1151 return emitError(mapLoc, "memref affine map dimension mismatch between ") 1152 << (i == 0 ? Twine("memref rank") : "affine map " + Twine(i)) 1153 << " and affine map" << i + 1 << ": " << numDims 1154 << " != " << map.getNumDims(); 1155 } 1156 numDims = map.getNumResults(); 1157 affineMapComposition.push_back(map); 1158 return success(); 1159 }; 1160 1161 // Parse a list of mappings and address space if present. 1162 if (!consumeIf(Token::greater)) { 1163 // Parse comma separated list of affine maps, followed by memory space. 1164 if (parseToken(Token::comma, "expected ',' or '>' in memref type") || 1165 parseCommaSeparatedListUntil(Token::greater, parseElt, 1166 /*allowEmptyList=*/false)) { 1167 return nullptr; 1168 } 1169 } 1170 1171 if (isUnranked) 1172 return UnrankedMemRefType::get(elementType, memorySpace.getValueOr(0)); 1173 1174 return MemRefType::get(dimensions, elementType, affineMapComposition, 1175 memorySpace.getValueOr(0)); 1176 } 1177 1178 /// Parse any type except the function type. 1179 /// 1180 /// non-function-type ::= integer-type 1181 /// | index-type 1182 /// | float-type 1183 /// | extended-type 1184 /// | vector-type 1185 /// | tensor-type 1186 /// | memref-type 1187 /// | complex-type 1188 /// | tuple-type 1189 /// | none-type 1190 /// 1191 /// index-type ::= `index` 1192 /// float-type ::= `f16` | `bf16` | `f32` | `f64` 1193 /// none-type ::= `none` 1194 /// 1195 Type Parser::parseNonFunctionType() { 1196 switch (getToken().getKind()) { 1197 default: 1198 return (emitError("expected non-function type"), nullptr); 1199 case Token::kw_memref: 1200 return parseMemRefType(); 1201 case Token::kw_tensor: 1202 return parseTensorType(); 1203 case Token::kw_complex: 1204 return parseComplexType(); 1205 case Token::kw_tuple: 1206 return parseTupleType(); 1207 case Token::kw_vector: 1208 return parseVectorType(); 1209 // integer-type 1210 case Token::inttype: { 1211 auto width = getToken().getIntTypeBitwidth(); 1212 if (!width.hasValue()) 1213 return (emitError("invalid integer width"), nullptr); 1214 if (width.getValue() > IntegerType::kMaxWidth) { 1215 emitError(getToken().getLoc(), "integer bitwidth is limited to ") 1216 << IntegerType::kMaxWidth << " bits"; 1217 return nullptr; 1218 } 1219 1220 IntegerType::SignednessSemantics signSemantics = IntegerType::Signless; 1221 if (Optional<bool> signedness = getToken().getIntTypeSignedness()) 1222 signSemantics = *signedness ? IntegerType::Signed : IntegerType::Unsigned; 1223 1224 auto loc = getEncodedSourceLocation(getToken().getLoc()); 1225 consumeToken(Token::inttype); 1226 return IntegerType::getChecked(width.getValue(), signSemantics, loc); 1227 } 1228 1229 // float-type 1230 case Token::kw_bf16: 1231 consumeToken(Token::kw_bf16); 1232 return builder.getBF16Type(); 1233 case Token::kw_f16: 1234 consumeToken(Token::kw_f16); 1235 return builder.getF16Type(); 1236 case Token::kw_f32: 1237 consumeToken(Token::kw_f32); 1238 return builder.getF32Type(); 1239 case Token::kw_f64: 1240 consumeToken(Token::kw_f64); 1241 return builder.getF64Type(); 1242 1243 // index-type 1244 case Token::kw_index: 1245 consumeToken(Token::kw_index); 1246 return builder.getIndexType(); 1247 1248 // none-type 1249 case Token::kw_none: 1250 consumeToken(Token::kw_none); 1251 return builder.getNoneType(); 1252 1253 // extended type 1254 case Token::exclamation_identifier: 1255 return parseExtendedType(); 1256 } 1257 } 1258 1259 /// Parse a tensor type. 1260 /// 1261 /// tensor-type ::= `tensor` `<` dimension-list type `>` 1262 /// dimension-list ::= dimension-list-ranked | `*x` 1263 /// 1264 Type Parser::parseTensorType() { 1265 consumeToken(Token::kw_tensor); 1266 1267 if (parseToken(Token::less, "expected '<' in tensor type")) 1268 return nullptr; 1269 1270 bool isUnranked; 1271 SmallVector<int64_t, 4> dimensions; 1272 1273 if (consumeIf(Token::star)) { 1274 // This is an unranked tensor type. 1275 isUnranked = true; 1276 1277 if (parseXInDimensionList()) 1278 return nullptr; 1279 1280 } else { 1281 isUnranked = false; 1282 if (parseDimensionListRanked(dimensions)) 1283 return nullptr; 1284 } 1285 1286 // Parse the element type. 1287 auto elementTypeLoc = getToken().getLoc(); 1288 auto elementType = parseType(); 1289 if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) 1290 return nullptr; 1291 if (!TensorType::isValidElementType(elementType)) 1292 return emitError(elementTypeLoc, "invalid tensor element type"), nullptr; 1293 1294 if (isUnranked) 1295 return UnrankedTensorType::get(elementType); 1296 return RankedTensorType::get(dimensions, elementType); 1297 } 1298 1299 /// Parse a tuple type. 1300 /// 1301 /// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>` 1302 /// 1303 Type Parser::parseTupleType() { 1304 consumeToken(Token::kw_tuple); 1305 1306 // Parse the '<'. 1307 if (parseToken(Token::less, "expected '<' in tuple type")) 1308 return nullptr; 1309 1310 // Check for an empty tuple by directly parsing '>'. 1311 if (consumeIf(Token::greater)) 1312 return TupleType::get(getContext()); 1313 1314 // Parse the element types and the '>'. 1315 SmallVector<Type, 4> types; 1316 if (parseTypeListNoParens(types) || 1317 parseToken(Token::greater, "expected '>' in tuple type")) 1318 return nullptr; 1319 1320 return TupleType::get(types, getContext()); 1321 } 1322 1323 /// Parse a vector type. 1324 /// 1325 /// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>` 1326 /// non-empty-static-dimension-list ::= decimal-literal `x` 1327 /// static-dimension-list 1328 /// static-dimension-list ::= (decimal-literal `x`)* 1329 /// 1330 VectorType Parser::parseVectorType() { 1331 consumeToken(Token::kw_vector); 1332 1333 if (parseToken(Token::less, "expected '<' in vector type")) 1334 return nullptr; 1335 1336 SmallVector<int64_t, 4> dimensions; 1337 if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) 1338 return nullptr; 1339 if (dimensions.empty()) 1340 return (emitError("expected dimension size in vector type"), nullptr); 1341 if (any_of(dimensions, [](int64_t i) { return i <= 0; })) 1342 return emitError(getToken().getLoc(), 1343 "vector types must have positive constant sizes"), 1344 nullptr; 1345 1346 // Parse the element type. 1347 auto typeLoc = getToken().getLoc(); 1348 auto elementType = parseType(); 1349 if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) 1350 return nullptr; 1351 if (!VectorType::isValidElementType(elementType)) 1352 return emitError(typeLoc, "vector elements must be int or float type"), 1353 nullptr; 1354 1355 return VectorType::get(dimensions, elementType); 1356 } 1357 1358 /// Parse a dimension list of a tensor or memref type. This populates the 1359 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and 1360 /// errors out on `?` otherwise. 1361 /// 1362 /// dimension-list-ranked ::= (dimension `x`)* 1363 /// dimension ::= `?` | decimal-literal 1364 /// 1365 /// When `allowDynamic` is not set, this is used to parse: 1366 /// 1367 /// static-dimension-list ::= (decimal-literal `x`)* 1368 ParseResult 1369 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 1370 bool allowDynamic) { 1371 while (getToken().isAny(Token::integer, Token::question)) { 1372 if (consumeIf(Token::question)) { 1373 if (!allowDynamic) 1374 return emitError("expected static shape"); 1375 dimensions.push_back(-1); 1376 } else { 1377 // Hexadecimal integer literals (starting with `0x`) are not allowed in 1378 // aggregate type declarations. Therefore, `0xf32` should be processed as 1379 // a sequence of separate elements `0`, `x`, `f32`. 1380 if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { 1381 // We can get here only if the token is an integer literal. Hexadecimal 1382 // integer literals can only start with `0x` (`1x` wouldn't lex as a 1383 // literal, just `1` would, at which point we don't get into this 1384 // branch). 1385 assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); 1386 dimensions.push_back(0); 1387 state.lex.resetPointer(getTokenSpelling().data() + 1); 1388 consumeToken(); 1389 } else { 1390 // Make sure this integer value is in bound and valid. 1391 auto dimension = getToken().getUnsignedIntegerValue(); 1392 if (!dimension.hasValue()) 1393 return emitError("invalid dimension"); 1394 dimensions.push_back((int64_t)dimension.getValue()); 1395 consumeToken(Token::integer); 1396 } 1397 } 1398 1399 // Make sure we have an 'x' or something like 'xbf32'. 1400 if (parseXInDimensionList()) 1401 return failure(); 1402 } 1403 1404 return success(); 1405 } 1406 1407 /// Parse an 'x' token in a dimension list, handling the case where the x is 1408 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next 1409 /// token. 1410 ParseResult Parser::parseXInDimensionList() { 1411 if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') 1412 return emitError("expected 'x' in dimension list"); 1413 1414 // If we had a prefix of 'x', lex the next token immediately after the 'x'. 1415 if (getTokenSpelling().size() != 1) 1416 state.lex.resetPointer(getTokenSpelling().data() + 1); 1417 1418 // Consume the 'x'. 1419 consumeToken(Token::bare_identifier); 1420 1421 return success(); 1422 } 1423 1424 // Parse a comma-separated list of dimensions, possibly empty: 1425 // stride-list ::= `[` (dimension (`,` dimension)*)? `]` 1426 ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) { 1427 if (!consumeIf(Token::l_square)) 1428 return failure(); 1429 // Empty list early exit. 1430 if (consumeIf(Token::r_square)) 1431 return success(); 1432 while (true) { 1433 if (consumeIf(Token::question)) { 1434 dimensions.push_back(MemRefType::getDynamicStrideOrOffset()); 1435 } else { 1436 // This must be an integer value. 1437 int64_t val; 1438 if (getToken().getSpelling().getAsInteger(10, val)) 1439 return emitError("invalid integer value: ") << getToken().getSpelling(); 1440 // Make sure it is not the one value for `?`. 1441 if (ShapedType::isDynamic(val)) 1442 return emitError("invalid integer value: ") 1443 << getToken().getSpelling() 1444 << ", use `?` to specify a dynamic dimension"; 1445 dimensions.push_back(val); 1446 consumeToken(Token::integer); 1447 } 1448 if (!consumeIf(Token::comma)) 1449 break; 1450 } 1451 if (!consumeIf(Token::r_square)) 1452 return failure(); 1453 return success(); 1454 } 1455 1456 //===----------------------------------------------------------------------===// 1457 // Attribute parsing. 1458 //===----------------------------------------------------------------------===// 1459 1460 /// Return the symbol reference referred to by the given token, that is known to 1461 /// be an @-identifier. 1462 static std::string extractSymbolReference(Token tok) { 1463 assert(tok.is(Token::at_identifier) && "expected valid @-identifier"); 1464 StringRef nameStr = tok.getSpelling().drop_front(); 1465 1466 // Check to see if the reference is a string literal, or a bare identifier. 1467 if (nameStr.front() == '"') 1468 return tok.getStringValue(); 1469 return std::string(nameStr); 1470 } 1471 1472 /// Parse an arbitrary attribute. 1473 /// 1474 /// attribute-value ::= `unit` 1475 /// | bool-literal 1476 /// | integer-literal (`:` (index-type | integer-type))? 1477 /// | float-literal (`:` float-type)? 1478 /// | string-literal (`:` type)? 1479 /// | type 1480 /// | `[` (attribute-value (`,` attribute-value)*)? `]` 1481 /// | `{` (attribute-entry (`,` attribute-entry)*)? `}` 1482 /// | symbol-ref-id (`::` symbol-ref-id)* 1483 /// | `dense` `<` attribute-value `>` `:` 1484 /// (tensor-type | vector-type) 1485 /// | `sparse` `<` attribute-value `,` attribute-value `>` 1486 /// `:` (tensor-type | vector-type) 1487 /// | `opaque` `<` dialect-namespace `,` hex-string-literal 1488 /// `>` `:` (tensor-type | vector-type) 1489 /// | extended-attribute 1490 /// 1491 Attribute Parser::parseAttribute(Type type) { 1492 switch (getToken().getKind()) { 1493 // Parse an AffineMap or IntegerSet attribute. 1494 case Token::kw_affine_map: { 1495 consumeToken(Token::kw_affine_map); 1496 1497 AffineMap map; 1498 if (parseToken(Token::less, "expected '<' in affine map") || 1499 parseAffineMapReference(map) || 1500 parseToken(Token::greater, "expected '>' in affine map")) 1501 return Attribute(); 1502 return AffineMapAttr::get(map); 1503 } 1504 case Token::kw_affine_set: { 1505 consumeToken(Token::kw_affine_set); 1506 1507 IntegerSet set; 1508 if (parseToken(Token::less, "expected '<' in integer set") || 1509 parseIntegerSetReference(set) || 1510 parseToken(Token::greater, "expected '>' in integer set")) 1511 return Attribute(); 1512 return IntegerSetAttr::get(set); 1513 } 1514 1515 // Parse an array attribute. 1516 case Token::l_square: { 1517 consumeToken(Token::l_square); 1518 1519 SmallVector<Attribute, 4> elements; 1520 auto parseElt = [&]() -> ParseResult { 1521 elements.push_back(parseAttribute()); 1522 return elements.back() ? success() : failure(); 1523 }; 1524 1525 if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) 1526 return nullptr; 1527 return builder.getArrayAttr(elements); 1528 } 1529 1530 // Parse a boolean attribute. 1531 case Token::kw_false: 1532 consumeToken(Token::kw_false); 1533 return builder.getBoolAttr(false); 1534 case Token::kw_true: 1535 consumeToken(Token::kw_true); 1536 return builder.getBoolAttr(true); 1537 1538 // Parse a dense elements attribute. 1539 case Token::kw_dense: 1540 return parseDenseElementsAttr(type); 1541 1542 // Parse a dictionary attribute. 1543 case Token::l_brace: { 1544 SmallVector<NamedAttribute, 4> elements; 1545 if (parseAttributeDict(elements)) 1546 return nullptr; 1547 return builder.getDictionaryAttr(elements); 1548 } 1549 1550 // Parse an extended attribute, i.e. alias or dialect attribute. 1551 case Token::hash_identifier: 1552 return parseExtendedAttr(type); 1553 1554 // Parse floating point and integer attributes. 1555 case Token::floatliteral: 1556 return parseFloatAttr(type, /*isNegative=*/false); 1557 case Token::integer: 1558 return parseDecOrHexAttr(type, /*isNegative=*/false); 1559 case Token::minus: { 1560 consumeToken(Token::minus); 1561 if (getToken().is(Token::integer)) 1562 return parseDecOrHexAttr(type, /*isNegative=*/true); 1563 if (getToken().is(Token::floatliteral)) 1564 return parseFloatAttr(type, /*isNegative=*/true); 1565 1566 return (emitError("expected constant integer or floating point value"), 1567 nullptr); 1568 } 1569 1570 // Parse a location attribute. 1571 case Token::kw_loc: { 1572 LocationAttr attr; 1573 return failed(parseLocation(attr)) ? Attribute() : attr; 1574 } 1575 1576 // Parse an opaque elements attribute. 1577 case Token::kw_opaque: 1578 return parseOpaqueElementsAttr(type); 1579 1580 // Parse a sparse elements attribute. 1581 case Token::kw_sparse: 1582 return parseSparseElementsAttr(type); 1583 1584 // Parse a string attribute. 1585 case Token::string: { 1586 auto val = getToken().getStringValue(); 1587 consumeToken(Token::string); 1588 // Parse the optional trailing colon type if one wasn't explicitly provided. 1589 if (!type && consumeIf(Token::colon) && !(type = parseType())) 1590 return Attribute(); 1591 1592 return type ? StringAttr::get(val, type) 1593 : StringAttr::get(val, getContext()); 1594 } 1595 1596 // Parse a symbol reference attribute. 1597 case Token::at_identifier: { 1598 std::string nameStr = extractSymbolReference(getToken()); 1599 consumeToken(Token::at_identifier); 1600 1601 // Parse any nested references. 1602 std::vector<FlatSymbolRefAttr> nestedRefs; 1603 while (getToken().is(Token::colon)) { 1604 // Check for the '::' prefix. 1605 const char *curPointer = getToken().getLoc().getPointer(); 1606 consumeToken(Token::colon); 1607 if (!consumeIf(Token::colon)) { 1608 state.lex.resetPointer(curPointer); 1609 consumeToken(); 1610 break; 1611 } 1612 // Parse the reference itself. 1613 auto curLoc = getToken().getLoc(); 1614 if (getToken().isNot(Token::at_identifier)) { 1615 emitError(curLoc, "expected nested symbol reference identifier"); 1616 return Attribute(); 1617 } 1618 1619 std::string nameStr = extractSymbolReference(getToken()); 1620 consumeToken(Token::at_identifier); 1621 nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext())); 1622 } 1623 1624 return builder.getSymbolRefAttr(nameStr, nestedRefs); 1625 } 1626 1627 // Parse a 'unit' attribute. 1628 case Token::kw_unit: 1629 consumeToken(Token::kw_unit); 1630 return builder.getUnitAttr(); 1631 1632 default: 1633 // Parse a type attribute. 1634 if (Type type = parseType()) 1635 return TypeAttr::get(type); 1636 return nullptr; 1637 } 1638 } 1639 1640 /// Attribute dictionary. 1641 /// 1642 /// attribute-dict ::= `{` `}` 1643 /// | `{` attribute-entry (`,` attribute-entry)* `}` 1644 /// attribute-entry ::= bare-id `=` attribute-value 1645 /// 1646 ParseResult 1647 Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) { 1648 if (parseToken(Token::l_brace, "expected '{' in attribute dictionary")) 1649 return failure(); 1650 1651 auto parseElt = [&]() -> ParseResult { 1652 // We allow keywords as attribute names. 1653 if (getToken().isNot(Token::bare_identifier, Token::inttype) && 1654 !getToken().isKeyword()) 1655 return emitError("expected attribute name"); 1656 Identifier nameId = builder.getIdentifier(getTokenSpelling()); 1657 consumeToken(); 1658 1659 // Try to parse the '=' for the attribute value. 1660 if (!consumeIf(Token::equal)) { 1661 // If there is no '=', we treat this as a unit attribute. 1662 attributes.push_back({nameId, builder.getUnitAttr()}); 1663 return success(); 1664 } 1665 1666 auto attr = parseAttribute(); 1667 if (!attr) 1668 return failure(); 1669 1670 attributes.push_back({nameId, attr}); 1671 return success(); 1672 }; 1673 1674 if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) 1675 return failure(); 1676 1677 return success(); 1678 } 1679 1680 /// Parse an extended attribute. 1681 /// 1682 /// extended-attribute ::= (dialect-attribute | attribute-alias) 1683 /// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>` 1684 /// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body? 1685 /// attribute-alias ::= `#` alias-name 1686 /// 1687 Attribute Parser::parseExtendedAttr(Type type) { 1688 Attribute attr = parseExtendedSymbol<Attribute>( 1689 *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions, 1690 [&](StringRef dialectName, StringRef symbolData, 1691 llvm::SMLoc loc) -> Attribute { 1692 // Parse an optional trailing colon type. 1693 Type attrType = type; 1694 if (consumeIf(Token::colon) && !(attrType = parseType())) 1695 return Attribute(); 1696 1697 // If we found a registered dialect, then ask it to parse the attribute. 1698 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1699 return parseSymbol<Attribute>( 1700 symbolData, state.context, state.symbols, [&](Parser &parser) { 1701 CustomDialectAsmParser customParser(symbolData, parser); 1702 return dialect->parseAttribute(customParser, attrType); 1703 }); 1704 } 1705 1706 // Otherwise, form a new opaque attribute. 1707 return OpaqueAttr::getChecked( 1708 Identifier::get(dialectName, state.context), symbolData, 1709 attrType ? attrType : NoneType::get(state.context), 1710 getEncodedSourceLocation(loc)); 1711 }); 1712 1713 // Ensure that the attribute has the same type as requested. 1714 if (attr && type && attr.getType() != type) { 1715 emitError("attribute type different than expected: expected ") 1716 << type << ", but got " << attr.getType(); 1717 return nullptr; 1718 } 1719 return attr; 1720 } 1721 1722 /// Parse a float attribute. 1723 Attribute Parser::parseFloatAttr(Type type, bool isNegative) { 1724 auto val = getToken().getFloatingPointValue(); 1725 if (!val.hasValue()) 1726 return (emitError("floating point value too large for attribute"), nullptr); 1727 consumeToken(Token::floatliteral); 1728 if (!type) { 1729 // Default to F64 when no type is specified. 1730 if (!consumeIf(Token::colon)) 1731 type = builder.getF64Type(); 1732 else if (!(type = parseType())) 1733 return nullptr; 1734 } 1735 if (!type.isa<FloatType>()) 1736 return (emitError("floating point value not valid for specified type"), 1737 nullptr); 1738 return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue()); 1739 } 1740 1741 /// Construct a float attribute bitwise equivalent to the integer literal. 1742 static Optional<APFloat> buildHexadecimalFloatLiteral(Parser *p, FloatType type, 1743 uint64_t value) { 1744 // FIXME: bfloat is currently stored as a double internally because it doesn't 1745 // have valid APFloat semantics. 1746 if (type.isF64() || type.isBF16()) 1747 return APFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value)); 1748 1749 APInt apInt(type.getWidth(), value); 1750 if (apInt != value) { 1751 p->emitError("hexadecimal float constant out of range for type"); 1752 return llvm::None; 1753 } 1754 return APFloat(type.getFloatSemantics(), apInt); 1755 } 1756 1757 /// Parse a decimal or a hexadecimal literal, which can be either an integer 1758 /// or a float attribute. 1759 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) { 1760 auto val = getToken().getUInt64IntegerValue(); 1761 if (!val.hasValue()) 1762 return (emitError("integer constant out of range for attribute"), nullptr); 1763 1764 // Remember if the literal is hexadecimal. 1765 StringRef spelling = getToken().getSpelling(); 1766 auto loc = state.curToken.getLoc(); 1767 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1768 1769 consumeToken(Token::integer); 1770 if (!type) { 1771 // Default to i64 if not type is specified. 1772 if (!consumeIf(Token::colon)) 1773 type = builder.getIntegerType(64); 1774 else if (!(type = parseType())) 1775 return nullptr; 1776 } 1777 1778 if (auto floatType = type.dyn_cast<FloatType>()) { 1779 if (isNegative) 1780 return emitError( 1781 loc, 1782 "hexadecimal float literal should not have a leading minus"), 1783 nullptr; 1784 if (!isHex) { 1785 emitError(loc, "unexpected decimal integer literal for a float attribute") 1786 .attachNote() 1787 << "add a trailing dot to make the literal a float"; 1788 return nullptr; 1789 } 1790 1791 // Construct a float attribute bitwise equivalent to the integer literal. 1792 Optional<APFloat> apVal = 1793 buildHexadecimalFloatLiteral(this, floatType, *val); 1794 return apVal ? FloatAttr::get(floatType, *apVal) : Attribute(); 1795 } 1796 1797 if (!type.isa<IntegerType>() && !type.isa<IndexType>()) 1798 return emitError(loc, "integer literal not valid for specified type"), 1799 nullptr; 1800 1801 if (isNegative && type.isUnsignedInteger()) { 1802 emitError(loc, 1803 "negative integer literal not valid for unsigned integer type"); 1804 return nullptr; 1805 } 1806 1807 // Parse the integer literal. 1808 int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); 1809 APInt apInt(width, *val, isNegative); 1810 if (apInt != *val) 1811 return emitError(loc, "integer constant out of range for attribute"), 1812 nullptr; 1813 1814 // Otherwise construct an integer attribute. 1815 if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0) 1816 return emitError(loc, "integer constant out of range for attribute"), 1817 nullptr; 1818 1819 return builder.getIntegerAttr(type, isNegative ? -apInt : apInt); 1820 } 1821 1822 /// Parse elements values stored within a hex etring. On success, the values are 1823 /// stored into 'result'. 1824 static ParseResult parseElementAttrHexValues(Parser &parser, Token tok, 1825 std::string &result) { 1826 std::string val = tok.getStringValue(); 1827 if (val.size() < 2 || val[0] != '0' || val[1] != 'x') 1828 return parser.emitError(tok.getLoc(), 1829 "elements hex string should start with '0x'"); 1830 1831 StringRef hexValues = StringRef(val).drop_front(2); 1832 if (!llvm::all_of(hexValues, llvm::isHexDigit)) 1833 return parser.emitError(tok.getLoc(), 1834 "elements hex string only contains hex digits"); 1835 1836 result = llvm::fromHex(hexValues); 1837 return success(); 1838 } 1839 1840 /// Parse an opaque elements attribute. 1841 Attribute Parser::parseOpaqueElementsAttr(Type attrType) { 1842 consumeToken(Token::kw_opaque); 1843 if (parseToken(Token::less, "expected '<' after 'opaque'")) 1844 return nullptr; 1845 1846 if (getToken().isNot(Token::string)) 1847 return (emitError("expected dialect namespace"), nullptr); 1848 1849 auto name = getToken().getStringValue(); 1850 auto *dialect = builder.getContext()->getRegisteredDialect(name); 1851 // TODO(shpeisman): Allow for having an unknown dialect on an opaque 1852 // attribute. Otherwise, it can't be roundtripped without having the dialect 1853 // registered. 1854 if (!dialect) 1855 return (emitError("no registered dialect with namespace '" + name + "'"), 1856 nullptr); 1857 consumeToken(Token::string); 1858 1859 if (parseToken(Token::comma, "expected ','")) 1860 return nullptr; 1861 1862 Token hexTok = getToken(); 1863 if (parseToken(Token::string, "elements hex string should start with '0x'") || 1864 parseToken(Token::greater, "expected '>'")) 1865 return nullptr; 1866 auto type = parseElementsLiteralType(attrType); 1867 if (!type) 1868 return nullptr; 1869 1870 std::string data; 1871 if (parseElementAttrHexValues(*this, hexTok, data)) 1872 return nullptr; 1873 return OpaqueElementsAttr::get(dialect, type, data); 1874 } 1875 1876 namespace { 1877 class TensorLiteralParser { 1878 public: 1879 TensorLiteralParser(Parser &p) : p(p) {} 1880 1881 /// Parse the elements of a tensor literal. If 'allowHex' is true, the parser 1882 /// may also parse a tensor literal that is store as a hex string. 1883 ParseResult parse(bool allowHex); 1884 1885 /// Build a dense attribute instance with the parsed elements and the given 1886 /// shaped type. 1887 DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type); 1888 1889 ArrayRef<int64_t> getShape() const { return shape; } 1890 1891 private: 1892 enum class ElementKind { Boolean, Integer, Float }; 1893 1894 /// Return a string to represent the given element kind. 1895 const char *getElementKindStr(ElementKind kind) { 1896 switch (kind) { 1897 case ElementKind::Boolean: 1898 return "'boolean'"; 1899 case ElementKind::Integer: 1900 return "'integer'"; 1901 case ElementKind::Float: 1902 return "'float'"; 1903 } 1904 llvm_unreachable("unknown element kind"); 1905 } 1906 1907 /// Build a Dense Integer attribute for the given type. 1908 DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type, 1909 IntegerType eltTy); 1910 1911 /// Build a Dense Float attribute for the given type. 1912 DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type, 1913 FloatType eltTy); 1914 1915 /// Build a Dense attribute with hex data for the given type. 1916 DenseElementsAttr getHexAttr(llvm::SMLoc loc, ShapedType type); 1917 1918 /// Parse a single element, returning failure if it isn't a valid element 1919 /// literal. For example: 1920 /// parseElement(1) -> Success, 1 1921 /// parseElement([1]) -> Failure 1922 ParseResult parseElement(); 1923 1924 /// Parse a list of either lists or elements, returning the dimensions of the 1925 /// parsed sub-tensors in dims. For example: 1926 /// parseList([1, 2, 3]) -> Success, [3] 1927 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 1928 /// parseList([[1, 2], 3]) -> Failure 1929 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 1930 ParseResult parseList(SmallVectorImpl<int64_t> &dims); 1931 1932 /// Parse a literal that was printed as a hex string. 1933 ParseResult parseHexElements(); 1934 1935 Parser &p; 1936 1937 /// The shape inferred from the parsed elements. 1938 SmallVector<int64_t, 4> shape; 1939 1940 /// Storage used when parsing elements, this is a pair of <is_negated, token>. 1941 std::vector<std::pair<bool, Token>> storage; 1942 1943 /// A flag that indicates the type of elements that have been parsed. 1944 Optional<ElementKind> knownEltKind; 1945 1946 /// Storage used when parsing elements that were stored as hex values. 1947 Optional<Token> hexStorage; 1948 }; 1949 } // namespace 1950 1951 /// Parse the elements of a tensor literal. If 'allowHex' is true, the parser 1952 /// may also parse a tensor literal that is store as a hex string. 1953 ParseResult TensorLiteralParser::parse(bool allowHex) { 1954 // If hex is allowed, check for a string literal. 1955 if (allowHex && p.getToken().is(Token::string)) { 1956 hexStorage = p.getToken(); 1957 p.consumeToken(Token::string); 1958 return success(); 1959 } 1960 // Otherwise, parse a list or an individual element. 1961 if (p.getToken().is(Token::l_square)) 1962 return parseList(shape); 1963 return parseElement(); 1964 } 1965 1966 /// Build a dense attribute instance with the parsed elements and the given 1967 /// shaped type. 1968 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc, 1969 ShapedType type) { 1970 // Check to see if we parsed the literal from a hex string. 1971 if (hexStorage.hasValue()) 1972 return getHexAttr(loc, type); 1973 1974 // Check that the parsed storage size has the same number of elements to the 1975 // type, or is a known splat. 1976 if (!shape.empty() && getShape() != type.getShape()) { 1977 p.emitError(loc) << "inferred shape of elements literal ([" << getShape() 1978 << "]) does not match type ([" << type.getShape() << "])"; 1979 return nullptr; 1980 } 1981 1982 // If the type is an integer, build a set of APInt values from the storage 1983 // with the correct bitwidth. 1984 if (auto intTy = type.getElementType().dyn_cast<IntegerType>()) 1985 return getIntAttr(loc, type, intTy); 1986 1987 // Otherwise, this must be a floating point type. 1988 auto floatTy = type.getElementType().dyn_cast<FloatType>(); 1989 if (!floatTy) { 1990 p.emitError(loc) << "expected floating-point or integer element type, got " 1991 << type.getElementType(); 1992 return nullptr; 1993 } 1994 return getFloatAttr(loc, type, floatTy); 1995 } 1996 1997 /// Build a Dense Integer attribute for the given type. 1998 DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc, 1999 ShapedType type, 2000 IntegerType eltTy) { 2001 std::vector<APInt> intElements; 2002 intElements.reserve(storage.size()); 2003 auto isUintType = type.getElementType().isUnsignedInteger(); 2004 for (const auto &signAndToken : storage) { 2005 bool isNegative = signAndToken.first; 2006 const Token &token = signAndToken.second; 2007 auto tokenLoc = token.getLoc(); 2008 2009 if (isNegative && isUintType) { 2010 p.emitError(tokenLoc) 2011 << "expected unsigned integer elements, but parsed negative value"; 2012 return nullptr; 2013 } 2014 2015 // Check to see if floating point values were parsed. 2016 if (token.is(Token::floatliteral)) { 2017 p.emitError(tokenLoc) 2018 << "expected integer elements, but parsed floating-point"; 2019 return nullptr; 2020 } 2021 2022 assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) && 2023 "unexpected token type"); 2024 if (token.isAny(Token::kw_true, Token::kw_false)) { 2025 if (!eltTy.isInteger(1)) 2026 p.emitError(tokenLoc) 2027 << "expected i1 type for 'true' or 'false' values"; 2028 APInt apInt(eltTy.getWidth(), token.is(Token::kw_true), 2029 /*isSigned=*/false); 2030 intElements.push_back(apInt); 2031 continue; 2032 } 2033 2034 // Create APInt values for each element with the correct bitwidth. 2035 auto val = token.getUInt64IntegerValue(); 2036 if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0 2037 : (int64_t)val.getValue() < 0)) { 2038 p.emitError(tokenLoc, "integer constant out of range for attribute"); 2039 return nullptr; 2040 } 2041 APInt apInt(eltTy.getWidth(), val.getValue(), isNegative); 2042 if (apInt != val.getValue()) 2043 return (p.emitError(tokenLoc, "integer constant out of range for type"), 2044 nullptr); 2045 intElements.push_back(isNegative ? -apInt : apInt); 2046 } 2047 2048 return DenseElementsAttr::get(type, intElements); 2049 } 2050 2051 /// Build a Dense Float attribute for the given type. 2052 DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc, 2053 ShapedType type, 2054 FloatType eltTy) { 2055 std::vector<APFloat> floatValues; 2056 floatValues.reserve(storage.size()); 2057 for (const auto &signAndToken : storage) { 2058 bool isNegative = signAndToken.first; 2059 const Token &token = signAndToken.second; 2060 2061 // Handle hexadecimal float literals. 2062 if (token.is(Token::integer) && token.getSpelling().startswith("0x")) { 2063 if (isNegative) { 2064 p.emitError(token.getLoc()) 2065 << "hexadecimal float literal should not have a leading minus"; 2066 return nullptr; 2067 } 2068 auto val = token.getUInt64IntegerValue(); 2069 if (!val.hasValue()) { 2070 p.emitError("hexadecimal float constant out of range for attribute"); 2071 return nullptr; 2072 } 2073 Optional<APFloat> apVal = buildHexadecimalFloatLiteral(&p, eltTy, *val); 2074 if (!apVal) 2075 return nullptr; 2076 floatValues.push_back(*apVal); 2077 continue; 2078 } 2079 2080 // Check to see if any decimal integers or booleans were parsed. 2081 if (!token.is(Token::floatliteral)) { 2082 p.emitError() << "expected floating-point elements, but parsed integer"; 2083 return nullptr; 2084 } 2085 2086 // Build the float values from tokens. 2087 auto val = token.getFloatingPointValue(); 2088 if (!val.hasValue()) { 2089 p.emitError("floating point value too large for attribute"); 2090 return nullptr; 2091 } 2092 // Treat BF16 as double because it is not supported in LLVM's APFloat. 2093 APFloat apVal(isNegative ? -*val : *val); 2094 if (!eltTy.isBF16() && !eltTy.isF64()) { 2095 bool unused; 2096 apVal.convert(eltTy.getFloatSemantics(), APFloat::rmNearestTiesToEven, 2097 &unused); 2098 } 2099 floatValues.push_back(apVal); 2100 } 2101 2102 return DenseElementsAttr::get(type, floatValues); 2103 } 2104 2105 /// Build a Dense attribute with hex data for the given type. 2106 DenseElementsAttr TensorLiteralParser::getHexAttr(llvm::SMLoc loc, 2107 ShapedType type) { 2108 Type elementType = type.getElementType(); 2109 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) { 2110 p.emitError(loc) << "expected floating-point or integer element type, got " 2111 << elementType; 2112 return nullptr; 2113 } 2114 2115 std::string data; 2116 if (parseElementAttrHexValues(p, hexStorage.getValue(), data)) 2117 return nullptr; 2118 2119 // Check that the size of the hex data correpsonds to the size of the type, or 2120 // a splat of the type. 2121 if (static_cast<int64_t>(data.size() * CHAR_BIT) != 2122 (type.getNumElements() * elementType.getIntOrFloatBitWidth())) { 2123 p.emitError(loc) << "elements hex data size is invalid for provided type: " 2124 << type; 2125 return nullptr; 2126 } 2127 2128 return DenseElementsAttr::getFromRawBuffer( 2129 type, ArrayRef<char>(data.data(), data.size()), /*isSplatBuffer=*/false); 2130 } 2131 2132 ParseResult TensorLiteralParser::parseElement() { 2133 switch (p.getToken().getKind()) { 2134 // Parse a boolean element. 2135 case Token::kw_true: 2136 case Token::kw_false: 2137 case Token::floatliteral: 2138 case Token::integer: 2139 storage.emplace_back(/*isNegative=*/false, p.getToken()); 2140 p.consumeToken(); 2141 break; 2142 2143 // Parse a signed integer or a negative floating-point element. 2144 case Token::minus: 2145 p.consumeToken(Token::minus); 2146 if (!p.getToken().isAny(Token::floatliteral, Token::integer)) 2147 return p.emitError("expected integer or floating point literal"); 2148 storage.emplace_back(/*isNegative=*/true, p.getToken()); 2149 p.consumeToken(); 2150 break; 2151 2152 default: 2153 return p.emitError("expected element literal of primitive type"); 2154 } 2155 2156 return success(); 2157 } 2158 2159 /// Parse a list of either lists or elements, returning the dimensions of the 2160 /// parsed sub-tensors in dims. For example: 2161 /// parseList([1, 2, 3]) -> Success, [3] 2162 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 2163 /// parseList([[1, 2], 3]) -> Failure 2164 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 2165 ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) { 2166 p.consumeToken(Token::l_square); 2167 2168 auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims, 2169 const SmallVectorImpl<int64_t> &newDims) -> ParseResult { 2170 if (prevDims == newDims) 2171 return success(); 2172 return p.emitError("tensor literal is invalid; ranks are not consistent " 2173 "between elements"); 2174 }; 2175 2176 bool first = true; 2177 SmallVector<int64_t, 4> newDims; 2178 unsigned size = 0; 2179 auto parseCommaSeparatedList = [&]() -> ParseResult { 2180 SmallVector<int64_t, 4> thisDims; 2181 if (p.getToken().getKind() == Token::l_square) { 2182 if (parseList(thisDims)) 2183 return failure(); 2184 } else if (parseElement()) { 2185 return failure(); 2186 } 2187 ++size; 2188 if (!first) 2189 return checkDims(newDims, thisDims); 2190 newDims = thisDims; 2191 first = false; 2192 return success(); 2193 }; 2194 if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) 2195 return failure(); 2196 2197 // Return the sublists' dimensions with 'size' prepended. 2198 dims.clear(); 2199 dims.push_back(size); 2200 dims.append(newDims.begin(), newDims.end()); 2201 return success(); 2202 } 2203 2204 /// Parse a dense elements attribute. 2205 Attribute Parser::parseDenseElementsAttr(Type attrType) { 2206 consumeToken(Token::kw_dense); 2207 if (parseToken(Token::less, "expected '<' after 'dense'")) 2208 return nullptr; 2209 2210 // Parse the literal data. 2211 TensorLiteralParser literalParser(*this); 2212 if (literalParser.parse(/*allowHex=*/true)) 2213 return nullptr; 2214 2215 if (parseToken(Token::greater, "expected '>'")) 2216 return nullptr; 2217 2218 auto typeLoc = getToken().getLoc(); 2219 auto type = parseElementsLiteralType(attrType); 2220 if (!type) 2221 return nullptr; 2222 return literalParser.getAttr(typeLoc, type); 2223 } 2224 2225 /// Shaped type for elements attribute. 2226 /// 2227 /// elements-literal-type ::= vector-type | ranked-tensor-type 2228 /// 2229 /// This method also checks the type has static shape. 2230 ShapedType Parser::parseElementsLiteralType(Type type) { 2231 // If the user didn't provide a type, parse the colon type for the literal. 2232 if (!type) { 2233 if (parseToken(Token::colon, "expected ':'")) 2234 return nullptr; 2235 if (!(type = parseType())) 2236 return nullptr; 2237 } 2238 2239 if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) { 2240 emitError("elements literal must be a ranked tensor or vector type"); 2241 return nullptr; 2242 } 2243 2244 auto sType = type.cast<ShapedType>(); 2245 if (!sType.hasStaticShape()) 2246 return (emitError("elements literal type must have static shape"), nullptr); 2247 2248 return sType; 2249 } 2250 2251 /// Parse a sparse elements attribute. 2252 Attribute Parser::parseSparseElementsAttr(Type attrType) { 2253 consumeToken(Token::kw_sparse); 2254 if (parseToken(Token::less, "Expected '<' after 'sparse'")) 2255 return nullptr; 2256 2257 /// Parse the indices. We don't allow hex values here as we may need to use 2258 /// the inferred shape. 2259 auto indicesLoc = getToken().getLoc(); 2260 TensorLiteralParser indiceParser(*this); 2261 if (indiceParser.parse(/*allowHex=*/false)) 2262 return nullptr; 2263 2264 if (parseToken(Token::comma, "expected ','")) 2265 return nullptr; 2266 2267 /// Parse the values. 2268 auto valuesLoc = getToken().getLoc(); 2269 TensorLiteralParser valuesParser(*this); 2270 if (valuesParser.parse(/*allowHex=*/true)) 2271 return nullptr; 2272 2273 if (parseToken(Token::greater, "expected '>'")) 2274 return nullptr; 2275 2276 auto type = parseElementsLiteralType(attrType); 2277 if (!type) 2278 return nullptr; 2279 2280 // If the indices are a splat, i.e. the literal parser parsed an element and 2281 // not a list, we set the shape explicitly. The indices are represented by a 2282 // 2-dimensional shape where the second dimension is the rank of the type. 2283 // Given that the parsed indices is a splat, we know that we only have one 2284 // indice and thus one for the first dimension. 2285 auto indiceEltType = builder.getIntegerType(64); 2286 ShapedType indicesType; 2287 if (indiceParser.getShape().empty()) { 2288 indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType); 2289 } else { 2290 // Otherwise, set the shape to the one parsed by the literal parser. 2291 indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType); 2292 } 2293 auto indices = indiceParser.getAttr(indicesLoc, indicesType); 2294 2295 // If the values are a splat, set the shape explicitly based on the number of 2296 // indices. The number of indices is encoded in the first dimension of the 2297 // indice shape type. 2298 auto valuesEltType = type.getElementType(); 2299 ShapedType valuesType = 2300 valuesParser.getShape().empty() 2301 ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType) 2302 : RankedTensorType::get(valuesParser.getShape(), valuesEltType); 2303 auto values = valuesParser.getAttr(valuesLoc, valuesType); 2304 2305 /// Sanity check. 2306 if (valuesType.getRank() != 1) 2307 return (emitError("expected 1-d tensor for values"), nullptr); 2308 2309 auto sameShape = (indicesType.getRank() == 1) || 2310 (type.getRank() == indicesType.getDimSize(1)); 2311 auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); 2312 if (!sameShape || !sameElementNum) { 2313 emitError() << "expected shape ([" << type.getShape() 2314 << "]); inferred shape of indices literal ([" 2315 << indicesType.getShape() 2316 << "]); inferred shape of values literal ([" 2317 << valuesType.getShape() << "])"; 2318 return nullptr; 2319 } 2320 2321 // Build the sparse elements attribute by the indices and values. 2322 return SparseElementsAttr::get(type, indices, values); 2323 } 2324 2325 //===----------------------------------------------------------------------===// 2326 // Location parsing. 2327 //===----------------------------------------------------------------------===// 2328 2329 /// Parse a location. 2330 /// 2331 /// location ::= `loc` inline-location 2332 /// inline-location ::= '(' location-inst ')' 2333 /// 2334 ParseResult Parser::parseLocation(LocationAttr &loc) { 2335 // Check for 'loc' identifier. 2336 if (parseToken(Token::kw_loc, "expected 'loc' keyword")) 2337 return emitError(); 2338 2339 // Parse the inline-location. 2340 if (parseToken(Token::l_paren, "expected '(' in inline location") || 2341 parseLocationInstance(loc) || 2342 parseToken(Token::r_paren, "expected ')' in inline location")) 2343 return failure(); 2344 return success(); 2345 } 2346 2347 /// Specific location instances. 2348 /// 2349 /// location-inst ::= filelinecol-location | 2350 /// name-location | 2351 /// callsite-location | 2352 /// fused-location | 2353 /// unknown-location 2354 /// filelinecol-location ::= string-literal ':' integer-literal 2355 /// ':' integer-literal 2356 /// name-location ::= string-literal 2357 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' 2358 /// fused-location ::= fused ('<' attribute-value '>')? 2359 /// '[' location-inst (location-inst ',')* ']' 2360 /// unknown-location ::= 'unknown' 2361 /// 2362 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) { 2363 consumeToken(Token::bare_identifier); 2364 2365 // Parse the '('. 2366 if (parseToken(Token::l_paren, "expected '(' in callsite location")) 2367 return failure(); 2368 2369 // Parse the callee location. 2370 LocationAttr calleeLoc; 2371 if (parseLocationInstance(calleeLoc)) 2372 return failure(); 2373 2374 // Parse the 'at'. 2375 if (getToken().isNot(Token::bare_identifier) || 2376 getToken().getSpelling() != "at") 2377 return emitError("expected 'at' in callsite location"); 2378 consumeToken(Token::bare_identifier); 2379 2380 // Parse the caller location. 2381 LocationAttr callerLoc; 2382 if (parseLocationInstance(callerLoc)) 2383 return failure(); 2384 2385 // Parse the ')'. 2386 if (parseToken(Token::r_paren, "expected ')' in callsite location")) 2387 return failure(); 2388 2389 // Return the callsite location. 2390 loc = CallSiteLoc::get(calleeLoc, callerLoc); 2391 return success(); 2392 } 2393 2394 ParseResult Parser::parseFusedLocation(LocationAttr &loc) { 2395 consumeToken(Token::bare_identifier); 2396 2397 // Try to parse the optional metadata. 2398 Attribute metadata; 2399 if (consumeIf(Token::less)) { 2400 metadata = parseAttribute(); 2401 if (!metadata) 2402 return emitError("expected valid attribute metadata"); 2403 // Parse the '>' token. 2404 if (parseToken(Token::greater, 2405 "expected '>' after fused location metadata")) 2406 return failure(); 2407 } 2408 2409 SmallVector<Location, 4> locations; 2410 auto parseElt = [&] { 2411 LocationAttr newLoc; 2412 if (parseLocationInstance(newLoc)) 2413 return failure(); 2414 locations.push_back(newLoc); 2415 return success(); 2416 }; 2417 2418 if (parseToken(Token::l_square, "expected '[' in fused location") || 2419 parseCommaSeparatedList(parseElt) || 2420 parseToken(Token::r_square, "expected ']' in fused location")) 2421 return failure(); 2422 2423 // Return the fused location. 2424 loc = FusedLoc::get(locations, metadata, getContext()); 2425 return success(); 2426 } 2427 2428 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) { 2429 auto *ctx = getContext(); 2430 auto str = getToken().getStringValue(); 2431 consumeToken(Token::string); 2432 2433 // If the next token is ':' this is a filelinecol location. 2434 if (consumeIf(Token::colon)) { 2435 // Parse the line number. 2436 if (getToken().isNot(Token::integer)) 2437 return emitError("expected integer line number in FileLineColLoc"); 2438 auto line = getToken().getUnsignedIntegerValue(); 2439 if (!line.hasValue()) 2440 return emitError("expected integer line number in FileLineColLoc"); 2441 consumeToken(Token::integer); 2442 2443 // Parse the ':'. 2444 if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) 2445 return failure(); 2446 2447 // Parse the column number. 2448 if (getToken().isNot(Token::integer)) 2449 return emitError("expected integer column number in FileLineColLoc"); 2450 auto column = getToken().getUnsignedIntegerValue(); 2451 if (!column.hasValue()) 2452 return emitError("expected integer column number in FileLineColLoc"); 2453 consumeToken(Token::integer); 2454 2455 loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx); 2456 return success(); 2457 } 2458 2459 // Otherwise, this is a NameLoc. 2460 2461 // Check for a child location. 2462 if (consumeIf(Token::l_paren)) { 2463 auto childSourceLoc = getToken().getLoc(); 2464 2465 // Parse the child location. 2466 LocationAttr childLoc; 2467 if (parseLocationInstance(childLoc)) 2468 return failure(); 2469 2470 // The child must not be another NameLoc. 2471 if (childLoc.isa<NameLoc>()) 2472 return emitError(childSourceLoc, 2473 "child of NameLoc cannot be another NameLoc"); 2474 loc = NameLoc::get(Identifier::get(str, ctx), childLoc); 2475 2476 // Parse the closing ')'. 2477 if (parseToken(Token::r_paren, 2478 "expected ')' after child location of NameLoc")) 2479 return failure(); 2480 } else { 2481 loc = NameLoc::get(Identifier::get(str, ctx), ctx); 2482 } 2483 2484 return success(); 2485 } 2486 2487 ParseResult Parser::parseLocationInstance(LocationAttr &loc) { 2488 // Handle either name or filelinecol locations. 2489 if (getToken().is(Token::string)) 2490 return parseNameOrFileLineColLocation(loc); 2491 2492 // Bare tokens required for other cases. 2493 if (!getToken().is(Token::bare_identifier)) 2494 return emitError("expected location instance"); 2495 2496 // Check for the 'callsite' signifying a callsite location. 2497 if (getToken().getSpelling() == "callsite") 2498 return parseCallSiteLocation(loc); 2499 2500 // If the token is 'fused', then this is a fused location. 2501 if (getToken().getSpelling() == "fused") 2502 return parseFusedLocation(loc); 2503 2504 // Check for a 'unknown' for an unknown location. 2505 if (getToken().getSpelling() == "unknown") { 2506 consumeToken(Token::bare_identifier); 2507 loc = UnknownLoc::get(getContext()); 2508 return success(); 2509 } 2510 2511 return emitError("expected location instance"); 2512 } 2513 2514 //===----------------------------------------------------------------------===// 2515 // Affine parsing. 2516 //===----------------------------------------------------------------------===// 2517 2518 /// Lower precedence ops (all at the same precedence level). LNoOp is false in 2519 /// the boolean sense. 2520 enum AffineLowPrecOp { 2521 /// Null value. 2522 LNoOp, 2523 Add, 2524 Sub 2525 }; 2526 2527 /// Higher precedence ops - all at the same precedence level. HNoOp is false 2528 /// in the boolean sense. 2529 enum AffineHighPrecOp { 2530 /// Null value. 2531 HNoOp, 2532 Mul, 2533 FloorDiv, 2534 CeilDiv, 2535 Mod 2536 }; 2537 2538 namespace { 2539 /// This is a specialized parser for affine structures (affine maps, affine 2540 /// expressions, and integer sets), maintaining the state transient to their 2541 /// bodies. 2542 class AffineParser : public Parser { 2543 public: 2544 AffineParser(ParserState &state, bool allowParsingSSAIds = false, 2545 function_ref<ParseResult(bool)> parseElement = nullptr) 2546 : Parser(state), allowParsingSSAIds(allowParsingSSAIds), 2547 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {} 2548 2549 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); 2550 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); 2551 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); 2552 ParseResult parseAffineMapOfSSAIds(AffineMap &map, 2553 OpAsmParser::Delimiter delimiter); 2554 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds, 2555 unsigned &numDims); 2556 2557 private: 2558 // Binary affine op parsing. 2559 AffineLowPrecOp consumeIfLowPrecOp(); 2560 AffineHighPrecOp consumeIfHighPrecOp(); 2561 2562 // Identifier lists for polyhedral structures. 2563 ParseResult parseDimIdList(unsigned &numDims); 2564 ParseResult parseSymbolIdList(unsigned &numSymbols); 2565 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, 2566 unsigned &numSymbols); 2567 ParseResult parseIdentifierDefinition(AffineExpr idExpr); 2568 2569 AffineExpr parseAffineExpr(); 2570 AffineExpr parseParentheticalExpr(); 2571 AffineExpr parseNegateExpression(AffineExpr lhs); 2572 AffineExpr parseIntegerExpr(); 2573 AffineExpr parseBareIdExpr(); 2574 AffineExpr parseSSAIdExpr(bool isSymbol); 2575 AffineExpr parseSymbolSSAIdExpr(); 2576 2577 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, 2578 AffineExpr rhs, SMLoc opLoc); 2579 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, 2580 AffineExpr rhs); 2581 AffineExpr parseAffineOperandExpr(AffineExpr lhs); 2582 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); 2583 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, 2584 SMLoc llhsOpLoc); 2585 AffineExpr parseAffineConstraint(bool *isEq); 2586 2587 private: 2588 bool allowParsingSSAIds; 2589 function_ref<ParseResult(bool)> parseElement; 2590 unsigned numDimOperands; 2591 unsigned numSymbolOperands; 2592 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols; 2593 }; 2594 } // end anonymous namespace 2595 2596 /// Create an affine binary high precedence op expression (mul's, div's, mod). 2597 /// opLoc is the location of the op token to be used to report errors 2598 /// for non-conforming expressions. 2599 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, 2600 AffineExpr lhs, AffineExpr rhs, 2601 SMLoc opLoc) { 2602 // TODO: make the error location info accurate. 2603 switch (op) { 2604 case Mul: 2605 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { 2606 emitError(opLoc, "non-affine expression: at least one of the multiply " 2607 "operands has to be either a constant or symbolic"); 2608 return nullptr; 2609 } 2610 return lhs * rhs; 2611 case FloorDiv: 2612 if (!rhs.isSymbolicOrConstant()) { 2613 emitError(opLoc, "non-affine expression: right operand of floordiv " 2614 "has to be either a constant or symbolic"); 2615 return nullptr; 2616 } 2617 return lhs.floorDiv(rhs); 2618 case CeilDiv: 2619 if (!rhs.isSymbolicOrConstant()) { 2620 emitError(opLoc, "non-affine expression: right operand of ceildiv " 2621 "has to be either a constant or symbolic"); 2622 return nullptr; 2623 } 2624 return lhs.ceilDiv(rhs); 2625 case Mod: 2626 if (!rhs.isSymbolicOrConstant()) { 2627 emitError(opLoc, "non-affine expression: right operand of mod " 2628 "has to be either a constant or symbolic"); 2629 return nullptr; 2630 } 2631 return lhs % rhs; 2632 case HNoOp: 2633 llvm_unreachable("can't create affine expression for null high prec op"); 2634 return nullptr; 2635 } 2636 llvm_unreachable("Unknown AffineHighPrecOp"); 2637 } 2638 2639 /// Create an affine binary low precedence op expression (add, sub). 2640 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, 2641 AffineExpr lhs, AffineExpr rhs) { 2642 switch (op) { 2643 case AffineLowPrecOp::Add: 2644 return lhs + rhs; 2645 case AffineLowPrecOp::Sub: 2646 return lhs - rhs; 2647 case AffineLowPrecOp::LNoOp: 2648 llvm_unreachable("can't create affine expression for null low prec op"); 2649 return nullptr; 2650 } 2651 llvm_unreachable("Unknown AffineLowPrecOp"); 2652 } 2653 2654 /// Consume this token if it is a lower precedence affine op (there are only 2655 /// two precedence levels). 2656 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { 2657 switch (getToken().getKind()) { 2658 case Token::plus: 2659 consumeToken(Token::plus); 2660 return AffineLowPrecOp::Add; 2661 case Token::minus: 2662 consumeToken(Token::minus); 2663 return AffineLowPrecOp::Sub; 2664 default: 2665 return AffineLowPrecOp::LNoOp; 2666 } 2667 } 2668 2669 /// Consume this token if it is a higher precedence affine op (there are only 2670 /// two precedence levels) 2671 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { 2672 switch (getToken().getKind()) { 2673 case Token::star: 2674 consumeToken(Token::star); 2675 return Mul; 2676 case Token::kw_floordiv: 2677 consumeToken(Token::kw_floordiv); 2678 return FloorDiv; 2679 case Token::kw_ceildiv: 2680 consumeToken(Token::kw_ceildiv); 2681 return CeilDiv; 2682 case Token::kw_mod: 2683 consumeToken(Token::kw_mod); 2684 return Mod; 2685 default: 2686 return HNoOp; 2687 } 2688 } 2689 2690 /// Parse a high precedence op expression list: mul, div, and mod are high 2691 /// precedence binary ops, i.e., parse a 2692 /// expr_1 op_1 expr_2 op_2 ... expr_n 2693 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). 2694 /// All affine binary ops are left associative. 2695 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is 2696 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is 2697 /// null. llhsOpLoc is the location of the llhsOp token that will be used to 2698 /// report an error for non-conforming expressions. 2699 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, 2700 AffineHighPrecOp llhsOp, 2701 SMLoc llhsOpLoc) { 2702 AffineExpr lhs = parseAffineOperandExpr(llhs); 2703 if (!lhs) 2704 return nullptr; 2705 2706 // Found an LHS. Parse the remaining expression. 2707 auto opLoc = getToken().getLoc(); 2708 if (AffineHighPrecOp op = consumeIfHighPrecOp()) { 2709 if (llhs) { 2710 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); 2711 if (!expr) 2712 return nullptr; 2713 return parseAffineHighPrecOpExpr(expr, op, opLoc); 2714 } 2715 // No LLHS, get RHS 2716 return parseAffineHighPrecOpExpr(lhs, op, opLoc); 2717 } 2718 2719 // This is the last operand in this expression. 2720 if (llhs) 2721 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); 2722 2723 // No llhs, 'lhs' itself is the expression. 2724 return lhs; 2725 } 2726 2727 /// Parse an affine expression inside parentheses. 2728 /// 2729 /// affine-expr ::= `(` affine-expr `)` 2730 AffineExpr AffineParser::parseParentheticalExpr() { 2731 if (parseToken(Token::l_paren, "expected '('")) 2732 return nullptr; 2733 if (getToken().is(Token::r_paren)) 2734 return (emitError("no expression inside parentheses"), nullptr); 2735 2736 auto expr = parseAffineExpr(); 2737 if (!expr) 2738 return nullptr; 2739 if (parseToken(Token::r_paren, "expected ')'")) 2740 return nullptr; 2741 2742 return expr; 2743 } 2744 2745 /// Parse the negation expression. 2746 /// 2747 /// affine-expr ::= `-` affine-expr 2748 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { 2749 if (parseToken(Token::minus, "expected '-'")) 2750 return nullptr; 2751 2752 AffineExpr operand = parseAffineOperandExpr(lhs); 2753 // Since negation has the highest precedence of all ops (including high 2754 // precedence ops) but lower than parentheses, we are only going to use 2755 // parseAffineOperandExpr instead of parseAffineExpr here. 2756 if (!operand) 2757 // Extra error message although parseAffineOperandExpr would have 2758 // complained. Leads to a better diagnostic. 2759 return (emitError("missing operand of negation"), nullptr); 2760 return (-1) * operand; 2761 } 2762 2763 /// Parse a bare id that may appear in an affine expression. 2764 /// 2765 /// affine-expr ::= bare-id 2766 AffineExpr AffineParser::parseBareIdExpr() { 2767 if (getToken().isNot(Token::bare_identifier)) 2768 return (emitError("expected bare identifier"), nullptr); 2769 2770 StringRef sRef = getTokenSpelling(); 2771 for (auto entry : dimsAndSymbols) { 2772 if (entry.first == sRef) { 2773 consumeToken(Token::bare_identifier); 2774 return entry.second; 2775 } 2776 } 2777 2778 return (emitError("use of undeclared identifier"), nullptr); 2779 } 2780 2781 /// Parse an SSA id which may appear in an affine expression. 2782 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) { 2783 if (!allowParsingSSAIds) 2784 return (emitError("unexpected ssa identifier"), nullptr); 2785 if (getToken().isNot(Token::percent_identifier)) 2786 return (emitError("expected ssa identifier"), nullptr); 2787 auto name = getTokenSpelling(); 2788 // Check if we already parsed this SSA id. 2789 for (auto entry : dimsAndSymbols) { 2790 if (entry.first == name) { 2791 consumeToken(Token::percent_identifier); 2792 return entry.second; 2793 } 2794 } 2795 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it. 2796 if (parseElement(isSymbol)) 2797 return (emitError("failed to parse ssa identifier"), nullptr); 2798 auto idExpr = isSymbol 2799 ? getAffineSymbolExpr(numSymbolOperands++, getContext()) 2800 : getAffineDimExpr(numDimOperands++, getContext()); 2801 dimsAndSymbols.push_back({name, idExpr}); 2802 return idExpr; 2803 } 2804 2805 AffineExpr AffineParser::parseSymbolSSAIdExpr() { 2806 if (parseToken(Token::kw_symbol, "expected symbol keyword") || 2807 parseToken(Token::l_paren, "expected '(' at start of SSA symbol")) 2808 return nullptr; 2809 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true); 2810 if (!symbolExpr) 2811 return nullptr; 2812 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol")) 2813 return nullptr; 2814 return symbolExpr; 2815 } 2816 2817 /// Parse a positive integral constant appearing in an affine expression. 2818 /// 2819 /// affine-expr ::= integer-literal 2820 AffineExpr AffineParser::parseIntegerExpr() { 2821 auto val = getToken().getUInt64IntegerValue(); 2822 if (!val.hasValue() || (int64_t)val.getValue() < 0) 2823 return (emitError("constant too large for index"), nullptr); 2824 2825 consumeToken(Token::integer); 2826 return builder.getAffineConstantExpr((int64_t)val.getValue()); 2827 } 2828 2829 /// Parses an expression that can be a valid operand of an affine expression. 2830 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary 2831 /// operator, the rhs of which is being parsed. This is used to determine 2832 /// whether an error should be emitted for a missing right operand. 2833 // Eg: for an expression without parentheses (like i + j + k + l), each 2834 // of the four identifiers is an operand. For i + j*k + l, j*k is not an 2835 // operand expression, it's an op expression and will be parsed via 2836 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and 2837 // -l are valid operands that will be parsed by this function. 2838 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { 2839 switch (getToken().getKind()) { 2840 case Token::bare_identifier: 2841 return parseBareIdExpr(); 2842 case Token::kw_symbol: 2843 return parseSymbolSSAIdExpr(); 2844 case Token::percent_identifier: 2845 return parseSSAIdExpr(/*isSymbol=*/false); 2846 case Token::integer: 2847 return parseIntegerExpr(); 2848 case Token::l_paren: 2849 return parseParentheticalExpr(); 2850 case Token::minus: 2851 return parseNegateExpression(lhs); 2852 case Token::kw_ceildiv: 2853 case Token::kw_floordiv: 2854 case Token::kw_mod: 2855 case Token::plus: 2856 case Token::star: 2857 if (lhs) 2858 emitError("missing right operand of binary operator"); 2859 else 2860 emitError("missing left operand of binary operator"); 2861 return nullptr; 2862 default: 2863 if (lhs) 2864 emitError("missing right operand of binary operator"); 2865 else 2866 emitError("expected affine expression"); 2867 return nullptr; 2868 } 2869 } 2870 2871 /// Parse affine expressions that are bare-id's, integer constants, 2872 /// parenthetical affine expressions, and affine op expressions that are a 2873 /// composition of those. 2874 /// 2875 /// All binary op's associate from left to right. 2876 /// 2877 /// {add, sub} have lower precedence than {mul, div, and mod}. 2878 /// 2879 /// Add, sub'are themselves at the same precedence level. Mul, floordiv, 2880 /// ceildiv, and mod are at the same higher precedence level. Negation has 2881 /// higher precedence than any binary op. 2882 /// 2883 /// llhs: the affine expression appearing on the left of the one being parsed. 2884 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, 2885 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned 2886 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left 2887 /// associativity. 2888 /// 2889 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function 2890 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where 2891 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). 2892 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, 2893 AffineLowPrecOp llhsOp) { 2894 AffineExpr lhs; 2895 if (!(lhs = parseAffineOperandExpr(llhs))) 2896 return nullptr; 2897 2898 // Found an LHS. Deal with the ops. 2899 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { 2900 if (llhs) { 2901 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2902 return parseAffineLowPrecOpExpr(sum, lOp); 2903 } 2904 // No LLHS, get RHS and form the expression. 2905 return parseAffineLowPrecOpExpr(lhs, lOp); 2906 } 2907 auto opLoc = getToken().getLoc(); 2908 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { 2909 // We have a higher precedence op here. Get the rhs operand for the llhs 2910 // through parseAffineHighPrecOpExpr. 2911 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); 2912 if (!highRes) 2913 return nullptr; 2914 2915 // If llhs is null, the product forms the first operand of the yet to be 2916 // found expression. If non-null, the op to associate with llhs is llhsOp. 2917 AffineExpr expr = 2918 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; 2919 2920 // Recurse for subsequent low prec op's after the affine high prec op 2921 // expression. 2922 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) 2923 return parseAffineLowPrecOpExpr(expr, nextOp); 2924 return expr; 2925 } 2926 // Last operand in the expression list. 2927 if (llhs) 2928 return getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2929 // No llhs, 'lhs' itself is the expression. 2930 return lhs; 2931 } 2932 2933 /// Parse an affine expression. 2934 /// affine-expr ::= `(` affine-expr `)` 2935 /// | `-` affine-expr 2936 /// | affine-expr `+` affine-expr 2937 /// | affine-expr `-` affine-expr 2938 /// | affine-expr `*` affine-expr 2939 /// | affine-expr `floordiv` affine-expr 2940 /// | affine-expr `ceildiv` affine-expr 2941 /// | affine-expr `mod` affine-expr 2942 /// | bare-id 2943 /// | integer-literal 2944 /// 2945 /// Additional conditions are checked depending on the production. For eg., 2946 /// one of the operands for `*` has to be either constant/symbolic; the second 2947 /// operand for floordiv, ceildiv, and mod has to be a positive integer. 2948 AffineExpr AffineParser::parseAffineExpr() { 2949 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); 2950 } 2951 2952 /// Parse a dim or symbol from the lists appearing before the actual 2953 /// expressions of the affine map. Update our state to store the 2954 /// dimensional/symbolic identifier. 2955 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { 2956 if (getToken().isNot(Token::bare_identifier)) 2957 return emitError("expected bare identifier"); 2958 2959 auto name = getTokenSpelling(); 2960 for (auto entry : dimsAndSymbols) { 2961 if (entry.first == name) 2962 return emitError("redefinition of identifier '" + name + "'"); 2963 } 2964 consumeToken(Token::bare_identifier); 2965 2966 dimsAndSymbols.push_back({name, idExpr}); 2967 return success(); 2968 } 2969 2970 /// Parse the list of dimensional identifiers to an affine map. 2971 ParseResult AffineParser::parseDimIdList(unsigned &numDims) { 2972 if (parseToken(Token::l_paren, 2973 "expected '(' at start of dimensional identifiers list")) { 2974 return failure(); 2975 } 2976 2977 auto parseElt = [&]() -> ParseResult { 2978 auto dimension = getAffineDimExpr(numDims++, getContext()); 2979 return parseIdentifierDefinition(dimension); 2980 }; 2981 return parseCommaSeparatedListUntil(Token::r_paren, parseElt); 2982 } 2983 2984 /// Parse the list of symbolic identifiers to an affine map. 2985 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { 2986 consumeToken(Token::l_square); 2987 auto parseElt = [&]() -> ParseResult { 2988 auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); 2989 return parseIdentifierDefinition(symbol); 2990 }; 2991 return parseCommaSeparatedListUntil(Token::r_square, parseElt); 2992 } 2993 2994 /// Parse the list of symbolic identifiers to an affine map. 2995 ParseResult 2996 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, 2997 unsigned &numSymbols) { 2998 if (parseDimIdList(numDims)) { 2999 return failure(); 3000 } 3001 if (!getToken().is(Token::l_square)) { 3002 numSymbols = 0; 3003 return success(); 3004 } 3005 return parseSymbolIdList(numSymbols); 3006 } 3007 3008 /// Parses an ambiguous affine map or integer set definition inline. 3009 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, 3010 IntegerSet &set) { 3011 unsigned numDims = 0, numSymbols = 0; 3012 3013 // List of dimensional and optional symbol identifiers. 3014 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { 3015 return failure(); 3016 } 3017 3018 // This is needed for parsing attributes as we wouldn't know whether we would 3019 // be parsing an integer set attribute or an affine map attribute. 3020 bool isArrow = getToken().is(Token::arrow); 3021 bool isColon = getToken().is(Token::colon); 3022 if (!isArrow && !isColon) { 3023 return emitError("expected '->' or ':'"); 3024 } else if (isArrow) { 3025 parseToken(Token::arrow, "expected '->' or '['"); 3026 map = parseAffineMapRange(numDims, numSymbols); 3027 return map ? success() : failure(); 3028 } else if (parseToken(Token::colon, "expected ':' or '['")) { 3029 return failure(); 3030 } 3031 3032 if ((set = parseIntegerSetConstraints(numDims, numSymbols))) 3033 return success(); 3034 3035 return failure(); 3036 } 3037 3038 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 3039 ParseResult 3040 AffineParser::parseAffineMapOfSSAIds(AffineMap &map, 3041 OpAsmParser::Delimiter delimiter) { 3042 Token::Kind rightToken; 3043 switch (delimiter) { 3044 case OpAsmParser::Delimiter::Square: 3045 if (parseToken(Token::l_square, "expected '['")) 3046 return failure(); 3047 rightToken = Token::r_square; 3048 break; 3049 case OpAsmParser::Delimiter::Paren: 3050 if (parseToken(Token::l_paren, "expected '('")) 3051 return failure(); 3052 rightToken = Token::r_paren; 3053 break; 3054 default: 3055 return emitError("unexpected delimiter"); 3056 } 3057 3058 SmallVector<AffineExpr, 4> exprs; 3059 auto parseElt = [&]() -> ParseResult { 3060 auto elt = parseAffineExpr(); 3061 exprs.push_back(elt); 3062 return elt ? success() : failure(); 3063 }; 3064 3065 // Parse a multi-dimensional affine expression (a comma-separated list of 3066 // 1-d affine expressions); the list cannot be empty. Grammar: 3067 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 3068 if (parseCommaSeparatedListUntil(rightToken, parseElt, 3069 /*allowEmptyList=*/true)) 3070 return failure(); 3071 // Parsed a valid affine map. 3072 if (exprs.empty()) 3073 map = AffineMap::get(getContext()); 3074 else 3075 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 3076 exprs); 3077 return success(); 3078 } 3079 3080 /// Parse the range and sizes affine map definition inline. 3081 /// 3082 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr 3083 /// 3084 /// multi-dim-affine-expr ::= `(` `)` 3085 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)` 3086 AffineMap AffineParser::parseAffineMapRange(unsigned numDims, 3087 unsigned numSymbols) { 3088 parseToken(Token::l_paren, "expected '(' at start of affine map range"); 3089 3090 SmallVector<AffineExpr, 4> exprs; 3091 auto parseElt = [&]() -> ParseResult { 3092 auto elt = parseAffineExpr(); 3093 ParseResult res = elt ? success() : failure(); 3094 exprs.push_back(elt); 3095 return res; 3096 }; 3097 3098 // Parse a multi-dimensional affine expression (a comma-separated list of 3099 // 1-d affine expressions); the list cannot be empty. Grammar: 3100 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 3101 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3102 return AffineMap(); 3103 3104 if (exprs.empty()) 3105 return AffineMap::get(getContext()); 3106 3107 // Parsed a valid affine map. 3108 return AffineMap::get(numDims, numSymbols, exprs); 3109 } 3110 3111 /// Parse an affine constraint. 3112 /// affine-constraint ::= affine-expr `>=` `0` 3113 /// | affine-expr `==` `0` 3114 /// 3115 /// isEq is set to true if the parsed constraint is an equality, false if it 3116 /// is an inequality (greater than or equal). 3117 /// 3118 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { 3119 AffineExpr expr = parseAffineExpr(); 3120 if (!expr) 3121 return nullptr; 3122 3123 if (consumeIf(Token::greater) && consumeIf(Token::equal) && 3124 getToken().is(Token::integer)) { 3125 auto dim = getToken().getUnsignedIntegerValue(); 3126 if (dim.hasValue() && dim.getValue() == 0) { 3127 consumeToken(Token::integer); 3128 *isEq = false; 3129 return expr; 3130 } 3131 return (emitError("expected '0' after '>='"), nullptr); 3132 } 3133 3134 if (consumeIf(Token::equal) && consumeIf(Token::equal) && 3135 getToken().is(Token::integer)) { 3136 auto dim = getToken().getUnsignedIntegerValue(); 3137 if (dim.hasValue() && dim.getValue() == 0) { 3138 consumeToken(Token::integer); 3139 *isEq = true; 3140 return expr; 3141 } 3142 return (emitError("expected '0' after '=='"), nullptr); 3143 } 3144 3145 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), 3146 nullptr); 3147 } 3148 3149 /// Parse the constraints that are part of an integer set definition. 3150 /// integer-set-inline 3151 /// ::= dim-and-symbol-id-lists `:` 3152 /// '(' affine-constraint-conjunction? ')' 3153 /// affine-constraint-conjunction ::= affine-constraint (`,` 3154 /// affine-constraint)* 3155 /// 3156 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, 3157 unsigned numSymbols) { 3158 if (parseToken(Token::l_paren, 3159 "expected '(' at start of integer set constraint list")) 3160 return IntegerSet(); 3161 3162 SmallVector<AffineExpr, 4> constraints; 3163 SmallVector<bool, 4> isEqs; 3164 auto parseElt = [&]() -> ParseResult { 3165 bool isEq; 3166 auto elt = parseAffineConstraint(&isEq); 3167 ParseResult res = elt ? success() : failure(); 3168 if (elt) { 3169 constraints.push_back(elt); 3170 isEqs.push_back(isEq); 3171 } 3172 return res; 3173 }; 3174 3175 // Parse a list of affine constraints (comma-separated). 3176 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3177 return IntegerSet(); 3178 3179 // If no constraints were parsed, then treat this as a degenerate 'true' case. 3180 if (constraints.empty()) { 3181 /* 0 == 0 */ 3182 auto zero = getAffineConstantExpr(0, getContext()); 3183 return IntegerSet::get(numDims, numSymbols, zero, true); 3184 } 3185 3186 // Parsed a valid integer set. 3187 return IntegerSet::get(numDims, numSymbols, constraints, isEqs); 3188 } 3189 3190 /// Parse an ambiguous reference to either and affine map or an integer set. 3191 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, 3192 IntegerSet &set) { 3193 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); 3194 } 3195 ParseResult Parser::parseAffineMapReference(AffineMap &map) { 3196 llvm::SMLoc curLoc = getToken().getLoc(); 3197 IntegerSet set; 3198 if (parseAffineMapOrIntegerSetReference(map, set)) 3199 return failure(); 3200 if (set) 3201 return emitError(curLoc, "expected AffineMap, but got IntegerSet"); 3202 return success(); 3203 } 3204 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) { 3205 llvm::SMLoc curLoc = getToken().getLoc(); 3206 AffineMap map; 3207 if (parseAffineMapOrIntegerSetReference(map, set)) 3208 return failure(); 3209 if (map) 3210 return emitError(curLoc, "expected IntegerSet, but got AffineMap"); 3211 return success(); 3212 } 3213 3214 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to 3215 /// parse SSA value uses encountered while parsing affine expressions. 3216 ParseResult 3217 Parser::parseAffineMapOfSSAIds(AffineMap &map, 3218 function_ref<ParseResult(bool)> parseElement, 3219 OpAsmParser::Delimiter delimiter) { 3220 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement) 3221 .parseAffineMapOfSSAIds(map, delimiter); 3222 } 3223 3224 //===----------------------------------------------------------------------===// 3225 // OperationParser 3226 //===----------------------------------------------------------------------===// 3227 3228 namespace { 3229 /// This class provides support for parsing operations and regions of 3230 /// operations. 3231 class OperationParser : public Parser { 3232 public: 3233 OperationParser(ParserState &state, ModuleOp moduleOp) 3234 : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) { 3235 } 3236 3237 ~OperationParser(); 3238 3239 /// After parsing is finished, this function must be called to see if there 3240 /// are any remaining issues. 3241 ParseResult finalize(); 3242 3243 //===--------------------------------------------------------------------===// 3244 // SSA Value Handling 3245 //===--------------------------------------------------------------------===// 3246 3247 /// This represents a use of an SSA value in the program. The first two 3248 /// entries in the tuple are the name and result number of a reference. The 3249 /// third is the location of the reference, which is used in case this ends 3250 /// up being a use of an undefined value. 3251 struct SSAUseInfo { 3252 StringRef name; // Value name, e.g. %42 or %abc 3253 unsigned number; // Number, specified with #12 3254 SMLoc loc; // Location of first definition or use. 3255 }; 3256 3257 /// Push a new SSA name scope to the parser. 3258 void pushSSANameScope(bool isIsolated); 3259 3260 /// Pop the last SSA name scope from the parser. 3261 ParseResult popSSANameScope(); 3262 3263 /// Register a definition of a value with the symbol table. 3264 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 3265 3266 /// Parse an optional list of SSA uses into 'results'. 3267 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 3268 3269 /// Parse a single SSA use into 'result'. 3270 ParseResult parseSSAUse(SSAUseInfo &result); 3271 3272 /// Given a reference to an SSA value and its type, return a reference. This 3273 /// returns null on failure. 3274 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 3275 3276 ParseResult parseSSADefOrUseAndType( 3277 const std::function<ParseResult(SSAUseInfo, Type)> &action); 3278 3279 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 3280 3281 /// Return the location of the value identified by its name and number if it 3282 /// has been already reference. 3283 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 3284 auto &values = isolatedNameScopes.back().values; 3285 if (!values.count(name) || number >= values[name].size()) 3286 return {}; 3287 if (values[name][number].first) 3288 return values[name][number].second; 3289 return {}; 3290 } 3291 3292 //===--------------------------------------------------------------------===// 3293 // Operation Parsing 3294 //===--------------------------------------------------------------------===// 3295 3296 /// Parse an operation instance. 3297 ParseResult parseOperation(); 3298 3299 /// Parse a single operation successor and its operand list. 3300 ParseResult parseSuccessorAndUseList(Block *&dest, 3301 SmallVectorImpl<Value> &operands); 3302 3303 /// Parse a comma-separated list of operation successors in brackets. 3304 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations, 3305 SmallVectorImpl<SmallVector<Value, 4>> &operands); 3306 3307 /// Parse an operation instance that is in the generic form. 3308 Operation *parseGenericOperation(); 3309 3310 /// Parse an operation instance that is in the generic form and insert it at 3311 /// the provided insertion point. 3312 Operation *parseGenericOperation(Block *insertBlock, 3313 Block::iterator insertPt); 3314 3315 /// Parse an operation instance that is in the op-defined custom form. 3316 Operation *parseCustomOperation(); 3317 3318 //===--------------------------------------------------------------------===// 3319 // Region Parsing 3320 //===--------------------------------------------------------------------===// 3321 3322 /// Parse a region into 'region' with the provided entry block arguments. 3323 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 3324 /// isolated from those above. 3325 ParseResult parseRegion(Region ®ion, 3326 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 3327 bool isIsolatedNameScope = false); 3328 3329 /// Parse a region body into 'region'. 3330 ParseResult parseRegionBody(Region ®ion); 3331 3332 //===--------------------------------------------------------------------===// 3333 // Block Parsing 3334 //===--------------------------------------------------------------------===// 3335 3336 /// Parse a new block into 'block'. 3337 ParseResult parseBlock(Block *&block); 3338 3339 /// Parse a list of operations into 'block'. 3340 ParseResult parseBlockBody(Block *block); 3341 3342 /// Parse a (possibly empty) list of block arguments. 3343 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results, 3344 Block *owner); 3345 3346 /// Get the block with the specified name, creating it if it doesn't 3347 /// already exist. The location specified is the point of use, which allows 3348 /// us to diagnose references to blocks that are not defined precisely. 3349 Block *getBlockNamed(StringRef name, SMLoc loc); 3350 3351 /// Define the block with the specified name. Returns the Block* or nullptr in 3352 /// the case of redefinition. 3353 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 3354 3355 private: 3356 /// Returns the info for a block at the current scope for the given name. 3357 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 3358 return blocksByName.back()[name]; 3359 } 3360 3361 /// Insert a new forward reference to the given block. 3362 void insertForwardRef(Block *block, SMLoc loc) { 3363 forwardRef.back().try_emplace(block, loc); 3364 } 3365 3366 /// Erase any forward reference to the given block. 3367 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 3368 3369 /// Record that a definition was added at the current scope. 3370 void recordDefinition(StringRef def); 3371 3372 /// Get the value entry for the given SSA name. 3373 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name); 3374 3375 /// Create a forward reference placeholder value with the given location and 3376 /// result type. 3377 Value createForwardRefPlaceholder(SMLoc loc, Type type); 3378 3379 /// Return true if this is a forward reference. 3380 bool isForwardRefPlaceholder(Value value) { 3381 return forwardRefPlaceholders.count(value); 3382 } 3383 3384 /// This struct represents an isolated SSA name scope. This scope may contain 3385 /// other nested non-isolated scopes. These scopes are used for operations 3386 /// that are known to be isolated to allow for reusing names within their 3387 /// regions, even if those names are used above. 3388 struct IsolatedSSANameScope { 3389 /// Record that a definition was added at the current scope. 3390 void recordDefinition(StringRef def) { 3391 definitionsPerScope.back().insert(def); 3392 } 3393 3394 /// Push a nested name scope. 3395 void pushSSANameScope() { definitionsPerScope.push_back({}); } 3396 3397 /// Pop a nested name scope. 3398 void popSSANameScope() { 3399 for (auto &def : definitionsPerScope.pop_back_val()) 3400 values.erase(def.getKey()); 3401 } 3402 3403 /// This keeps track of all of the SSA values we are tracking for each name 3404 /// scope, indexed by their name. This has one entry per result number. 3405 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values; 3406 3407 /// This keeps track of all of the values defined by a specific name scope. 3408 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 3409 }; 3410 3411 /// A list of isolated name scopes. 3412 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 3413 3414 /// This keeps track of the block names as well as the location of the first 3415 /// reference for each nested name scope. This is used to diagnose invalid 3416 /// block references and memorize them. 3417 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 3418 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 3419 3420 /// These are all of the placeholders we've made along with the location of 3421 /// their first reference, to allow checking for use of undefined values. 3422 DenseMap<Value, SMLoc> forwardRefPlaceholders; 3423 3424 /// The builder used when creating parsed operation instances. 3425 OpBuilder opBuilder; 3426 3427 /// The top level module operation. 3428 ModuleOp moduleOp; 3429 }; 3430 } // end anonymous namespace 3431 3432 OperationParser::~OperationParser() { 3433 for (auto &fwd : forwardRefPlaceholders) { 3434 // Drop all uses of undefined forward declared reference and destroy 3435 // defining operation. 3436 fwd.first.dropAllUses(); 3437 fwd.first.getDefiningOp()->destroy(); 3438 } 3439 } 3440 3441 /// After parsing is finished, this function must be called to see if there are 3442 /// any remaining issues. 3443 ParseResult OperationParser::finalize() { 3444 // Check for any forward references that are left. If we find any, error 3445 // out. 3446 if (!forwardRefPlaceholders.empty()) { 3447 SmallVector<std::pair<const char *, Value>, 4> errors; 3448 // Iteration over the map isn't deterministic, so sort by source location. 3449 for (auto entry : forwardRefPlaceholders) 3450 errors.push_back({entry.second.getPointer(), entry.first}); 3451 llvm::array_pod_sort(errors.begin(), errors.end()); 3452 3453 for (auto entry : errors) { 3454 auto loc = SMLoc::getFromPointer(entry.first); 3455 emitError(loc, "use of undeclared SSA value name"); 3456 } 3457 return failure(); 3458 } 3459 3460 return success(); 3461 } 3462 3463 //===----------------------------------------------------------------------===// 3464 // SSA Value Handling 3465 //===----------------------------------------------------------------------===// 3466 3467 void OperationParser::pushSSANameScope(bool isIsolated) { 3468 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 3469 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 3470 3471 // Push back a new name definition scope. 3472 if (isIsolated) 3473 isolatedNameScopes.push_back({}); 3474 isolatedNameScopes.back().pushSSANameScope(); 3475 } 3476 3477 ParseResult OperationParser::popSSANameScope() { 3478 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 3479 3480 // Verify that all referenced blocks were defined. 3481 if (!forwardRefInCurrentScope.empty()) { 3482 SmallVector<std::pair<const char *, Block *>, 4> errors; 3483 // Iteration over the map isn't deterministic, so sort by source location. 3484 for (auto entry : forwardRefInCurrentScope) { 3485 errors.push_back({entry.second.getPointer(), entry.first}); 3486 // Add this block to the top-level region to allow for automatic cleanup. 3487 moduleOp.getOperation()->getRegion(0).push_back(entry.first); 3488 } 3489 llvm::array_pod_sort(errors.begin(), errors.end()); 3490 3491 for (auto entry : errors) { 3492 auto loc = SMLoc::getFromPointer(entry.first); 3493 emitError(loc, "reference to an undefined block"); 3494 } 3495 return failure(); 3496 } 3497 3498 // Pop the next nested namescope. If there is only one internal namescope, 3499 // just pop the isolated scope. 3500 auto ¤tNameScope = isolatedNameScopes.back(); 3501 if (currentNameScope.definitionsPerScope.size() == 1) 3502 isolatedNameScopes.pop_back(); 3503 else 3504 currentNameScope.popSSANameScope(); 3505 3506 blocksByName.pop_back(); 3507 return success(); 3508 } 3509 3510 /// Register a definition of a value with the symbol table. 3511 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 3512 auto &entries = getSSAValueEntry(useInfo.name); 3513 3514 // Make sure there is a slot for this value. 3515 if (entries.size() <= useInfo.number) 3516 entries.resize(useInfo.number + 1); 3517 3518 // If we already have an entry for this, check to see if it was a definition 3519 // or a forward reference. 3520 if (auto existing = entries[useInfo.number].first) { 3521 if (!isForwardRefPlaceholder(existing)) { 3522 return emitError(useInfo.loc) 3523 .append("redefinition of SSA value '", useInfo.name, "'") 3524 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3525 .append("previously defined here"); 3526 } 3527 3528 // If it was a forward reference, update everything that used it to use 3529 // the actual definition instead, delete the forward ref, and remove it 3530 // from our set of forward references we track. 3531 existing.replaceAllUsesWith(value); 3532 existing.getDefiningOp()->destroy(); 3533 forwardRefPlaceholders.erase(existing); 3534 } 3535 3536 /// Record this definition for the current scope. 3537 entries[useInfo.number] = {value, useInfo.loc}; 3538 recordDefinition(useInfo.name); 3539 return success(); 3540 } 3541 3542 /// Parse a (possibly empty) list of SSA operands. 3543 /// 3544 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 3545 /// ssa-use-list-opt ::= ssa-use-list? 3546 /// 3547 ParseResult 3548 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 3549 if (getToken().isNot(Token::percent_identifier)) 3550 return success(); 3551 return parseCommaSeparatedList([&]() -> ParseResult { 3552 SSAUseInfo result; 3553 if (parseSSAUse(result)) 3554 return failure(); 3555 results.push_back(result); 3556 return success(); 3557 }); 3558 } 3559 3560 /// Parse a SSA operand for an operation. 3561 /// 3562 /// ssa-use ::= ssa-id 3563 /// 3564 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 3565 result.name = getTokenSpelling(); 3566 result.number = 0; 3567 result.loc = getToken().getLoc(); 3568 if (parseToken(Token::percent_identifier, "expected SSA operand")) 3569 return failure(); 3570 3571 // If we have an attribute ID, it is a result number. 3572 if (getToken().is(Token::hash_identifier)) { 3573 if (auto value = getToken().getHashIdentifierNumber()) 3574 result.number = value.getValue(); 3575 else 3576 return emitError("invalid SSA value result number"); 3577 consumeToken(Token::hash_identifier); 3578 } 3579 3580 return success(); 3581 } 3582 3583 /// Given an unbound reference to an SSA value and its type, return the value 3584 /// it specifies. This returns null on failure. 3585 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 3586 auto &entries = getSSAValueEntry(useInfo.name); 3587 3588 // If we have already seen a value of this name, return it. 3589 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 3590 auto result = entries[useInfo.number].first; 3591 // Check that the type matches the other uses. 3592 if (result.getType() == type) 3593 return result; 3594 3595 emitError(useInfo.loc, "use of value '") 3596 .append(useInfo.name, 3597 "' expects different type than prior uses: ", type, " vs ", 3598 result.getType()) 3599 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3600 .append("prior use here"); 3601 return nullptr; 3602 } 3603 3604 // Make sure we have enough slots for this. 3605 if (entries.size() <= useInfo.number) 3606 entries.resize(useInfo.number + 1); 3607 3608 // If the value has already been defined and this is an overly large result 3609 // number, diagnose that. 3610 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 3611 return (emitError(useInfo.loc, "reference to invalid result number"), 3612 nullptr); 3613 3614 // Otherwise, this is a forward reference. Create a placeholder and remember 3615 // that we did so. 3616 auto result = createForwardRefPlaceholder(useInfo.loc, type); 3617 entries[useInfo.number].first = result; 3618 entries[useInfo.number].second = useInfo.loc; 3619 return result; 3620 } 3621 3622 /// Parse an SSA use with an associated type. 3623 /// 3624 /// ssa-use-and-type ::= ssa-use `:` type 3625 ParseResult OperationParser::parseSSADefOrUseAndType( 3626 const std::function<ParseResult(SSAUseInfo, Type)> &action) { 3627 SSAUseInfo useInfo; 3628 if (parseSSAUse(useInfo) || 3629 parseToken(Token::colon, "expected ':' and type for SSA operand")) 3630 return failure(); 3631 3632 auto type = parseType(); 3633 if (!type) 3634 return failure(); 3635 3636 return action(useInfo, type); 3637 } 3638 3639 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 3640 /// followed by a type list. 3641 /// 3642 /// ssa-use-and-type-list 3643 /// ::= ssa-use-list ':' type-list-no-parens 3644 /// 3645 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 3646 SmallVectorImpl<Value> &results) { 3647 SmallVector<SSAUseInfo, 4> valueIDs; 3648 if (parseOptionalSSAUseList(valueIDs)) 3649 return failure(); 3650 3651 // If there were no operands, then there is no colon or type lists. 3652 if (valueIDs.empty()) 3653 return success(); 3654 3655 SmallVector<Type, 4> types; 3656 if (parseToken(Token::colon, "expected ':' in operand list") || 3657 parseTypeListNoParens(types)) 3658 return failure(); 3659 3660 if (valueIDs.size() != types.size()) 3661 return emitError("expected ") 3662 << valueIDs.size() << " types to match operand list"; 3663 3664 results.reserve(valueIDs.size()); 3665 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 3666 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 3667 results.push_back(value); 3668 else 3669 return failure(); 3670 } 3671 3672 return success(); 3673 } 3674 3675 /// Record that a definition was added at the current scope. 3676 void OperationParser::recordDefinition(StringRef def) { 3677 isolatedNameScopes.back().recordDefinition(def); 3678 } 3679 3680 /// Get the value entry for the given SSA name. 3681 SmallVectorImpl<std::pair<Value, SMLoc>> & 3682 OperationParser::getSSAValueEntry(StringRef name) { 3683 return isolatedNameScopes.back().values[name]; 3684 } 3685 3686 /// Create and remember a new placeholder for a forward reference. 3687 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 3688 // Forward references are always created as operations, because we just need 3689 // something with a def/use chain. 3690 // 3691 // We create these placeholders as having an empty name, which we know 3692 // cannot be created through normal user input, allowing us to distinguish 3693 // them. 3694 auto name = OperationName("placeholder", getContext()); 3695 auto *op = Operation::create( 3696 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 3697 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0, 3698 /*resizableOperandList=*/false); 3699 forwardRefPlaceholders[op->getResult(0)] = loc; 3700 return op->getResult(0); 3701 } 3702 3703 //===----------------------------------------------------------------------===// 3704 // Operation Parsing 3705 //===----------------------------------------------------------------------===// 3706 3707 /// Parse an operation. 3708 /// 3709 /// operation ::= op-result-list? 3710 /// (generic-operation | custom-operation) 3711 /// trailing-location? 3712 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 3713 /// successor-list? (`(` region-list `)`)? 3714 /// attribute-dict? `:` function-type 3715 /// custom-operation ::= bare-id custom-operation-format 3716 /// op-result-list ::= op-result (`,` op-result)* `=` 3717 /// op-result ::= ssa-id (`:` integer-literal) 3718 /// 3719 ParseResult OperationParser::parseOperation() { 3720 auto loc = getToken().getLoc(); 3721 SmallVector<std::tuple<StringRef, unsigned, SMLoc>, 1> resultIDs; 3722 size_t numExpectedResults = 0; 3723 if (getToken().is(Token::percent_identifier)) { 3724 // Parse the group of result ids. 3725 auto parseNextResult = [&]() -> ParseResult { 3726 // Parse the next result id. 3727 if (!getToken().is(Token::percent_identifier)) 3728 return emitError("expected valid ssa identifier"); 3729 3730 Token nameTok = getToken(); 3731 consumeToken(Token::percent_identifier); 3732 3733 // If the next token is a ':', we parse the expected result count. 3734 size_t expectedSubResults = 1; 3735 if (consumeIf(Token::colon)) { 3736 // Check that the next token is an integer. 3737 if (!getToken().is(Token::integer)) 3738 return emitError("expected integer number of results"); 3739 3740 // Check that number of results is > 0. 3741 auto val = getToken().getUInt64IntegerValue(); 3742 if (!val.hasValue() || val.getValue() < 1) 3743 return emitError("expected named operation to have atleast 1 result"); 3744 consumeToken(Token::integer); 3745 expectedSubResults = *val; 3746 } 3747 3748 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 3749 nameTok.getLoc()); 3750 numExpectedResults += expectedSubResults; 3751 return success(); 3752 }; 3753 if (parseCommaSeparatedList(parseNextResult)) 3754 return failure(); 3755 3756 if (parseToken(Token::equal, "expected '=' after SSA name")) 3757 return failure(); 3758 } 3759 3760 Operation *op; 3761 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 3762 op = parseCustomOperation(); 3763 else if (getToken().is(Token::string)) 3764 op = parseGenericOperation(); 3765 else 3766 return emitError("expected operation name in quotes"); 3767 3768 // If parsing of the basic operation failed, then this whole thing fails. 3769 if (!op) 3770 return failure(); 3771 3772 // If the operation had a name, register it. 3773 if (!resultIDs.empty()) { 3774 if (op->getNumResults() == 0) 3775 return emitError(loc, "cannot name an operation with no results"); 3776 if (numExpectedResults != op->getNumResults()) 3777 return emitError(loc, "operation defines ") 3778 << op->getNumResults() << " results but was provided " 3779 << numExpectedResults << " to bind"; 3780 3781 // Add definitions for each of the result groups. 3782 unsigned opResI = 0; 3783 for (std::tuple<StringRef, unsigned, SMLoc> &resIt : resultIDs) { 3784 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 3785 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 3786 op->getResult(opResI++))) 3787 return failure(); 3788 } 3789 } 3790 } 3791 3792 return success(); 3793 } 3794 3795 /// Parse a single operation successor and its operand list. 3796 /// 3797 /// successor ::= block-id branch-use-list? 3798 /// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)` 3799 /// 3800 ParseResult 3801 OperationParser::parseSuccessorAndUseList(Block *&dest, 3802 SmallVectorImpl<Value> &operands) { 3803 // Verify branch is identifier and get the matching block. 3804 if (!getToken().is(Token::caret_identifier)) 3805 return emitError("expected block name"); 3806 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 3807 consumeToken(); 3808 3809 // Handle optional arguments. 3810 if (consumeIf(Token::l_paren) && 3811 (parseOptionalSSAUseAndTypeList(operands) || 3812 parseToken(Token::r_paren, "expected ')' to close argument list"))) { 3813 return failure(); 3814 } 3815 3816 return success(); 3817 } 3818 3819 /// Parse a comma-separated list of operation successors in brackets. 3820 /// 3821 /// successor-list ::= `[` successor (`,` successor )* `]` 3822 /// 3823 ParseResult OperationParser::parseSuccessors( 3824 SmallVectorImpl<Block *> &destinations, 3825 SmallVectorImpl<SmallVector<Value, 4>> &operands) { 3826 if (parseToken(Token::l_square, "expected '['")) 3827 return failure(); 3828 3829 auto parseElt = [this, &destinations, &operands]() { 3830 Block *dest; 3831 SmallVector<Value, 4> destOperands; 3832 auto res = parseSuccessorAndUseList(dest, destOperands); 3833 destinations.push_back(dest); 3834 operands.push_back(destOperands); 3835 return res; 3836 }; 3837 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 3838 /*allowEmptyList=*/false); 3839 } 3840 3841 namespace { 3842 // RAII-style guard for cleaning up the regions in the operation state before 3843 // deleting them. Within the parser, regions may get deleted if parsing failed, 3844 // and other errors may be present, in particular undominated uses. This makes 3845 // sure such uses are deleted. 3846 struct CleanupOpStateRegions { 3847 ~CleanupOpStateRegions() { 3848 SmallVector<Region *, 4> regionsToClean; 3849 regionsToClean.reserve(state.regions.size()); 3850 for (auto ®ion : state.regions) 3851 if (region) 3852 for (auto &block : *region) 3853 block.dropAllDefinedValueUses(); 3854 } 3855 OperationState &state; 3856 }; 3857 } // namespace 3858 3859 Operation *OperationParser::parseGenericOperation() { 3860 // Get location information for the operation. 3861 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 3862 3863 auto name = getToken().getStringValue(); 3864 if (name.empty()) 3865 return (emitError("empty operation name is invalid"), nullptr); 3866 if (name.find('\0') != StringRef::npos) 3867 return (emitError("null character not allowed in operation name"), nullptr); 3868 3869 consumeToken(Token::string); 3870 3871 OperationState result(srcLocation, name); 3872 3873 // Generic operations have a resizable operation list. 3874 result.setOperandListToResizable(); 3875 3876 // Parse the operand list. 3877 SmallVector<SSAUseInfo, 8> operandInfos; 3878 3879 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 3880 parseOptionalSSAUseList(operandInfos) || 3881 parseToken(Token::r_paren, "expected ')' to end operand list")) { 3882 return nullptr; 3883 } 3884 3885 // Parse the successor list but don't add successors to the result yet to 3886 // avoid messing up with the argument order. 3887 SmallVector<Block *, 2> successors; 3888 SmallVector<SmallVector<Value, 4>, 2> successorOperands; 3889 if (getToken().is(Token::l_square)) { 3890 // Check if the operation is a known terminator. 3891 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 3892 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) 3893 return emitError("successors in non-terminator"), nullptr; 3894 if (parseSuccessors(successors, successorOperands)) 3895 return nullptr; 3896 } 3897 3898 // Parse the region list. 3899 CleanupOpStateRegions guard{result}; 3900 if (consumeIf(Token::l_paren)) { 3901 do { 3902 // Create temporary regions with the top level region as parent. 3903 result.regions.emplace_back(new Region(moduleOp)); 3904 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 3905 return nullptr; 3906 } while (consumeIf(Token::comma)); 3907 if (parseToken(Token::r_paren, "expected ')' to end region list")) 3908 return nullptr; 3909 } 3910 3911 if (getToken().is(Token::l_brace)) { 3912 if (parseAttributeDict(result.attributes)) 3913 return nullptr; 3914 } 3915 3916 if (parseToken(Token::colon, "expected ':' followed by operation type")) 3917 return nullptr; 3918 3919 auto typeLoc = getToken().getLoc(); 3920 auto type = parseType(); 3921 if (!type) 3922 return nullptr; 3923 auto fnType = type.dyn_cast<FunctionType>(); 3924 if (!fnType) 3925 return (emitError(typeLoc, "expected function type"), nullptr); 3926 3927 result.addTypes(fnType.getResults()); 3928 3929 // Check that we have the right number of types for the operands. 3930 auto operandTypes = fnType.getInputs(); 3931 if (operandTypes.size() != operandInfos.size()) { 3932 auto plural = "s"[operandInfos.size() == 1]; 3933 return (emitError(typeLoc, "expected ") 3934 << operandInfos.size() << " operand type" << plural 3935 << " but had " << operandTypes.size(), 3936 nullptr); 3937 } 3938 3939 // Resolve all of the operands. 3940 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 3941 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 3942 if (!result.operands.back()) 3943 return nullptr; 3944 } 3945 3946 // Add the successors, and their operands after the proper operands. 3947 for (auto succ : llvm::zip(successors, successorOperands)) { 3948 Block *successor = std::get<0>(succ); 3949 const SmallVector<Value, 4> &operands = std::get<1>(succ); 3950 result.addSuccessor(successor, operands); 3951 } 3952 3953 // Parse a location if one is present. 3954 if (parseOptionalTrailingLocation(result.location)) 3955 return nullptr; 3956 3957 return opBuilder.createOperation(result); 3958 } 3959 3960 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 3961 Block::iterator insertPt) { 3962 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 3963 opBuilder.setInsertionPoint(insertBlock, insertPt); 3964 return parseGenericOperation(); 3965 } 3966 3967 namespace { 3968 class CustomOpAsmParser : public OpAsmParser { 3969 public: 3970 CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition, 3971 OperationParser &parser) 3972 : nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {} 3973 3974 /// Parse an instance of the operation described by 'opDefinition' into the 3975 /// provided operation state. 3976 ParseResult parseOperation(OperationState &opState) { 3977 if (opDefinition->parseAssembly(*this, opState)) 3978 return failure(); 3979 return success(); 3980 } 3981 3982 Operation *parseGenericOperation(Block *insertBlock, 3983 Block::iterator insertPt) final { 3984 return parser.parseGenericOperation(insertBlock, insertPt); 3985 } 3986 3987 //===--------------------------------------------------------------------===// 3988 // Utilities 3989 //===--------------------------------------------------------------------===// 3990 3991 /// Return if any errors were emitted during parsing. 3992 bool didEmitError() const { return emittedError; } 3993 3994 /// Emit a diagnostic at the specified location and return failure. 3995 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 3996 emittedError = true; 3997 return parser.emitError(loc, "custom op '" + opDefinition->name + "' " + 3998 message); 3999 } 4000 4001 llvm::SMLoc getCurrentLocation() override { 4002 return parser.getToken().getLoc(); 4003 } 4004 4005 Builder &getBuilder() const override { return parser.builder; } 4006 4007 llvm::SMLoc getNameLoc() const override { return nameLoc; } 4008 4009 //===--------------------------------------------------------------------===// 4010 // Token Parsing 4011 //===--------------------------------------------------------------------===// 4012 4013 /// Parse a `->` token. 4014 ParseResult parseArrow() override { 4015 return parser.parseToken(Token::arrow, "expected '->'"); 4016 } 4017 4018 /// Parses a `->` if present. 4019 ParseResult parseOptionalArrow() override { 4020 return success(parser.consumeIf(Token::arrow)); 4021 } 4022 4023 /// Parse a `:` token. 4024 ParseResult parseColon() override { 4025 return parser.parseToken(Token::colon, "expected ':'"); 4026 } 4027 4028 /// Parse a `:` token if present. 4029 ParseResult parseOptionalColon() override { 4030 return success(parser.consumeIf(Token::colon)); 4031 } 4032 4033 /// Parse a `,` token. 4034 ParseResult parseComma() override { 4035 return parser.parseToken(Token::comma, "expected ','"); 4036 } 4037 4038 /// Parse a `,` token if present. 4039 ParseResult parseOptionalComma() override { 4040 return success(parser.consumeIf(Token::comma)); 4041 } 4042 4043 /// Parses a `...` if present. 4044 ParseResult parseOptionalEllipsis() override { 4045 return success(parser.consumeIf(Token::ellipsis)); 4046 } 4047 4048 /// Parse a `=` token. 4049 ParseResult parseEqual() override { 4050 return parser.parseToken(Token::equal, "expected '='"); 4051 } 4052 4053 /// Parse a '<' token. 4054 ParseResult parseLess() override { 4055 return parser.parseToken(Token::less, "expected '<'"); 4056 } 4057 4058 /// Parse a '>' token. 4059 ParseResult parseGreater() override { 4060 return parser.parseToken(Token::greater, "expected '>'"); 4061 } 4062 4063 /// Parse a `(` token. 4064 ParseResult parseLParen() override { 4065 return parser.parseToken(Token::l_paren, "expected '('"); 4066 } 4067 4068 /// Parses a '(' if present. 4069 ParseResult parseOptionalLParen() override { 4070 return success(parser.consumeIf(Token::l_paren)); 4071 } 4072 4073 /// Parse a `)` token. 4074 ParseResult parseRParen() override { 4075 return parser.parseToken(Token::r_paren, "expected ')'"); 4076 } 4077 4078 /// Parses a ')' if present. 4079 ParseResult parseOptionalRParen() override { 4080 return success(parser.consumeIf(Token::r_paren)); 4081 } 4082 4083 /// Parse a `[` token. 4084 ParseResult parseLSquare() override { 4085 return parser.parseToken(Token::l_square, "expected '['"); 4086 } 4087 4088 /// Parses a '[' if present. 4089 ParseResult parseOptionalLSquare() override { 4090 return success(parser.consumeIf(Token::l_square)); 4091 } 4092 4093 /// Parse a `]` token. 4094 ParseResult parseRSquare() override { 4095 return parser.parseToken(Token::r_square, "expected ']'"); 4096 } 4097 4098 /// Parses a ']' if present. 4099 ParseResult parseOptionalRSquare() override { 4100 return success(parser.consumeIf(Token::r_square)); 4101 } 4102 4103 //===--------------------------------------------------------------------===// 4104 // Attribute Parsing 4105 //===--------------------------------------------------------------------===// 4106 4107 /// Parse an arbitrary attribute of a given type and return it in result. This 4108 /// also adds the attribute to the specified attribute list with the specified 4109 /// name. 4110 ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName, 4111 SmallVectorImpl<NamedAttribute> &attrs) override { 4112 result = parser.parseAttribute(type); 4113 if (!result) 4114 return failure(); 4115 4116 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 4117 return success(); 4118 } 4119 4120 /// Parse a named dictionary into 'result' if it is present. 4121 ParseResult 4122 parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override { 4123 if (parser.getToken().isNot(Token::l_brace)) 4124 return success(); 4125 return parser.parseAttributeDict(result); 4126 } 4127 4128 /// Parse a named dictionary into 'result' if the `attributes` keyword is 4129 /// present. 4130 ParseResult parseOptionalAttrDictWithKeyword( 4131 SmallVectorImpl<NamedAttribute> &result) override { 4132 if (failed(parseOptionalKeyword("attributes"))) 4133 return success(); 4134 return parser.parseAttributeDict(result); 4135 } 4136 4137 /// Parse an affine map instance into 'map'. 4138 ParseResult parseAffineMap(AffineMap &map) override { 4139 return parser.parseAffineMapReference(map); 4140 } 4141 4142 /// Parse an integer set instance into 'set'. 4143 ParseResult printIntegerSet(IntegerSet &set) override { 4144 return parser.parseIntegerSetReference(set); 4145 } 4146 4147 //===--------------------------------------------------------------------===// 4148 // Identifier Parsing 4149 //===--------------------------------------------------------------------===// 4150 4151 /// Returns if the current token corresponds to a keyword. 4152 bool isCurrentTokenAKeyword() const { 4153 return parser.getToken().is(Token::bare_identifier) || 4154 parser.getToken().isKeyword(); 4155 } 4156 4157 /// Parse the given keyword if present. 4158 ParseResult parseOptionalKeyword(StringRef keyword) override { 4159 // Check that the current token has the same spelling. 4160 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 4161 return failure(); 4162 parser.consumeToken(); 4163 return success(); 4164 } 4165 4166 /// Parse a keyword, if present, into 'keyword'. 4167 ParseResult parseOptionalKeyword(StringRef *keyword) override { 4168 // Check that the current token is a keyword. 4169 if (!isCurrentTokenAKeyword()) 4170 return failure(); 4171 4172 *keyword = parser.getTokenSpelling(); 4173 parser.consumeToken(); 4174 return success(); 4175 } 4176 4177 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 4178 /// string attribute named 'attrName'. 4179 ParseResult 4180 parseOptionalSymbolName(StringAttr &result, StringRef attrName, 4181 SmallVectorImpl<NamedAttribute> &attrs) override { 4182 Token atToken = parser.getToken(); 4183 if (atToken.isNot(Token::at_identifier)) 4184 return failure(); 4185 4186 result = getBuilder().getStringAttr(extractSymbolReference(atToken)); 4187 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 4188 parser.consumeToken(); 4189 return success(); 4190 } 4191 4192 //===--------------------------------------------------------------------===// 4193 // Operand Parsing 4194 //===--------------------------------------------------------------------===// 4195 4196 /// Parse a single operand. 4197 ParseResult parseOperand(OperandType &result) override { 4198 OperationParser::SSAUseInfo useInfo; 4199 if (parser.parseSSAUse(useInfo)) 4200 return failure(); 4201 4202 result = {useInfo.loc, useInfo.name, useInfo.number}; 4203 return success(); 4204 } 4205 4206 /// Parse zero or more SSA comma-separated operand references with a specified 4207 /// surrounding delimiter, and an optional required operand count. 4208 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 4209 int requiredOperandCount = -1, 4210 Delimiter delimiter = Delimiter::None) override { 4211 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 4212 requiredOperandCount, delimiter); 4213 } 4214 4215 /// Parse zero or more SSA comma-separated operand or region arguments with 4216 /// optional surrounding delimiter and required operand count. 4217 ParseResult 4218 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 4219 bool isOperandList, int requiredOperandCount = -1, 4220 Delimiter delimiter = Delimiter::None) { 4221 auto startLoc = parser.getToken().getLoc(); 4222 4223 // Handle delimiters. 4224 switch (delimiter) { 4225 case Delimiter::None: 4226 // Don't check for the absence of a delimiter if the number of operands 4227 // is unknown (and hence the operand list could be empty). 4228 if (requiredOperandCount == -1) 4229 break; 4230 // Token already matches an identifier and so can't be a delimiter. 4231 if (parser.getToken().is(Token::percent_identifier)) 4232 break; 4233 // Test against known delimiters. 4234 if (parser.getToken().is(Token::l_paren) || 4235 parser.getToken().is(Token::l_square)) 4236 return emitError(startLoc, "unexpected delimiter"); 4237 return emitError(startLoc, "invalid operand"); 4238 case Delimiter::OptionalParen: 4239 if (parser.getToken().isNot(Token::l_paren)) 4240 return success(); 4241 LLVM_FALLTHROUGH; 4242 case Delimiter::Paren: 4243 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 4244 return failure(); 4245 break; 4246 case Delimiter::OptionalSquare: 4247 if (parser.getToken().isNot(Token::l_square)) 4248 return success(); 4249 LLVM_FALLTHROUGH; 4250 case Delimiter::Square: 4251 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 4252 return failure(); 4253 break; 4254 } 4255 4256 // Check for zero operands. 4257 if (parser.getToken().is(Token::percent_identifier)) { 4258 do { 4259 OperandType operandOrArg; 4260 if (isOperandList ? parseOperand(operandOrArg) 4261 : parseRegionArgument(operandOrArg)) 4262 return failure(); 4263 result.push_back(operandOrArg); 4264 } while (parser.consumeIf(Token::comma)); 4265 } 4266 4267 // Handle delimiters. If we reach here, the optional delimiters were 4268 // present, so we need to parse their closing one. 4269 switch (delimiter) { 4270 case Delimiter::None: 4271 break; 4272 case Delimiter::OptionalParen: 4273 case Delimiter::Paren: 4274 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 4275 return failure(); 4276 break; 4277 case Delimiter::OptionalSquare: 4278 case Delimiter::Square: 4279 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 4280 return failure(); 4281 break; 4282 } 4283 4284 if (requiredOperandCount != -1 && 4285 result.size() != static_cast<size_t>(requiredOperandCount)) 4286 return emitError(startLoc, "expected ") 4287 << requiredOperandCount << " operands"; 4288 return success(); 4289 } 4290 4291 /// Parse zero or more trailing SSA comma-separated trailing operand 4292 /// references with a specified surrounding delimiter, and an optional 4293 /// required operand count. A leading comma is expected before the operands. 4294 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 4295 int requiredOperandCount, 4296 Delimiter delimiter) override { 4297 if (parser.getToken().is(Token::comma)) { 4298 parseComma(); 4299 return parseOperandList(result, requiredOperandCount, delimiter); 4300 } 4301 if (requiredOperandCount != -1) 4302 return emitError(parser.getToken().getLoc(), "expected ") 4303 << requiredOperandCount << " operands"; 4304 return success(); 4305 } 4306 4307 /// Resolve an operand to an SSA value, emitting an error on failure. 4308 ParseResult resolveOperand(const OperandType &operand, Type type, 4309 SmallVectorImpl<Value> &result) override { 4310 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4311 operand.location}; 4312 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 4313 result.push_back(value); 4314 return success(); 4315 } 4316 return failure(); 4317 } 4318 4319 /// Parse an AffineMap of SSA ids. 4320 ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 4321 Attribute &mapAttr, StringRef attrName, 4322 SmallVectorImpl<NamedAttribute> &attrs, 4323 Delimiter delimiter) override { 4324 SmallVector<OperandType, 2> dimOperands; 4325 SmallVector<OperandType, 1> symOperands; 4326 4327 auto parseElement = [&](bool isSymbol) -> ParseResult { 4328 OperandType operand; 4329 if (parseOperand(operand)) 4330 return failure(); 4331 if (isSymbol) 4332 symOperands.push_back(operand); 4333 else 4334 dimOperands.push_back(operand); 4335 return success(); 4336 }; 4337 4338 AffineMap map; 4339 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 4340 return failure(); 4341 // Add AffineMap attribute. 4342 if (map) { 4343 mapAttr = AffineMapAttr::get(map); 4344 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 4345 } 4346 4347 // Add dim operands before symbol operands in 'operands'. 4348 operands.assign(dimOperands.begin(), dimOperands.end()); 4349 operands.append(symOperands.begin(), symOperands.end()); 4350 return success(); 4351 } 4352 4353 //===--------------------------------------------------------------------===// 4354 // Region Parsing 4355 //===--------------------------------------------------------------------===// 4356 4357 /// Parse a region that takes `arguments` of `argTypes` types. This 4358 /// effectively defines the SSA values of `arguments` and assigns their type. 4359 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 4360 ArrayRef<Type> argTypes, 4361 bool enableNameShadowing) override { 4362 assert(arguments.size() == argTypes.size() && 4363 "mismatching number of arguments and types"); 4364 4365 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 4366 regionArguments; 4367 for (auto pair : llvm::zip(arguments, argTypes)) { 4368 const OperandType &operand = std::get<0>(pair); 4369 Type type = std::get<1>(pair); 4370 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4371 operand.location}; 4372 regionArguments.emplace_back(operandInfo, type); 4373 } 4374 4375 // Try to parse the region. 4376 assert((!enableNameShadowing || 4377 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) && 4378 "name shadowing is only allowed on isolated regions"); 4379 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 4380 return failure(); 4381 return success(); 4382 } 4383 4384 /// Parses a region if present. 4385 ParseResult parseOptionalRegion(Region ®ion, 4386 ArrayRef<OperandType> arguments, 4387 ArrayRef<Type> argTypes, 4388 bool enableNameShadowing) override { 4389 if (parser.getToken().isNot(Token::l_brace)) 4390 return success(); 4391 return parseRegion(region, arguments, argTypes, enableNameShadowing); 4392 } 4393 4394 /// Parse a region argument. The type of the argument will be resolved later 4395 /// by a call to `parseRegion`. 4396 ParseResult parseRegionArgument(OperandType &argument) override { 4397 return parseOperand(argument); 4398 } 4399 4400 /// Parse a region argument if present. 4401 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 4402 if (parser.getToken().isNot(Token::percent_identifier)) 4403 return success(); 4404 return parseRegionArgument(argument); 4405 } 4406 4407 ParseResult 4408 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 4409 int requiredOperandCount = -1, 4410 Delimiter delimiter = Delimiter::None) override { 4411 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 4412 requiredOperandCount, delimiter); 4413 } 4414 4415 //===--------------------------------------------------------------------===// 4416 // Successor Parsing 4417 //===--------------------------------------------------------------------===// 4418 4419 /// Parse a single operation successor and its operand list. 4420 ParseResult 4421 parseSuccessorAndUseList(Block *&dest, 4422 SmallVectorImpl<Value> &operands) override { 4423 return parser.parseSuccessorAndUseList(dest, operands); 4424 } 4425 4426 /// Parse an optional operation successor and its operand list. 4427 OptionalParseResult 4428 parseOptionalSuccessorAndUseList(Block *&dest, 4429 SmallVectorImpl<Value> &operands) override { 4430 if (parser.getToken().isNot(Token::caret_identifier)) 4431 return llvm::None; 4432 return parseSuccessorAndUseList(dest, operands); 4433 } 4434 4435 //===--------------------------------------------------------------------===// 4436 // Type Parsing 4437 //===--------------------------------------------------------------------===// 4438 4439 /// Parse a type. 4440 ParseResult parseType(Type &result) override { 4441 return failure(!(result = parser.parseType())); 4442 } 4443 4444 /// Parse an arrow followed by a type list. 4445 ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override { 4446 if (parseArrow() || parser.parseFunctionResultTypes(result)) 4447 return failure(); 4448 return success(); 4449 } 4450 4451 /// Parse an optional arrow followed by a type list. 4452 ParseResult 4453 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 4454 if (!parser.consumeIf(Token::arrow)) 4455 return success(); 4456 return parser.parseFunctionResultTypes(result); 4457 } 4458 4459 /// Parse a colon followed by a type. 4460 ParseResult parseColonType(Type &result) override { 4461 return failure(parser.parseToken(Token::colon, "expected ':'") || 4462 !(result = parser.parseType())); 4463 } 4464 4465 /// Parse a colon followed by a type list, which must have at least one type. 4466 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 4467 if (parser.parseToken(Token::colon, "expected ':'")) 4468 return failure(); 4469 return parser.parseTypeListNoParens(result); 4470 } 4471 4472 /// Parse an optional colon followed by a type list, which if present must 4473 /// have at least one type. 4474 ParseResult 4475 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 4476 if (!parser.consumeIf(Token::colon)) 4477 return success(); 4478 return parser.parseTypeListNoParens(result); 4479 } 4480 4481 /// Parse a list of assignments of the form 4482 /// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...). 4483 /// The list must contain at least one entry 4484 ParseResult parseAssignmentList(SmallVectorImpl<OperandType> &lhs, 4485 SmallVectorImpl<OperandType> &rhs) override { 4486 auto parseElt = [&]() -> ParseResult { 4487 OperandType regionArg, operand; 4488 if (parseRegionArgument(regionArg) || parseEqual() || 4489 parseOperand(operand)) 4490 return failure(); 4491 lhs.push_back(regionArg); 4492 rhs.push_back(operand); 4493 return success(); 4494 }; 4495 if (parseLParen()) 4496 return failure(); 4497 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 4498 } 4499 4500 private: 4501 /// The source location of the operation name. 4502 SMLoc nameLoc; 4503 4504 /// The abstract information of the operation. 4505 const AbstractOperation *opDefinition; 4506 4507 /// The main operation parser. 4508 OperationParser &parser; 4509 4510 /// A flag that indicates if any errors were emitted during parsing. 4511 bool emittedError = false; 4512 }; 4513 } // end anonymous namespace. 4514 4515 Operation *OperationParser::parseCustomOperation() { 4516 auto opLoc = getToken().getLoc(); 4517 auto opName = getTokenSpelling(); 4518 4519 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 4520 if (!opDefinition && !opName.contains('.')) { 4521 // If the operation name has no namespace prefix we treat it as a standard 4522 // operation and prefix it with "std". 4523 // TODO: Would it be better to just build a mapping of the registered 4524 // operations in the standard dialect? 4525 opDefinition = 4526 AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); 4527 } 4528 4529 if (!opDefinition) { 4530 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 4531 return nullptr; 4532 } 4533 4534 consumeToken(); 4535 4536 // If the custom op parser crashes, produce some indication to help 4537 // debugging. 4538 std::string opNameStr = opName.str(); 4539 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 4540 opNameStr.c_str()); 4541 4542 // Get location information for the operation. 4543 auto srcLocation = getEncodedSourceLocation(opLoc); 4544 4545 // Have the op implementation take a crack and parsing this. 4546 OperationState opState(srcLocation, opDefinition->name); 4547 CleanupOpStateRegions guard{opState}; 4548 CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this); 4549 if (opAsmParser.parseOperation(opState)) 4550 return nullptr; 4551 4552 // If it emitted an error, we failed. 4553 if (opAsmParser.didEmitError()) 4554 return nullptr; 4555 4556 // Parse a location if one is present. 4557 if (parseOptionalTrailingLocation(opState.location)) 4558 return nullptr; 4559 4560 // Otherwise, we succeeded. Use the state it parsed as our op information. 4561 return opBuilder.createOperation(opState); 4562 } 4563 4564 //===----------------------------------------------------------------------===// 4565 // Region Parsing 4566 //===----------------------------------------------------------------------===// 4567 4568 /// Region. 4569 /// 4570 /// region ::= '{' region-body 4571 /// 4572 ParseResult OperationParser::parseRegion( 4573 Region ®ion, 4574 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 4575 bool isIsolatedNameScope) { 4576 // Parse the '{'. 4577 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 4578 return failure(); 4579 4580 // Check for an empty region. 4581 if (entryArguments.empty() && consumeIf(Token::r_brace)) 4582 return success(); 4583 auto currentPt = opBuilder.saveInsertionPoint(); 4584 4585 // Push a new named value scope. 4586 pushSSANameScope(isIsolatedNameScope); 4587 4588 // Parse the first block directly to allow for it to be unnamed. 4589 Block *block = new Block(); 4590 4591 // Add arguments to the entry block. 4592 if (!entryArguments.empty()) { 4593 for (auto &placeholderArgPair : entryArguments) { 4594 auto &argInfo = placeholderArgPair.first; 4595 // Ensure that the argument was not already defined. 4596 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 4597 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 4598 "' is already in use") 4599 .attachNote(getEncodedSourceLocation(*defLoc)) 4600 << "previously referenced here"; 4601 } 4602 if (addDefinition(placeholderArgPair.first, 4603 block->addArgument(placeholderArgPair.second))) { 4604 delete block; 4605 return failure(); 4606 } 4607 } 4608 4609 // If we had named arguments, then don't allow a block name. 4610 if (getToken().is(Token::caret_identifier)) 4611 return emitError("invalid block name in region with named arguments"); 4612 } 4613 4614 if (parseBlock(block)) { 4615 delete block; 4616 return failure(); 4617 } 4618 4619 // Verify that no other arguments were parsed. 4620 if (!entryArguments.empty() && 4621 block->getNumArguments() > entryArguments.size()) { 4622 delete block; 4623 return emitError("entry block arguments were already defined"); 4624 } 4625 4626 // Parse the rest of the region. 4627 region.push_back(block); 4628 if (parseRegionBody(region)) 4629 return failure(); 4630 4631 // Pop the SSA value scope for this region. 4632 if (popSSANameScope()) 4633 return failure(); 4634 4635 // Reset the original insertion point. 4636 opBuilder.restoreInsertionPoint(currentPt); 4637 return success(); 4638 } 4639 4640 /// Region. 4641 /// 4642 /// region-body ::= block* '}' 4643 /// 4644 ParseResult OperationParser::parseRegionBody(Region ®ion) { 4645 // Parse the list of blocks. 4646 while (!consumeIf(Token::r_brace)) { 4647 Block *newBlock = nullptr; 4648 if (parseBlock(newBlock)) 4649 return failure(); 4650 region.push_back(newBlock); 4651 } 4652 return success(); 4653 } 4654 4655 //===----------------------------------------------------------------------===// 4656 // Block Parsing 4657 //===----------------------------------------------------------------------===// 4658 4659 /// Block declaration. 4660 /// 4661 /// block ::= block-label? operation* 4662 /// block-label ::= block-id block-arg-list? `:` 4663 /// block-id ::= caret-id 4664 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 4665 /// 4666 ParseResult OperationParser::parseBlock(Block *&block) { 4667 // The first block of a region may already exist, if it does the caret 4668 // identifier is optional. 4669 if (block && getToken().isNot(Token::caret_identifier)) 4670 return parseBlockBody(block); 4671 4672 SMLoc nameLoc = getToken().getLoc(); 4673 auto name = getTokenSpelling(); 4674 if (parseToken(Token::caret_identifier, "expected block name")) 4675 return failure(); 4676 4677 block = defineBlockNamed(name, nameLoc, block); 4678 4679 // Fail if the block was already defined. 4680 if (!block) 4681 return emitError(nameLoc, "redefinition of block '") << name << "'"; 4682 4683 // If an argument list is present, parse it. 4684 if (consumeIf(Token::l_paren)) { 4685 SmallVector<BlockArgument, 8> bbArgs; 4686 if (parseOptionalBlockArgList(bbArgs, block) || 4687 parseToken(Token::r_paren, "expected ')' to end argument list")) 4688 return failure(); 4689 } 4690 4691 if (parseToken(Token::colon, "expected ':' after block name")) 4692 return failure(); 4693 4694 return parseBlockBody(block); 4695 } 4696 4697 ParseResult OperationParser::parseBlockBody(Block *block) { 4698 // Set the insertion point to the end of the block to parse. 4699 opBuilder.setInsertionPointToEnd(block); 4700 4701 // Parse the list of operations that make up the body of the block. 4702 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 4703 if (parseOperation()) 4704 return failure(); 4705 4706 return success(); 4707 } 4708 4709 /// Get the block with the specified name, creating it if it doesn't already 4710 /// exist. The location specified is the point of use, which allows 4711 /// us to diagnose references to blocks that are not defined precisely. 4712 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 4713 auto &blockAndLoc = getBlockInfoByName(name); 4714 if (!blockAndLoc.first) { 4715 blockAndLoc = {new Block(), loc}; 4716 insertForwardRef(blockAndLoc.first, loc); 4717 } 4718 4719 return blockAndLoc.first; 4720 } 4721 4722 /// Define the block with the specified name. Returns the Block* or nullptr in 4723 /// the case of redefinition. 4724 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 4725 Block *existing) { 4726 auto &blockAndLoc = getBlockInfoByName(name); 4727 if (!blockAndLoc.first) { 4728 // If the caller provided a block, use it. Otherwise create a new one. 4729 if (!existing) 4730 existing = new Block(); 4731 blockAndLoc.first = existing; 4732 blockAndLoc.second = loc; 4733 return blockAndLoc.first; 4734 } 4735 4736 // Forward declarations are removed once defined, so if we are defining a 4737 // existing block and it is not a forward declaration, then it is a 4738 // redeclaration. 4739 if (!eraseForwardRef(blockAndLoc.first)) 4740 return nullptr; 4741 return blockAndLoc.first; 4742 } 4743 4744 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 4745 /// 4746 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 4747 /// 4748 ParseResult OperationParser::parseOptionalBlockArgList( 4749 SmallVectorImpl<BlockArgument> &results, Block *owner) { 4750 if (getToken().is(Token::r_brace)) 4751 return success(); 4752 4753 // If the block already has arguments, then we're handling the entry block. 4754 // Parse and register the names for the arguments, but do not add them. 4755 bool definingExistingArgs = owner->getNumArguments() != 0; 4756 unsigned nextArgument = 0; 4757 4758 return parseCommaSeparatedList([&]() -> ParseResult { 4759 return parseSSADefOrUseAndType( 4760 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 4761 // If this block did not have existing arguments, define a new one. 4762 if (!definingExistingArgs) 4763 return addDefinition(useInfo, owner->addArgument(type)); 4764 4765 // Otherwise, ensure that this argument has already been created. 4766 if (nextArgument >= owner->getNumArguments()) 4767 return emitError("too many arguments specified in argument list"); 4768 4769 // Finally, make sure the existing argument has the correct type. 4770 auto arg = owner->getArgument(nextArgument++); 4771 if (arg.getType() != type) 4772 return emitError("argument and block argument type mismatch"); 4773 return addDefinition(useInfo, arg); 4774 }); 4775 }); 4776 } 4777 4778 //===----------------------------------------------------------------------===// 4779 // Top-level entity parsing. 4780 //===----------------------------------------------------------------------===// 4781 4782 namespace { 4783 /// This parser handles entities that are only valid at the top level of the 4784 /// file. 4785 class ModuleParser : public Parser { 4786 public: 4787 explicit ModuleParser(ParserState &state) : Parser(state) {} 4788 4789 ParseResult parseModule(ModuleOp module); 4790 4791 private: 4792 /// Parse an attribute alias declaration. 4793 ParseResult parseAttributeAliasDef(); 4794 4795 /// Parse an attribute alias declaration. 4796 ParseResult parseTypeAliasDef(); 4797 }; 4798 } // end anonymous namespace 4799 4800 /// Parses an attribute alias declaration. 4801 /// 4802 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 4803 /// 4804 ParseResult ModuleParser::parseAttributeAliasDef() { 4805 assert(getToken().is(Token::hash_identifier)); 4806 StringRef aliasName = getTokenSpelling().drop_front(); 4807 4808 // Check for redefinitions. 4809 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 4810 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 4811 4812 // Make sure this isn't invading the dialect attribute namespace. 4813 if (aliasName.contains('.')) 4814 return emitError("attribute names with a '.' are reserved for " 4815 "dialect-defined names"); 4816 4817 consumeToken(Token::hash_identifier); 4818 4819 // Parse the '='. 4820 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 4821 return failure(); 4822 4823 // Parse the attribute value. 4824 Attribute attr = parseAttribute(); 4825 if (!attr) 4826 return failure(); 4827 4828 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 4829 return success(); 4830 } 4831 4832 /// Parse a type alias declaration. 4833 /// 4834 /// type-alias-def ::= '!' alias-name `=` 'type' type 4835 /// 4836 ParseResult ModuleParser::parseTypeAliasDef() { 4837 assert(getToken().is(Token::exclamation_identifier)); 4838 StringRef aliasName = getTokenSpelling().drop_front(); 4839 4840 // Check for redefinitions. 4841 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 4842 return emitError("redefinition of type alias id '" + aliasName + "'"); 4843 4844 // Make sure this isn't invading the dialect type namespace. 4845 if (aliasName.contains('.')) 4846 return emitError("type names with a '.' are reserved for " 4847 "dialect-defined names"); 4848 4849 consumeToken(Token::exclamation_identifier); 4850 4851 // Parse the '=' and 'type'. 4852 if (parseToken(Token::equal, "expected '=' in type alias definition") || 4853 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 4854 return failure(); 4855 4856 // Parse the type. 4857 Type aliasedType = parseType(); 4858 if (!aliasedType) 4859 return failure(); 4860 4861 // Register this alias with the parser state. 4862 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 4863 return success(); 4864 } 4865 4866 /// This is the top-level module parser. 4867 ParseResult ModuleParser::parseModule(ModuleOp module) { 4868 OperationParser opParser(getState(), module); 4869 4870 // Module itself is a name scope. 4871 opParser.pushSSANameScope(/*isIsolated=*/true); 4872 4873 while (true) { 4874 switch (getToken().getKind()) { 4875 default: 4876 // Parse a top-level operation. 4877 if (opParser.parseOperation()) 4878 return failure(); 4879 break; 4880 4881 // If we got to the end of the file, then we're done. 4882 case Token::eof: { 4883 if (opParser.finalize()) 4884 return failure(); 4885 4886 // Handle the case where the top level module was explicitly defined. 4887 auto &bodyBlocks = module.getBodyRegion().getBlocks(); 4888 auto &operations = bodyBlocks.front().getOperations(); 4889 assert(!operations.empty() && "expected a valid module terminator"); 4890 4891 // Check that the first operation is a module, and it is the only 4892 // non-terminator operation. 4893 ModuleOp nested = dyn_cast<ModuleOp>(operations.front()); 4894 if (nested && std::next(operations.begin(), 2) == operations.end()) { 4895 // Merge the data of the nested module operation into 'module'. 4896 module.setLoc(nested.getLoc()); 4897 module.setAttrs(nested.getOperation()->getAttrList()); 4898 bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks()); 4899 4900 // Erase the original module body. 4901 bodyBlocks.pop_front(); 4902 } 4903 4904 return opParser.popSSANameScope(); 4905 } 4906 4907 // If we got an error token, then the lexer already emitted an error, just 4908 // stop. Someday we could introduce error recovery if there was demand 4909 // for it. 4910 case Token::error: 4911 return failure(); 4912 4913 // Parse an attribute alias. 4914 case Token::hash_identifier: 4915 if (parseAttributeAliasDef()) 4916 return failure(); 4917 break; 4918 4919 // Parse a type alias. 4920 case Token::exclamation_identifier: 4921 if (parseTypeAliasDef()) 4922 return failure(); 4923 break; 4924 } 4925 } 4926 } 4927 4928 //===----------------------------------------------------------------------===// 4929 4930 /// This parses the file specified by the indicated SourceMgr and returns an 4931 /// MLIR module if it was valid. If not, it emits diagnostics and returns 4932 /// null. 4933 OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 4934 MLIRContext *context) { 4935 auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 4936 4937 // This is the result module we are parsing into. 4938 OwningModuleRef module(ModuleOp::create(FileLineColLoc::get( 4939 sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context))); 4940 4941 SymbolState aliasState; 4942 ParserState state(sourceMgr, context, aliasState); 4943 if (ModuleParser(state).parseModule(*module)) 4944 return nullptr; 4945 4946 // Make sure the parse module has no other structural problems detected by 4947 // the verifier. 4948 if (failed(verify(*module))) 4949 return nullptr; 4950 4951 return module; 4952 } 4953 4954 /// This parses the file specified by the indicated filename and returns an 4955 /// MLIR module if it was valid. If not, the error message is emitted through 4956 /// the error handler registered in the context, and a null pointer is returned. 4957 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4958 MLIRContext *context) { 4959 llvm::SourceMgr sourceMgr; 4960 return parseSourceFile(filename, sourceMgr, context); 4961 } 4962 4963 /// This parses the file specified by the indicated filename using the provided 4964 /// SourceMgr and returns an MLIR module if it was valid. If not, the error 4965 /// message is emitted through the error handler registered in the context, and 4966 /// a null pointer is returned. 4967 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4968 llvm::SourceMgr &sourceMgr, 4969 MLIRContext *context) { 4970 if (sourceMgr.getNumBuffers() != 0) { 4971 // TODO(b/136086478): Extend to support multiple buffers. 4972 emitError(mlir::UnknownLoc::get(context), 4973 "only main buffer parsed at the moment"); 4974 return nullptr; 4975 } 4976 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 4977 if (std::error_code error = file_or_err.getError()) { 4978 emitError(mlir::UnknownLoc::get(context), 4979 "could not open input file " + filename); 4980 return nullptr; 4981 } 4982 4983 // Load the MLIR module. 4984 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 4985 return parseSourceFile(sourceMgr, context); 4986 } 4987 4988 /// This parses the program string to a MLIR module if it was valid. If not, 4989 /// it emits diagnostics and returns null. 4990 OwningModuleRef mlir::parseSourceString(StringRef moduleStr, 4991 MLIRContext *context) { 4992 auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); 4993 if (!memBuffer) 4994 return nullptr; 4995 4996 SourceMgr sourceMgr; 4997 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 4998 return parseSourceFile(sourceMgr, context); 4999 } 5000 5001 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 5002 /// parsing failed, nullptr is returned. The number of bytes read from the input 5003 /// string is returned in 'numRead'. 5004 template <typename T, typename ParserFn> 5005 static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead, 5006 ParserFn &&parserFn) { 5007 SymbolState aliasState; 5008 return parseSymbol<T>( 5009 inputStr, context, aliasState, 5010 [&](Parser &parser) { 5011 SourceMgrDiagnosticHandler handler( 5012 const_cast<llvm::SourceMgr &>(parser.getSourceMgr()), 5013 parser.getContext()); 5014 return parserFn(parser); 5015 }, 5016 &numRead); 5017 } 5018 5019 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) { 5020 size_t numRead = 0; 5021 return parseAttribute(attrStr, context, numRead); 5022 } 5023 Attribute mlir::parseAttribute(StringRef attrStr, Type type) { 5024 size_t numRead = 0; 5025 return parseAttribute(attrStr, type, numRead); 5026 } 5027 5028 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context, 5029 size_t &numRead) { 5030 return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) { 5031 return parser.parseAttribute(); 5032 }); 5033 } 5034 Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) { 5035 return parseSymbol<Attribute>( 5036 attrStr, type.getContext(), numRead, 5037 [type](Parser &parser) { return parser.parseAttribute(type); }); 5038 } 5039 5040 Type mlir::parseType(StringRef typeStr, MLIRContext *context) { 5041 size_t numRead = 0; 5042 return parseType(typeStr, context, numRead); 5043 } 5044 5045 Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) { 5046 return parseSymbol<Type>(typeStr, context, numRead, 5047 [](Parser &parser) { return parser.parseType(); }); 5048 } 5049