1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Parser.h" 14 #include "AsmParserImpl.h" 15 #include "mlir/IR/AffineMap.h" 16 #include "mlir/IR/AsmState.h" 17 #include "mlir/IR/BuiltinOps.h" 18 #include "mlir/IR/Dialect.h" 19 #include "mlir/IR/Verifier.h" 20 #include "mlir/Parser/AsmParserState.h" 21 #include "mlir/Parser/CodeComplete.h" 22 #include "mlir/Parser/Parser.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/ScopeExit.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/ADT/bit.h" 27 #include "llvm/Support/PrettyStackTrace.h" 28 #include "llvm/Support/SourceMgr.h" 29 #include <algorithm> 30 31 using namespace mlir; 32 using namespace mlir::detail; 33 using llvm::MemoryBuffer; 34 using llvm::SourceMgr; 35 36 //===----------------------------------------------------------------------===// 37 // CodeComplete 38 //===----------------------------------------------------------------------===// 39 40 AsmParserCodeCompleteContext::~AsmParserCodeCompleteContext() = default; 41 42 //===----------------------------------------------------------------------===// 43 // Parser 44 //===----------------------------------------------------------------------===// 45 46 /// Parse a list of comma-separated items with an optional delimiter. If a 47 /// delimiter is provided, then an empty list is allowed. If not, then at 48 /// least one element will be parsed. 49 ParseResult 50 Parser::parseCommaSeparatedList(Delimiter delimiter, 51 function_ref<ParseResult()> parseElementFn, 52 StringRef contextMessage) { 53 switch (delimiter) { 54 case Delimiter::None: 55 break; 56 case Delimiter::OptionalParen: 57 if (getToken().isNot(Token::l_paren)) 58 return success(); 59 LLVM_FALLTHROUGH; 60 case Delimiter::Paren: 61 if (parseToken(Token::l_paren, "expected '('" + contextMessage)) 62 return failure(); 63 // Check for empty list. 64 if (consumeIf(Token::r_paren)) 65 return success(); 66 break; 67 case Delimiter::OptionalLessGreater: 68 // Check for absent list. 69 if (getToken().isNot(Token::less)) 70 return success(); 71 LLVM_FALLTHROUGH; 72 case Delimiter::LessGreater: 73 if (parseToken(Token::less, "expected '<'" + contextMessage)) 74 return success(); 75 // Check for empty list. 76 if (consumeIf(Token::greater)) 77 return success(); 78 break; 79 case Delimiter::OptionalSquare: 80 if (getToken().isNot(Token::l_square)) 81 return success(); 82 LLVM_FALLTHROUGH; 83 case Delimiter::Square: 84 if (parseToken(Token::l_square, "expected '['" + contextMessage)) 85 return failure(); 86 // Check for empty list. 87 if (consumeIf(Token::r_square)) 88 return success(); 89 break; 90 case Delimiter::OptionalBraces: 91 if (getToken().isNot(Token::l_brace)) 92 return success(); 93 LLVM_FALLTHROUGH; 94 case Delimiter::Braces: 95 if (parseToken(Token::l_brace, "expected '{'" + contextMessage)) 96 return failure(); 97 // Check for empty list. 98 if (consumeIf(Token::r_brace)) 99 return success(); 100 break; 101 } 102 103 // Non-empty case starts with an element. 104 if (parseElementFn()) 105 return failure(); 106 107 // Otherwise we have a list of comma separated elements. 108 while (consumeIf(Token::comma)) { 109 if (parseElementFn()) 110 return failure(); 111 } 112 113 switch (delimiter) { 114 case Delimiter::None: 115 return success(); 116 case Delimiter::OptionalParen: 117 case Delimiter::Paren: 118 return parseToken(Token::r_paren, "expected ')'" + contextMessage); 119 case Delimiter::OptionalLessGreater: 120 case Delimiter::LessGreater: 121 return parseToken(Token::greater, "expected '>'" + contextMessage); 122 case Delimiter::OptionalSquare: 123 case Delimiter::Square: 124 return parseToken(Token::r_square, "expected ']'" + contextMessage); 125 case Delimiter::OptionalBraces: 126 case Delimiter::Braces: 127 return parseToken(Token::r_brace, "expected '}'" + contextMessage); 128 } 129 llvm_unreachable("Unknown delimiter"); 130 } 131 132 /// Parse a comma-separated list of elements, terminated with an arbitrary 133 /// token. This allows empty lists if allowEmptyList is true. 134 /// 135 /// abstract-list ::= rightToken // if allowEmptyList == true 136 /// abstract-list ::= element (',' element)* rightToken 137 /// 138 ParseResult 139 Parser::parseCommaSeparatedListUntil(Token::Kind rightToken, 140 function_ref<ParseResult()> parseElement, 141 bool allowEmptyList) { 142 // Handle the empty case. 143 if (getToken().is(rightToken)) { 144 if (!allowEmptyList) 145 return emitWrongTokenError("expected list element"); 146 consumeToken(rightToken); 147 return success(); 148 } 149 150 if (parseCommaSeparatedList(parseElement) || 151 parseToken(rightToken, "expected ',' or '" + 152 Token::getTokenSpelling(rightToken) + "'")) 153 return failure(); 154 155 return success(); 156 } 157 158 InFlightDiagnostic Parser::emitError(const Twine &message) { 159 auto loc = state.curToken.getLoc(); 160 if (state.curToken.isNot(Token::eof)) 161 return emitError(loc, message); 162 163 // If the error is to be emitted at EOF, move it back one character. 164 return emitError(SMLoc::getFromPointer(loc.getPointer() - 1), message); 165 } 166 167 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 168 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 169 170 // If we hit a parse error in response to a lexer error, then the lexer 171 // already reported the error. 172 if (getToken().is(Token::error)) 173 diag.abandon(); 174 return diag; 175 } 176 177 /// Emit an error about a "wrong token". If the current token is at the 178 /// start of a source line, this will apply heuristics to back up and report 179 /// the error at the end of the previous line, which is where the expected 180 /// token is supposed to be. 181 InFlightDiagnostic Parser::emitWrongTokenError(const Twine &message) { 182 auto loc = state.curToken.getLoc(); 183 184 // If the error is to be emitted at EOF, move it back one character. 185 if (state.curToken.is(Token::eof)) 186 loc = SMLoc::getFromPointer(loc.getPointer() - 1); 187 188 // This is the location we were originally asked to report the error at. 189 auto originalLoc = loc; 190 191 // Determine if the token is at the start of the current line. 192 const char *bufferStart = state.lex.getBufferBegin(); 193 const char *curPtr = loc.getPointer(); 194 195 // Use this StringRef to keep track of what we are going to back up through, 196 // it provides nicer string search functions etc. 197 StringRef startOfBuffer(bufferStart, curPtr - bufferStart); 198 199 // Back up over entirely blank lines. 200 while (true) { 201 // Back up until we see a \n, but don't look past the buffer start. 202 startOfBuffer = startOfBuffer.rtrim(" \t"); 203 204 // For tokens with no preceding source line, just emit at the original 205 // location. 206 if (startOfBuffer.empty()) 207 return emitError(originalLoc, message); 208 209 // If we found something that isn't the end of line, then we're done. 210 if (startOfBuffer.back() != '\n' && startOfBuffer.back() != '\r') 211 return emitError(SMLoc::getFromPointer(startOfBuffer.end()), message); 212 213 // Drop the \n so we emit the diagnostic at the end of the line. 214 startOfBuffer = startOfBuffer.drop_back(); 215 216 // Check to see if the preceding line has a comment on it. We assume that a 217 // `//` is the start of a comment, which is mostly correct. 218 // TODO: This will do the wrong thing for // in a string literal. 219 auto prevLine = startOfBuffer; 220 size_t newLineIndex = prevLine.find_last_of("\n\r"); 221 if (newLineIndex != StringRef::npos) 222 prevLine = prevLine.drop_front(newLineIndex); 223 224 // If we find a // in the current line, then emit the diagnostic before it. 225 size_t commentStart = prevLine.find("//"); 226 if (commentStart != StringRef::npos) 227 startOfBuffer = startOfBuffer.drop_back(prevLine.size() - commentStart); 228 } 229 } 230 231 /// Consume the specified token if present and return success. On failure, 232 /// output a diagnostic and return failure. 233 ParseResult Parser::parseToken(Token::Kind expectedToken, 234 const Twine &message) { 235 if (consumeIf(expectedToken)) 236 return success(); 237 return emitWrongTokenError(message); 238 } 239 240 /// Parse an optional integer value from the stream. 241 OptionalParseResult Parser::parseOptionalInteger(APInt &result) { 242 Token curToken = getToken(); 243 if (curToken.isNot(Token::integer, Token::minus)) 244 return llvm::None; 245 246 bool negative = consumeIf(Token::minus); 247 Token curTok = getToken(); 248 if (parseToken(Token::integer, "expected integer value")) 249 return failure(); 250 251 StringRef spelling = curTok.getSpelling(); 252 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 253 if (spelling.getAsInteger(isHex ? 0 : 10, result)) 254 return emitError(curTok.getLoc(), "integer value too large"); 255 256 // Make sure we have a zero at the top so we return the right signedness. 257 if (result.isNegative()) 258 result = result.zext(result.getBitWidth() + 1); 259 260 // Process the negative sign if present. 261 if (negative) 262 result.negate(); 263 264 return success(); 265 } 266 267 /// Parse a floating point value from an integer literal token. 268 ParseResult Parser::parseFloatFromIntegerLiteral( 269 Optional<APFloat> &result, const Token &tok, bool isNegative, 270 const llvm::fltSemantics &semantics, size_t typeSizeInBits) { 271 SMLoc loc = tok.getLoc(); 272 StringRef spelling = tok.getSpelling(); 273 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 274 if (!isHex) { 275 return emitError(loc, "unexpected decimal integer literal for a " 276 "floating point value") 277 .attachNote() 278 << "add a trailing dot to make the literal a float"; 279 } 280 if (isNegative) { 281 return emitError(loc, "hexadecimal float literal should not have a " 282 "leading minus"); 283 } 284 285 Optional<uint64_t> value = tok.getUInt64IntegerValue(); 286 if (!value) 287 return emitError(loc, "hexadecimal float constant out of range for type"); 288 289 if (&semantics == &APFloat::IEEEdouble()) { 290 result = APFloat(semantics, APInt(typeSizeInBits, *value)); 291 return success(); 292 } 293 294 APInt apInt(typeSizeInBits, *value); 295 if (apInt != *value) 296 return emitError(loc, "hexadecimal float constant out of range for type"); 297 result = APFloat(semantics, apInt); 298 299 return success(); 300 } 301 302 ParseResult Parser::parseOptionalKeyword(StringRef *keyword) { 303 // Check that the current token is a keyword. 304 if (!isCurrentTokenAKeyword()) 305 return failure(); 306 307 *keyword = getTokenSpelling(); 308 consumeToken(); 309 return success(); 310 } 311 312 //===----------------------------------------------------------------------===// 313 // Resource Parsing 314 315 FailureOr<AsmDialectResourceHandle> 316 Parser::parseResourceHandle(const OpAsmDialectInterface *dialect, 317 StringRef &name) { 318 assert(dialect && "expected valid dialect interface"); 319 SMLoc nameLoc = getToken().getLoc(); 320 if (failed(parseOptionalKeyword(&name))) 321 return emitError("expected identifier key for 'resource' entry"); 322 auto &resources = getState().symbols.dialectResources; 323 324 // If this is the first time encountering this handle, ask the dialect to 325 // resolve a reference to this handle. This allows for us to remap the name of 326 // the handle if necessary. 327 std::pair<std::string, AsmDialectResourceHandle> &entry = 328 resources[dialect][name]; 329 if (entry.first.empty()) { 330 FailureOr<AsmDialectResourceHandle> result = dialect->declareResource(name); 331 if (failed(result)) { 332 return emitError(nameLoc) 333 << "unknown 'resource' key '" << name << "' for dialect '" 334 << dialect->getDialect()->getNamespace() << "'"; 335 } 336 entry.first = dialect->getResourceKey(*result); 337 entry.second = *result; 338 } 339 340 name = entry.first; 341 return entry.second; 342 } 343 344 //===----------------------------------------------------------------------===// 345 // Code Completion 346 347 ParseResult Parser::codeCompleteDialectName() { 348 state.codeCompleteContext->completeDialectName(); 349 return failure(); 350 } 351 352 ParseResult Parser::codeCompleteOperationName(StringRef dialectName) { 353 // Perform some simple validation on the dialect name. This doesn't need to be 354 // extensive, it's more of an optimization (to avoid checking completion 355 // results when we know they will fail). 356 if (dialectName.empty() || dialectName.contains('.')) 357 return failure(); 358 state.codeCompleteContext->completeOperationName(dialectName); 359 return failure(); 360 } 361 362 ParseResult Parser::codeCompleteDialectOrElidedOpName(SMLoc loc) { 363 // Check to see if there is anything else on the current line. This check 364 // isn't strictly necessary, but it does avoid unnecessarily triggering 365 // completions for operations and dialects in situations where we don't want 366 // them (e.g. at the end of an operation). 367 auto shouldIgnoreOpCompletion = [&]() { 368 const char *bufBegin = state.lex.getBufferBegin(); 369 const char *it = loc.getPointer() - 1; 370 for (; it > bufBegin && *it != '\n'; --it) 371 if (!llvm::is_contained(StringRef(" \t\r"), *it)) 372 return true; 373 return false; 374 }; 375 if (shouldIgnoreOpCompletion()) 376 return failure(); 377 378 // The completion here is either for a dialect name, or an operation name 379 // whose dialect prefix was elided. For this we simply invoke both of the 380 // individual completion methods. 381 (void)codeCompleteDialectName(); 382 return codeCompleteOperationName(state.defaultDialectStack.back()); 383 } 384 385 ParseResult Parser::codeCompleteStringDialectOrOperationName(StringRef name) { 386 // If the name is empty, this is the start of the string and contains the 387 // dialect. 388 if (name.empty()) 389 return codeCompleteDialectName(); 390 391 // Otherwise, we treat this as completing an operation name. The current name 392 // is used as the dialect namespace. 393 if (name.consume_back(".")) 394 return codeCompleteOperationName(name); 395 return failure(); 396 } 397 398 //===----------------------------------------------------------------------===// 399 // OperationParser 400 //===----------------------------------------------------------------------===// 401 402 namespace { 403 /// This class provides support for parsing operations and regions of 404 /// operations. 405 class OperationParser : public Parser { 406 public: 407 OperationParser(ParserState &state, ModuleOp topLevelOp); 408 ~OperationParser(); 409 410 /// After parsing is finished, this function must be called to see if there 411 /// are any remaining issues. 412 ParseResult finalize(); 413 414 //===--------------------------------------------------------------------===// 415 // SSA Value Handling 416 //===--------------------------------------------------------------------===// 417 418 using UnresolvedOperand = OpAsmParser::UnresolvedOperand; 419 using Argument = OpAsmParser::Argument; 420 421 struct DeferredLocInfo { 422 SMLoc loc; 423 StringRef identifier; 424 }; 425 426 /// Push a new SSA name scope to the parser. 427 void pushSSANameScope(bool isIsolated); 428 429 /// Pop the last SSA name scope from the parser. 430 ParseResult popSSANameScope(); 431 432 /// Register a definition of a value with the symbol table. 433 ParseResult addDefinition(UnresolvedOperand useInfo, Value value); 434 435 /// Parse an optional list of SSA uses into 'results'. 436 ParseResult 437 parseOptionalSSAUseList(SmallVectorImpl<UnresolvedOperand> &results); 438 439 /// Parse a single SSA use into 'result'. If 'allowResultNumber' is true then 440 /// we allow #42 syntax. 441 ParseResult parseSSAUse(UnresolvedOperand &result, 442 bool allowResultNumber = true); 443 444 /// Given a reference to an SSA value and its type, return a reference. This 445 /// returns null on failure. 446 Value resolveSSAUse(UnresolvedOperand useInfo, Type type); 447 448 ParseResult parseSSADefOrUseAndType( 449 function_ref<ParseResult(UnresolvedOperand, Type)> action); 450 451 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 452 453 /// Return the location of the value identified by its name and number if it 454 /// has been already reference. 455 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 456 auto &values = isolatedNameScopes.back().values; 457 if (!values.count(name) || number >= values[name].size()) 458 return {}; 459 if (values[name][number].value) 460 return values[name][number].loc; 461 return {}; 462 } 463 464 //===--------------------------------------------------------------------===// 465 // Operation Parsing 466 //===--------------------------------------------------------------------===// 467 468 /// Parse an operation instance. 469 ParseResult parseOperation(); 470 471 /// Parse a single operation successor. 472 ParseResult parseSuccessor(Block *&dest); 473 474 /// Parse a comma-separated list of operation successors in brackets. 475 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations); 476 477 /// Parse an operation instance that is in the generic form. 478 Operation *parseGenericOperation(); 479 480 /// Parse different components, viz., use-info of operand(s), successor(s), 481 /// region(s), attribute(s) and function-type, of the generic form of an 482 /// operation instance and populate the input operation-state 'result' with 483 /// those components. If any of the components is explicitly provided, then 484 /// skip parsing that component. 485 ParseResult parseGenericOperationAfterOpName( 486 OperationState &result, 487 Optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo = llvm::None, 488 Optional<ArrayRef<Block *>> parsedSuccessors = llvm::None, 489 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions = 490 llvm::None, 491 Optional<ArrayRef<NamedAttribute>> parsedAttributes = llvm::None, 492 Optional<FunctionType> parsedFnType = llvm::None); 493 494 /// Parse an operation instance that is in the generic form and insert it at 495 /// the provided insertion point. 496 Operation *parseGenericOperation(Block *insertBlock, 497 Block::iterator insertPt); 498 499 /// This type is used to keep track of things that are either an Operation or 500 /// a BlockArgument. We cannot use Value for this, because not all Operations 501 /// have results. 502 using OpOrArgument = llvm::PointerUnion<Operation *, BlockArgument>; 503 504 /// Parse an optional trailing location and add it to the specifier Operation 505 /// or `UnresolvedOperand` if present. 506 /// 507 /// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))? 508 /// 509 ParseResult parseTrailingLocationSpecifier(OpOrArgument opOrArgument); 510 511 /// Parse a location alias, that is a sequence looking like: #loc42 512 /// The alias may have already be defined or may be defined later, in which 513 /// case an OpaqueLoc is used a placeholder. 514 ParseResult parseLocationAlias(LocationAttr &loc); 515 516 /// This is the structure of a result specifier in the assembly syntax, 517 /// including the name, number of results, and location. 518 using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>; 519 520 /// Parse an operation instance that is in the op-defined custom form. 521 /// resultInfo specifies information about the "%name =" specifiers. 522 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs); 523 524 /// Parse the name of an operation, in the custom form. On success, return a 525 /// an object of type 'OperationName'. Otherwise, failure is returned. 526 FailureOr<OperationName> parseCustomOperationName(); 527 528 //===--------------------------------------------------------------------===// 529 // Region Parsing 530 //===--------------------------------------------------------------------===// 531 532 /// Parse a region into 'region' with the provided entry block arguments. 533 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 534 /// isolated from those above. 535 ParseResult parseRegion(Region ®ion, ArrayRef<Argument> entryArguments, 536 bool isIsolatedNameScope = false); 537 538 /// Parse a region body into 'region'. 539 ParseResult parseRegionBody(Region ®ion, SMLoc startLoc, 540 ArrayRef<Argument> entryArguments, 541 bool isIsolatedNameScope); 542 543 //===--------------------------------------------------------------------===// 544 // Block Parsing 545 //===--------------------------------------------------------------------===// 546 547 /// Parse a new block into 'block'. 548 ParseResult parseBlock(Block *&block); 549 550 /// Parse a list of operations into 'block'. 551 ParseResult parseBlockBody(Block *block); 552 553 /// Parse a (possibly empty) list of block arguments. 554 ParseResult parseOptionalBlockArgList(Block *owner); 555 556 /// Get the block with the specified name, creating it if it doesn't 557 /// already exist. The location specified is the point of use, which allows 558 /// us to diagnose references to blocks that are not defined precisely. 559 Block *getBlockNamed(StringRef name, SMLoc loc); 560 561 //===--------------------------------------------------------------------===// 562 // Code Completion 563 //===--------------------------------------------------------------------===// 564 565 /// The set of various code completion methods. Every completion method 566 /// returns `failure` to stop the parsing process after providing completion 567 /// results. 568 569 ParseResult codeCompleteSSAUse(); 570 ParseResult codeCompleteBlock(); 571 572 private: 573 /// This class represents a definition of a Block. 574 struct BlockDefinition { 575 /// A pointer to the defined Block. 576 Block *block; 577 /// The location that the Block was defined at. 578 SMLoc loc; 579 }; 580 /// This class represents a definition of a Value. 581 struct ValueDefinition { 582 /// A pointer to the defined Value. 583 Value value; 584 /// The location that the Value was defined at. 585 SMLoc loc; 586 }; 587 588 /// Returns the info for a block at the current scope for the given name. 589 BlockDefinition &getBlockInfoByName(StringRef name) { 590 return blocksByName.back()[name]; 591 } 592 593 /// Insert a new forward reference to the given block. 594 void insertForwardRef(Block *block, SMLoc loc) { 595 forwardRef.back().try_emplace(block, loc); 596 } 597 598 /// Erase any forward reference to the given block. 599 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 600 601 /// Record that a definition was added at the current scope. 602 void recordDefinition(StringRef def); 603 604 /// Get the value entry for the given SSA name. 605 SmallVectorImpl<ValueDefinition> &getSSAValueEntry(StringRef name); 606 607 /// Create a forward reference placeholder value with the given location and 608 /// result type. 609 Value createForwardRefPlaceholder(SMLoc loc, Type type); 610 611 /// Return true if this is a forward reference. 612 bool isForwardRefPlaceholder(Value value) { 613 return forwardRefPlaceholders.count(value); 614 } 615 616 /// This struct represents an isolated SSA name scope. This scope may contain 617 /// other nested non-isolated scopes. These scopes are used for operations 618 /// that are known to be isolated to allow for reusing names within their 619 /// regions, even if those names are used above. 620 struct IsolatedSSANameScope { 621 /// Record that a definition was added at the current scope. 622 void recordDefinition(StringRef def) { 623 definitionsPerScope.back().insert(def); 624 } 625 626 /// Push a nested name scope. 627 void pushSSANameScope() { definitionsPerScope.push_back({}); } 628 629 /// Pop a nested name scope. 630 void popSSANameScope() { 631 for (auto &def : definitionsPerScope.pop_back_val()) 632 values.erase(def.getKey()); 633 } 634 635 /// This keeps track of all of the SSA values we are tracking for each name 636 /// scope, indexed by their name. This has one entry per result number. 637 llvm::StringMap<SmallVector<ValueDefinition, 1>> values; 638 639 /// This keeps track of all of the values defined by a specific name scope. 640 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 641 }; 642 643 /// A list of isolated name scopes. 644 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 645 646 /// This keeps track of the block names as well as the location of the first 647 /// reference for each nested name scope. This is used to diagnose invalid 648 /// block references and memorize them. 649 SmallVector<DenseMap<StringRef, BlockDefinition>, 2> blocksByName; 650 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 651 652 /// These are all of the placeholders we've made along with the location of 653 /// their first reference, to allow checking for use of undefined values. 654 DenseMap<Value, SMLoc> forwardRefPlaceholders; 655 656 /// Deffered locations: when parsing `loc(#loc42)` we add an entry to this 657 /// map. After parsing the definition `#loc42 = ...` we'll patch back users 658 /// of this location. 659 std::vector<DeferredLocInfo> deferredLocsReferences; 660 661 /// The builder used when creating parsed operation instances. 662 OpBuilder opBuilder; 663 664 /// The top level operation that holds all of the parsed operations. 665 Operation *topLevelOp; 666 }; 667 } // namespace 668 669 MLIR_DECLARE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *) 670 MLIR_DEFINE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *) 671 672 OperationParser::OperationParser(ParserState &state, ModuleOp topLevelOp) 673 : Parser(state), opBuilder(topLevelOp.getRegion()), topLevelOp(topLevelOp) { 674 // The top level operation starts a new name scope. 675 pushSSANameScope(/*isIsolated=*/true); 676 677 // If we are populating the parser state, prepare it for parsing. 678 if (state.asmState) 679 state.asmState->initialize(topLevelOp); 680 } 681 682 OperationParser::~OperationParser() { 683 for (auto &fwd : forwardRefPlaceholders) { 684 // Drop all uses of undefined forward declared reference and destroy 685 // defining operation. 686 fwd.first.dropAllUses(); 687 fwd.first.getDefiningOp()->destroy(); 688 } 689 for (const auto &scope : forwardRef) { 690 for (const auto &fwd : scope) { 691 // Delete all blocks that were created as forward references but never 692 // included into a region. 693 fwd.first->dropAllUses(); 694 delete fwd.first; 695 } 696 } 697 } 698 699 /// After parsing is finished, this function must be called to see if there are 700 /// any remaining issues. 701 ParseResult OperationParser::finalize() { 702 // Check for any forward references that are left. If we find any, error 703 // out. 704 if (!forwardRefPlaceholders.empty()) { 705 SmallVector<const char *, 4> errors; 706 // Iteration over the map isn't deterministic, so sort by source location. 707 for (auto entry : forwardRefPlaceholders) 708 errors.push_back(entry.second.getPointer()); 709 llvm::array_pod_sort(errors.begin(), errors.end()); 710 711 for (const char *entry : errors) { 712 auto loc = SMLoc::getFromPointer(entry); 713 emitError(loc, "use of undeclared SSA value name"); 714 } 715 return failure(); 716 } 717 718 // Resolve the locations of any deferred operations. 719 auto &attributeAliases = state.symbols.attributeAliasDefinitions; 720 auto locID = TypeID::get<DeferredLocInfo *>(); 721 auto resolveLocation = [&, this](auto &opOrArgument) -> LogicalResult { 722 auto fwdLoc = opOrArgument.getLoc().template dyn_cast<OpaqueLoc>(); 723 if (!fwdLoc || fwdLoc.getUnderlyingTypeID() != locID) 724 return success(); 725 auto locInfo = deferredLocsReferences[fwdLoc.getUnderlyingLocation()]; 726 Attribute attr = attributeAliases.lookup(locInfo.identifier); 727 if (!attr) 728 return this->emitError(locInfo.loc) 729 << "operation location alias was never defined"; 730 auto locAttr = attr.dyn_cast<LocationAttr>(); 731 if (!locAttr) 732 return this->emitError(locInfo.loc) 733 << "expected location, but found '" << attr << "'"; 734 opOrArgument.setLoc(locAttr); 735 return success(); 736 }; 737 738 auto walkRes = topLevelOp->walk([&](Operation *op) { 739 if (failed(resolveLocation(*op))) 740 return WalkResult::interrupt(); 741 for (Region ®ion : op->getRegions()) 742 for (Block &block : region.getBlocks()) 743 for (BlockArgument arg : block.getArguments()) 744 if (failed(resolveLocation(arg))) 745 return WalkResult::interrupt(); 746 return WalkResult::advance(); 747 }); 748 if (walkRes.wasInterrupted()) 749 return failure(); 750 751 // Pop the top level name scope. 752 if (failed(popSSANameScope())) 753 return failure(); 754 755 // Verify that the parsed operations are valid. 756 if (failed(verify(topLevelOp))) 757 return failure(); 758 759 // If we are populating the parser state, finalize the top-level operation. 760 if (state.asmState) 761 state.asmState->finalize(topLevelOp); 762 return success(); 763 } 764 765 //===----------------------------------------------------------------------===// 766 // SSA Value Handling 767 //===----------------------------------------------------------------------===// 768 769 void OperationParser::pushSSANameScope(bool isIsolated) { 770 blocksByName.push_back(DenseMap<StringRef, BlockDefinition>()); 771 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 772 773 // Push back a new name definition scope. 774 if (isIsolated) 775 isolatedNameScopes.push_back({}); 776 isolatedNameScopes.back().pushSSANameScope(); 777 } 778 779 ParseResult OperationParser::popSSANameScope() { 780 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 781 782 // Verify that all referenced blocks were defined. 783 if (!forwardRefInCurrentScope.empty()) { 784 SmallVector<std::pair<const char *, Block *>, 4> errors; 785 // Iteration over the map isn't deterministic, so sort by source location. 786 for (auto entry : forwardRefInCurrentScope) { 787 errors.push_back({entry.second.getPointer(), entry.first}); 788 // Add this block to the top-level region to allow for automatic cleanup. 789 topLevelOp->getRegion(0).push_back(entry.first); 790 } 791 llvm::array_pod_sort(errors.begin(), errors.end()); 792 793 for (auto entry : errors) { 794 auto loc = SMLoc::getFromPointer(entry.first); 795 emitError(loc, "reference to an undefined block"); 796 } 797 return failure(); 798 } 799 800 // Pop the next nested namescope. If there is only one internal namescope, 801 // just pop the isolated scope. 802 auto ¤tNameScope = isolatedNameScopes.back(); 803 if (currentNameScope.definitionsPerScope.size() == 1) 804 isolatedNameScopes.pop_back(); 805 else 806 currentNameScope.popSSANameScope(); 807 808 blocksByName.pop_back(); 809 return success(); 810 } 811 812 /// Register a definition of a value with the symbol table. 813 ParseResult OperationParser::addDefinition(UnresolvedOperand useInfo, 814 Value value) { 815 auto &entries = getSSAValueEntry(useInfo.name); 816 817 // Make sure there is a slot for this value. 818 if (entries.size() <= useInfo.number) 819 entries.resize(useInfo.number + 1); 820 821 // If we already have an entry for this, check to see if it was a definition 822 // or a forward reference. 823 if (auto existing = entries[useInfo.number].value) { 824 if (!isForwardRefPlaceholder(existing)) { 825 return emitError(useInfo.location) 826 .append("redefinition of SSA value '", useInfo.name, "'") 827 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 828 .append("previously defined here"); 829 } 830 831 if (existing.getType() != value.getType()) { 832 return emitError(useInfo.location) 833 .append("definition of SSA value '", useInfo.name, "#", 834 useInfo.number, "' has type ", value.getType()) 835 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 836 .append("previously used here with type ", existing.getType()); 837 } 838 839 // If it was a forward reference, update everything that used it to use 840 // the actual definition instead, delete the forward ref, and remove it 841 // from our set of forward references we track. 842 existing.replaceAllUsesWith(value); 843 existing.getDefiningOp()->destroy(); 844 forwardRefPlaceholders.erase(existing); 845 846 // If a definition of the value already exists, replace it in the assembly 847 // state. 848 if (state.asmState) 849 state.asmState->refineDefinition(existing, value); 850 } 851 852 /// Record this definition for the current scope. 853 entries[useInfo.number] = {value, useInfo.location}; 854 recordDefinition(useInfo.name); 855 return success(); 856 } 857 858 /// Parse a (possibly empty) list of SSA operands. 859 /// 860 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 861 /// ssa-use-list-opt ::= ssa-use-list? 862 /// 863 ParseResult OperationParser::parseOptionalSSAUseList( 864 SmallVectorImpl<UnresolvedOperand> &results) { 865 if (!getToken().isOrIsCodeCompletionFor(Token::percent_identifier)) 866 return success(); 867 return parseCommaSeparatedList([&]() -> ParseResult { 868 UnresolvedOperand result; 869 if (parseSSAUse(result)) 870 return failure(); 871 results.push_back(result); 872 return success(); 873 }); 874 } 875 876 /// Parse a SSA operand for an operation. 877 /// 878 /// ssa-use ::= ssa-id 879 /// 880 ParseResult OperationParser::parseSSAUse(UnresolvedOperand &result, 881 bool allowResultNumber) { 882 if (getToken().isCodeCompletion()) 883 return codeCompleteSSAUse(); 884 885 result.name = getTokenSpelling(); 886 result.number = 0; 887 result.location = getToken().getLoc(); 888 if (parseToken(Token::percent_identifier, "expected SSA operand")) 889 return failure(); 890 891 // If we have an attribute ID, it is a result number. 892 if (getToken().is(Token::hash_identifier)) { 893 if (!allowResultNumber) 894 return emitError("result number not allowed in argument list"); 895 896 if (auto value = getToken().getHashIdentifierNumber()) 897 result.number = *value; 898 else 899 return emitError("invalid SSA value result number"); 900 consumeToken(Token::hash_identifier); 901 } 902 903 return success(); 904 } 905 906 /// Given an unbound reference to an SSA value and its type, return the value 907 /// it specifies. This returns null on failure. 908 Value OperationParser::resolveSSAUse(UnresolvedOperand useInfo, Type type) { 909 auto &entries = getSSAValueEntry(useInfo.name); 910 911 // Functor used to record the use of the given value if the assembly state 912 // field is populated. 913 auto maybeRecordUse = [&](Value value) { 914 if (state.asmState) 915 state.asmState->addUses(value, useInfo.location); 916 return value; 917 }; 918 919 // If we have already seen a value of this name, return it. 920 if (useInfo.number < entries.size() && entries[useInfo.number].value) { 921 Value result = entries[useInfo.number].value; 922 // Check that the type matches the other uses. 923 if (result.getType() == type) 924 return maybeRecordUse(result); 925 926 emitError(useInfo.location, "use of value '") 927 .append(useInfo.name, 928 "' expects different type than prior uses: ", type, " vs ", 929 result.getType()) 930 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 931 .append("prior use here"); 932 return nullptr; 933 } 934 935 // Make sure we have enough slots for this. 936 if (entries.size() <= useInfo.number) 937 entries.resize(useInfo.number + 1); 938 939 // If the value has already been defined and this is an overly large result 940 // number, diagnose that. 941 if (entries[0].value && !isForwardRefPlaceholder(entries[0].value)) 942 return (emitError(useInfo.location, "reference to invalid result number"), 943 nullptr); 944 945 // Otherwise, this is a forward reference. Create a placeholder and remember 946 // that we did so. 947 Value result = createForwardRefPlaceholder(useInfo.location, type); 948 entries[useInfo.number] = {result, useInfo.location}; 949 return maybeRecordUse(result); 950 } 951 952 /// Parse an SSA use with an associated type. 953 /// 954 /// ssa-use-and-type ::= ssa-use `:` type 955 ParseResult OperationParser::parseSSADefOrUseAndType( 956 function_ref<ParseResult(UnresolvedOperand, Type)> action) { 957 UnresolvedOperand useInfo; 958 if (parseSSAUse(useInfo) || 959 parseToken(Token::colon, "expected ':' and type for SSA operand")) 960 return failure(); 961 962 auto type = parseType(); 963 if (!type) 964 return failure(); 965 966 return action(useInfo, type); 967 } 968 969 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 970 /// followed by a type list. 971 /// 972 /// ssa-use-and-type-list 973 /// ::= ssa-use-list ':' type-list-no-parens 974 /// 975 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 976 SmallVectorImpl<Value> &results) { 977 SmallVector<UnresolvedOperand, 4> valueIDs; 978 if (parseOptionalSSAUseList(valueIDs)) 979 return failure(); 980 981 // If there were no operands, then there is no colon or type lists. 982 if (valueIDs.empty()) 983 return success(); 984 985 SmallVector<Type, 4> types; 986 if (parseToken(Token::colon, "expected ':' in operand list") || 987 parseTypeListNoParens(types)) 988 return failure(); 989 990 if (valueIDs.size() != types.size()) 991 return emitError("expected ") 992 << valueIDs.size() << " types to match operand list"; 993 994 results.reserve(valueIDs.size()); 995 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 996 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 997 results.push_back(value); 998 else 999 return failure(); 1000 } 1001 1002 return success(); 1003 } 1004 1005 /// Record that a definition was added at the current scope. 1006 void OperationParser::recordDefinition(StringRef def) { 1007 isolatedNameScopes.back().recordDefinition(def); 1008 } 1009 1010 /// Get the value entry for the given SSA name. 1011 auto OperationParser::getSSAValueEntry(StringRef name) 1012 -> SmallVectorImpl<ValueDefinition> & { 1013 return isolatedNameScopes.back().values[name]; 1014 } 1015 1016 /// Create and remember a new placeholder for a forward reference. 1017 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 1018 // Forward references are always created as operations, because we just need 1019 // something with a def/use chain. 1020 // 1021 // We create these placeholders as having an empty name, which we know 1022 // cannot be created through normal user input, allowing us to distinguish 1023 // them. 1024 auto name = OperationName("builtin.unrealized_conversion_cast", getContext()); 1025 auto *op = Operation::create( 1026 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 1027 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0); 1028 forwardRefPlaceholders[op->getResult(0)] = loc; 1029 return op->getResult(0); 1030 } 1031 1032 //===----------------------------------------------------------------------===// 1033 // Operation Parsing 1034 //===----------------------------------------------------------------------===// 1035 1036 /// Parse an operation. 1037 /// 1038 /// operation ::= op-result-list? 1039 /// (generic-operation | custom-operation) 1040 /// trailing-location? 1041 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 1042 /// successor-list? (`(` region-list `)`)? 1043 /// attribute-dict? `:` function-type 1044 /// custom-operation ::= bare-id custom-operation-format 1045 /// op-result-list ::= op-result (`,` op-result)* `=` 1046 /// op-result ::= ssa-id (`:` integer-literal) 1047 /// 1048 ParseResult OperationParser::parseOperation() { 1049 auto loc = getToken().getLoc(); 1050 SmallVector<ResultRecord, 1> resultIDs; 1051 size_t numExpectedResults = 0; 1052 if (getToken().is(Token::percent_identifier)) { 1053 // Parse the group of result ids. 1054 auto parseNextResult = [&]() -> ParseResult { 1055 // Parse the next result id. 1056 Token nameTok = getToken(); 1057 if (parseToken(Token::percent_identifier, 1058 "expected valid ssa identifier")) 1059 return failure(); 1060 1061 // If the next token is a ':', we parse the expected result count. 1062 size_t expectedSubResults = 1; 1063 if (consumeIf(Token::colon)) { 1064 // Check that the next token is an integer. 1065 if (!getToken().is(Token::integer)) 1066 return emitWrongTokenError("expected integer number of results"); 1067 1068 // Check that number of results is > 0. 1069 auto val = getToken().getUInt64IntegerValue(); 1070 if (!val || *val < 1) 1071 return emitError( 1072 "expected named operation to have at least 1 result"); 1073 consumeToken(Token::integer); 1074 expectedSubResults = *val; 1075 } 1076 1077 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 1078 nameTok.getLoc()); 1079 numExpectedResults += expectedSubResults; 1080 return success(); 1081 }; 1082 if (parseCommaSeparatedList(parseNextResult)) 1083 return failure(); 1084 1085 if (parseToken(Token::equal, "expected '=' after SSA name")) 1086 return failure(); 1087 } 1088 1089 Operation *op; 1090 Token nameTok = getToken(); 1091 if (nameTok.is(Token::bare_identifier) || nameTok.isKeyword()) 1092 op = parseCustomOperation(resultIDs); 1093 else if (nameTok.is(Token::string)) 1094 op = parseGenericOperation(); 1095 else if (nameTok.isCodeCompletionFor(Token::string)) 1096 return codeCompleteStringDialectOrOperationName(nameTok.getStringValue()); 1097 else if (nameTok.isCodeCompletion()) 1098 return codeCompleteDialectOrElidedOpName(loc); 1099 else 1100 return emitWrongTokenError("expected operation name in quotes"); 1101 1102 // If parsing of the basic operation failed, then this whole thing fails. 1103 if (!op) 1104 return failure(); 1105 1106 // If the operation had a name, register it. 1107 if (!resultIDs.empty()) { 1108 if (op->getNumResults() == 0) 1109 return emitError(loc, "cannot name an operation with no results"); 1110 if (numExpectedResults != op->getNumResults()) 1111 return emitError(loc, "operation defines ") 1112 << op->getNumResults() << " results but was provided " 1113 << numExpectedResults << " to bind"; 1114 1115 // Add this operation to the assembly state if it was provided to populate. 1116 if (state.asmState) { 1117 unsigned resultIt = 0; 1118 SmallVector<std::pair<unsigned, SMLoc>> asmResultGroups; 1119 asmResultGroups.reserve(resultIDs.size()); 1120 for (ResultRecord &record : resultIDs) { 1121 asmResultGroups.emplace_back(resultIt, std::get<2>(record)); 1122 resultIt += std::get<1>(record); 1123 } 1124 state.asmState->finalizeOperationDefinition( 1125 op, nameTok.getLocRange(), /*endLoc=*/getToken().getLoc(), 1126 asmResultGroups); 1127 } 1128 1129 // Add definitions for each of the result groups. 1130 unsigned opResI = 0; 1131 for (ResultRecord &resIt : resultIDs) { 1132 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 1133 if (addDefinition({std::get<2>(resIt), std::get<0>(resIt), subRes}, 1134 op->getResult(opResI++))) 1135 return failure(); 1136 } 1137 } 1138 1139 // Add this operation to the assembly state if it was provided to populate. 1140 } else if (state.asmState) { 1141 state.asmState->finalizeOperationDefinition(op, nameTok.getLocRange(), 1142 /*endLoc=*/getToken().getLoc()); 1143 } 1144 1145 return success(); 1146 } 1147 1148 /// Parse a single operation successor. 1149 /// 1150 /// successor ::= block-id 1151 /// 1152 ParseResult OperationParser::parseSuccessor(Block *&dest) { 1153 if (getToken().isCodeCompletion()) 1154 return codeCompleteBlock(); 1155 1156 // Verify branch is identifier and get the matching block. 1157 if (!getToken().is(Token::caret_identifier)) 1158 return emitWrongTokenError("expected block name"); 1159 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 1160 consumeToken(); 1161 return success(); 1162 } 1163 1164 /// Parse a comma-separated list of operation successors in brackets. 1165 /// 1166 /// successor-list ::= `[` successor (`,` successor )* `]` 1167 /// 1168 ParseResult 1169 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) { 1170 if (parseToken(Token::l_square, "expected '['")) 1171 return failure(); 1172 1173 auto parseElt = [this, &destinations] { 1174 Block *dest; 1175 ParseResult res = parseSuccessor(dest); 1176 destinations.push_back(dest); 1177 return res; 1178 }; 1179 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 1180 /*allowEmptyList=*/false); 1181 } 1182 1183 namespace { 1184 // RAII-style guard for cleaning up the regions in the operation state before 1185 // deleting them. Within the parser, regions may get deleted if parsing failed, 1186 // and other errors may be present, in particular undominated uses. This makes 1187 // sure such uses are deleted. 1188 struct CleanupOpStateRegions { 1189 ~CleanupOpStateRegions() { 1190 SmallVector<Region *, 4> regionsToClean; 1191 regionsToClean.reserve(state.regions.size()); 1192 for (auto ®ion : state.regions) 1193 if (region) 1194 for (auto &block : *region) 1195 block.dropAllDefinedValueUses(); 1196 } 1197 OperationState &state; 1198 }; 1199 } // namespace 1200 1201 ParseResult OperationParser::parseGenericOperationAfterOpName( 1202 OperationState &result, 1203 Optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo, 1204 Optional<ArrayRef<Block *>> parsedSuccessors, 1205 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions, 1206 Optional<ArrayRef<NamedAttribute>> parsedAttributes, 1207 Optional<FunctionType> parsedFnType) { 1208 1209 // Parse the operand list, if not explicitly provided. 1210 SmallVector<UnresolvedOperand, 8> opInfo; 1211 if (!parsedOperandUseInfo) { 1212 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 1213 parseOptionalSSAUseList(opInfo) || 1214 parseToken(Token::r_paren, "expected ')' to end operand list")) { 1215 return failure(); 1216 } 1217 parsedOperandUseInfo = opInfo; 1218 } 1219 1220 // Parse the successor list, if not explicitly provided. 1221 if (!parsedSuccessors) { 1222 if (getToken().is(Token::l_square)) { 1223 // Check if the operation is not a known terminator. 1224 if (!result.name.mightHaveTrait<OpTrait::IsTerminator>()) 1225 return emitError("successors in non-terminator"); 1226 1227 SmallVector<Block *, 2> successors; 1228 if (parseSuccessors(successors)) 1229 return failure(); 1230 result.addSuccessors(successors); 1231 } 1232 } else { 1233 result.addSuccessors(*parsedSuccessors); 1234 } 1235 1236 // Parse the region list, if not explicitly provided. 1237 if (!parsedRegions) { 1238 if (consumeIf(Token::l_paren)) { 1239 do { 1240 // Create temporary regions with the top level region as parent. 1241 result.regions.emplace_back(new Region(topLevelOp)); 1242 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 1243 return failure(); 1244 } while (consumeIf(Token::comma)); 1245 if (parseToken(Token::r_paren, "expected ')' to end region list")) 1246 return failure(); 1247 } 1248 } else { 1249 result.addRegions(*parsedRegions); 1250 } 1251 1252 // Parse the attributes, if not explicitly provided. 1253 if (!parsedAttributes) { 1254 if (getToken().is(Token::l_brace)) { 1255 if (parseAttributeDict(result.attributes)) 1256 return failure(); 1257 } 1258 } else { 1259 result.addAttributes(*parsedAttributes); 1260 } 1261 1262 // Parse the operation type, if not explicitly provided. 1263 Location typeLoc = result.location; 1264 if (!parsedFnType) { 1265 if (parseToken(Token::colon, "expected ':' followed by operation type")) 1266 return failure(); 1267 1268 typeLoc = getEncodedSourceLocation(getToken().getLoc()); 1269 auto type = parseType(); 1270 if (!type) 1271 return failure(); 1272 auto fnType = type.dyn_cast<FunctionType>(); 1273 if (!fnType) 1274 return mlir::emitError(typeLoc, "expected function type"); 1275 1276 parsedFnType = fnType; 1277 } 1278 1279 result.addTypes(parsedFnType->getResults()); 1280 1281 // Check that we have the right number of types for the operands. 1282 ArrayRef<Type> operandTypes = parsedFnType->getInputs(); 1283 if (operandTypes.size() != parsedOperandUseInfo->size()) { 1284 auto plural = "s"[parsedOperandUseInfo->size() == 1]; 1285 return mlir::emitError(typeLoc, "expected ") 1286 << parsedOperandUseInfo->size() << " operand type" << plural 1287 << " but had " << operandTypes.size(); 1288 } 1289 1290 // Resolve all of the operands. 1291 for (unsigned i = 0, e = parsedOperandUseInfo->size(); i != e; ++i) { 1292 result.operands.push_back( 1293 resolveSSAUse((*parsedOperandUseInfo)[i], operandTypes[i])); 1294 if (!result.operands.back()) 1295 return failure(); 1296 } 1297 1298 return success(); 1299 } 1300 1301 Operation *OperationParser::parseGenericOperation() { 1302 // Get location information for the operation. 1303 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 1304 1305 std::string name = getToken().getStringValue(); 1306 if (name.empty()) 1307 return (emitError("empty operation name is invalid"), nullptr); 1308 if (name.find('\0') != StringRef::npos) 1309 return (emitError("null character not allowed in operation name"), nullptr); 1310 1311 consumeToken(Token::string); 1312 1313 OperationState result(srcLocation, name); 1314 CleanupOpStateRegions guard{result}; 1315 1316 // Lazy load dialects in the context as needed. 1317 if (!result.name.isRegistered()) { 1318 StringRef dialectName = StringRef(name).split('.').first; 1319 if (!getContext()->getLoadedDialect(dialectName) && 1320 !getContext()->getOrLoadDialect(dialectName) && 1321 !getContext()->allowsUnregisteredDialects()) { 1322 // Emit an error if the dialect couldn't be loaded (i.e., it was not 1323 // registered) and unregistered dialects aren't allowed. 1324 emitError("operation being parsed with an unregistered dialect. If " 1325 "this is intended, please use -allow-unregistered-dialect " 1326 "with the MLIR tool used"); 1327 return nullptr; 1328 } 1329 } 1330 1331 // If we are populating the parser state, start a new operation definition. 1332 if (state.asmState) 1333 state.asmState->startOperationDefinition(result.name); 1334 1335 if (parseGenericOperationAfterOpName(result)) 1336 return nullptr; 1337 1338 // Create the operation and try to parse a location for it. 1339 Operation *op = opBuilder.create(result); 1340 if (parseTrailingLocationSpecifier(op)) 1341 return nullptr; 1342 return op; 1343 } 1344 1345 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 1346 Block::iterator insertPt) { 1347 Token nameToken = getToken(); 1348 1349 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 1350 opBuilder.setInsertionPoint(insertBlock, insertPt); 1351 Operation *op = parseGenericOperation(); 1352 if (!op) 1353 return nullptr; 1354 1355 // If we are populating the parser asm state, finalize this operation 1356 // definition. 1357 if (state.asmState) 1358 state.asmState->finalizeOperationDefinition(op, nameToken.getLocRange(), 1359 /*endLoc=*/getToken().getLoc()); 1360 return op; 1361 } 1362 1363 namespace { 1364 class CustomOpAsmParser : public AsmParserImpl<OpAsmParser> { 1365 public: 1366 CustomOpAsmParser( 1367 SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs, 1368 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly, 1369 bool isIsolatedFromAbove, StringRef opName, OperationParser &parser) 1370 : AsmParserImpl<OpAsmParser>(nameLoc, parser), resultIDs(resultIDs), 1371 parseAssembly(parseAssembly), isIsolatedFromAbove(isIsolatedFromAbove), 1372 opName(opName), parser(parser) { 1373 (void)isIsolatedFromAbove; // Only used in assert, silence unused warning. 1374 } 1375 1376 /// Parse an instance of the operation described by 'opDefinition' into the 1377 /// provided operation state. 1378 ParseResult parseOperation(OperationState &opState) { 1379 if (parseAssembly(*this, opState)) 1380 return failure(); 1381 // Verify that the parsed attributes does not have duplicate attributes. 1382 // This can happen if an attribute set during parsing is also specified in 1383 // the attribute dictionary in the assembly, or the attribute is set 1384 // multiple during parsing. 1385 Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate(); 1386 if (duplicate) 1387 return emitError(getNameLoc(), "attribute '") 1388 << duplicate->getName().getValue() 1389 << "' occurs more than once in the attribute list"; 1390 return success(); 1391 } 1392 1393 Operation *parseGenericOperation(Block *insertBlock, 1394 Block::iterator insertPt) final { 1395 return parser.parseGenericOperation(insertBlock, insertPt); 1396 } 1397 1398 FailureOr<OperationName> parseCustomOperationName() final { 1399 return parser.parseCustomOperationName(); 1400 } 1401 1402 ParseResult parseGenericOperationAfterOpName( 1403 OperationState &result, 1404 Optional<ArrayRef<UnresolvedOperand>> parsedUnresolvedOperands, 1405 Optional<ArrayRef<Block *>> parsedSuccessors, 1406 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions, 1407 Optional<ArrayRef<NamedAttribute>> parsedAttributes, 1408 Optional<FunctionType> parsedFnType) final { 1409 return parser.parseGenericOperationAfterOpName( 1410 result, parsedUnresolvedOperands, parsedSuccessors, parsedRegions, 1411 parsedAttributes, parsedFnType); 1412 } 1413 //===--------------------------------------------------------------------===// 1414 // Utilities 1415 //===--------------------------------------------------------------------===// 1416 1417 /// Return the name of the specified result in the specified syntax, as well 1418 /// as the subelement in the name. For example, in this operation: 1419 /// 1420 /// %x, %y:2, %z = foo.op 1421 /// 1422 /// getResultName(0) == {"x", 0 } 1423 /// getResultName(1) == {"y", 0 } 1424 /// getResultName(2) == {"y", 1 } 1425 /// getResultName(3) == {"z", 0 } 1426 std::pair<StringRef, unsigned> 1427 getResultName(unsigned resultNo) const override { 1428 // Scan for the resultID that contains this result number. 1429 for (const auto &entry : resultIDs) { 1430 if (resultNo < std::get<1>(entry)) { 1431 // Don't pass on the leading %. 1432 StringRef name = std::get<0>(entry).drop_front(); 1433 return {name, resultNo}; 1434 } 1435 resultNo -= std::get<1>(entry); 1436 } 1437 1438 // Invalid result number. 1439 return {"", ~0U}; 1440 } 1441 1442 /// Return the number of declared SSA results. This returns 4 for the foo.op 1443 /// example in the comment for getResultName. 1444 size_t getNumResults() const override { 1445 size_t count = 0; 1446 for (auto &entry : resultIDs) 1447 count += std::get<1>(entry); 1448 return count; 1449 } 1450 1451 /// Emit a diagnostic at the specified location and return failure. 1452 InFlightDiagnostic emitError(SMLoc loc, const Twine &message) override { 1453 return AsmParserImpl<OpAsmParser>::emitError(loc, "custom op '" + opName + 1454 "' " + message); 1455 } 1456 1457 //===--------------------------------------------------------------------===// 1458 // Operand Parsing 1459 //===--------------------------------------------------------------------===// 1460 1461 /// Parse a single operand. 1462 ParseResult parseOperand(UnresolvedOperand &result, 1463 bool allowResultNumber = true) override { 1464 OperationParser::UnresolvedOperand useInfo; 1465 if (parser.parseSSAUse(useInfo, allowResultNumber)) 1466 return failure(); 1467 1468 result = {useInfo.location, useInfo.name, useInfo.number}; 1469 return success(); 1470 } 1471 1472 /// Parse a single operand if present. 1473 OptionalParseResult 1474 parseOptionalOperand(UnresolvedOperand &result, 1475 bool allowResultNumber = true) override { 1476 if (parser.getToken().isOrIsCodeCompletionFor(Token::percent_identifier)) 1477 return parseOperand(result, allowResultNumber); 1478 return llvm::None; 1479 } 1480 1481 /// Parse zero or more SSA comma-separated operand references with a specified 1482 /// surrounding delimiter, and an optional required operand count. 1483 ParseResult parseOperandList(SmallVectorImpl<UnresolvedOperand> &result, 1484 Delimiter delimiter = Delimiter::None, 1485 bool allowResultNumber = true, 1486 int requiredOperandCount = -1) override { 1487 // The no-delimiter case has some special handling for better diagnostics. 1488 if (delimiter == Delimiter::None) { 1489 // parseCommaSeparatedList doesn't handle the missing case for "none", 1490 // so we handle it custom here. 1491 Token tok = parser.getToken(); 1492 if (!tok.isOrIsCodeCompletionFor(Token::percent_identifier)) { 1493 // If we didn't require any operands or required exactly zero (weird) 1494 // then this is success. 1495 if (requiredOperandCount == -1 || requiredOperandCount == 0) 1496 return success(); 1497 1498 // Otherwise, try to produce a nice error message. 1499 if (tok.isAny(Token::l_paren, Token::l_square)) 1500 return parser.emitError("unexpected delimiter"); 1501 return parser.emitWrongTokenError("expected operand"); 1502 } 1503 } 1504 1505 auto parseOneOperand = [&]() -> ParseResult { 1506 return parseOperand(result.emplace_back(), allowResultNumber); 1507 }; 1508 1509 auto startLoc = parser.getToken().getLoc(); 1510 if (parseCommaSeparatedList(delimiter, parseOneOperand, " in operand list")) 1511 return failure(); 1512 1513 // Check that we got the expected # of elements. 1514 if (requiredOperandCount != -1 && 1515 result.size() != static_cast<size_t>(requiredOperandCount)) 1516 return emitError(startLoc, "expected ") 1517 << requiredOperandCount << " operands"; 1518 return success(); 1519 } 1520 1521 /// Resolve an operand to an SSA value, emitting an error on failure. 1522 ParseResult resolveOperand(const UnresolvedOperand &operand, Type type, 1523 SmallVectorImpl<Value> &result) override { 1524 if (auto value = parser.resolveSSAUse(operand, type)) { 1525 result.push_back(value); 1526 return success(); 1527 } 1528 return failure(); 1529 } 1530 1531 /// Parse an AffineMap of SSA ids. 1532 ParseResult 1533 parseAffineMapOfSSAIds(SmallVectorImpl<UnresolvedOperand> &operands, 1534 Attribute &mapAttr, StringRef attrName, 1535 NamedAttrList &attrs, Delimiter delimiter) override { 1536 SmallVector<UnresolvedOperand, 2> dimOperands; 1537 SmallVector<UnresolvedOperand, 1> symOperands; 1538 1539 auto parseElement = [&](bool isSymbol) -> ParseResult { 1540 UnresolvedOperand operand; 1541 if (parseOperand(operand)) 1542 return failure(); 1543 if (isSymbol) 1544 symOperands.push_back(operand); 1545 else 1546 dimOperands.push_back(operand); 1547 return success(); 1548 }; 1549 1550 AffineMap map; 1551 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 1552 return failure(); 1553 // Add AffineMap attribute. 1554 if (map) { 1555 mapAttr = AffineMapAttr::get(map); 1556 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 1557 } 1558 1559 // Add dim operands before symbol operands in 'operands'. 1560 operands.assign(dimOperands.begin(), dimOperands.end()); 1561 operands.append(symOperands.begin(), symOperands.end()); 1562 return success(); 1563 } 1564 1565 /// Parse an AffineExpr of SSA ids. 1566 ParseResult 1567 parseAffineExprOfSSAIds(SmallVectorImpl<UnresolvedOperand> &dimOperands, 1568 SmallVectorImpl<UnresolvedOperand> &symbOperands, 1569 AffineExpr &expr) override { 1570 auto parseElement = [&](bool isSymbol) -> ParseResult { 1571 UnresolvedOperand operand; 1572 if (parseOperand(operand)) 1573 return failure(); 1574 if (isSymbol) 1575 symbOperands.push_back(operand); 1576 else 1577 dimOperands.push_back(operand); 1578 return success(); 1579 }; 1580 1581 return parser.parseAffineExprOfSSAIds(expr, parseElement); 1582 } 1583 1584 //===--------------------------------------------------------------------===// 1585 // Argument Parsing 1586 //===--------------------------------------------------------------------===// 1587 1588 /// Parse a single argument with the following syntax: 1589 /// 1590 /// `%ssaname : !type { optionalAttrDict} loc(optionalSourceLoc)` 1591 /// 1592 /// If `allowType` is false or `allowAttrs` are false then the respective 1593 /// parts of the grammar are not parsed. 1594 ParseResult parseArgument(Argument &result, bool allowType = false, 1595 bool allowAttrs = false) override { 1596 NamedAttrList attrs; 1597 if (parseOperand(result.ssaName, /*allowResultNumber=*/false) || 1598 (allowType && parseColonType(result.type)) || 1599 (allowAttrs && parseOptionalAttrDict(attrs)) || 1600 parseOptionalLocationSpecifier(result.sourceLoc)) 1601 return failure(); 1602 result.attrs = attrs.getDictionary(getContext()); 1603 return success(); 1604 } 1605 1606 /// Parse a single argument if present. 1607 OptionalParseResult parseOptionalArgument(Argument &result, bool allowType, 1608 bool allowAttrs) override { 1609 if (parser.getToken().is(Token::percent_identifier)) 1610 return parseArgument(result, allowType, allowAttrs); 1611 return llvm::None; 1612 } 1613 1614 ParseResult parseArgumentList(SmallVectorImpl<Argument> &result, 1615 Delimiter delimiter, bool allowType, 1616 bool allowAttrs) override { 1617 // The no-delimiter case has some special handling for the empty case. 1618 if (delimiter == Delimiter::None && 1619 parser.getToken().isNot(Token::percent_identifier)) 1620 return success(); 1621 1622 auto parseOneArgument = [&]() -> ParseResult { 1623 return parseArgument(result.emplace_back(), allowType, allowAttrs); 1624 }; 1625 return parseCommaSeparatedList(delimiter, parseOneArgument, 1626 " in argument list"); 1627 } 1628 1629 //===--------------------------------------------------------------------===// 1630 // Region Parsing 1631 //===--------------------------------------------------------------------===// 1632 1633 /// Parse a region that takes `arguments` of `argTypes` types. This 1634 /// effectively defines the SSA values of `arguments` and assigns their type. 1635 ParseResult parseRegion(Region ®ion, ArrayRef<Argument> arguments, 1636 bool enableNameShadowing) override { 1637 // Try to parse the region. 1638 (void)isIsolatedFromAbove; 1639 assert((!enableNameShadowing || isIsolatedFromAbove) && 1640 "name shadowing is only allowed on isolated regions"); 1641 if (parser.parseRegion(region, arguments, enableNameShadowing)) 1642 return failure(); 1643 return success(); 1644 } 1645 1646 /// Parses a region if present. 1647 OptionalParseResult parseOptionalRegion(Region ®ion, 1648 ArrayRef<Argument> arguments, 1649 bool enableNameShadowing) override { 1650 if (parser.getToken().isNot(Token::l_brace)) 1651 return llvm::None; 1652 return parseRegion(region, arguments, enableNameShadowing); 1653 } 1654 1655 /// Parses a region if present. If the region is present, a new region is 1656 /// allocated and placed in `region`. If no region is present, `region` 1657 /// remains untouched. 1658 OptionalParseResult 1659 parseOptionalRegion(std::unique_ptr<Region> ®ion, 1660 ArrayRef<Argument> arguments, 1661 bool enableNameShadowing = false) override { 1662 if (parser.getToken().isNot(Token::l_brace)) 1663 return llvm::None; 1664 std::unique_ptr<Region> newRegion = std::make_unique<Region>(); 1665 if (parseRegion(*newRegion, arguments, enableNameShadowing)) 1666 return failure(); 1667 1668 region = std::move(newRegion); 1669 return success(); 1670 } 1671 1672 //===--------------------------------------------------------------------===// 1673 // Successor Parsing 1674 //===--------------------------------------------------------------------===// 1675 1676 /// Parse a single operation successor. 1677 ParseResult parseSuccessor(Block *&dest) override { 1678 return parser.parseSuccessor(dest); 1679 } 1680 1681 /// Parse an optional operation successor and its operand list. 1682 OptionalParseResult parseOptionalSuccessor(Block *&dest) override { 1683 if (!parser.getToken().isOrIsCodeCompletionFor(Token::caret_identifier)) 1684 return llvm::None; 1685 return parseSuccessor(dest); 1686 } 1687 1688 /// Parse a single operation successor and its operand list. 1689 ParseResult 1690 parseSuccessorAndUseList(Block *&dest, 1691 SmallVectorImpl<Value> &operands) override { 1692 if (parseSuccessor(dest)) 1693 return failure(); 1694 1695 // Handle optional arguments. 1696 if (succeeded(parseOptionalLParen()) && 1697 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) { 1698 return failure(); 1699 } 1700 return success(); 1701 } 1702 1703 //===--------------------------------------------------------------------===// 1704 // Type Parsing 1705 //===--------------------------------------------------------------------===// 1706 1707 /// Parse a list of assignments of the form 1708 /// (%x1 = %y1, %x2 = %y2, ...). 1709 OptionalParseResult parseOptionalAssignmentList( 1710 SmallVectorImpl<Argument> &lhs, 1711 SmallVectorImpl<UnresolvedOperand> &rhs) override { 1712 if (failed(parseOptionalLParen())) 1713 return llvm::None; 1714 1715 auto parseElt = [&]() -> ParseResult { 1716 if (parseArgument(lhs.emplace_back()) || parseEqual() || 1717 parseOperand(rhs.emplace_back())) 1718 return failure(); 1719 return success(); 1720 }; 1721 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 1722 } 1723 1724 /// Parse a loc(...) specifier if present, filling in result if so. 1725 ParseResult 1726 parseOptionalLocationSpecifier(Optional<Location> &result) override { 1727 // If there is a 'loc' we parse a trailing location. 1728 if (!parser.consumeIf(Token::kw_loc)) 1729 return success(); 1730 LocationAttr directLoc; 1731 if (parser.parseToken(Token::l_paren, "expected '(' in location")) 1732 return failure(); 1733 1734 Token tok = parser.getToken(); 1735 1736 // Check to see if we are parsing a location alias. 1737 // Otherwise, we parse the location directly. 1738 if (tok.is(Token::hash_identifier)) { 1739 if (parser.parseLocationAlias(directLoc)) 1740 return failure(); 1741 } else if (parser.parseLocationInstance(directLoc)) { 1742 return failure(); 1743 } 1744 1745 if (parser.parseToken(Token::r_paren, "expected ')' in location")) 1746 return failure(); 1747 1748 result = directLoc; 1749 return success(); 1750 } 1751 1752 private: 1753 /// Information about the result name specifiers. 1754 ArrayRef<OperationParser::ResultRecord> resultIDs; 1755 1756 /// The abstract information of the operation. 1757 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly; 1758 bool isIsolatedFromAbove; 1759 StringRef opName; 1760 1761 /// The backing operation parser. 1762 OperationParser &parser; 1763 }; 1764 } // namespace 1765 1766 FailureOr<OperationName> OperationParser::parseCustomOperationName() { 1767 Token nameTok = getToken(); 1768 StringRef opName = nameTok.getSpelling(); 1769 if (opName.empty()) 1770 return (emitError("empty operation name is invalid"), failure()); 1771 consumeToken(); 1772 1773 // Check to see if this operation name is already registered. 1774 Optional<RegisteredOperationName> opInfo = 1775 RegisteredOperationName::lookup(opName, getContext()); 1776 if (opInfo) 1777 return *opInfo; 1778 1779 // If the operation doesn't have a dialect prefix try using the default 1780 // dialect. 1781 auto opNameSplit = opName.split('.'); 1782 StringRef dialectName = opNameSplit.first; 1783 std::string opNameStorage; 1784 if (opNameSplit.second.empty()) { 1785 // If the name didn't have a prefix, check for a code completion request. 1786 if (getToken().isCodeCompletion() && opName.back() == '.') 1787 return codeCompleteOperationName(dialectName); 1788 1789 dialectName = getState().defaultDialectStack.back(); 1790 opNameStorage = (dialectName + "." + opName).str(); 1791 opName = opNameStorage; 1792 } 1793 1794 // Try to load the dialect before returning the operation name to make sure 1795 // the operation has a chance to be registered. 1796 getContext()->getOrLoadDialect(dialectName); 1797 return OperationName(opName, getContext()); 1798 } 1799 1800 Operation * 1801 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) { 1802 SMLoc opLoc = getToken().getLoc(); 1803 StringRef originalOpName = getTokenSpelling(); 1804 1805 FailureOr<OperationName> opNameInfo = parseCustomOperationName(); 1806 if (failed(opNameInfo)) 1807 return nullptr; 1808 StringRef opName = opNameInfo->getStringRef(); 1809 1810 // This is the actual hook for the custom op parsing, usually implemented by 1811 // the op itself (`Op::parse()`). We retrieve it either from the 1812 // RegisteredOperationName or from the Dialect. 1813 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssemblyFn; 1814 bool isIsolatedFromAbove = false; 1815 1816 StringRef defaultDialect = ""; 1817 if (auto opInfo = opNameInfo->getRegisteredInfo()) { 1818 parseAssemblyFn = opInfo->getParseAssemblyFn(); 1819 isIsolatedFromAbove = opInfo->hasTrait<OpTrait::IsIsolatedFromAbove>(); 1820 auto *iface = opInfo->getInterface<OpAsmOpInterface>(); 1821 if (iface && !iface->getDefaultDialect().empty()) 1822 defaultDialect = iface->getDefaultDialect(); 1823 } else { 1824 Optional<Dialect::ParseOpHook> dialectHook; 1825 if (Dialect *dialect = opNameInfo->getDialect()) 1826 dialectHook = dialect->getParseOperationHook(opName); 1827 if (!dialectHook) { 1828 InFlightDiagnostic diag = 1829 emitError(opLoc) << "custom op '" << originalOpName << "' is unknown"; 1830 if (originalOpName != opName) 1831 diag << " (tried '" << opName << "' as well)"; 1832 return nullptr; 1833 } 1834 parseAssemblyFn = *dialectHook; 1835 } 1836 getState().defaultDialectStack.push_back(defaultDialect); 1837 auto restoreDefaultDialect = llvm::make_scope_exit( 1838 [&]() { getState().defaultDialectStack.pop_back(); }); 1839 1840 // If the custom op parser crashes, produce some indication to help 1841 // debugging. 1842 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 1843 opNameInfo->getIdentifier().data()); 1844 1845 // Get location information for the operation. 1846 auto srcLocation = getEncodedSourceLocation(opLoc); 1847 OperationState opState(srcLocation, *opNameInfo); 1848 1849 // If we are populating the parser state, start a new operation definition. 1850 if (state.asmState) 1851 state.asmState->startOperationDefinition(opState.name); 1852 1853 // Have the op implementation take a crack and parsing this. 1854 CleanupOpStateRegions guard{opState}; 1855 CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn, 1856 isIsolatedFromAbove, opName, *this); 1857 if (opAsmParser.parseOperation(opState)) 1858 return nullptr; 1859 1860 // If it emitted an error, we failed. 1861 if (opAsmParser.didEmitError()) 1862 return nullptr; 1863 1864 // Otherwise, create the operation and try to parse a location for it. 1865 Operation *op = opBuilder.create(opState); 1866 if (parseTrailingLocationSpecifier(op)) 1867 return nullptr; 1868 return op; 1869 } 1870 1871 ParseResult OperationParser::parseLocationAlias(LocationAttr &loc) { 1872 Token tok = getToken(); 1873 consumeToken(Token::hash_identifier); 1874 StringRef identifier = tok.getSpelling().drop_front(); 1875 if (identifier.contains('.')) { 1876 return emitError(tok.getLoc()) 1877 << "expected location, but found dialect attribute: '#" << identifier 1878 << "'"; 1879 } 1880 1881 // If this alias can be resolved, do it now. 1882 Attribute attr = state.symbols.attributeAliasDefinitions.lookup(identifier); 1883 if (attr) { 1884 if (!(loc = attr.dyn_cast<LocationAttr>())) 1885 return emitError(tok.getLoc()) 1886 << "expected location, but found '" << attr << "'"; 1887 } else { 1888 // Otherwise, remember this operation and resolve its location later. 1889 // In the meantime, use a special OpaqueLoc as a marker. 1890 loc = OpaqueLoc::get(deferredLocsReferences.size(), 1891 TypeID::get<DeferredLocInfo *>(), 1892 UnknownLoc::get(getContext())); 1893 deferredLocsReferences.push_back(DeferredLocInfo{tok.getLoc(), identifier}); 1894 } 1895 return success(); 1896 } 1897 1898 ParseResult 1899 OperationParser::parseTrailingLocationSpecifier(OpOrArgument opOrArgument) { 1900 // If there is a 'loc' we parse a trailing location. 1901 if (!consumeIf(Token::kw_loc)) 1902 return success(); 1903 if (parseToken(Token::l_paren, "expected '(' in location")) 1904 return failure(); 1905 Token tok = getToken(); 1906 1907 // Check to see if we are parsing a location alias. 1908 // Otherwise, we parse the location directly. 1909 LocationAttr directLoc; 1910 if (tok.is(Token::hash_identifier)) { 1911 if (parseLocationAlias(directLoc)) 1912 return failure(); 1913 } else if (parseLocationInstance(directLoc)) { 1914 return failure(); 1915 } 1916 1917 if (parseToken(Token::r_paren, "expected ')' in location")) 1918 return failure(); 1919 1920 if (auto *op = opOrArgument.dyn_cast<Operation *>()) 1921 op->setLoc(directLoc); 1922 else 1923 opOrArgument.get<BlockArgument>().setLoc(directLoc); 1924 return success(); 1925 } 1926 1927 //===----------------------------------------------------------------------===// 1928 // Region Parsing 1929 //===----------------------------------------------------------------------===// 1930 1931 ParseResult OperationParser::parseRegion(Region ®ion, 1932 ArrayRef<Argument> entryArguments, 1933 bool isIsolatedNameScope) { 1934 // Parse the '{'. 1935 Token lBraceTok = getToken(); 1936 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 1937 return failure(); 1938 1939 // If we are populating the parser state, start a new region definition. 1940 if (state.asmState) 1941 state.asmState->startRegionDefinition(); 1942 1943 // Parse the region body. 1944 if ((!entryArguments.empty() || getToken().isNot(Token::r_brace)) && 1945 parseRegionBody(region, lBraceTok.getLoc(), entryArguments, 1946 isIsolatedNameScope)) { 1947 return failure(); 1948 } 1949 consumeToken(Token::r_brace); 1950 1951 // If we are populating the parser state, finalize this region. 1952 if (state.asmState) 1953 state.asmState->finalizeRegionDefinition(); 1954 1955 return success(); 1956 } 1957 1958 ParseResult OperationParser::parseRegionBody(Region ®ion, SMLoc startLoc, 1959 ArrayRef<Argument> entryArguments, 1960 bool isIsolatedNameScope) { 1961 auto currentPt = opBuilder.saveInsertionPoint(); 1962 1963 // Push a new named value scope. 1964 pushSSANameScope(isIsolatedNameScope); 1965 1966 // Parse the first block directly to allow for it to be unnamed. 1967 auto owningBlock = std::make_unique<Block>(); 1968 Block *block = owningBlock.get(); 1969 1970 // If this block is not defined in the source file, add a definition for it 1971 // now in the assembly state. Blocks with a name will be defined when the name 1972 // is parsed. 1973 if (state.asmState && getToken().isNot(Token::caret_identifier)) 1974 state.asmState->addDefinition(block, startLoc); 1975 1976 // Add arguments to the entry block if we had the form with explicit names. 1977 if (!entryArguments.empty() && !entryArguments[0].ssaName.name.empty()) { 1978 // If we had named arguments, then don't allow a block name. 1979 if (getToken().is(Token::caret_identifier)) 1980 return emitError("invalid block name in region with named arguments"); 1981 1982 for (auto &entryArg : entryArguments) { 1983 auto &argInfo = entryArg.ssaName; 1984 1985 // Ensure that the argument was not already defined. 1986 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 1987 return emitError(argInfo.location, "region entry argument '" + 1988 argInfo.name + 1989 "' is already in use") 1990 .attachNote(getEncodedSourceLocation(*defLoc)) 1991 << "previously referenced here"; 1992 } 1993 Location loc = entryArg.sourceLoc.hasValue() 1994 ? entryArg.sourceLoc.getValue() 1995 : getEncodedSourceLocation(argInfo.location); 1996 BlockArgument arg = block->addArgument(entryArg.type, loc); 1997 1998 // Add a definition of this arg to the assembly state if provided. 1999 if (state.asmState) 2000 state.asmState->addDefinition(arg, argInfo.location); 2001 2002 // Record the definition for this argument. 2003 if (addDefinition(argInfo, arg)) 2004 return failure(); 2005 } 2006 } 2007 2008 if (parseBlock(block)) 2009 return failure(); 2010 2011 // Verify that no other arguments were parsed. 2012 if (!entryArguments.empty() && 2013 block->getNumArguments() > entryArguments.size()) { 2014 return emitError("entry block arguments were already defined"); 2015 } 2016 2017 // Parse the rest of the region. 2018 region.push_back(owningBlock.release()); 2019 while (getToken().isNot(Token::r_brace)) { 2020 Block *newBlock = nullptr; 2021 if (parseBlock(newBlock)) 2022 return failure(); 2023 region.push_back(newBlock); 2024 } 2025 2026 // Pop the SSA value scope for this region. 2027 if (popSSANameScope()) 2028 return failure(); 2029 2030 // Reset the original insertion point. 2031 opBuilder.restoreInsertionPoint(currentPt); 2032 return success(); 2033 } 2034 2035 //===----------------------------------------------------------------------===// 2036 // Block Parsing 2037 //===----------------------------------------------------------------------===// 2038 2039 /// Block declaration. 2040 /// 2041 /// block ::= block-label? operation* 2042 /// block-label ::= block-id block-arg-list? `:` 2043 /// block-id ::= caret-id 2044 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 2045 /// 2046 ParseResult OperationParser::parseBlock(Block *&block) { 2047 // The first block of a region may already exist, if it does the caret 2048 // identifier is optional. 2049 if (block && getToken().isNot(Token::caret_identifier)) 2050 return parseBlockBody(block); 2051 2052 SMLoc nameLoc = getToken().getLoc(); 2053 auto name = getTokenSpelling(); 2054 if (parseToken(Token::caret_identifier, "expected block name")) 2055 return failure(); 2056 2057 // Define the block with the specified name. 2058 auto &blockAndLoc = getBlockInfoByName(name); 2059 blockAndLoc.loc = nameLoc; 2060 2061 // Use a unique pointer for in-flight block being parsed. Release ownership 2062 // only in the case of a successful parse. This ensures that the Block 2063 // allocated is released if the parse fails and control returns early. 2064 std::unique_ptr<Block> inflightBlock; 2065 2066 // If a block has yet to be set, this is a new definition. If the caller 2067 // provided a block, use it. Otherwise create a new one. 2068 if (!blockAndLoc.block) { 2069 if (block) { 2070 blockAndLoc.block = block; 2071 } else { 2072 inflightBlock = std::make_unique<Block>(); 2073 blockAndLoc.block = inflightBlock.get(); 2074 } 2075 2076 // Otherwise, the block has a forward declaration. Forward declarations are 2077 // removed once defined, so if we are defining a existing block and it is 2078 // not a forward declaration, then it is a redeclaration. Fail if the block 2079 // was already defined. 2080 } else if (!eraseForwardRef(blockAndLoc.block)) { 2081 return emitError(nameLoc, "redefinition of block '") << name << "'"; 2082 } 2083 2084 // Populate the high level assembly state if necessary. 2085 if (state.asmState) 2086 state.asmState->addDefinition(blockAndLoc.block, nameLoc); 2087 2088 block = blockAndLoc.block; 2089 2090 // If an argument list is present, parse it. 2091 if (getToken().is(Token::l_paren)) 2092 if (parseOptionalBlockArgList(block)) 2093 return failure(); 2094 2095 if (parseToken(Token::colon, "expected ':' after block name")) 2096 return failure(); 2097 2098 ParseResult res = parseBlockBody(block); 2099 if (succeeded(res)) 2100 inflightBlock.release(); 2101 return res; 2102 } 2103 2104 ParseResult OperationParser::parseBlockBody(Block *block) { 2105 // Set the insertion point to the end of the block to parse. 2106 opBuilder.setInsertionPointToEnd(block); 2107 2108 // Parse the list of operations that make up the body of the block. 2109 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 2110 if (parseOperation()) 2111 return failure(); 2112 2113 return success(); 2114 } 2115 2116 /// Get the block with the specified name, creating it if it doesn't already 2117 /// exist. The location specified is the point of use, which allows 2118 /// us to diagnose references to blocks that are not defined precisely. 2119 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 2120 BlockDefinition &blockDef = getBlockInfoByName(name); 2121 if (!blockDef.block) { 2122 blockDef = {new Block(), loc}; 2123 insertForwardRef(blockDef.block, blockDef.loc); 2124 } 2125 2126 // Populate the high level assembly state if necessary. 2127 if (state.asmState) 2128 state.asmState->addUses(blockDef.block, loc); 2129 2130 return blockDef.block; 2131 } 2132 2133 /// Parse a (possibly empty) list of SSA operands with types as block arguments 2134 /// enclosed in parentheses. 2135 /// 2136 /// value-id-and-type-list ::= value-id-and-type (`,` ssa-id-and-type)* 2137 /// block-arg-list ::= `(` value-id-and-type-list? `)` 2138 /// 2139 ParseResult OperationParser::parseOptionalBlockArgList(Block *owner) { 2140 if (getToken().is(Token::r_brace)) 2141 return success(); 2142 2143 // If the block already has arguments, then we're handling the entry block. 2144 // Parse and register the names for the arguments, but do not add them. 2145 bool definingExistingArgs = owner->getNumArguments() != 0; 2146 unsigned nextArgument = 0; 2147 2148 return parseCommaSeparatedList(Delimiter::Paren, [&]() -> ParseResult { 2149 return parseSSADefOrUseAndType( 2150 [&](UnresolvedOperand useInfo, Type type) -> ParseResult { 2151 BlockArgument arg; 2152 2153 // If we are defining existing arguments, ensure that the argument 2154 // has already been created with the right type. 2155 if (definingExistingArgs) { 2156 // Otherwise, ensure that this argument has already been created. 2157 if (nextArgument >= owner->getNumArguments()) 2158 return emitError("too many arguments specified in argument list"); 2159 2160 // Finally, make sure the existing argument has the correct type. 2161 arg = owner->getArgument(nextArgument++); 2162 if (arg.getType() != type) 2163 return emitError("argument and block argument type mismatch"); 2164 } else { 2165 auto loc = getEncodedSourceLocation(useInfo.location); 2166 arg = owner->addArgument(type, loc); 2167 } 2168 2169 // If the argument has an explicit loc(...) specifier, parse and apply 2170 // it. 2171 if (parseTrailingLocationSpecifier(arg)) 2172 return failure(); 2173 2174 // Mark this block argument definition in the parser state if it was 2175 // provided. 2176 if (state.asmState) 2177 state.asmState->addDefinition(arg, useInfo.location); 2178 2179 return addDefinition(useInfo, arg); 2180 }); 2181 }); 2182 } 2183 2184 //===----------------------------------------------------------------------===// 2185 // Code Completion 2186 //===----------------------------------------------------------------------===// 2187 2188 ParseResult OperationParser::codeCompleteSSAUse() { 2189 std::string detailData; 2190 llvm::raw_string_ostream detailOS(detailData); 2191 for (IsolatedSSANameScope &scope : isolatedNameScopes) { 2192 for (auto &it : scope.values) { 2193 if (it.second.empty()) 2194 continue; 2195 Value frontValue = it.second.front().value; 2196 2197 // If the value isn't a forward reference, we also add the name of the op 2198 // to the detail. 2199 if (auto result = frontValue.dyn_cast<OpResult>()) { 2200 if (!forwardRefPlaceholders.count(result)) 2201 detailOS << result.getOwner()->getName() << ": "; 2202 } else { 2203 detailOS << "arg #" << frontValue.cast<BlockArgument>().getArgNumber() 2204 << ": "; 2205 } 2206 2207 // Emit the type of the values to aid with completion selection. 2208 detailOS << frontValue.getType(); 2209 2210 // FIXME: We should define a policy for packed values, e.g. with a limit 2211 // on the detail size, but it isn't clear what would be useful right now. 2212 // For now we just only emit the first type. 2213 if (it.second.size() > 1) 2214 detailOS << ", ..."; 2215 2216 state.codeCompleteContext->appendSSAValueCompletion( 2217 it.getKey(), std::move(detailOS.str())); 2218 } 2219 } 2220 2221 return failure(); 2222 } 2223 2224 ParseResult OperationParser::codeCompleteBlock() { 2225 // Don't provide completions if the token isn't empty, e.g. this avoids 2226 // weirdness when we encounter a `.` within the identifier. 2227 StringRef spelling = getTokenSpelling(); 2228 if (!(spelling.empty() || spelling == "^")) 2229 return failure(); 2230 2231 for (const auto &it : blocksByName.back()) 2232 state.codeCompleteContext->appendBlockCompletion(it.getFirst()); 2233 return failure(); 2234 } 2235 2236 //===----------------------------------------------------------------------===// 2237 // Top-level entity parsing. 2238 //===----------------------------------------------------------------------===// 2239 2240 namespace { 2241 /// This parser handles entities that are only valid at the top level of the 2242 /// file. 2243 class TopLevelOperationParser : public Parser { 2244 public: 2245 explicit TopLevelOperationParser(ParserState &state) : Parser(state) {} 2246 2247 /// Parse a set of operations into the end of the given Block. 2248 ParseResult parse(Block *topLevelBlock, Location parserLoc); 2249 2250 private: 2251 /// Parse an attribute alias declaration. 2252 /// 2253 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 2254 /// 2255 ParseResult parseAttributeAliasDef(); 2256 2257 /// Parse a type alias declaration. 2258 /// 2259 /// type-alias-def ::= '!' alias-name `=` type 2260 /// 2261 ParseResult parseTypeAliasDef(); 2262 2263 /// Parse a top-level file metadata dictionary. 2264 /// 2265 /// file-metadata-dict ::= '{-#' file-metadata-entry* `#-}' 2266 /// 2267 ParseResult parseFileMetadataDictionary(); 2268 2269 /// Parse a resource metadata dictionary. 2270 ParseResult parseResourceFileMetadata( 2271 function_ref<ParseResult(StringRef, SMLoc)> parseBody); 2272 ParseResult parseDialectResourceFileMetadata(); 2273 ParseResult parseExternalResourceFileMetadata(); 2274 }; 2275 2276 /// This class represents an implementation of a resource entry for the MLIR 2277 /// textual format. 2278 class ParsedResourceEntry : public AsmParsedResourceEntry { 2279 public: 2280 ParsedResourceEntry(StringRef key, SMLoc keyLoc, Token value, Parser &p) 2281 : key(key), keyLoc(keyLoc), value(value), p(p) {} 2282 ~ParsedResourceEntry() override = default; 2283 2284 StringRef getKey() const final { return key; } 2285 2286 InFlightDiagnostic emitError() const final { return p.emitError(keyLoc); } 2287 2288 FailureOr<bool> parseAsBool() const final { 2289 if (value.is(Token::kw_true)) 2290 return true; 2291 if (value.is(Token::kw_false)) 2292 return false; 2293 return p.emitError(value.getLoc(), 2294 "expected 'true' or 'false' value for key '" + key + 2295 "'"); 2296 } 2297 2298 FailureOr<std::string> parseAsString() const final { 2299 if (value.isNot(Token::string)) 2300 return p.emitError(value.getLoc(), 2301 "expected string value for key '" + key + "'"); 2302 return value.getStringValue(); 2303 } 2304 2305 FailureOr<AsmResourceBlob> 2306 parseAsBlob(BlobAllocatorFn allocator) const final { 2307 // Blob data within then textual format is represented as a hex string. 2308 // TODO: We could avoid an additional alloc+copy here if we pre-allocated 2309 // the buffer to use during hex processing. 2310 Optional<std::string> blobData = 2311 value.is(Token::string) ? value.getHexStringValue() : llvm::None; 2312 if (!blobData) 2313 return p.emitError(value.getLoc(), 2314 "expected hex string blob for key '" + key + "'"); 2315 2316 // Extract the alignment of the blob data, which gets stored at the 2317 // beginning of the string. 2318 if (blobData->size() < sizeof(uint32_t)) { 2319 return p.emitError(value.getLoc(), 2320 "expected hex string blob for key '" + key + 2321 "' to encode alignment in first 4 bytes"); 2322 } 2323 uint32_t align = 0; 2324 memcpy(&align, blobData->data(), sizeof(uint32_t)); 2325 2326 // Get the data portion of the blob. 2327 StringRef data = StringRef(*blobData).drop_front(sizeof(uint32_t)); 2328 if (data.empty()) 2329 return AsmResourceBlob(); 2330 2331 // Allocate memory for the blob using the provided allocator and copy the 2332 // data into it. 2333 AsmResourceBlob blob = allocator(data.size(), align); 2334 assert(llvm::isAddrAligned(llvm::Align(align), blob.getData().data()) && 2335 blob.isMutable() && 2336 "blob allocator did not return a properly aligned address"); 2337 memcpy(blob.getMutableData().data(), data.data(), data.size()); 2338 return blob; 2339 } 2340 2341 private: 2342 StringRef key; 2343 SMLoc keyLoc; 2344 Token value; 2345 Parser &p; 2346 }; 2347 } // namespace 2348 2349 ParseResult TopLevelOperationParser::parseAttributeAliasDef() { 2350 assert(getToken().is(Token::hash_identifier)); 2351 StringRef aliasName = getTokenSpelling().drop_front(); 2352 2353 // Check for redefinitions. 2354 if (state.symbols.attributeAliasDefinitions.count(aliasName) > 0) 2355 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 2356 2357 // Make sure this isn't invading the dialect attribute namespace. 2358 if (aliasName.contains('.')) 2359 return emitError("attribute names with a '.' are reserved for " 2360 "dialect-defined names"); 2361 2362 consumeToken(Token::hash_identifier); 2363 2364 // Parse the '='. 2365 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 2366 return failure(); 2367 2368 // Parse the attribute value. 2369 Attribute attr = parseAttribute(); 2370 if (!attr) 2371 return failure(); 2372 2373 state.symbols.attributeAliasDefinitions[aliasName] = attr; 2374 return success(); 2375 } 2376 2377 ParseResult TopLevelOperationParser::parseTypeAliasDef() { 2378 assert(getToken().is(Token::exclamation_identifier)); 2379 StringRef aliasName = getTokenSpelling().drop_front(); 2380 2381 // Check for redefinitions. 2382 if (state.symbols.typeAliasDefinitions.count(aliasName) > 0) 2383 return emitError("redefinition of type alias id '" + aliasName + "'"); 2384 2385 // Make sure this isn't invading the dialect type namespace. 2386 if (aliasName.contains('.')) 2387 return emitError("type names with a '.' are reserved for " 2388 "dialect-defined names"); 2389 consumeToken(Token::exclamation_identifier); 2390 2391 // Parse the '='. 2392 if (parseToken(Token::equal, "expected '=' in type alias definition")) 2393 return failure(); 2394 2395 // Parse the type. 2396 Type aliasedType = parseType(); 2397 if (!aliasedType) 2398 return failure(); 2399 2400 // Register this alias with the parser state. 2401 state.symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 2402 return success(); 2403 } 2404 2405 ParseResult TopLevelOperationParser::parseFileMetadataDictionary() { 2406 consumeToken(Token::file_metadata_begin); 2407 return parseCommaSeparatedListUntil( 2408 Token::file_metadata_end, [&]() -> ParseResult { 2409 // Parse the key of the metadata dictionary. 2410 SMLoc keyLoc = getToken().getLoc(); 2411 StringRef key; 2412 if (failed(parseOptionalKeyword(&key))) 2413 return emitError("expected identifier key in file " 2414 "metadata dictionary"); 2415 if (parseToken(Token::colon, "expected ':'")) 2416 return failure(); 2417 2418 // Process the metadata entry. 2419 if (key == "dialect_resources") 2420 return parseDialectResourceFileMetadata(); 2421 if (key == "external_resources") 2422 return parseExternalResourceFileMetadata(); 2423 return emitError(keyLoc, "unknown key '" + key + 2424 "' in file metadata dictionary"); 2425 }); 2426 } 2427 2428 ParseResult TopLevelOperationParser::parseResourceFileMetadata( 2429 function_ref<ParseResult(StringRef, SMLoc)> parseBody) { 2430 if (parseToken(Token::l_brace, "expected '{'")) 2431 return failure(); 2432 2433 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult { 2434 // Parse the top-level name entry. 2435 SMLoc nameLoc = getToken().getLoc(); 2436 StringRef name; 2437 if (failed(parseOptionalKeyword(&name))) 2438 return emitError("expected identifier key for 'resource' entry"); 2439 2440 if (parseToken(Token::colon, "expected ':'") || 2441 parseToken(Token::l_brace, "expected '{'")) 2442 return failure(); 2443 return parseBody(name, nameLoc); 2444 }); 2445 } 2446 2447 ParseResult TopLevelOperationParser::parseDialectResourceFileMetadata() { 2448 return parseResourceFileMetadata([&](StringRef name, 2449 SMLoc nameLoc) -> ParseResult { 2450 // Lookup the dialect and check that it can handle a resource entry. 2451 Dialect *dialect = getContext()->getOrLoadDialect(name); 2452 if (!dialect) 2453 return emitError(nameLoc, "dialect '" + name + "' is unknown"); 2454 const auto *handler = dyn_cast<OpAsmDialectInterface>(dialect); 2455 if (!handler) { 2456 return emitError() << "unexpected 'resource' section for dialect '" 2457 << dialect->getNamespace() << "'"; 2458 } 2459 2460 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult { 2461 // Parse the name of the resource entry. 2462 SMLoc keyLoc = getToken().getLoc(); 2463 StringRef key; 2464 if (failed(parseResourceHandle(handler, key)) || 2465 parseToken(Token::colon, "expected ':'")) 2466 return failure(); 2467 Token valueTok = getToken(); 2468 consumeToken(); 2469 2470 ParsedResourceEntry entry(key, keyLoc, valueTok, *this); 2471 return handler->parseResource(entry); 2472 }); 2473 }); 2474 } 2475 2476 ParseResult TopLevelOperationParser::parseExternalResourceFileMetadata() { 2477 return parseResourceFileMetadata([&](StringRef name, 2478 SMLoc nameLoc) -> ParseResult { 2479 AsmResourceParser *handler = state.config.getResourceParser(name); 2480 2481 // TODO: Should we require handling external resources in some scenarios? 2482 if (!handler) { 2483 emitWarning(getEncodedSourceLocation(nameLoc)) 2484 << "ignoring unknown external resources for '" << name << "'"; 2485 } 2486 2487 return parseCommaSeparatedListUntil(Token::r_brace, [&]() -> ParseResult { 2488 // Parse the name of the resource entry. 2489 SMLoc keyLoc = getToken().getLoc(); 2490 StringRef key; 2491 if (failed(parseOptionalKeyword(&key))) 2492 return emitError( 2493 "expected identifier key for 'external_resources' entry"); 2494 if (parseToken(Token::colon, "expected ':'")) 2495 return failure(); 2496 Token valueTok = getToken(); 2497 consumeToken(); 2498 2499 if (!handler) 2500 return success(); 2501 ParsedResourceEntry entry(key, keyLoc, valueTok, *this); 2502 return handler->parseResource(entry); 2503 }); 2504 }); 2505 } 2506 2507 ParseResult TopLevelOperationParser::parse(Block *topLevelBlock, 2508 Location parserLoc) { 2509 // Create a top-level operation to contain the parsed state. 2510 OwningOpRef<ModuleOp> topLevelOp(ModuleOp::create(parserLoc)); 2511 OperationParser opParser(state, topLevelOp.get()); 2512 while (true) { 2513 switch (getToken().getKind()) { 2514 default: 2515 // Parse a top-level operation. 2516 if (opParser.parseOperation()) 2517 return failure(); 2518 break; 2519 2520 // If we got to the end of the file, then we're done. 2521 case Token::eof: { 2522 if (opParser.finalize()) 2523 return failure(); 2524 2525 // Splice the blocks of the parsed operation over to the provided 2526 // top-level block. 2527 auto &parsedOps = topLevelOp->getBody()->getOperations(); 2528 auto &destOps = topLevelBlock->getOperations(); 2529 destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()), 2530 parsedOps, parsedOps.begin(), parsedOps.end()); 2531 return success(); 2532 } 2533 2534 // If we got an error token, then the lexer already emitted an error, just 2535 // stop. Someday we could introduce error recovery if there was demand 2536 // for it. 2537 case Token::error: 2538 return failure(); 2539 2540 // Parse an attribute alias. 2541 case Token::hash_identifier: 2542 if (parseAttributeAliasDef()) 2543 return failure(); 2544 break; 2545 2546 // Parse a type alias. 2547 case Token::exclamation_identifier: 2548 if (parseTypeAliasDef()) 2549 return failure(); 2550 break; 2551 2552 // Parse a file-level metadata dictionary. 2553 case Token::file_metadata_begin: 2554 if (parseFileMetadataDictionary()) 2555 return failure(); 2556 break; 2557 } 2558 } 2559 } 2560 2561 //===----------------------------------------------------------------------===// 2562 2563 LogicalResult 2564 mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, Block *block, 2565 const ParserConfig &config, LocationAttr *sourceFileLoc, 2566 AsmParserState *asmState, 2567 AsmParserCodeCompleteContext *codeCompleteContext) { 2568 const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 2569 2570 Location parserLoc = 2571 FileLineColLoc::get(config.getContext(), sourceBuf->getBufferIdentifier(), 2572 /*line=*/0, /*column=*/0); 2573 if (sourceFileLoc) 2574 *sourceFileLoc = parserLoc; 2575 2576 SymbolState aliasState; 2577 ParserState state(sourceMgr, config, aliasState, asmState, 2578 codeCompleteContext); 2579 return TopLevelOperationParser(state).parse(block, parserLoc); 2580 } 2581 2582 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, Block *block, 2583 const ParserConfig &config, 2584 LocationAttr *sourceFileLoc) { 2585 llvm::SourceMgr sourceMgr; 2586 return parseSourceFile(filename, sourceMgr, block, config, sourceFileLoc); 2587 } 2588 2589 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, 2590 llvm::SourceMgr &sourceMgr, Block *block, 2591 const ParserConfig &config, 2592 LocationAttr *sourceFileLoc, 2593 AsmParserState *asmState) { 2594 if (sourceMgr.getNumBuffers() != 0) { 2595 // TODO: Extend to support multiple buffers. 2596 return emitError(mlir::UnknownLoc::get(config.getContext()), 2597 "only main buffer parsed at the moment"); 2598 } 2599 auto fileOrErr = llvm::MemoryBuffer::getFileOrSTDIN(filename); 2600 if (std::error_code error = fileOrErr.getError()) 2601 return emitError(mlir::UnknownLoc::get(config.getContext()), 2602 "could not open input file " + filename); 2603 2604 // Load the MLIR source file. 2605 sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), SMLoc()); 2606 return parseSourceFile(sourceMgr, block, config, sourceFileLoc, asmState); 2607 } 2608 2609 LogicalResult mlir::parseSourceString(llvm::StringRef sourceStr, Block *block, 2610 const ParserConfig &config, 2611 LocationAttr *sourceFileLoc) { 2612 auto memBuffer = MemoryBuffer::getMemBuffer(sourceStr); 2613 if (!memBuffer) 2614 return failure(); 2615 2616 SourceMgr sourceMgr; 2617 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 2618 return parseSourceFile(sourceMgr, block, config, sourceFileLoc); 2619 } 2620