1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Parser.h" 14 #include "Lexer.h" 15 #include "mlir/Analysis/Verifier.h" 16 #include "mlir/IR/AffineExpr.h" 17 #include "mlir/IR/AffineMap.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/Dialect.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/IntegerSet.h" 23 #include "mlir/IR/Location.h" 24 #include "mlir/IR/MLIRContext.h" 25 #include "mlir/IR/Module.h" 26 #include "mlir/IR/OpImplementation.h" 27 #include "mlir/IR/StandardTypes.h" 28 #include "mlir/Support/STLExtras.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/ADT/bit.h" 33 #include "llvm/Support/PrettyStackTrace.h" 34 #include "llvm/Support/SMLoc.h" 35 #include "llvm/Support/SourceMgr.h" 36 #include <algorithm> 37 using namespace mlir; 38 using llvm::MemoryBuffer; 39 using llvm::SMLoc; 40 using llvm::SourceMgr; 41 42 namespace { 43 class Parser; 44 45 //===----------------------------------------------------------------------===// 46 // SymbolState 47 //===----------------------------------------------------------------------===// 48 49 /// This class contains record of any parsed top-level symbols. 50 struct SymbolState { 51 // A map from attribute alias identifier to Attribute. 52 llvm::StringMap<Attribute> attributeAliasDefinitions; 53 54 // A map from type alias identifier to Type. 55 llvm::StringMap<Type> typeAliasDefinitions; 56 57 /// A set of locations into the main parser memory buffer for each of the 58 /// active nested parsers. Given that some nested parsers, i.e. custom dialect 59 /// parsers, operate on a temporary memory buffer, this provides an anchor 60 /// point for emitting diagnostics. 61 SmallVector<llvm::SMLoc, 1> nestedParserLocs; 62 63 /// The top-level lexer that contains the original memory buffer provided by 64 /// the user. This is used by nested parsers to get a properly encoded source 65 /// location. 66 Lexer *topLevelLexer = nullptr; 67 }; 68 69 //===----------------------------------------------------------------------===// 70 // ParserState 71 //===----------------------------------------------------------------------===// 72 73 /// This class refers to all of the state maintained globally by the parser, 74 /// such as the current lexer position etc. 75 struct ParserState { 76 ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx, 77 SymbolState &symbols) 78 : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()), 79 symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) { 80 // Set the top level lexer for the symbol state if one doesn't exist. 81 if (!symbols.topLevelLexer) 82 symbols.topLevelLexer = &lex; 83 } 84 ~ParserState() { 85 // Reset the top level lexer if it refers the lexer in our state. 86 if (symbols.topLevelLexer == &lex) 87 symbols.topLevelLexer = nullptr; 88 } 89 ParserState(const ParserState &) = delete; 90 void operator=(const ParserState &) = delete; 91 92 /// The context we're parsing into. 93 MLIRContext *const context; 94 95 /// The lexer for the source file we're parsing. 96 Lexer lex; 97 98 /// This is the next token that hasn't been consumed yet. 99 Token curToken; 100 101 /// The current state for symbol parsing. 102 SymbolState &symbols; 103 104 /// The depth of this parser in the nested parsing stack. 105 size_t parserDepth; 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // Parser 110 //===----------------------------------------------------------------------===// 111 112 /// This class implement support for parsing global entities like types and 113 /// shared entities like SSA names. It is intended to be subclassed by 114 /// specialized subparsers that include state, e.g. when a local symbol table. 115 class Parser { 116 public: 117 Builder builder; 118 119 Parser(ParserState &state) : builder(state.context), state(state) {} 120 121 // Helper methods to get stuff from the parser-global state. 122 ParserState &getState() const { return state; } 123 MLIRContext *getContext() const { return state.context; } 124 const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } 125 126 /// Parse a comma-separated list of elements up until the specified end token. 127 ParseResult 128 parseCommaSeparatedListUntil(Token::Kind rightToken, 129 const std::function<ParseResult()> &parseElement, 130 bool allowEmptyList = true); 131 132 /// Parse a comma separated list of elements that must have at least one entry 133 /// in it. 134 ParseResult 135 parseCommaSeparatedList(const std::function<ParseResult()> &parseElement); 136 137 ParseResult parsePrettyDialectSymbolName(StringRef &prettyName); 138 139 // We have two forms of parsing methods - those that return a non-null 140 // pointer on success, and those that return a ParseResult to indicate whether 141 // they returned a failure. The second class fills in by-reference arguments 142 // as the results of their action. 143 144 //===--------------------------------------------------------------------===// 145 // Error Handling 146 //===--------------------------------------------------------------------===// 147 148 /// Emit an error and return failure. 149 InFlightDiagnostic emitError(const Twine &message = {}) { 150 return emitError(state.curToken.getLoc(), message); 151 } 152 InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {}); 153 154 /// Encode the specified source location information into an attribute for 155 /// attachment to the IR. 156 Location getEncodedSourceLocation(llvm::SMLoc loc) { 157 // If there are no active nested parsers, we can get the encoded source 158 // location directly. 159 if (state.parserDepth == 0) 160 return state.lex.getEncodedSourceLocation(loc); 161 // Otherwise, we need to re-encode it to point to the top level buffer. 162 return state.symbols.topLevelLexer->getEncodedSourceLocation( 163 remapLocationToTopLevelBuffer(loc)); 164 } 165 166 /// Remaps the given SMLoc to the top level lexer of the parser. This is used 167 /// to adjust locations of potentially nested parsers to ensure that they can 168 /// be emitted properly as diagnostics. 169 llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) { 170 // If there are no active nested parsers, we can return location directly. 171 SymbolState &symbols = state.symbols; 172 if (state.parserDepth == 0) 173 return loc; 174 assert(symbols.topLevelLexer && "expected valid top-level lexer"); 175 176 // Otherwise, we need to remap the location to the main parser. This is 177 // simply offseting the location onto the location of the last nested 178 // parser. 179 size_t offset = loc.getPointer() - state.lex.getBufferBegin(); 180 auto *rawLoc = 181 symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset; 182 return llvm::SMLoc::getFromPointer(rawLoc); 183 } 184 185 //===--------------------------------------------------------------------===// 186 // Token Parsing 187 //===--------------------------------------------------------------------===// 188 189 /// Return the current token the parser is inspecting. 190 const Token &getToken() const { return state.curToken; } 191 StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } 192 193 /// If the current token has the specified kind, consume it and return true. 194 /// If not, return false. 195 bool consumeIf(Token::Kind kind) { 196 if (state.curToken.isNot(kind)) 197 return false; 198 consumeToken(kind); 199 return true; 200 } 201 202 /// Advance the current lexer onto the next token. 203 void consumeToken() { 204 assert(state.curToken.isNot(Token::eof, Token::error) && 205 "shouldn't advance past EOF or errors"); 206 state.curToken = state.lex.lexToken(); 207 } 208 209 /// Advance the current lexer onto the next token, asserting what the expected 210 /// current token is. This is preferred to the above method because it leads 211 /// to more self-documenting code with better checking. 212 void consumeToken(Token::Kind kind) { 213 assert(state.curToken.is(kind) && "consumed an unexpected token"); 214 consumeToken(); 215 } 216 217 /// Consume the specified token if present and return success. On failure, 218 /// output a diagnostic and return failure. 219 ParseResult parseToken(Token::Kind expectedToken, const Twine &message); 220 221 //===--------------------------------------------------------------------===// 222 // Type Parsing 223 //===--------------------------------------------------------------------===// 224 225 ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements); 226 ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements); 227 ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements); 228 229 /// Parse an arbitrary type. 230 Type parseType(); 231 232 /// Parse a complex type. 233 Type parseComplexType(); 234 235 /// Parse an extended type. 236 Type parseExtendedType(); 237 238 /// Parse a function type. 239 Type parseFunctionType(); 240 241 /// Parse a memref type. 242 Type parseMemRefType(); 243 244 /// Parse a non function type. 245 Type parseNonFunctionType(); 246 247 /// Parse a tensor type. 248 Type parseTensorType(); 249 250 /// Parse a tuple type. 251 Type parseTupleType(); 252 253 /// Parse a vector type. 254 VectorType parseVectorType(); 255 ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 256 bool allowDynamic = true); 257 ParseResult parseXInDimensionList(); 258 259 /// Parse strided layout specification. 260 ParseResult parseStridedLayout(int64_t &offset, 261 SmallVectorImpl<int64_t> &strides); 262 263 // Parse a brace-delimiter list of comma-separated integers with `?` as an 264 // unknown marker. 265 ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions); 266 267 //===--------------------------------------------------------------------===// 268 // Attribute Parsing 269 //===--------------------------------------------------------------------===// 270 271 /// Parse an arbitrary attribute with an optional type. 272 Attribute parseAttribute(Type type = {}); 273 274 /// Parse an attribute dictionary. 275 ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes); 276 277 /// Parse an extended attribute. 278 Attribute parseExtendedAttr(Type type); 279 280 /// Parse a float attribute. 281 Attribute parseFloatAttr(Type type, bool isNegative); 282 283 /// Parse a decimal or a hexadecimal literal, which can be either an integer 284 /// or a float attribute. 285 Attribute parseDecOrHexAttr(Type type, bool isNegative); 286 287 /// Parse an opaque elements attribute. 288 Attribute parseOpaqueElementsAttr(); 289 290 /// Parse a dense elements attribute. 291 Attribute parseDenseElementsAttr(); 292 ShapedType parseElementsLiteralType(); 293 294 /// Parse a sparse elements attribute. 295 Attribute parseSparseElementsAttr(); 296 297 //===--------------------------------------------------------------------===// 298 // Location Parsing 299 //===--------------------------------------------------------------------===// 300 301 /// Parse an inline location. 302 ParseResult parseLocation(LocationAttr &loc); 303 304 /// Parse a raw location instance. 305 ParseResult parseLocationInstance(LocationAttr &loc); 306 307 /// Parse a callsite location instance. 308 ParseResult parseCallSiteLocation(LocationAttr &loc); 309 310 /// Parse a fused location instance. 311 ParseResult parseFusedLocation(LocationAttr &loc); 312 313 /// Parse a name or FileLineCol location instance. 314 ParseResult parseNameOrFileLineColLocation(LocationAttr &loc); 315 316 /// Parse an optional trailing location. 317 /// 318 /// trailing-location ::= (`loc` `(` location `)`)? 319 /// 320 ParseResult parseOptionalTrailingLocation(Location &loc) { 321 // If there is a 'loc' we parse a trailing location. 322 if (!getToken().is(Token::kw_loc)) 323 return success(); 324 325 // Parse the location. 326 LocationAttr directLoc; 327 if (parseLocation(directLoc)) 328 return failure(); 329 loc = directLoc; 330 return success(); 331 } 332 333 //===--------------------------------------------------------------------===// 334 // Affine Parsing 335 //===--------------------------------------------------------------------===// 336 337 /// Parse a reference to either an affine map, or an integer set. 338 ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, 339 IntegerSet &set); 340 ParseResult parseAffineMapReference(AffineMap &map); 341 ParseResult parseIntegerSetReference(IntegerSet &set); 342 343 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 344 ParseResult 345 parseAffineMapOfSSAIds(AffineMap &map, 346 function_ref<ParseResult(bool)> parseElement); 347 348 private: 349 /// The Parser is subclassed and reinstantiated. Do not add additional 350 /// non-trivial state here, add it to the ParserState class. 351 ParserState &state; 352 }; 353 } // end anonymous namespace 354 355 //===----------------------------------------------------------------------===// 356 // Helper methods. 357 //===----------------------------------------------------------------------===// 358 359 /// Parse a comma separated list of elements that must have at least one entry 360 /// in it. 361 ParseResult Parser::parseCommaSeparatedList( 362 const std::function<ParseResult()> &parseElement) { 363 // Non-empty case starts with an element. 364 if (parseElement()) 365 return failure(); 366 367 // Otherwise we have a list of comma separated elements. 368 while (consumeIf(Token::comma)) { 369 if (parseElement()) 370 return failure(); 371 } 372 return success(); 373 } 374 375 /// Parse a comma-separated list of elements, terminated with an arbitrary 376 /// token. This allows empty lists if allowEmptyList is true. 377 /// 378 /// abstract-list ::= rightToken // if allowEmptyList == true 379 /// abstract-list ::= element (',' element)* rightToken 380 /// 381 ParseResult Parser::parseCommaSeparatedListUntil( 382 Token::Kind rightToken, const std::function<ParseResult()> &parseElement, 383 bool allowEmptyList) { 384 // Handle the empty case. 385 if (getToken().is(rightToken)) { 386 if (!allowEmptyList) 387 return emitError("expected list element"); 388 consumeToken(rightToken); 389 return success(); 390 } 391 392 if (parseCommaSeparatedList(parseElement) || 393 parseToken(rightToken, "expected ',' or '" + 394 Token::getTokenSpelling(rightToken) + "'")) 395 return failure(); 396 397 return success(); 398 } 399 400 //===----------------------------------------------------------------------===// 401 // DialectAsmParser 402 //===----------------------------------------------------------------------===// 403 404 namespace { 405 /// This class provides the main implementation of the DialectAsmParser that 406 /// allows for dialects to parse attributes and types. This allows for dialect 407 /// hooking into the main MLIR parsing logic. 408 class CustomDialectAsmParser : public DialectAsmParser { 409 public: 410 CustomDialectAsmParser(StringRef fullSpec, Parser &parser) 411 : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()), 412 parser(parser) {} 413 ~CustomDialectAsmParser() override {} 414 415 /// Emit a diagnostic at the specified location and return failure. 416 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 417 return parser.emitError(loc, message); 418 } 419 420 /// Return a builder which provides useful access to MLIRContext, global 421 /// objects like types and attributes. 422 Builder &getBuilder() const override { return parser.builder; } 423 424 /// Get the location of the next token and store it into the argument. This 425 /// always succeeds. 426 llvm::SMLoc getCurrentLocation() override { 427 return parser.getToken().getLoc(); 428 } 429 430 /// Return the location of the original name token. 431 llvm::SMLoc getNameLoc() const override { return nameLoc; } 432 433 /// Re-encode the given source location as an MLIR location and return it. 434 Location getEncodedSourceLoc(llvm::SMLoc loc) override { 435 return parser.getEncodedSourceLocation(loc); 436 } 437 438 /// Returns the full specification of the symbol being parsed. This allows 439 /// for using a separate parser if necessary. 440 StringRef getFullSymbolSpec() const override { return fullSpec; } 441 442 /// Parse a floating point value from the stream. 443 ParseResult parseFloat(double &result) override { 444 bool negative = parser.consumeIf(Token::minus); 445 Token curTok = parser.getToken(); 446 447 // Check for a floating point value. 448 if (curTok.is(Token::floatliteral)) { 449 auto val = curTok.getFloatingPointValue(); 450 if (!val.hasValue()) 451 return emitError(curTok.getLoc(), "floating point value too large"); 452 parser.consumeToken(Token::floatliteral); 453 result = negative ? -*val : *val; 454 return success(); 455 } 456 457 // TODO(riverriddle) support hex floating point values. 458 return emitError(getCurrentLocation(), "expected floating point literal"); 459 } 460 461 /// Parse an optional integer value from the stream. 462 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 463 Token curToken = parser.getToken(); 464 if (curToken.isNot(Token::integer, Token::minus)) 465 return llvm::None; 466 467 bool negative = parser.consumeIf(Token::minus); 468 Token curTok = parser.getToken(); 469 if (parser.parseToken(Token::integer, "expected integer value")) 470 return failure(); 471 472 auto val = curTok.getUInt64IntegerValue(); 473 if (!val) 474 return emitError(curTok.getLoc(), "integer value too large"); 475 result = negative ? -*val : *val; 476 return success(); 477 } 478 479 //===--------------------------------------------------------------------===// 480 // Token Parsing 481 //===--------------------------------------------------------------------===// 482 483 /// Parse a `->` token. 484 ParseResult parseArrow() override { 485 return parser.parseToken(Token::arrow, "expected '->'"); 486 } 487 488 /// Parses a `->` if present. 489 ParseResult parseOptionalArrow() override { 490 return success(parser.consumeIf(Token::arrow)); 491 } 492 493 /// Parse a '{' token. 494 ParseResult parseLBrace() override { 495 return parser.parseToken(Token::l_brace, "expected '{'"); 496 } 497 498 /// Parse a '{' token if present 499 ParseResult parseOptionalLBrace() override { 500 return success(parser.consumeIf(Token::l_brace)); 501 } 502 503 /// Parse a `}` token. 504 ParseResult parseRBrace() override { 505 return parser.parseToken(Token::r_brace, "expected '}'"); 506 } 507 508 /// Parse a `}` token if present 509 ParseResult parseOptionalRBrace() override { 510 return success(parser.consumeIf(Token::r_brace)); 511 } 512 513 /// Parse a `:` token. 514 ParseResult parseColon() override { 515 return parser.parseToken(Token::colon, "expected ':'"); 516 } 517 518 /// Parse a `:` token if present. 519 ParseResult parseOptionalColon() override { 520 return success(parser.consumeIf(Token::colon)); 521 } 522 523 /// Parse a `,` token. 524 ParseResult parseComma() override { 525 return parser.parseToken(Token::comma, "expected ','"); 526 } 527 528 /// Parse a `,` token if present. 529 ParseResult parseOptionalComma() override { 530 return success(parser.consumeIf(Token::comma)); 531 } 532 533 /// Parses a `...` if present. 534 ParseResult parseOptionalEllipsis() override { 535 return success(parser.consumeIf(Token::ellipsis)); 536 } 537 538 /// Parse a `=` token. 539 ParseResult parseEqual() override { 540 return parser.parseToken(Token::equal, "expected '='"); 541 } 542 543 /// Parse a '<' token. 544 ParseResult parseLess() override { 545 return parser.parseToken(Token::less, "expected '<'"); 546 } 547 548 /// Parse a `<` token if present. 549 ParseResult parseOptionalLess() override { 550 return success(parser.consumeIf(Token::less)); 551 } 552 553 /// Parse a '>' token. 554 ParseResult parseGreater() override { 555 return parser.parseToken(Token::greater, "expected '>'"); 556 } 557 558 /// Parse a `>` token if present. 559 ParseResult parseOptionalGreater() override { 560 return success(parser.consumeIf(Token::greater)); 561 } 562 563 /// Parse a `(` token. 564 ParseResult parseLParen() override { 565 return parser.parseToken(Token::l_paren, "expected '('"); 566 } 567 568 /// Parses a '(' if present. 569 ParseResult parseOptionalLParen() override { 570 return success(parser.consumeIf(Token::l_paren)); 571 } 572 573 /// Parse a `)` token. 574 ParseResult parseRParen() override { 575 return parser.parseToken(Token::r_paren, "expected ')'"); 576 } 577 578 /// Parses a ')' if present. 579 ParseResult parseOptionalRParen() override { 580 return success(parser.consumeIf(Token::r_paren)); 581 } 582 583 /// Parse a `[` token. 584 ParseResult parseLSquare() override { 585 return parser.parseToken(Token::l_square, "expected '['"); 586 } 587 588 /// Parses a '[' if present. 589 ParseResult parseOptionalLSquare() override { 590 return success(parser.consumeIf(Token::l_square)); 591 } 592 593 /// Parse a `]` token. 594 ParseResult parseRSquare() override { 595 return parser.parseToken(Token::r_square, "expected ']'"); 596 } 597 598 /// Parses a ']' if present. 599 ParseResult parseOptionalRSquare() override { 600 return success(parser.consumeIf(Token::r_square)); 601 } 602 603 /// Parses a '?' if present. 604 ParseResult parseOptionalQuestion() override { 605 return success(parser.consumeIf(Token::question)); 606 } 607 608 /// Parses a '*' if present. 609 ParseResult parseOptionalStar() override { 610 return success(parser.consumeIf(Token::star)); 611 } 612 613 /// Returns if the current token corresponds to a keyword. 614 bool isCurrentTokenAKeyword() const { 615 return parser.getToken().is(Token::bare_identifier) || 616 parser.getToken().isKeyword(); 617 } 618 619 /// Parse the given keyword if present. 620 ParseResult parseOptionalKeyword(StringRef keyword) override { 621 // Check that the current token has the same spelling. 622 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 623 return failure(); 624 parser.consumeToken(); 625 return success(); 626 } 627 628 /// Parse a keyword, if present, into 'keyword'. 629 ParseResult parseOptionalKeyword(StringRef *keyword) override { 630 // Check that the current token is a keyword. 631 if (!isCurrentTokenAKeyword()) 632 return failure(); 633 634 *keyword = parser.getTokenSpelling(); 635 parser.consumeToken(); 636 return success(); 637 } 638 639 //===--------------------------------------------------------------------===// 640 // Attribute Parsing 641 //===--------------------------------------------------------------------===// 642 643 /// Parse an arbitrary attribute and return it in result. 644 ParseResult parseAttribute(Attribute &result, Type type) override { 645 result = parser.parseAttribute(type); 646 return success(static_cast<bool>(result)); 647 } 648 649 /// Parse an affine map instance into 'map'. 650 ParseResult parseAffineMap(AffineMap &map) override { 651 return parser.parseAffineMapReference(map); 652 } 653 654 /// Parse an integer set instance into 'set'. 655 ParseResult printIntegerSet(IntegerSet &set) override { 656 return parser.parseIntegerSetReference(set); 657 } 658 659 //===--------------------------------------------------------------------===// 660 // Type Parsing 661 //===--------------------------------------------------------------------===// 662 663 ParseResult parseType(Type &result) override { 664 result = parser.parseType(); 665 return success(static_cast<bool>(result)); 666 } 667 668 ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions, 669 bool allowDynamic) override { 670 return parser.parseDimensionListRanked(dimensions, allowDynamic); 671 } 672 673 private: 674 /// The full symbol specification. 675 StringRef fullSpec; 676 677 /// The source location of the dialect symbol. 678 SMLoc nameLoc; 679 680 /// The main parser. 681 Parser &parser; 682 }; 683 } // namespace 684 685 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s, 686 /// and may be recursive. Return with the 'prettyName' StringRef encompassing 687 /// the entire pretty name. 688 /// 689 /// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>' 690 /// pretty-dialect-sym-contents ::= pretty-dialect-sym-body 691 /// | '(' pretty-dialect-sym-contents+ ')' 692 /// | '[' pretty-dialect-sym-contents+ ']' 693 /// | '{' pretty-dialect-sym-contents+ '}' 694 /// | '[^[<({>\])}\0]+' 695 /// 696 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) { 697 // Pretty symbol names are a relatively unstructured format that contains a 698 // series of properly nested punctuation, with anything else in the middle. 699 // Scan ahead to find it and consume it if successful, otherwise emit an 700 // error. 701 auto *curPtr = getTokenSpelling().data(); 702 703 SmallVector<char, 8> nestedPunctuation; 704 705 // Scan over the nested punctuation, bailing out on error and consuming until 706 // we find the end. We know that we're currently looking at the '<', so we 707 // can go until we find the matching '>' character. 708 assert(*curPtr == '<'); 709 do { 710 char c = *curPtr++; 711 switch (c) { 712 case '\0': 713 // This also handles the EOF case. 714 return emitError("unexpected nul or EOF in pretty dialect name"); 715 case '<': 716 case '[': 717 case '(': 718 case '{': 719 nestedPunctuation.push_back(c); 720 continue; 721 722 case '-': 723 // The sequence `->` is treated as special token. 724 if (*curPtr == '>') 725 ++curPtr; 726 continue; 727 728 case '>': 729 if (nestedPunctuation.pop_back_val() != '<') 730 return emitError("unbalanced '>' character in pretty dialect name"); 731 break; 732 case ']': 733 if (nestedPunctuation.pop_back_val() != '[') 734 return emitError("unbalanced ']' character in pretty dialect name"); 735 break; 736 case ')': 737 if (nestedPunctuation.pop_back_val() != '(') 738 return emitError("unbalanced ')' character in pretty dialect name"); 739 break; 740 case '}': 741 if (nestedPunctuation.pop_back_val() != '{') 742 return emitError("unbalanced '}' character in pretty dialect name"); 743 break; 744 745 default: 746 continue; 747 } 748 } while (!nestedPunctuation.empty()); 749 750 // Ok, we succeeded, remember where we stopped, reset the lexer to know it is 751 // consuming all this stuff, and return. 752 state.lex.resetPointer(curPtr); 753 754 unsigned length = curPtr - prettyName.begin(); 755 prettyName = StringRef(prettyName.begin(), length); 756 consumeToken(); 757 return success(); 758 } 759 760 /// Parse an extended dialect symbol. 761 template <typename Symbol, typename SymbolAliasMap, typename CreateFn> 762 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok, 763 SymbolAliasMap &aliases, 764 CreateFn &&createSymbol) { 765 // Parse the dialect namespace. 766 StringRef identifier = p.getTokenSpelling().drop_front(); 767 auto loc = p.getToken().getLoc(); 768 p.consumeToken(identifierTok); 769 770 // If there is no '<' token following this, and if the typename contains no 771 // dot, then we are parsing a symbol alias. 772 if (p.getToken().isNot(Token::less) && !identifier.contains('.')) { 773 // Check for an alias for this type. 774 auto aliasIt = aliases.find(identifier); 775 if (aliasIt == aliases.end()) 776 return (p.emitError("undefined symbol alias id '" + identifier + "'"), 777 nullptr); 778 return aliasIt->second; 779 } 780 781 // Otherwise, we are parsing a dialect-specific symbol. If the name contains 782 // a dot, then this is the "pretty" form. If not, it is the verbose form that 783 // looks like <"...">. 784 std::string symbolData; 785 auto dialectName = identifier; 786 787 // Handle the verbose form, where "identifier" is a simple dialect name. 788 if (!identifier.contains('.')) { 789 // Consume the '<'. 790 if (p.parseToken(Token::less, "expected '<' in dialect type")) 791 return nullptr; 792 793 // Parse the symbol specific data. 794 if (p.getToken().isNot(Token::string)) 795 return (p.emitError("expected string literal data in dialect symbol"), 796 nullptr); 797 symbolData = p.getToken().getStringValue(); 798 loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1); 799 p.consumeToken(Token::string); 800 801 // Consume the '>'. 802 if (p.parseToken(Token::greater, "expected '>' in dialect symbol")) 803 return nullptr; 804 } else { 805 // Ok, the dialect name is the part of the identifier before the dot, the 806 // part after the dot is the dialect's symbol, or the start thereof. 807 auto dotHalves = identifier.split('.'); 808 dialectName = dotHalves.first; 809 auto prettyName = dotHalves.second; 810 loc = llvm::SMLoc::getFromPointer(prettyName.data()); 811 812 // If the dialect's symbol is followed immediately by a <, then lex the body 813 // of it into prettyName. 814 if (p.getToken().is(Token::less) && 815 prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) { 816 if (p.parsePrettyDialectSymbolName(prettyName)) 817 return nullptr; 818 } 819 820 symbolData = prettyName.str(); 821 } 822 823 // Record the name location of the type remapped to the top level buffer. 824 llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc); 825 p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer); 826 827 // Call into the provided symbol construction function. 828 Symbol sym = createSymbol(dialectName, symbolData, loc); 829 830 // Pop the last parser location. 831 p.getState().symbols.nestedParserLocs.pop_back(); 832 return sym; 833 } 834 835 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 836 /// parsing failed, nullptr is returned. The number of bytes read from the input 837 /// string is returned in 'numRead'. 838 template <typename T, typename ParserFn> 839 static T parseSymbol(StringRef inputStr, MLIRContext *context, 840 SymbolState &symbolState, ParserFn &&parserFn, 841 size_t *numRead = nullptr) { 842 SourceMgr sourceMgr; 843 auto memBuffer = MemoryBuffer::getMemBuffer( 844 inputStr, /*BufferName=*/"<mlir_parser_buffer>", 845 /*RequiresNullTerminator=*/false); 846 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 847 ParserState state(sourceMgr, context, symbolState); 848 Parser parser(state); 849 850 Token startTok = parser.getToken(); 851 T symbol = parserFn(parser); 852 if (!symbol) 853 return T(); 854 855 // If 'numRead' is valid, then provide the number of bytes that were read. 856 Token endTok = parser.getToken(); 857 if (numRead) { 858 *numRead = static_cast<size_t>(endTok.getLoc().getPointer() - 859 startTok.getLoc().getPointer()); 860 861 // Otherwise, ensure that all of the tokens were parsed. 862 } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) { 863 parser.emitError(endTok.getLoc(), "encountered unexpected token"); 864 return T(); 865 } 866 return symbol; 867 } 868 869 //===----------------------------------------------------------------------===// 870 // Error Handling 871 //===----------------------------------------------------------------------===// 872 873 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 874 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 875 876 // If we hit a parse error in response to a lexer error, then the lexer 877 // already reported the error. 878 if (getToken().is(Token::error)) 879 diag.abandon(); 880 return diag; 881 } 882 883 //===----------------------------------------------------------------------===// 884 // Token Parsing 885 //===----------------------------------------------------------------------===// 886 887 /// Consume the specified token if present and return success. On failure, 888 /// output a diagnostic and return failure. 889 ParseResult Parser::parseToken(Token::Kind expectedToken, 890 const Twine &message) { 891 if (consumeIf(expectedToken)) 892 return success(); 893 return emitError(message); 894 } 895 896 //===----------------------------------------------------------------------===// 897 // Type Parsing 898 //===----------------------------------------------------------------------===// 899 900 /// Parse an arbitrary type. 901 /// 902 /// type ::= function-type 903 /// | non-function-type 904 /// 905 Type Parser::parseType() { 906 if (getToken().is(Token::l_paren)) 907 return parseFunctionType(); 908 return parseNonFunctionType(); 909 } 910 911 /// Parse a function result type. 912 /// 913 /// function-result-type ::= type-list-parens 914 /// | non-function-type 915 /// 916 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) { 917 if (getToken().is(Token::l_paren)) 918 return parseTypeListParens(elements); 919 920 Type t = parseNonFunctionType(); 921 if (!t) 922 return failure(); 923 elements.push_back(t); 924 return success(); 925 } 926 927 /// Parse a list of types without an enclosing parenthesis. The list must have 928 /// at least one member. 929 /// 930 /// type-list-no-parens ::= type (`,` type)* 931 /// 932 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) { 933 auto parseElt = [&]() -> ParseResult { 934 auto elt = parseType(); 935 elements.push_back(elt); 936 return elt ? success() : failure(); 937 }; 938 939 return parseCommaSeparatedList(parseElt); 940 } 941 942 /// Parse a parenthesized list of types. 943 /// 944 /// type-list-parens ::= `(` `)` 945 /// | `(` type-list-no-parens `)` 946 /// 947 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) { 948 if (parseToken(Token::l_paren, "expected '('")) 949 return failure(); 950 951 // Handle empty lists. 952 if (getToken().is(Token::r_paren)) 953 return consumeToken(), success(); 954 955 if (parseTypeListNoParens(elements) || 956 parseToken(Token::r_paren, "expected ')'")) 957 return failure(); 958 return success(); 959 } 960 961 /// Parse a complex type. 962 /// 963 /// complex-type ::= `complex` `<` type `>` 964 /// 965 Type Parser::parseComplexType() { 966 consumeToken(Token::kw_complex); 967 968 // Parse the '<'. 969 if (parseToken(Token::less, "expected '<' in complex type")) 970 return nullptr; 971 972 auto typeLocation = getEncodedSourceLocation(getToken().getLoc()); 973 auto elementType = parseType(); 974 if (!elementType || 975 parseToken(Token::greater, "expected '>' in complex type")) 976 return nullptr; 977 978 return ComplexType::getChecked(elementType, typeLocation); 979 } 980 981 /// Parse an extended type. 982 /// 983 /// extended-type ::= (dialect-type | type-alias) 984 /// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>` 985 /// dialect-type ::= `!` alias-name pretty-dialect-attribute-body? 986 /// type-alias ::= `!` alias-name 987 /// 988 Type Parser::parseExtendedType() { 989 return parseExtendedSymbol<Type>( 990 *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions, 991 [&](StringRef dialectName, StringRef symbolData, 992 llvm::SMLoc loc) -> Type { 993 // If we found a registered dialect, then ask it to parse the type. 994 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 995 return parseSymbol<Type>( 996 symbolData, state.context, state.symbols, [&](Parser &parser) { 997 CustomDialectAsmParser customParser(symbolData, parser); 998 return dialect->parseType(customParser); 999 }); 1000 } 1001 1002 // Otherwise, form a new opaque type. 1003 return OpaqueType::getChecked( 1004 Identifier::get(dialectName, state.context), symbolData, 1005 state.context, getEncodedSourceLocation(loc)); 1006 }); 1007 } 1008 1009 /// Parse a function type. 1010 /// 1011 /// function-type ::= type-list-parens `->` function-result-type 1012 /// 1013 Type Parser::parseFunctionType() { 1014 assert(getToken().is(Token::l_paren)); 1015 1016 SmallVector<Type, 4> arguments, results; 1017 if (parseTypeListParens(arguments) || 1018 parseToken(Token::arrow, "expected '->' in function type") || 1019 parseFunctionResultTypes(results)) 1020 return nullptr; 1021 1022 return builder.getFunctionType(arguments, results); 1023 } 1024 1025 /// Parse the offset and strides from a strided layout specification. 1026 /// 1027 /// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list 1028 /// 1029 ParseResult Parser::parseStridedLayout(int64_t &offset, 1030 SmallVectorImpl<int64_t> &strides) { 1031 // Parse offset. 1032 consumeToken(Token::kw_offset); 1033 if (!consumeIf(Token::colon)) 1034 return emitError("expected colon after `offset` keyword"); 1035 auto maybeOffset = getToken().getUnsignedIntegerValue(); 1036 bool question = getToken().is(Token::question); 1037 if (!maybeOffset && !question) 1038 return emitError("invalid offset"); 1039 offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue()) 1040 : MemRefType::getDynamicStrideOrOffset(); 1041 consumeToken(); 1042 1043 if (!consumeIf(Token::comma)) 1044 return emitError("expected comma after offset value"); 1045 1046 // Parse stride list. 1047 if (!consumeIf(Token::kw_strides)) 1048 return emitError("expected `strides` keyword after offset specification"); 1049 if (!consumeIf(Token::colon)) 1050 return emitError("expected colon after `strides` keyword"); 1051 if (failed(parseStrideList(strides))) 1052 return emitError("invalid braces-enclosed stride list"); 1053 if (llvm::any_of(strides, [](int64_t st) { return st == 0; })) 1054 return emitError("invalid memref stride"); 1055 1056 return success(); 1057 } 1058 1059 /// Parse a memref type. 1060 /// 1061 /// memref-type ::= ranked-memref-type | unranked-memref-type 1062 /// 1063 /// ranked-memref-type ::= `memref` `<` dimension-list-ranked type 1064 /// (`,` semi-affine-map-composition)? (`,` 1065 /// memory-space)? `>` 1066 /// 1067 /// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>` 1068 /// 1069 /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map 1070 /// memory-space ::= integer-literal /* | TODO: address-space-id */ 1071 /// 1072 Type Parser::parseMemRefType() { 1073 consumeToken(Token::kw_memref); 1074 1075 if (parseToken(Token::less, "expected '<' in memref type")) 1076 return nullptr; 1077 1078 bool isUnranked; 1079 SmallVector<int64_t, 4> dimensions; 1080 1081 if (consumeIf(Token::star)) { 1082 // This is an unranked memref type. 1083 isUnranked = true; 1084 if (parseXInDimensionList()) 1085 return nullptr; 1086 1087 } else { 1088 isUnranked = false; 1089 if (parseDimensionListRanked(dimensions)) 1090 return nullptr; 1091 } 1092 1093 // Parse the element type. 1094 auto typeLoc = getToken().getLoc(); 1095 auto elementType = parseType(); 1096 if (!elementType) 1097 return nullptr; 1098 1099 // Parse semi-affine-map-composition. 1100 SmallVector<AffineMap, 2> affineMapComposition; 1101 unsigned memorySpace = 0; 1102 bool parsedMemorySpace = false; 1103 1104 auto parseElt = [&]() -> ParseResult { 1105 if (getToken().is(Token::integer)) { 1106 // Parse memory space. 1107 if (parsedMemorySpace) 1108 return emitError("multiple memory spaces specified in memref type"); 1109 auto v = getToken().getUnsignedIntegerValue(); 1110 if (!v.hasValue()) 1111 return emitError("invalid memory space in memref type"); 1112 memorySpace = v.getValue(); 1113 consumeToken(Token::integer); 1114 parsedMemorySpace = true; 1115 } else { 1116 if (isUnranked) 1117 return emitError("cannot have affine map for unranked memref type"); 1118 if (parsedMemorySpace) 1119 return emitError("expected memory space to be last in memref type"); 1120 if (getToken().is(Token::kw_offset)) { 1121 int64_t offset; 1122 SmallVector<int64_t, 4> strides; 1123 if (failed(parseStridedLayout(offset, strides))) 1124 return failure(); 1125 // Construct strided affine map. 1126 auto map = makeStridedLinearLayoutMap(strides, offset, 1127 elementType.getContext()); 1128 affineMapComposition.push_back(map); 1129 } else { 1130 // Parse affine map. 1131 auto affineMap = parseAttribute(); 1132 if (!affineMap) 1133 return failure(); 1134 // Verify that the parsed attribute is an affine map. 1135 if (auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>()) 1136 affineMapComposition.push_back(affineMapAttr.getValue()); 1137 else 1138 return emitError("expected affine map in memref type"); 1139 } 1140 } 1141 return success(); 1142 }; 1143 1144 // Parse a list of mappings and address space if present. 1145 if (consumeIf(Token::comma)) { 1146 // Parse comma separated list of affine maps, followed by memory space. 1147 if (parseCommaSeparatedListUntil(Token::greater, parseElt, 1148 /*allowEmptyList=*/false)) { 1149 return nullptr; 1150 } 1151 } else { 1152 if (parseToken(Token::greater, "expected ',' or '>' in memref type")) 1153 return nullptr; 1154 } 1155 1156 if (isUnranked) 1157 return UnrankedMemRefType::getChecked(elementType, memorySpace, 1158 getEncodedSourceLocation(typeLoc)); 1159 1160 return MemRefType::getChecked(dimensions, elementType, affineMapComposition, 1161 memorySpace, getEncodedSourceLocation(typeLoc)); 1162 } 1163 1164 /// Parse any type except the function type. 1165 /// 1166 /// non-function-type ::= integer-type 1167 /// | index-type 1168 /// | float-type 1169 /// | extended-type 1170 /// | vector-type 1171 /// | tensor-type 1172 /// | memref-type 1173 /// | complex-type 1174 /// | tuple-type 1175 /// | none-type 1176 /// 1177 /// index-type ::= `index` 1178 /// float-type ::= `f16` | `bf16` | `f32` | `f64` 1179 /// none-type ::= `none` 1180 /// 1181 Type Parser::parseNonFunctionType() { 1182 switch (getToken().getKind()) { 1183 default: 1184 return (emitError("expected non-function type"), nullptr); 1185 case Token::kw_memref: 1186 return parseMemRefType(); 1187 case Token::kw_tensor: 1188 return parseTensorType(); 1189 case Token::kw_complex: 1190 return parseComplexType(); 1191 case Token::kw_tuple: 1192 return parseTupleType(); 1193 case Token::kw_vector: 1194 return parseVectorType(); 1195 // integer-type 1196 case Token::inttype: { 1197 auto width = getToken().getIntTypeBitwidth(); 1198 if (!width.hasValue()) 1199 return (emitError("invalid integer width"), nullptr); 1200 auto loc = getEncodedSourceLocation(getToken().getLoc()); 1201 consumeToken(Token::inttype); 1202 return IntegerType::getChecked(width.getValue(), builder.getContext(), loc); 1203 } 1204 1205 // float-type 1206 case Token::kw_bf16: 1207 consumeToken(Token::kw_bf16); 1208 return builder.getBF16Type(); 1209 case Token::kw_f16: 1210 consumeToken(Token::kw_f16); 1211 return builder.getF16Type(); 1212 case Token::kw_f32: 1213 consumeToken(Token::kw_f32); 1214 return builder.getF32Type(); 1215 case Token::kw_f64: 1216 consumeToken(Token::kw_f64); 1217 return builder.getF64Type(); 1218 1219 // index-type 1220 case Token::kw_index: 1221 consumeToken(Token::kw_index); 1222 return builder.getIndexType(); 1223 1224 // none-type 1225 case Token::kw_none: 1226 consumeToken(Token::kw_none); 1227 return builder.getNoneType(); 1228 1229 // extended type 1230 case Token::exclamation_identifier: 1231 return parseExtendedType(); 1232 } 1233 } 1234 1235 /// Parse a tensor type. 1236 /// 1237 /// tensor-type ::= `tensor` `<` dimension-list type `>` 1238 /// dimension-list ::= dimension-list-ranked | `*x` 1239 /// 1240 Type Parser::parseTensorType() { 1241 consumeToken(Token::kw_tensor); 1242 1243 if (parseToken(Token::less, "expected '<' in tensor type")) 1244 return nullptr; 1245 1246 bool isUnranked; 1247 SmallVector<int64_t, 4> dimensions; 1248 1249 if (consumeIf(Token::star)) { 1250 // This is an unranked tensor type. 1251 isUnranked = true; 1252 1253 if (parseXInDimensionList()) 1254 return nullptr; 1255 1256 } else { 1257 isUnranked = false; 1258 if (parseDimensionListRanked(dimensions)) 1259 return nullptr; 1260 } 1261 1262 // Parse the element type. 1263 auto typeLocation = getEncodedSourceLocation(getToken().getLoc()); 1264 auto elementType = parseType(); 1265 if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) 1266 return nullptr; 1267 1268 if (isUnranked) 1269 return UnrankedTensorType::getChecked(elementType, typeLocation); 1270 return RankedTensorType::getChecked(dimensions, elementType, typeLocation); 1271 } 1272 1273 /// Parse a tuple type. 1274 /// 1275 /// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>` 1276 /// 1277 Type Parser::parseTupleType() { 1278 consumeToken(Token::kw_tuple); 1279 1280 // Parse the '<'. 1281 if (parseToken(Token::less, "expected '<' in tuple type")) 1282 return nullptr; 1283 1284 // Check for an empty tuple by directly parsing '>'. 1285 if (consumeIf(Token::greater)) 1286 return TupleType::get(getContext()); 1287 1288 // Parse the element types and the '>'. 1289 SmallVector<Type, 4> types; 1290 if (parseTypeListNoParens(types) || 1291 parseToken(Token::greater, "expected '>' in tuple type")) 1292 return nullptr; 1293 1294 return TupleType::get(types, getContext()); 1295 } 1296 1297 /// Parse a vector type. 1298 /// 1299 /// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>` 1300 /// non-empty-static-dimension-list ::= decimal-literal `x` 1301 /// static-dimension-list 1302 /// static-dimension-list ::= (decimal-literal `x`)* 1303 /// 1304 VectorType Parser::parseVectorType() { 1305 consumeToken(Token::kw_vector); 1306 1307 if (parseToken(Token::less, "expected '<' in vector type")) 1308 return nullptr; 1309 1310 SmallVector<int64_t, 4> dimensions; 1311 if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) 1312 return nullptr; 1313 if (dimensions.empty()) 1314 return (emitError("expected dimension size in vector type"), nullptr); 1315 1316 // Parse the element type. 1317 auto typeLoc = getToken().getLoc(); 1318 auto elementType = parseType(); 1319 if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) 1320 return nullptr; 1321 1322 return VectorType::getChecked(dimensions, elementType, 1323 getEncodedSourceLocation(typeLoc)); 1324 } 1325 1326 /// Parse a dimension list of a tensor or memref type. This populates the 1327 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and 1328 /// errors out on `?` otherwise. 1329 /// 1330 /// dimension-list-ranked ::= (dimension `x`)* 1331 /// dimension ::= `?` | decimal-literal 1332 /// 1333 /// When `allowDynamic` is not set, this is used to parse: 1334 /// 1335 /// static-dimension-list ::= (decimal-literal `x`)* 1336 ParseResult 1337 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 1338 bool allowDynamic) { 1339 while (getToken().isAny(Token::integer, Token::question)) { 1340 if (consumeIf(Token::question)) { 1341 if (!allowDynamic) 1342 return emitError("expected static shape"); 1343 dimensions.push_back(-1); 1344 } else { 1345 // Hexadecimal integer literals (starting with `0x`) are not allowed in 1346 // aggregate type declarations. Therefore, `0xf32` should be processed as 1347 // a sequence of separate elements `0`, `x`, `f32`. 1348 if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { 1349 // We can get here only if the token is an integer literal. Hexadecimal 1350 // integer literals can only start with `0x` (`1x` wouldn't lex as a 1351 // literal, just `1` would, at which point we don't get into this 1352 // branch). 1353 assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); 1354 dimensions.push_back(0); 1355 state.lex.resetPointer(getTokenSpelling().data() + 1); 1356 consumeToken(); 1357 } else { 1358 // Make sure this integer value is in bound and valid. 1359 auto dimension = getToken().getUnsignedIntegerValue(); 1360 if (!dimension.hasValue()) 1361 return emitError("invalid dimension"); 1362 dimensions.push_back((int64_t)dimension.getValue()); 1363 consumeToken(Token::integer); 1364 } 1365 } 1366 1367 // Make sure we have an 'x' or something like 'xbf32'. 1368 if (parseXInDimensionList()) 1369 return failure(); 1370 } 1371 1372 return success(); 1373 } 1374 1375 /// Parse an 'x' token in a dimension list, handling the case where the x is 1376 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next 1377 /// token. 1378 ParseResult Parser::parseXInDimensionList() { 1379 if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') 1380 return emitError("expected 'x' in dimension list"); 1381 1382 // If we had a prefix of 'x', lex the next token immediately after the 'x'. 1383 if (getTokenSpelling().size() != 1) 1384 state.lex.resetPointer(getTokenSpelling().data() + 1); 1385 1386 // Consume the 'x'. 1387 consumeToken(Token::bare_identifier); 1388 1389 return success(); 1390 } 1391 1392 // Parse a comma-separated list of dimensions, possibly empty: 1393 // stride-list ::= `[` (dimension (`,` dimension)*)? `]` 1394 ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) { 1395 if (!consumeIf(Token::l_square)) 1396 return failure(); 1397 // Empty list early exit. 1398 if (consumeIf(Token::r_square)) 1399 return success(); 1400 while (true) { 1401 if (consumeIf(Token::question)) { 1402 dimensions.push_back(MemRefType::getDynamicStrideOrOffset()); 1403 } else { 1404 // This must be an integer value. 1405 int64_t val; 1406 if (getToken().getSpelling().getAsInteger(10, val)) 1407 return emitError("invalid integer value: ") << getToken().getSpelling(); 1408 // Make sure it is not the one value for `?`. 1409 if (ShapedType::isDynamic(val)) 1410 return emitError("invalid integer value: ") 1411 << getToken().getSpelling() 1412 << ", use `?` to specify a dynamic dimension"; 1413 dimensions.push_back(val); 1414 consumeToken(Token::integer); 1415 } 1416 if (!consumeIf(Token::comma)) 1417 break; 1418 } 1419 if (!consumeIf(Token::r_square)) 1420 return failure(); 1421 return success(); 1422 } 1423 1424 //===----------------------------------------------------------------------===// 1425 // Attribute parsing. 1426 //===----------------------------------------------------------------------===// 1427 1428 /// Return the symbol reference referred to by the given token, that is known to 1429 /// be an @-identifier. 1430 static std::string extractSymbolReference(Token tok) { 1431 assert(tok.is(Token::at_identifier) && "expected valid @-identifier"); 1432 StringRef nameStr = tok.getSpelling().drop_front(); 1433 1434 // Check to see if the reference is a string literal, or a bare identifier. 1435 if (nameStr.front() == '"') 1436 return tok.getStringValue(); 1437 return nameStr; 1438 } 1439 1440 /// Parse an arbitrary attribute. 1441 /// 1442 /// attribute-value ::= `unit` 1443 /// | bool-literal 1444 /// | integer-literal (`:` (index-type | integer-type))? 1445 /// | float-literal (`:` float-type)? 1446 /// | string-literal (`:` type)? 1447 /// | type 1448 /// | `[` (attribute-value (`,` attribute-value)*)? `]` 1449 /// | `{` (attribute-entry (`,` attribute-entry)*)? `}` 1450 /// | symbol-ref-id (`::` symbol-ref-id)* 1451 /// | `dense` `<` attribute-value `>` `:` 1452 /// (tensor-type | vector-type) 1453 /// | `sparse` `<` attribute-value `,` attribute-value `>` 1454 /// `:` (tensor-type | vector-type) 1455 /// | `opaque` `<` dialect-namespace `,` hex-string-literal 1456 /// `>` `:` (tensor-type | vector-type) 1457 /// | extended-attribute 1458 /// 1459 Attribute Parser::parseAttribute(Type type) { 1460 switch (getToken().getKind()) { 1461 // Parse an AffineMap or IntegerSet attribute. 1462 case Token::kw_affine_map: { 1463 consumeToken(Token::kw_affine_map); 1464 1465 AffineMap map; 1466 if (parseToken(Token::less, "expected '<' in affine map") || 1467 parseAffineMapReference(map) || 1468 parseToken(Token::greater, "expected '>' in affine map")) 1469 return Attribute(); 1470 return AffineMapAttr::get(map); 1471 } 1472 case Token::kw_affine_set: { 1473 consumeToken(Token::kw_affine_set); 1474 1475 IntegerSet set; 1476 if (parseToken(Token::less, "expected '<' in integer set") || 1477 parseIntegerSetReference(set) || 1478 parseToken(Token::greater, "expected '>' in integer set")) 1479 return Attribute(); 1480 return IntegerSetAttr::get(set); 1481 } 1482 1483 // Parse an array attribute. 1484 case Token::l_square: { 1485 consumeToken(Token::l_square); 1486 1487 SmallVector<Attribute, 4> elements; 1488 auto parseElt = [&]() -> ParseResult { 1489 elements.push_back(parseAttribute()); 1490 return elements.back() ? success() : failure(); 1491 }; 1492 1493 if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) 1494 return nullptr; 1495 return builder.getArrayAttr(elements); 1496 } 1497 1498 // Parse a boolean attribute. 1499 case Token::kw_false: 1500 consumeToken(Token::kw_false); 1501 return builder.getBoolAttr(false); 1502 case Token::kw_true: 1503 consumeToken(Token::kw_true); 1504 return builder.getBoolAttr(true); 1505 1506 // Parse a dense elements attribute. 1507 case Token::kw_dense: 1508 return parseDenseElementsAttr(); 1509 1510 // Parse a dictionary attribute. 1511 case Token::l_brace: { 1512 SmallVector<NamedAttribute, 4> elements; 1513 if (parseAttributeDict(elements)) 1514 return nullptr; 1515 return builder.getDictionaryAttr(elements); 1516 } 1517 1518 // Parse an extended attribute, i.e. alias or dialect attribute. 1519 case Token::hash_identifier: 1520 return parseExtendedAttr(type); 1521 1522 // Parse floating point and integer attributes. 1523 case Token::floatliteral: 1524 return parseFloatAttr(type, /*isNegative=*/false); 1525 case Token::integer: 1526 return parseDecOrHexAttr(type, /*isNegative=*/false); 1527 case Token::minus: { 1528 consumeToken(Token::minus); 1529 if (getToken().is(Token::integer)) 1530 return parseDecOrHexAttr(type, /*isNegative=*/true); 1531 if (getToken().is(Token::floatliteral)) 1532 return parseFloatAttr(type, /*isNegative=*/true); 1533 1534 return (emitError("expected constant integer or floating point value"), 1535 nullptr); 1536 } 1537 1538 // Parse a location attribute. 1539 case Token::kw_loc: { 1540 LocationAttr attr; 1541 return failed(parseLocation(attr)) ? Attribute() : attr; 1542 } 1543 1544 // Parse an opaque elements attribute. 1545 case Token::kw_opaque: 1546 return parseOpaqueElementsAttr(); 1547 1548 // Parse a sparse elements attribute. 1549 case Token::kw_sparse: 1550 return parseSparseElementsAttr(); 1551 1552 // Parse a string attribute. 1553 case Token::string: { 1554 auto val = getToken().getStringValue(); 1555 consumeToken(Token::string); 1556 // Parse the optional trailing colon type if one wasn't explicitly provided. 1557 if (!type && consumeIf(Token::colon) && !(type = parseType())) 1558 return Attribute(); 1559 1560 return type ? StringAttr::get(val, type) 1561 : StringAttr::get(val, getContext()); 1562 } 1563 1564 // Parse a symbol reference attribute. 1565 case Token::at_identifier: { 1566 std::string nameStr = extractSymbolReference(getToken()); 1567 consumeToken(Token::at_identifier); 1568 1569 // Parse any nested references. 1570 std::vector<FlatSymbolRefAttr> nestedRefs; 1571 while (getToken().is(Token::colon)) { 1572 // Check for the '::' prefix. 1573 const char *curPointer = getToken().getLoc().getPointer(); 1574 consumeToken(Token::colon); 1575 if (!consumeIf(Token::colon)) { 1576 state.lex.resetPointer(curPointer); 1577 consumeToken(); 1578 break; 1579 } 1580 // Parse the reference itself. 1581 auto curLoc = getToken().getLoc(); 1582 if (getToken().isNot(Token::at_identifier)) { 1583 emitError(curLoc, "expected nested symbol reference identifier"); 1584 return Attribute(); 1585 } 1586 1587 std::string nameStr = extractSymbolReference(getToken()); 1588 consumeToken(Token::at_identifier); 1589 nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext())); 1590 } 1591 1592 return builder.getSymbolRefAttr(nameStr, nestedRefs); 1593 } 1594 1595 // Parse a 'unit' attribute. 1596 case Token::kw_unit: 1597 consumeToken(Token::kw_unit); 1598 return builder.getUnitAttr(); 1599 1600 default: 1601 // Parse a type attribute. 1602 if (Type type = parseType()) 1603 return TypeAttr::get(type); 1604 return nullptr; 1605 } 1606 } 1607 1608 /// Attribute dictionary. 1609 /// 1610 /// attribute-dict ::= `{` `}` 1611 /// | `{` attribute-entry (`,` attribute-entry)* `}` 1612 /// attribute-entry ::= bare-id `=` attribute-value 1613 /// 1614 ParseResult 1615 Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) { 1616 if (parseToken(Token::l_brace, "expected '{' in attribute dictionary")) 1617 return failure(); 1618 1619 auto parseElt = [&]() -> ParseResult { 1620 // We allow keywords as attribute names. 1621 if (getToken().isNot(Token::bare_identifier, Token::inttype) && 1622 !getToken().isKeyword()) 1623 return emitError("expected attribute name"); 1624 Identifier nameId = builder.getIdentifier(getTokenSpelling()); 1625 consumeToken(); 1626 1627 // Try to parse the '=' for the attribute value. 1628 if (!consumeIf(Token::equal)) { 1629 // If there is no '=', we treat this as a unit attribute. 1630 attributes.push_back({nameId, builder.getUnitAttr()}); 1631 return success(); 1632 } 1633 1634 auto attr = parseAttribute(); 1635 if (!attr) 1636 return failure(); 1637 1638 attributes.push_back({nameId, attr}); 1639 return success(); 1640 }; 1641 1642 if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) 1643 return failure(); 1644 1645 return success(); 1646 } 1647 1648 /// Parse an extended attribute. 1649 /// 1650 /// extended-attribute ::= (dialect-attribute | attribute-alias) 1651 /// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>` 1652 /// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body? 1653 /// attribute-alias ::= `#` alias-name 1654 /// 1655 Attribute Parser::parseExtendedAttr(Type type) { 1656 Attribute attr = parseExtendedSymbol<Attribute>( 1657 *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions, 1658 [&](StringRef dialectName, StringRef symbolData, 1659 llvm::SMLoc loc) -> Attribute { 1660 // Parse an optional trailing colon type. 1661 Type attrType = type; 1662 if (consumeIf(Token::colon) && !(attrType = parseType())) 1663 return Attribute(); 1664 1665 // If we found a registered dialect, then ask it to parse the attribute. 1666 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1667 return parseSymbol<Attribute>( 1668 symbolData, state.context, state.symbols, [&](Parser &parser) { 1669 CustomDialectAsmParser customParser(symbolData, parser); 1670 return dialect->parseAttribute(customParser, attrType); 1671 }); 1672 } 1673 1674 // Otherwise, form a new opaque attribute. 1675 return OpaqueAttr::getChecked( 1676 Identifier::get(dialectName, state.context), symbolData, 1677 attrType ? attrType : NoneType::get(state.context), 1678 getEncodedSourceLocation(loc)); 1679 }); 1680 1681 // Ensure that the attribute has the same type as requested. 1682 if (attr && type && attr.getType() != type) { 1683 emitError("attribute type different than expected: expected ") 1684 << type << ", but got " << attr.getType(); 1685 return nullptr; 1686 } 1687 return attr; 1688 } 1689 1690 /// Parse a float attribute. 1691 Attribute Parser::parseFloatAttr(Type type, bool isNegative) { 1692 auto val = getToken().getFloatingPointValue(); 1693 if (!val.hasValue()) 1694 return (emitError("floating point value too large for attribute"), nullptr); 1695 consumeToken(Token::floatliteral); 1696 if (!type) { 1697 // Default to F64 when no type is specified. 1698 if (!consumeIf(Token::colon)) 1699 type = builder.getF64Type(); 1700 else if (!(type = parseType())) 1701 return nullptr; 1702 } 1703 if (!type.isa<FloatType>()) 1704 return (emitError("floating point value not valid for specified type"), 1705 nullptr); 1706 return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue()); 1707 } 1708 1709 /// Construct a float attribute bitwise equivalent to the integer literal. 1710 static FloatAttr buildHexadecimalFloatLiteral(Parser *p, FloatType type, 1711 uint64_t value) { 1712 // FIXME: bfloat is currently stored as a double internally because it doesn't 1713 // have valid APFloat semantics. 1714 if (type.isF64() || type.isBF16()) { 1715 APFloat apFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value)); 1716 return p->builder.getFloatAttr(type, apFloat); 1717 } 1718 1719 APInt apInt(type.getWidth(), value); 1720 if (apInt != value) { 1721 p->emitError("hexadecimal float constant out of range for type"); 1722 return nullptr; 1723 } 1724 APFloat apFloat(type.getFloatSemantics(), apInt); 1725 return p->builder.getFloatAttr(type, apFloat); 1726 } 1727 1728 /// Parse a decimal or a hexadecimal literal, which can be either an integer 1729 /// or a float attribute. 1730 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) { 1731 auto val = getToken().getUInt64IntegerValue(); 1732 if (!val.hasValue()) 1733 return (emitError("integer constant out of range for attribute"), nullptr); 1734 1735 // Remember if the literal is hexadecimal. 1736 StringRef spelling = getToken().getSpelling(); 1737 auto loc = state.curToken.getLoc(); 1738 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1739 1740 consumeToken(Token::integer); 1741 if (!type) { 1742 // Default to i64 if not type is specified. 1743 if (!consumeIf(Token::colon)) 1744 type = builder.getIntegerType(64); 1745 else if (!(type = parseType())) 1746 return nullptr; 1747 } 1748 1749 if (auto floatType = type.dyn_cast<FloatType>()) { 1750 if (isNegative) 1751 return emitError( 1752 loc, 1753 "hexadecimal float literal should not have a leading minus"), 1754 nullptr; 1755 if (!isHex) { 1756 emitError(loc, "unexpected decimal integer literal for a float attribute") 1757 .attachNote() 1758 << "add a trailing dot to make the literal a float"; 1759 return nullptr; 1760 } 1761 1762 // Construct a float attribute bitwise equivalent to the integer literal. 1763 return buildHexadecimalFloatLiteral(this, floatType, *val); 1764 } 1765 1766 if (!type.isIntOrIndex()) 1767 return emitError(loc, "integer literal not valid for specified type"), 1768 nullptr; 1769 1770 // Parse the integer literal. 1771 int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); 1772 APInt apInt(width, *val, isNegative); 1773 if (apInt != *val) 1774 return emitError(loc, "integer constant out of range for attribute"), 1775 nullptr; 1776 1777 // Otherwise construct an integer attribute. 1778 if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0) 1779 return emitError(loc, "integer constant out of range for attribute"), 1780 nullptr; 1781 1782 return builder.getIntegerAttr(type, isNegative ? -apInt : apInt); 1783 } 1784 1785 /// Parse an opaque elements attribute. 1786 Attribute Parser::parseOpaqueElementsAttr() { 1787 consumeToken(Token::kw_opaque); 1788 if (parseToken(Token::less, "expected '<' after 'opaque'")) 1789 return nullptr; 1790 1791 if (getToken().isNot(Token::string)) 1792 return (emitError("expected dialect namespace"), nullptr); 1793 1794 auto name = getToken().getStringValue(); 1795 auto *dialect = builder.getContext()->getRegisteredDialect(name); 1796 // TODO(shpeisman): Allow for having an unknown dialect on an opaque 1797 // attribute. Otherwise, it can't be roundtripped without having the dialect 1798 // registered. 1799 if (!dialect) 1800 return (emitError("no registered dialect with namespace '" + name + "'"), 1801 nullptr); 1802 1803 consumeToken(Token::string); 1804 if (parseToken(Token::comma, "expected ','")) 1805 return nullptr; 1806 1807 if (getToken().getKind() != Token::string) 1808 return (emitError("opaque string should start with '0x'"), nullptr); 1809 1810 auto val = getToken().getStringValue(); 1811 if (val.size() < 2 || val[0] != '0' || val[1] != 'x') 1812 return (emitError("opaque string should start with '0x'"), nullptr); 1813 1814 val = val.substr(2); 1815 if (!llvm::all_of(val, llvm::isHexDigit)) 1816 return (emitError("opaque string only contains hex digits"), nullptr); 1817 1818 consumeToken(Token::string); 1819 if (parseToken(Token::greater, "expected '>'") || 1820 parseToken(Token::colon, "expected ':'")) 1821 return nullptr; 1822 1823 auto type = parseElementsLiteralType(); 1824 if (!type) 1825 return nullptr; 1826 1827 return OpaqueElementsAttr::get(dialect, type, llvm::fromHex(val)); 1828 } 1829 1830 namespace { 1831 class TensorLiteralParser { 1832 public: 1833 TensorLiteralParser(Parser &p) : p(p) {} 1834 1835 ParseResult parse() { 1836 if (p.getToken().is(Token::l_square)) 1837 return parseList(shape); 1838 return parseElement(); 1839 } 1840 1841 /// Build a dense attribute instance with the parsed elements and the given 1842 /// shaped type. 1843 DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type); 1844 1845 ArrayRef<int64_t> getShape() const { return shape; } 1846 1847 private: 1848 enum class ElementKind { Boolean, Integer, Float }; 1849 1850 /// Return a string to represent the given element kind. 1851 const char *getElementKindStr(ElementKind kind) { 1852 switch (kind) { 1853 case ElementKind::Boolean: 1854 return "'boolean'"; 1855 case ElementKind::Integer: 1856 return "'integer'"; 1857 case ElementKind::Float: 1858 return "'float'"; 1859 } 1860 llvm_unreachable("unknown element kind"); 1861 } 1862 1863 /// Build a Dense Integer attribute for the given type. 1864 DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type, 1865 IntegerType eltTy); 1866 1867 /// Build a Dense Float attribute for the given type. 1868 DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type, 1869 FloatType eltTy); 1870 1871 /// Parse a single element, returning failure if it isn't a valid element 1872 /// literal. For example: 1873 /// parseElement(1) -> Success, 1 1874 /// parseElement([1]) -> Failure 1875 ParseResult parseElement(); 1876 1877 /// Parse a list of either lists or elements, returning the dimensions of the 1878 /// parsed sub-tensors in dims. For example: 1879 /// parseList([1, 2, 3]) -> Success, [3] 1880 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 1881 /// parseList([[1, 2], 3]) -> Failure 1882 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 1883 ParseResult parseList(SmallVectorImpl<int64_t> &dims); 1884 1885 Parser &p; 1886 1887 /// The shape inferred from the parsed elements. 1888 SmallVector<int64_t, 4> shape; 1889 1890 /// Storage used when parsing elements, this is a pair of <is_negated, token>. 1891 std::vector<std::pair<bool, Token>> storage; 1892 1893 /// A flag that indicates the type of elements that have been parsed. 1894 Optional<ElementKind> knownEltKind; 1895 }; 1896 } // namespace 1897 1898 /// Build a dense attribute instance with the parsed elements and the given 1899 /// shaped type. 1900 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc, 1901 ShapedType type) { 1902 // Check that the parsed storage size has the same number of elements to the 1903 // type, or is a known splat. 1904 if (!shape.empty() && getShape() != type.getShape()) { 1905 p.emitError(loc) << "inferred shape of elements literal ([" << getShape() 1906 << "]) does not match type ([" << type.getShape() << "])"; 1907 return nullptr; 1908 } 1909 1910 // If the type is an integer, build a set of APInt values from the storage 1911 // with the correct bitwidth. 1912 if (auto intTy = type.getElementType().dyn_cast<IntegerType>()) 1913 return getIntAttr(loc, type, intTy); 1914 1915 // Otherwise, this must be a floating point type. 1916 auto floatTy = type.getElementType().dyn_cast<FloatType>(); 1917 if (!floatTy) { 1918 p.emitError(loc) << "expected floating-point or integer element type, got " 1919 << type.getElementType(); 1920 return nullptr; 1921 } 1922 return getFloatAttr(loc, type, floatTy); 1923 } 1924 1925 /// Build a Dense Integer attribute for the given type. 1926 DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc, 1927 ShapedType type, 1928 IntegerType eltTy) { 1929 std::vector<APInt> intElements; 1930 intElements.reserve(storage.size()); 1931 for (const auto &signAndToken : storage) { 1932 bool isNegative = signAndToken.first; 1933 const Token &token = signAndToken.second; 1934 1935 // Check to see if floating point values were parsed. 1936 if (token.is(Token::floatliteral)) { 1937 p.emitError() << "expected integer elements, but parsed floating-point"; 1938 return nullptr; 1939 } 1940 1941 assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) && 1942 "unexpected token type"); 1943 if (token.isAny(Token::kw_true, Token::kw_false)) { 1944 if (!eltTy.isInteger(1)) 1945 p.emitError() << "expected i1 type for 'true' or 'false' values"; 1946 APInt apInt(eltTy.getWidth(), token.is(Token::kw_true), 1947 /*isSigned=*/false); 1948 intElements.push_back(apInt); 1949 continue; 1950 } 1951 1952 // Create APInt values for each element with the correct bitwidth. 1953 auto val = token.getUInt64IntegerValue(); 1954 if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0 1955 : (int64_t)val.getValue() < 0)) { 1956 p.emitError(token.getLoc(), 1957 "integer constant out of range for attribute"); 1958 return nullptr; 1959 } 1960 APInt apInt(eltTy.getWidth(), val.getValue(), isNegative); 1961 if (apInt != val.getValue()) 1962 return (p.emitError("integer constant out of range for type"), nullptr); 1963 intElements.push_back(isNegative ? -apInt : apInt); 1964 } 1965 1966 return DenseElementsAttr::get(type, intElements); 1967 } 1968 1969 /// Build a Dense Float attribute for the given type. 1970 DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc, 1971 ShapedType type, 1972 FloatType eltTy) { 1973 std::vector<Attribute> floatValues; 1974 floatValues.reserve(storage.size()); 1975 for (const auto &signAndToken : storage) { 1976 bool isNegative = signAndToken.first; 1977 const Token &token = signAndToken.second; 1978 1979 // Handle hexadecimal float literals. 1980 if (token.is(Token::integer) && token.getSpelling().startswith("0x")) { 1981 if (isNegative) { 1982 p.emitError(token.getLoc()) 1983 << "hexadecimal float literal should not have a leading minus"; 1984 return nullptr; 1985 } 1986 auto val = token.getUInt64IntegerValue(); 1987 if (!val.hasValue()) { 1988 p.emitError("hexadecimal float constant out of range for attribute"); 1989 return nullptr; 1990 } 1991 FloatAttr attr = buildHexadecimalFloatLiteral(&p, eltTy, *val); 1992 if (!attr) 1993 return nullptr; 1994 floatValues.push_back(attr); 1995 continue; 1996 } 1997 1998 // Check to see if any decimal integers or booleans were parsed. 1999 if (!token.is(Token::floatliteral)) { 2000 p.emitError() << "expected floating-point elements, but parsed integer"; 2001 return nullptr; 2002 } 2003 2004 // Build the float values from tokens. 2005 auto val = token.getFloatingPointValue(); 2006 if (!val.hasValue()) { 2007 p.emitError("floating point value too large for attribute"); 2008 return nullptr; 2009 } 2010 floatValues.push_back(FloatAttr::get(eltTy, isNegative ? -*val : *val)); 2011 } 2012 2013 return DenseElementsAttr::get(type, floatValues); 2014 } 2015 2016 ParseResult TensorLiteralParser::parseElement() { 2017 switch (p.getToken().getKind()) { 2018 // Parse a boolean element. 2019 case Token::kw_true: 2020 case Token::kw_false: 2021 case Token::floatliteral: 2022 case Token::integer: 2023 storage.emplace_back(/*isNegative=*/false, p.getToken()); 2024 p.consumeToken(); 2025 break; 2026 2027 // Parse a signed integer or a negative floating-point element. 2028 case Token::minus: 2029 p.consumeToken(Token::minus); 2030 if (!p.getToken().isAny(Token::floatliteral, Token::integer)) 2031 return p.emitError("expected integer or floating point literal"); 2032 storage.emplace_back(/*isNegative=*/true, p.getToken()); 2033 p.consumeToken(); 2034 break; 2035 2036 default: 2037 return p.emitError("expected element literal of primitive type"); 2038 } 2039 2040 return success(); 2041 } 2042 2043 /// Parse a list of either lists or elements, returning the dimensions of the 2044 /// parsed sub-tensors in dims. For example: 2045 /// parseList([1, 2, 3]) -> Success, [3] 2046 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 2047 /// parseList([[1, 2], 3]) -> Failure 2048 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 2049 ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) { 2050 p.consumeToken(Token::l_square); 2051 2052 auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims, 2053 const SmallVectorImpl<int64_t> &newDims) -> ParseResult { 2054 if (prevDims == newDims) 2055 return success(); 2056 return p.emitError("tensor literal is invalid; ranks are not consistent " 2057 "between elements"); 2058 }; 2059 2060 bool first = true; 2061 SmallVector<int64_t, 4> newDims; 2062 unsigned size = 0; 2063 auto parseCommaSeparatedList = [&]() -> ParseResult { 2064 SmallVector<int64_t, 4> thisDims; 2065 if (p.getToken().getKind() == Token::l_square) { 2066 if (parseList(thisDims)) 2067 return failure(); 2068 } else if (parseElement()) { 2069 return failure(); 2070 } 2071 ++size; 2072 if (!first) 2073 return checkDims(newDims, thisDims); 2074 newDims = thisDims; 2075 first = false; 2076 return success(); 2077 }; 2078 if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) 2079 return failure(); 2080 2081 // Return the sublists' dimensions with 'size' prepended. 2082 dims.clear(); 2083 dims.push_back(size); 2084 dims.append(newDims.begin(), newDims.end()); 2085 return success(); 2086 } 2087 2088 /// Parse a dense elements attribute. 2089 Attribute Parser::parseDenseElementsAttr() { 2090 consumeToken(Token::kw_dense); 2091 if (parseToken(Token::less, "expected '<' after 'dense'")) 2092 return nullptr; 2093 2094 // Parse the literal data. 2095 TensorLiteralParser literalParser(*this); 2096 if (literalParser.parse()) 2097 return nullptr; 2098 2099 if (parseToken(Token::greater, "expected '>'") || 2100 parseToken(Token::colon, "expected ':'")) 2101 return nullptr; 2102 2103 auto typeLoc = getToken().getLoc(); 2104 auto type = parseElementsLiteralType(); 2105 if (!type) 2106 return nullptr; 2107 return literalParser.getAttr(typeLoc, type); 2108 } 2109 2110 /// Shaped type for elements attribute. 2111 /// 2112 /// elements-literal-type ::= vector-type | ranked-tensor-type 2113 /// 2114 /// This method also checks the type has static shape. 2115 ShapedType Parser::parseElementsLiteralType() { 2116 auto type = parseType(); 2117 if (!type) 2118 return nullptr; 2119 2120 if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) { 2121 emitError("elements literal must be a ranked tensor or vector type"); 2122 return nullptr; 2123 } 2124 2125 auto sType = type.cast<ShapedType>(); 2126 if (!sType.hasStaticShape()) 2127 return (emitError("elements literal type must have static shape"), nullptr); 2128 2129 return sType; 2130 } 2131 2132 /// Parse a sparse elements attribute. 2133 Attribute Parser::parseSparseElementsAttr() { 2134 consumeToken(Token::kw_sparse); 2135 if (parseToken(Token::less, "Expected '<' after 'sparse'")) 2136 return nullptr; 2137 2138 /// Parse indices 2139 auto indicesLoc = getToken().getLoc(); 2140 TensorLiteralParser indiceParser(*this); 2141 if (indiceParser.parse()) 2142 return nullptr; 2143 2144 if (parseToken(Token::comma, "expected ','")) 2145 return nullptr; 2146 2147 /// Parse values. 2148 auto valuesLoc = getToken().getLoc(); 2149 TensorLiteralParser valuesParser(*this); 2150 if (valuesParser.parse()) 2151 return nullptr; 2152 2153 if (parseToken(Token::greater, "expected '>'") || 2154 parseToken(Token::colon, "expected ':'")) 2155 return nullptr; 2156 2157 auto type = parseElementsLiteralType(); 2158 if (!type) 2159 return nullptr; 2160 2161 // If the indices are a splat, i.e. the literal parser parsed an element and 2162 // not a list, we set the shape explicitly. The indices are represented by a 2163 // 2-dimensional shape where the second dimension is the rank of the type. 2164 // Given that the parsed indices is a splat, we know that we only have one 2165 // indice and thus one for the first dimension. 2166 auto indiceEltType = builder.getIntegerType(64); 2167 ShapedType indicesType; 2168 if (indiceParser.getShape().empty()) { 2169 indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType); 2170 } else { 2171 // Otherwise, set the shape to the one parsed by the literal parser. 2172 indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType); 2173 } 2174 auto indices = indiceParser.getAttr(indicesLoc, indicesType); 2175 2176 // If the values are a splat, set the shape explicitly based on the number of 2177 // indices. The number of indices is encoded in the first dimension of the 2178 // indice shape type. 2179 auto valuesEltType = type.getElementType(); 2180 ShapedType valuesType = 2181 valuesParser.getShape().empty() 2182 ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType) 2183 : RankedTensorType::get(valuesParser.getShape(), valuesEltType); 2184 auto values = valuesParser.getAttr(valuesLoc, valuesType); 2185 2186 /// Sanity check. 2187 if (valuesType.getRank() != 1) 2188 return (emitError("expected 1-d tensor for values"), nullptr); 2189 2190 auto sameShape = (indicesType.getRank() == 1) || 2191 (type.getRank() == indicesType.getDimSize(1)); 2192 auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); 2193 if (!sameShape || !sameElementNum) { 2194 emitError() << "expected shape ([" << type.getShape() 2195 << "]); inferred shape of indices literal ([" 2196 << indicesType.getShape() 2197 << "]); inferred shape of values literal ([" 2198 << valuesType.getShape() << "])"; 2199 return nullptr; 2200 } 2201 2202 // Build the sparse elements attribute by the indices and values. 2203 return SparseElementsAttr::get(type, indices, values); 2204 } 2205 2206 //===----------------------------------------------------------------------===// 2207 // Location parsing. 2208 //===----------------------------------------------------------------------===// 2209 2210 /// Parse a location. 2211 /// 2212 /// location ::= `loc` inline-location 2213 /// inline-location ::= '(' location-inst ')' 2214 /// 2215 ParseResult Parser::parseLocation(LocationAttr &loc) { 2216 // Check for 'loc' identifier. 2217 if (parseToken(Token::kw_loc, "expected 'loc' keyword")) 2218 return emitError(); 2219 2220 // Parse the inline-location. 2221 if (parseToken(Token::l_paren, "expected '(' in inline location") || 2222 parseLocationInstance(loc) || 2223 parseToken(Token::r_paren, "expected ')' in inline location")) 2224 return failure(); 2225 return success(); 2226 } 2227 2228 /// Specific location instances. 2229 /// 2230 /// location-inst ::= filelinecol-location | 2231 /// name-location | 2232 /// callsite-location | 2233 /// fused-location | 2234 /// unknown-location 2235 /// filelinecol-location ::= string-literal ':' integer-literal 2236 /// ':' integer-literal 2237 /// name-location ::= string-literal 2238 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' 2239 /// fused-location ::= fused ('<' attribute-value '>')? 2240 /// '[' location-inst (location-inst ',')* ']' 2241 /// unknown-location ::= 'unknown' 2242 /// 2243 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) { 2244 consumeToken(Token::bare_identifier); 2245 2246 // Parse the '('. 2247 if (parseToken(Token::l_paren, "expected '(' in callsite location")) 2248 return failure(); 2249 2250 // Parse the callee location. 2251 LocationAttr calleeLoc; 2252 if (parseLocationInstance(calleeLoc)) 2253 return failure(); 2254 2255 // Parse the 'at'. 2256 if (getToken().isNot(Token::bare_identifier) || 2257 getToken().getSpelling() != "at") 2258 return emitError("expected 'at' in callsite location"); 2259 consumeToken(Token::bare_identifier); 2260 2261 // Parse the caller location. 2262 LocationAttr callerLoc; 2263 if (parseLocationInstance(callerLoc)) 2264 return failure(); 2265 2266 // Parse the ')'. 2267 if (parseToken(Token::r_paren, "expected ')' in callsite location")) 2268 return failure(); 2269 2270 // Return the callsite location. 2271 loc = CallSiteLoc::get(calleeLoc, callerLoc); 2272 return success(); 2273 } 2274 2275 ParseResult Parser::parseFusedLocation(LocationAttr &loc) { 2276 consumeToken(Token::bare_identifier); 2277 2278 // Try to parse the optional metadata. 2279 Attribute metadata; 2280 if (consumeIf(Token::less)) { 2281 metadata = parseAttribute(); 2282 if (!metadata) 2283 return emitError("expected valid attribute metadata"); 2284 // Parse the '>' token. 2285 if (parseToken(Token::greater, 2286 "expected '>' after fused location metadata")) 2287 return failure(); 2288 } 2289 2290 SmallVector<Location, 4> locations; 2291 auto parseElt = [&] { 2292 LocationAttr newLoc; 2293 if (parseLocationInstance(newLoc)) 2294 return failure(); 2295 locations.push_back(newLoc); 2296 return success(); 2297 }; 2298 2299 if (parseToken(Token::l_square, "expected '[' in fused location") || 2300 parseCommaSeparatedList(parseElt) || 2301 parseToken(Token::r_square, "expected ']' in fused location")) 2302 return failure(); 2303 2304 // Return the fused location. 2305 loc = FusedLoc::get(locations, metadata, getContext()); 2306 return success(); 2307 } 2308 2309 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) { 2310 auto *ctx = getContext(); 2311 auto str = getToken().getStringValue(); 2312 consumeToken(Token::string); 2313 2314 // If the next token is ':' this is a filelinecol location. 2315 if (consumeIf(Token::colon)) { 2316 // Parse the line number. 2317 if (getToken().isNot(Token::integer)) 2318 return emitError("expected integer line number in FileLineColLoc"); 2319 auto line = getToken().getUnsignedIntegerValue(); 2320 if (!line.hasValue()) 2321 return emitError("expected integer line number in FileLineColLoc"); 2322 consumeToken(Token::integer); 2323 2324 // Parse the ':'. 2325 if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) 2326 return failure(); 2327 2328 // Parse the column number. 2329 if (getToken().isNot(Token::integer)) 2330 return emitError("expected integer column number in FileLineColLoc"); 2331 auto column = getToken().getUnsignedIntegerValue(); 2332 if (!column.hasValue()) 2333 return emitError("expected integer column number in FileLineColLoc"); 2334 consumeToken(Token::integer); 2335 2336 loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx); 2337 return success(); 2338 } 2339 2340 // Otherwise, this is a NameLoc. 2341 2342 // Check for a child location. 2343 if (consumeIf(Token::l_paren)) { 2344 auto childSourceLoc = getToken().getLoc(); 2345 2346 // Parse the child location. 2347 LocationAttr childLoc; 2348 if (parseLocationInstance(childLoc)) 2349 return failure(); 2350 2351 // The child must not be another NameLoc. 2352 if (childLoc.isa<NameLoc>()) 2353 return emitError(childSourceLoc, 2354 "child of NameLoc cannot be another NameLoc"); 2355 loc = NameLoc::get(Identifier::get(str, ctx), childLoc); 2356 2357 // Parse the closing ')'. 2358 if (parseToken(Token::r_paren, 2359 "expected ')' after child location of NameLoc")) 2360 return failure(); 2361 } else { 2362 loc = NameLoc::get(Identifier::get(str, ctx), ctx); 2363 } 2364 2365 return success(); 2366 } 2367 2368 ParseResult Parser::parseLocationInstance(LocationAttr &loc) { 2369 // Handle either name or filelinecol locations. 2370 if (getToken().is(Token::string)) 2371 return parseNameOrFileLineColLocation(loc); 2372 2373 // Bare tokens required for other cases. 2374 if (!getToken().is(Token::bare_identifier)) 2375 return emitError("expected location instance"); 2376 2377 // Check for the 'callsite' signifying a callsite location. 2378 if (getToken().getSpelling() == "callsite") 2379 return parseCallSiteLocation(loc); 2380 2381 // If the token is 'fused', then this is a fused location. 2382 if (getToken().getSpelling() == "fused") 2383 return parseFusedLocation(loc); 2384 2385 // Check for a 'unknown' for an unknown location. 2386 if (getToken().getSpelling() == "unknown") { 2387 consumeToken(Token::bare_identifier); 2388 loc = UnknownLoc::get(getContext()); 2389 return success(); 2390 } 2391 2392 return emitError("expected location instance"); 2393 } 2394 2395 //===----------------------------------------------------------------------===// 2396 // Affine parsing. 2397 //===----------------------------------------------------------------------===// 2398 2399 /// Lower precedence ops (all at the same precedence level). LNoOp is false in 2400 /// the boolean sense. 2401 enum AffineLowPrecOp { 2402 /// Null value. 2403 LNoOp, 2404 Add, 2405 Sub 2406 }; 2407 2408 /// Higher precedence ops - all at the same precedence level. HNoOp is false 2409 /// in the boolean sense. 2410 enum AffineHighPrecOp { 2411 /// Null value. 2412 HNoOp, 2413 Mul, 2414 FloorDiv, 2415 CeilDiv, 2416 Mod 2417 }; 2418 2419 namespace { 2420 /// This is a specialized parser for affine structures (affine maps, affine 2421 /// expressions, and integer sets), maintaining the state transient to their 2422 /// bodies. 2423 class AffineParser : public Parser { 2424 public: 2425 AffineParser(ParserState &state, bool allowParsingSSAIds = false, 2426 function_ref<ParseResult(bool)> parseElement = nullptr) 2427 : Parser(state), allowParsingSSAIds(allowParsingSSAIds), 2428 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {} 2429 2430 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); 2431 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); 2432 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); 2433 ParseResult parseAffineMapOfSSAIds(AffineMap &map); 2434 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds, 2435 unsigned &numDims); 2436 2437 private: 2438 // Binary affine op parsing. 2439 AffineLowPrecOp consumeIfLowPrecOp(); 2440 AffineHighPrecOp consumeIfHighPrecOp(); 2441 2442 // Identifier lists for polyhedral structures. 2443 ParseResult parseDimIdList(unsigned &numDims); 2444 ParseResult parseSymbolIdList(unsigned &numSymbols); 2445 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, 2446 unsigned &numSymbols); 2447 ParseResult parseIdentifierDefinition(AffineExpr idExpr); 2448 2449 AffineExpr parseAffineExpr(); 2450 AffineExpr parseParentheticalExpr(); 2451 AffineExpr parseNegateExpression(AffineExpr lhs); 2452 AffineExpr parseIntegerExpr(); 2453 AffineExpr parseBareIdExpr(); 2454 AffineExpr parseSSAIdExpr(bool isSymbol); 2455 AffineExpr parseSymbolSSAIdExpr(); 2456 2457 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, 2458 AffineExpr rhs, SMLoc opLoc); 2459 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, 2460 AffineExpr rhs); 2461 AffineExpr parseAffineOperandExpr(AffineExpr lhs); 2462 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); 2463 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, 2464 SMLoc llhsOpLoc); 2465 AffineExpr parseAffineConstraint(bool *isEq); 2466 2467 private: 2468 bool allowParsingSSAIds; 2469 function_ref<ParseResult(bool)> parseElement; 2470 unsigned numDimOperands; 2471 unsigned numSymbolOperands; 2472 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols; 2473 }; 2474 } // end anonymous namespace 2475 2476 /// Create an affine binary high precedence op expression (mul's, div's, mod). 2477 /// opLoc is the location of the op token to be used to report errors 2478 /// for non-conforming expressions. 2479 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, 2480 AffineExpr lhs, AffineExpr rhs, 2481 SMLoc opLoc) { 2482 // TODO: make the error location info accurate. 2483 switch (op) { 2484 case Mul: 2485 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { 2486 emitError(opLoc, "non-affine expression: at least one of the multiply " 2487 "operands has to be either a constant or symbolic"); 2488 return nullptr; 2489 } 2490 return lhs * rhs; 2491 case FloorDiv: 2492 if (!rhs.isSymbolicOrConstant()) { 2493 emitError(opLoc, "non-affine expression: right operand of floordiv " 2494 "has to be either a constant or symbolic"); 2495 return nullptr; 2496 } 2497 return lhs.floorDiv(rhs); 2498 case CeilDiv: 2499 if (!rhs.isSymbolicOrConstant()) { 2500 emitError(opLoc, "non-affine expression: right operand of ceildiv " 2501 "has to be either a constant or symbolic"); 2502 return nullptr; 2503 } 2504 return lhs.ceilDiv(rhs); 2505 case Mod: 2506 if (!rhs.isSymbolicOrConstant()) { 2507 emitError(opLoc, "non-affine expression: right operand of mod " 2508 "has to be either a constant or symbolic"); 2509 return nullptr; 2510 } 2511 return lhs % rhs; 2512 case HNoOp: 2513 llvm_unreachable("can't create affine expression for null high prec op"); 2514 return nullptr; 2515 } 2516 llvm_unreachable("Unknown AffineHighPrecOp"); 2517 } 2518 2519 /// Create an affine binary low precedence op expression (add, sub). 2520 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, 2521 AffineExpr lhs, AffineExpr rhs) { 2522 switch (op) { 2523 case AffineLowPrecOp::Add: 2524 return lhs + rhs; 2525 case AffineLowPrecOp::Sub: 2526 return lhs - rhs; 2527 case AffineLowPrecOp::LNoOp: 2528 llvm_unreachable("can't create affine expression for null low prec op"); 2529 return nullptr; 2530 } 2531 llvm_unreachable("Unknown AffineLowPrecOp"); 2532 } 2533 2534 /// Consume this token if it is a lower precedence affine op (there are only 2535 /// two precedence levels). 2536 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { 2537 switch (getToken().getKind()) { 2538 case Token::plus: 2539 consumeToken(Token::plus); 2540 return AffineLowPrecOp::Add; 2541 case Token::minus: 2542 consumeToken(Token::minus); 2543 return AffineLowPrecOp::Sub; 2544 default: 2545 return AffineLowPrecOp::LNoOp; 2546 } 2547 } 2548 2549 /// Consume this token if it is a higher precedence affine op (there are only 2550 /// two precedence levels) 2551 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { 2552 switch (getToken().getKind()) { 2553 case Token::star: 2554 consumeToken(Token::star); 2555 return Mul; 2556 case Token::kw_floordiv: 2557 consumeToken(Token::kw_floordiv); 2558 return FloorDiv; 2559 case Token::kw_ceildiv: 2560 consumeToken(Token::kw_ceildiv); 2561 return CeilDiv; 2562 case Token::kw_mod: 2563 consumeToken(Token::kw_mod); 2564 return Mod; 2565 default: 2566 return HNoOp; 2567 } 2568 } 2569 2570 /// Parse a high precedence op expression list: mul, div, and mod are high 2571 /// precedence binary ops, i.e., parse a 2572 /// expr_1 op_1 expr_2 op_2 ... expr_n 2573 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). 2574 /// All affine binary ops are left associative. 2575 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is 2576 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is 2577 /// null. llhsOpLoc is the location of the llhsOp token that will be used to 2578 /// report an error for non-conforming expressions. 2579 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, 2580 AffineHighPrecOp llhsOp, 2581 SMLoc llhsOpLoc) { 2582 AffineExpr lhs = parseAffineOperandExpr(llhs); 2583 if (!lhs) 2584 return nullptr; 2585 2586 // Found an LHS. Parse the remaining expression. 2587 auto opLoc = getToken().getLoc(); 2588 if (AffineHighPrecOp op = consumeIfHighPrecOp()) { 2589 if (llhs) { 2590 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); 2591 if (!expr) 2592 return nullptr; 2593 return parseAffineHighPrecOpExpr(expr, op, opLoc); 2594 } 2595 // No LLHS, get RHS 2596 return parseAffineHighPrecOpExpr(lhs, op, opLoc); 2597 } 2598 2599 // This is the last operand in this expression. 2600 if (llhs) 2601 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); 2602 2603 // No llhs, 'lhs' itself is the expression. 2604 return lhs; 2605 } 2606 2607 /// Parse an affine expression inside parentheses. 2608 /// 2609 /// affine-expr ::= `(` affine-expr `)` 2610 AffineExpr AffineParser::parseParentheticalExpr() { 2611 if (parseToken(Token::l_paren, "expected '('")) 2612 return nullptr; 2613 if (getToken().is(Token::r_paren)) 2614 return (emitError("no expression inside parentheses"), nullptr); 2615 2616 auto expr = parseAffineExpr(); 2617 if (!expr) 2618 return nullptr; 2619 if (parseToken(Token::r_paren, "expected ')'")) 2620 return nullptr; 2621 2622 return expr; 2623 } 2624 2625 /// Parse the negation expression. 2626 /// 2627 /// affine-expr ::= `-` affine-expr 2628 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { 2629 if (parseToken(Token::minus, "expected '-'")) 2630 return nullptr; 2631 2632 AffineExpr operand = parseAffineOperandExpr(lhs); 2633 // Since negation has the highest precedence of all ops (including high 2634 // precedence ops) but lower than parentheses, we are only going to use 2635 // parseAffineOperandExpr instead of parseAffineExpr here. 2636 if (!operand) 2637 // Extra error message although parseAffineOperandExpr would have 2638 // complained. Leads to a better diagnostic. 2639 return (emitError("missing operand of negation"), nullptr); 2640 return (-1) * operand; 2641 } 2642 2643 /// Parse a bare id that may appear in an affine expression. 2644 /// 2645 /// affine-expr ::= bare-id 2646 AffineExpr AffineParser::parseBareIdExpr() { 2647 if (getToken().isNot(Token::bare_identifier)) 2648 return (emitError("expected bare identifier"), nullptr); 2649 2650 StringRef sRef = getTokenSpelling(); 2651 for (auto entry : dimsAndSymbols) { 2652 if (entry.first == sRef) { 2653 consumeToken(Token::bare_identifier); 2654 return entry.second; 2655 } 2656 } 2657 2658 return (emitError("use of undeclared identifier"), nullptr); 2659 } 2660 2661 /// Parse an SSA id which may appear in an affine expression. 2662 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) { 2663 if (!allowParsingSSAIds) 2664 return (emitError("unexpected ssa identifier"), nullptr); 2665 if (getToken().isNot(Token::percent_identifier)) 2666 return (emitError("expected ssa identifier"), nullptr); 2667 auto name = getTokenSpelling(); 2668 // Check if we already parsed this SSA id. 2669 for (auto entry : dimsAndSymbols) { 2670 if (entry.first == name) { 2671 consumeToken(Token::percent_identifier); 2672 return entry.second; 2673 } 2674 } 2675 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it. 2676 if (parseElement(isSymbol)) 2677 return (emitError("failed to parse ssa identifier"), nullptr); 2678 auto idExpr = isSymbol 2679 ? getAffineSymbolExpr(numSymbolOperands++, getContext()) 2680 : getAffineDimExpr(numDimOperands++, getContext()); 2681 dimsAndSymbols.push_back({name, idExpr}); 2682 return idExpr; 2683 } 2684 2685 AffineExpr AffineParser::parseSymbolSSAIdExpr() { 2686 if (parseToken(Token::kw_symbol, "expected symbol keyword") || 2687 parseToken(Token::l_paren, "expected '(' at start of SSA symbol")) 2688 return nullptr; 2689 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true); 2690 if (!symbolExpr) 2691 return nullptr; 2692 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol")) 2693 return nullptr; 2694 return symbolExpr; 2695 } 2696 2697 /// Parse a positive integral constant appearing in an affine expression. 2698 /// 2699 /// affine-expr ::= integer-literal 2700 AffineExpr AffineParser::parseIntegerExpr() { 2701 auto val = getToken().getUInt64IntegerValue(); 2702 if (!val.hasValue() || (int64_t)val.getValue() < 0) 2703 return (emitError("constant too large for index"), nullptr); 2704 2705 consumeToken(Token::integer); 2706 return builder.getAffineConstantExpr((int64_t)val.getValue()); 2707 } 2708 2709 /// Parses an expression that can be a valid operand of an affine expression. 2710 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary 2711 /// operator, the rhs of which is being parsed. This is used to determine 2712 /// whether an error should be emitted for a missing right operand. 2713 // Eg: for an expression without parentheses (like i + j + k + l), each 2714 // of the four identifiers is an operand. For i + j*k + l, j*k is not an 2715 // operand expression, it's an op expression and will be parsed via 2716 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and 2717 // -l are valid operands that will be parsed by this function. 2718 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { 2719 switch (getToken().getKind()) { 2720 case Token::bare_identifier: 2721 return parseBareIdExpr(); 2722 case Token::kw_symbol: 2723 return parseSymbolSSAIdExpr(); 2724 case Token::percent_identifier: 2725 return parseSSAIdExpr(/*isSymbol=*/false); 2726 case Token::integer: 2727 return parseIntegerExpr(); 2728 case Token::l_paren: 2729 return parseParentheticalExpr(); 2730 case Token::minus: 2731 return parseNegateExpression(lhs); 2732 case Token::kw_ceildiv: 2733 case Token::kw_floordiv: 2734 case Token::kw_mod: 2735 case Token::plus: 2736 case Token::star: 2737 if (lhs) 2738 emitError("missing right operand of binary operator"); 2739 else 2740 emitError("missing left operand of binary operator"); 2741 return nullptr; 2742 default: 2743 if (lhs) 2744 emitError("missing right operand of binary operator"); 2745 else 2746 emitError("expected affine expression"); 2747 return nullptr; 2748 } 2749 } 2750 2751 /// Parse affine expressions that are bare-id's, integer constants, 2752 /// parenthetical affine expressions, and affine op expressions that are a 2753 /// composition of those. 2754 /// 2755 /// All binary op's associate from left to right. 2756 /// 2757 /// {add, sub} have lower precedence than {mul, div, and mod}. 2758 /// 2759 /// Add, sub'are themselves at the same precedence level. Mul, floordiv, 2760 /// ceildiv, and mod are at the same higher precedence level. Negation has 2761 /// higher precedence than any binary op. 2762 /// 2763 /// llhs: the affine expression appearing on the left of the one being parsed. 2764 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, 2765 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned 2766 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left 2767 /// associativity. 2768 /// 2769 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function 2770 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where 2771 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). 2772 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, 2773 AffineLowPrecOp llhsOp) { 2774 AffineExpr lhs; 2775 if (!(lhs = parseAffineOperandExpr(llhs))) 2776 return nullptr; 2777 2778 // Found an LHS. Deal with the ops. 2779 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { 2780 if (llhs) { 2781 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2782 return parseAffineLowPrecOpExpr(sum, lOp); 2783 } 2784 // No LLHS, get RHS and form the expression. 2785 return parseAffineLowPrecOpExpr(lhs, lOp); 2786 } 2787 auto opLoc = getToken().getLoc(); 2788 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { 2789 // We have a higher precedence op here. Get the rhs operand for the llhs 2790 // through parseAffineHighPrecOpExpr. 2791 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); 2792 if (!highRes) 2793 return nullptr; 2794 2795 // If llhs is null, the product forms the first operand of the yet to be 2796 // found expression. If non-null, the op to associate with llhs is llhsOp. 2797 AffineExpr expr = 2798 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; 2799 2800 // Recurse for subsequent low prec op's after the affine high prec op 2801 // expression. 2802 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) 2803 return parseAffineLowPrecOpExpr(expr, nextOp); 2804 return expr; 2805 } 2806 // Last operand in the expression list. 2807 if (llhs) 2808 return getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2809 // No llhs, 'lhs' itself is the expression. 2810 return lhs; 2811 } 2812 2813 /// Parse an affine expression. 2814 /// affine-expr ::= `(` affine-expr `)` 2815 /// | `-` affine-expr 2816 /// | affine-expr `+` affine-expr 2817 /// | affine-expr `-` affine-expr 2818 /// | affine-expr `*` affine-expr 2819 /// | affine-expr `floordiv` affine-expr 2820 /// | affine-expr `ceildiv` affine-expr 2821 /// | affine-expr `mod` affine-expr 2822 /// | bare-id 2823 /// | integer-literal 2824 /// 2825 /// Additional conditions are checked depending on the production. For eg., 2826 /// one of the operands for `*` has to be either constant/symbolic; the second 2827 /// operand for floordiv, ceildiv, and mod has to be a positive integer. 2828 AffineExpr AffineParser::parseAffineExpr() { 2829 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); 2830 } 2831 2832 /// Parse a dim or symbol from the lists appearing before the actual 2833 /// expressions of the affine map. Update our state to store the 2834 /// dimensional/symbolic identifier. 2835 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { 2836 if (getToken().isNot(Token::bare_identifier)) 2837 return emitError("expected bare identifier"); 2838 2839 auto name = getTokenSpelling(); 2840 for (auto entry : dimsAndSymbols) { 2841 if (entry.first == name) 2842 return emitError("redefinition of identifier '" + name + "'"); 2843 } 2844 consumeToken(Token::bare_identifier); 2845 2846 dimsAndSymbols.push_back({name, idExpr}); 2847 return success(); 2848 } 2849 2850 /// Parse the list of dimensional identifiers to an affine map. 2851 ParseResult AffineParser::parseDimIdList(unsigned &numDims) { 2852 if (parseToken(Token::l_paren, 2853 "expected '(' at start of dimensional identifiers list")) { 2854 return failure(); 2855 } 2856 2857 auto parseElt = [&]() -> ParseResult { 2858 auto dimension = getAffineDimExpr(numDims++, getContext()); 2859 return parseIdentifierDefinition(dimension); 2860 }; 2861 return parseCommaSeparatedListUntil(Token::r_paren, parseElt); 2862 } 2863 2864 /// Parse the list of symbolic identifiers to an affine map. 2865 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { 2866 consumeToken(Token::l_square); 2867 auto parseElt = [&]() -> ParseResult { 2868 auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); 2869 return parseIdentifierDefinition(symbol); 2870 }; 2871 return parseCommaSeparatedListUntil(Token::r_square, parseElt); 2872 } 2873 2874 /// Parse the list of symbolic identifiers to an affine map. 2875 ParseResult 2876 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, 2877 unsigned &numSymbols) { 2878 if (parseDimIdList(numDims)) { 2879 return failure(); 2880 } 2881 if (!getToken().is(Token::l_square)) { 2882 numSymbols = 0; 2883 return success(); 2884 } 2885 return parseSymbolIdList(numSymbols); 2886 } 2887 2888 /// Parses an ambiguous affine map or integer set definition inline. 2889 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, 2890 IntegerSet &set) { 2891 unsigned numDims = 0, numSymbols = 0; 2892 2893 // List of dimensional and optional symbol identifiers. 2894 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { 2895 return failure(); 2896 } 2897 2898 // This is needed for parsing attributes as we wouldn't know whether we would 2899 // be parsing an integer set attribute or an affine map attribute. 2900 bool isArrow = getToken().is(Token::arrow); 2901 bool isColon = getToken().is(Token::colon); 2902 if (!isArrow && !isColon) { 2903 return emitError("expected '->' or ':'"); 2904 } else if (isArrow) { 2905 parseToken(Token::arrow, "expected '->' or '['"); 2906 map = parseAffineMapRange(numDims, numSymbols); 2907 return map ? success() : failure(); 2908 } else if (parseToken(Token::colon, "expected ':' or '['")) { 2909 return failure(); 2910 } 2911 2912 if ((set = parseIntegerSetConstraints(numDims, numSymbols))) 2913 return success(); 2914 2915 return failure(); 2916 } 2917 2918 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 2919 ParseResult AffineParser::parseAffineMapOfSSAIds(AffineMap &map) { 2920 if (parseToken(Token::l_square, "expected '['")) 2921 return failure(); 2922 2923 SmallVector<AffineExpr, 4> exprs; 2924 auto parseElt = [&]() -> ParseResult { 2925 auto elt = parseAffineExpr(); 2926 exprs.push_back(elt); 2927 return elt ? success() : failure(); 2928 }; 2929 2930 // Parse a multi-dimensional affine expression (a comma-separated list of 2931 // 1-d affine expressions); the list cannot be empty. Grammar: 2932 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 2933 if (parseCommaSeparatedListUntil(Token::r_square, parseElt, 2934 /*allowEmptyList=*/true)) 2935 return failure(); 2936 // Parsed a valid affine map. 2937 if (exprs.empty()) 2938 map = AffineMap::get(getContext()); 2939 else 2940 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 2941 exprs); 2942 return success(); 2943 } 2944 2945 /// Parse the range and sizes affine map definition inline. 2946 /// 2947 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr 2948 /// 2949 /// multi-dim-affine-expr ::= `(` `)` 2950 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)` 2951 AffineMap AffineParser::parseAffineMapRange(unsigned numDims, 2952 unsigned numSymbols) { 2953 parseToken(Token::l_paren, "expected '(' at start of affine map range"); 2954 2955 SmallVector<AffineExpr, 4> exprs; 2956 auto parseElt = [&]() -> ParseResult { 2957 auto elt = parseAffineExpr(); 2958 ParseResult res = elt ? success() : failure(); 2959 exprs.push_back(elt); 2960 return res; 2961 }; 2962 2963 // Parse a multi-dimensional affine expression (a comma-separated list of 2964 // 1-d affine expressions); the list cannot be empty. Grammar: 2965 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 2966 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 2967 return AffineMap(); 2968 2969 if (exprs.empty()) 2970 return AffineMap::get(getContext()); 2971 2972 // Parsed a valid affine map. 2973 return AffineMap::get(numDims, numSymbols, exprs); 2974 } 2975 2976 /// Parse an affine constraint. 2977 /// affine-constraint ::= affine-expr `>=` `0` 2978 /// | affine-expr `==` `0` 2979 /// 2980 /// isEq is set to true if the parsed constraint is an equality, false if it 2981 /// is an inequality (greater than or equal). 2982 /// 2983 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { 2984 AffineExpr expr = parseAffineExpr(); 2985 if (!expr) 2986 return nullptr; 2987 2988 if (consumeIf(Token::greater) && consumeIf(Token::equal) && 2989 getToken().is(Token::integer)) { 2990 auto dim = getToken().getUnsignedIntegerValue(); 2991 if (dim.hasValue() && dim.getValue() == 0) { 2992 consumeToken(Token::integer); 2993 *isEq = false; 2994 return expr; 2995 } 2996 return (emitError("expected '0' after '>='"), nullptr); 2997 } 2998 2999 if (consumeIf(Token::equal) && consumeIf(Token::equal) && 3000 getToken().is(Token::integer)) { 3001 auto dim = getToken().getUnsignedIntegerValue(); 3002 if (dim.hasValue() && dim.getValue() == 0) { 3003 consumeToken(Token::integer); 3004 *isEq = true; 3005 return expr; 3006 } 3007 return (emitError("expected '0' after '=='"), nullptr); 3008 } 3009 3010 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), 3011 nullptr); 3012 } 3013 3014 /// Parse the constraints that are part of an integer set definition. 3015 /// integer-set-inline 3016 /// ::= dim-and-symbol-id-lists `:` 3017 /// '(' affine-constraint-conjunction? ')' 3018 /// affine-constraint-conjunction ::= affine-constraint (`,` 3019 /// affine-constraint)* 3020 /// 3021 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, 3022 unsigned numSymbols) { 3023 if (parseToken(Token::l_paren, 3024 "expected '(' at start of integer set constraint list")) 3025 return IntegerSet(); 3026 3027 SmallVector<AffineExpr, 4> constraints; 3028 SmallVector<bool, 4> isEqs; 3029 auto parseElt = [&]() -> ParseResult { 3030 bool isEq; 3031 auto elt = parseAffineConstraint(&isEq); 3032 ParseResult res = elt ? success() : failure(); 3033 if (elt) { 3034 constraints.push_back(elt); 3035 isEqs.push_back(isEq); 3036 } 3037 return res; 3038 }; 3039 3040 // Parse a list of affine constraints (comma-separated). 3041 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3042 return IntegerSet(); 3043 3044 // If no constraints were parsed, then treat this as a degenerate 'true' case. 3045 if (constraints.empty()) { 3046 /* 0 == 0 */ 3047 auto zero = getAffineConstantExpr(0, getContext()); 3048 return IntegerSet::get(numDims, numSymbols, zero, true); 3049 } 3050 3051 // Parsed a valid integer set. 3052 return IntegerSet::get(numDims, numSymbols, constraints, isEqs); 3053 } 3054 3055 /// Parse an ambiguous reference to either and affine map or an integer set. 3056 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, 3057 IntegerSet &set) { 3058 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); 3059 } 3060 ParseResult Parser::parseAffineMapReference(AffineMap &map) { 3061 llvm::SMLoc curLoc = getToken().getLoc(); 3062 IntegerSet set; 3063 if (parseAffineMapOrIntegerSetReference(map, set)) 3064 return failure(); 3065 if (set) 3066 return emitError(curLoc, "expected AffineMap, but got IntegerSet"); 3067 return success(); 3068 } 3069 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) { 3070 llvm::SMLoc curLoc = getToken().getLoc(); 3071 AffineMap map; 3072 if (parseAffineMapOrIntegerSetReference(map, set)) 3073 return failure(); 3074 if (map) 3075 return emitError(curLoc, "expected IntegerSet, but got AffineMap"); 3076 return success(); 3077 } 3078 3079 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to 3080 /// parse SSA value uses encountered while parsing affine expressions. 3081 ParseResult 3082 Parser::parseAffineMapOfSSAIds(AffineMap &map, 3083 function_ref<ParseResult(bool)> parseElement) { 3084 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement) 3085 .parseAffineMapOfSSAIds(map); 3086 } 3087 3088 //===----------------------------------------------------------------------===// 3089 // OperationParser 3090 //===----------------------------------------------------------------------===// 3091 3092 namespace { 3093 /// This class provides support for parsing operations and regions of 3094 /// operations. 3095 class OperationParser : public Parser { 3096 public: 3097 OperationParser(ParserState &state, ModuleOp moduleOp) 3098 : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) { 3099 } 3100 3101 ~OperationParser(); 3102 3103 /// After parsing is finished, this function must be called to see if there 3104 /// are any remaining issues. 3105 ParseResult finalize(); 3106 3107 //===--------------------------------------------------------------------===// 3108 // SSA Value Handling 3109 //===--------------------------------------------------------------------===// 3110 3111 /// This represents a use of an SSA value in the program. The first two 3112 /// entries in the tuple are the name and result number of a reference. The 3113 /// third is the location of the reference, which is used in case this ends 3114 /// up being a use of an undefined value. 3115 struct SSAUseInfo { 3116 StringRef name; // Value name, e.g. %42 or %abc 3117 unsigned number; // Number, specified with #12 3118 SMLoc loc; // Location of first definition or use. 3119 }; 3120 3121 /// Push a new SSA name scope to the parser. 3122 void pushSSANameScope(bool isIsolated); 3123 3124 /// Pop the last SSA name scope from the parser. 3125 ParseResult popSSANameScope(); 3126 3127 /// Register a definition of a value with the symbol table. 3128 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 3129 3130 /// Parse an optional list of SSA uses into 'results'. 3131 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 3132 3133 /// Parse a single SSA use into 'result'. 3134 ParseResult parseSSAUse(SSAUseInfo &result); 3135 3136 /// Given a reference to an SSA value and its type, return a reference. This 3137 /// returns null on failure. 3138 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 3139 3140 ParseResult parseSSADefOrUseAndType( 3141 const std::function<ParseResult(SSAUseInfo, Type)> &action); 3142 3143 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 3144 3145 /// Return the location of the value identified by its name and number if it 3146 /// has been already reference. 3147 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 3148 auto &values = isolatedNameScopes.back().values; 3149 if (!values.count(name) || number >= values[name].size()) 3150 return {}; 3151 if (values[name][number].first) 3152 return values[name][number].second; 3153 return {}; 3154 } 3155 3156 //===--------------------------------------------------------------------===// 3157 // Operation Parsing 3158 //===--------------------------------------------------------------------===// 3159 3160 /// Parse an operation instance. 3161 ParseResult parseOperation(); 3162 3163 /// Parse a single operation successor and its operand list. 3164 ParseResult parseSuccessorAndUseList(Block *&dest, 3165 SmallVectorImpl<Value> &operands); 3166 3167 /// Parse a comma-separated list of operation successors in brackets. 3168 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations, 3169 SmallVectorImpl<SmallVector<Value, 4>> &operands); 3170 3171 /// Parse an operation instance that is in the generic form. 3172 Operation *parseGenericOperation(); 3173 3174 /// Parse an operation instance that is in the generic form and insert it at 3175 /// the provided insertion point. 3176 Operation *parseGenericOperation(Block *insertBlock, 3177 Block::iterator insertPt); 3178 3179 /// Parse an operation instance that is in the op-defined custom form. 3180 Operation *parseCustomOperation(); 3181 3182 //===--------------------------------------------------------------------===// 3183 // Region Parsing 3184 //===--------------------------------------------------------------------===// 3185 3186 /// Parse a region into 'region' with the provided entry block arguments. 3187 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 3188 /// isolated from those above. 3189 ParseResult parseRegion(Region ®ion, 3190 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 3191 bool isIsolatedNameScope = false); 3192 3193 /// Parse a region body into 'region'. 3194 ParseResult parseRegionBody(Region ®ion); 3195 3196 //===--------------------------------------------------------------------===// 3197 // Block Parsing 3198 //===--------------------------------------------------------------------===// 3199 3200 /// Parse a new block into 'block'. 3201 ParseResult parseBlock(Block *&block); 3202 3203 /// Parse a list of operations into 'block'. 3204 ParseResult parseBlockBody(Block *block); 3205 3206 /// Parse a (possibly empty) list of block arguments. 3207 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results, 3208 Block *owner); 3209 3210 /// Get the block with the specified name, creating it if it doesn't 3211 /// already exist. The location specified is the point of use, which allows 3212 /// us to diagnose references to blocks that are not defined precisely. 3213 Block *getBlockNamed(StringRef name, SMLoc loc); 3214 3215 /// Define the block with the specified name. Returns the Block* or nullptr in 3216 /// the case of redefinition. 3217 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 3218 3219 private: 3220 /// Returns the info for a block at the current scope for the given name. 3221 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 3222 return blocksByName.back()[name]; 3223 } 3224 3225 /// Insert a new forward reference to the given block. 3226 void insertForwardRef(Block *block, SMLoc loc) { 3227 forwardRef.back().try_emplace(block, loc); 3228 } 3229 3230 /// Erase any forward reference to the given block. 3231 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 3232 3233 /// Record that a definition was added at the current scope. 3234 void recordDefinition(StringRef def); 3235 3236 /// Get the value entry for the given SSA name. 3237 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name); 3238 3239 /// Create a forward reference placeholder value with the given location and 3240 /// result type. 3241 Value createForwardRefPlaceholder(SMLoc loc, Type type); 3242 3243 /// Return true if this is a forward reference. 3244 bool isForwardRefPlaceholder(Value value) { 3245 return forwardRefPlaceholders.count(value); 3246 } 3247 3248 /// This struct represents an isolated SSA name scope. This scope may contain 3249 /// other nested non-isolated scopes. These scopes are used for operations 3250 /// that are known to be isolated to allow for reusing names within their 3251 /// regions, even if those names are used above. 3252 struct IsolatedSSANameScope { 3253 /// Record that a definition was added at the current scope. 3254 void recordDefinition(StringRef def) { 3255 definitionsPerScope.back().insert(def); 3256 } 3257 3258 /// Push a nested name scope. 3259 void pushSSANameScope() { definitionsPerScope.push_back({}); } 3260 3261 /// Pop a nested name scope. 3262 void popSSANameScope() { 3263 for (auto &def : definitionsPerScope.pop_back_val()) 3264 values.erase(def.getKey()); 3265 } 3266 3267 /// This keeps track of all of the SSA values we are tracking for each name 3268 /// scope, indexed by their name. This has one entry per result number. 3269 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values; 3270 3271 /// This keeps track of all of the values defined by a specific name scope. 3272 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 3273 }; 3274 3275 /// A list of isolated name scopes. 3276 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 3277 3278 /// This keeps track of the block names as well as the location of the first 3279 /// reference for each nested name scope. This is used to diagnose invalid 3280 /// block references and memorize them. 3281 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 3282 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 3283 3284 /// These are all of the placeholders we've made along with the location of 3285 /// their first reference, to allow checking for use of undefined values. 3286 DenseMap<Value, SMLoc> forwardRefPlaceholders; 3287 3288 /// The builder used when creating parsed operation instances. 3289 OpBuilder opBuilder; 3290 3291 /// The top level module operation. 3292 ModuleOp moduleOp; 3293 }; 3294 } // end anonymous namespace 3295 3296 OperationParser::~OperationParser() { 3297 for (auto &fwd : forwardRefPlaceholders) { 3298 // Drop all uses of undefined forward declared reference and destroy 3299 // defining operation. 3300 fwd.first.dropAllUses(); 3301 fwd.first.getDefiningOp()->destroy(); 3302 } 3303 } 3304 3305 /// After parsing is finished, this function must be called to see if there are 3306 /// any remaining issues. 3307 ParseResult OperationParser::finalize() { 3308 // Check for any forward references that are left. If we find any, error 3309 // out. 3310 if (!forwardRefPlaceholders.empty()) { 3311 SmallVector<std::pair<const char *, Value>, 4> errors; 3312 // Iteration over the map isn't deterministic, so sort by source location. 3313 for (auto entry : forwardRefPlaceholders) 3314 errors.push_back({entry.second.getPointer(), entry.first}); 3315 llvm::array_pod_sort(errors.begin(), errors.end()); 3316 3317 for (auto entry : errors) { 3318 auto loc = SMLoc::getFromPointer(entry.first); 3319 emitError(loc, "use of undeclared SSA value name"); 3320 } 3321 return failure(); 3322 } 3323 3324 return success(); 3325 } 3326 3327 //===----------------------------------------------------------------------===// 3328 // SSA Value Handling 3329 //===----------------------------------------------------------------------===// 3330 3331 void OperationParser::pushSSANameScope(bool isIsolated) { 3332 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 3333 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 3334 3335 // Push back a new name definition scope. 3336 if (isIsolated) 3337 isolatedNameScopes.push_back({}); 3338 isolatedNameScopes.back().pushSSANameScope(); 3339 } 3340 3341 ParseResult OperationParser::popSSANameScope() { 3342 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 3343 3344 // Verify that all referenced blocks were defined. 3345 if (!forwardRefInCurrentScope.empty()) { 3346 SmallVector<std::pair<const char *, Block *>, 4> errors; 3347 // Iteration over the map isn't deterministic, so sort by source location. 3348 for (auto entry : forwardRefInCurrentScope) { 3349 errors.push_back({entry.second.getPointer(), entry.first}); 3350 // Add this block to the top-level region to allow for automatic cleanup. 3351 moduleOp.getOperation()->getRegion(0).push_back(entry.first); 3352 } 3353 llvm::array_pod_sort(errors.begin(), errors.end()); 3354 3355 for (auto entry : errors) { 3356 auto loc = SMLoc::getFromPointer(entry.first); 3357 emitError(loc, "reference to an undefined block"); 3358 } 3359 return failure(); 3360 } 3361 3362 // Pop the next nested namescope. If there is only one internal namescope, 3363 // just pop the isolated scope. 3364 auto ¤tNameScope = isolatedNameScopes.back(); 3365 if (currentNameScope.definitionsPerScope.size() == 1) 3366 isolatedNameScopes.pop_back(); 3367 else 3368 currentNameScope.popSSANameScope(); 3369 3370 blocksByName.pop_back(); 3371 return success(); 3372 } 3373 3374 /// Register a definition of a value with the symbol table. 3375 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 3376 auto &entries = getSSAValueEntry(useInfo.name); 3377 3378 // Make sure there is a slot for this value. 3379 if (entries.size() <= useInfo.number) 3380 entries.resize(useInfo.number + 1); 3381 3382 // If we already have an entry for this, check to see if it was a definition 3383 // or a forward reference. 3384 if (auto existing = entries[useInfo.number].first) { 3385 if (!isForwardRefPlaceholder(existing)) { 3386 return emitError(useInfo.loc) 3387 .append("redefinition of SSA value '", useInfo.name, "'") 3388 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3389 .append("previously defined here"); 3390 } 3391 3392 // If it was a forward reference, update everything that used it to use 3393 // the actual definition instead, delete the forward ref, and remove it 3394 // from our set of forward references we track. 3395 existing.replaceAllUsesWith(value); 3396 existing.getDefiningOp()->destroy(); 3397 forwardRefPlaceholders.erase(existing); 3398 } 3399 3400 /// Record this definition for the current scope. 3401 entries[useInfo.number] = {value, useInfo.loc}; 3402 recordDefinition(useInfo.name); 3403 return success(); 3404 } 3405 3406 /// Parse a (possibly empty) list of SSA operands. 3407 /// 3408 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 3409 /// ssa-use-list-opt ::= ssa-use-list? 3410 /// 3411 ParseResult 3412 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 3413 if (getToken().isNot(Token::percent_identifier)) 3414 return success(); 3415 return parseCommaSeparatedList([&]() -> ParseResult { 3416 SSAUseInfo result; 3417 if (parseSSAUse(result)) 3418 return failure(); 3419 results.push_back(result); 3420 return success(); 3421 }); 3422 } 3423 3424 /// Parse a SSA operand for an operation. 3425 /// 3426 /// ssa-use ::= ssa-id 3427 /// 3428 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 3429 result.name = getTokenSpelling(); 3430 result.number = 0; 3431 result.loc = getToken().getLoc(); 3432 if (parseToken(Token::percent_identifier, "expected SSA operand")) 3433 return failure(); 3434 3435 // If we have an attribute ID, it is a result number. 3436 if (getToken().is(Token::hash_identifier)) { 3437 if (auto value = getToken().getHashIdentifierNumber()) 3438 result.number = value.getValue(); 3439 else 3440 return emitError("invalid SSA value result number"); 3441 consumeToken(Token::hash_identifier); 3442 } 3443 3444 return success(); 3445 } 3446 3447 /// Given an unbound reference to an SSA value and its type, return the value 3448 /// it specifies. This returns null on failure. 3449 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 3450 auto &entries = getSSAValueEntry(useInfo.name); 3451 3452 // If we have already seen a value of this name, return it. 3453 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 3454 auto result = entries[useInfo.number].first; 3455 // Check that the type matches the other uses. 3456 if (result.getType() == type) 3457 return result; 3458 3459 emitError(useInfo.loc, "use of value '") 3460 .append(useInfo.name, 3461 "' expects different type than prior uses: ", type, " vs ", 3462 result.getType()) 3463 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3464 .append("prior use here"); 3465 return nullptr; 3466 } 3467 3468 // Make sure we have enough slots for this. 3469 if (entries.size() <= useInfo.number) 3470 entries.resize(useInfo.number + 1); 3471 3472 // If the value has already been defined and this is an overly large result 3473 // number, diagnose that. 3474 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 3475 return (emitError(useInfo.loc, "reference to invalid result number"), 3476 nullptr); 3477 3478 // Otherwise, this is a forward reference. Create a placeholder and remember 3479 // that we did so. 3480 auto result = createForwardRefPlaceholder(useInfo.loc, type); 3481 entries[useInfo.number].first = result; 3482 entries[useInfo.number].second = useInfo.loc; 3483 return result; 3484 } 3485 3486 /// Parse an SSA use with an associated type. 3487 /// 3488 /// ssa-use-and-type ::= ssa-use `:` type 3489 ParseResult OperationParser::parseSSADefOrUseAndType( 3490 const std::function<ParseResult(SSAUseInfo, Type)> &action) { 3491 SSAUseInfo useInfo; 3492 if (parseSSAUse(useInfo) || 3493 parseToken(Token::colon, "expected ':' and type for SSA operand")) 3494 return failure(); 3495 3496 auto type = parseType(); 3497 if (!type) 3498 return failure(); 3499 3500 return action(useInfo, type); 3501 } 3502 3503 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 3504 /// followed by a type list. 3505 /// 3506 /// ssa-use-and-type-list 3507 /// ::= ssa-use-list ':' type-list-no-parens 3508 /// 3509 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 3510 SmallVectorImpl<Value> &results) { 3511 SmallVector<SSAUseInfo, 4> valueIDs; 3512 if (parseOptionalSSAUseList(valueIDs)) 3513 return failure(); 3514 3515 // If there were no operands, then there is no colon or type lists. 3516 if (valueIDs.empty()) 3517 return success(); 3518 3519 SmallVector<Type, 4> types; 3520 if (parseToken(Token::colon, "expected ':' in operand list") || 3521 parseTypeListNoParens(types)) 3522 return failure(); 3523 3524 if (valueIDs.size() != types.size()) 3525 return emitError("expected ") 3526 << valueIDs.size() << " types to match operand list"; 3527 3528 results.reserve(valueIDs.size()); 3529 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 3530 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 3531 results.push_back(value); 3532 else 3533 return failure(); 3534 } 3535 3536 return success(); 3537 } 3538 3539 /// Record that a definition was added at the current scope. 3540 void OperationParser::recordDefinition(StringRef def) { 3541 isolatedNameScopes.back().recordDefinition(def); 3542 } 3543 3544 /// Get the value entry for the given SSA name. 3545 SmallVectorImpl<std::pair<Value, SMLoc>> & 3546 OperationParser::getSSAValueEntry(StringRef name) { 3547 return isolatedNameScopes.back().values[name]; 3548 } 3549 3550 /// Create and remember a new placeholder for a forward reference. 3551 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 3552 // Forward references are always created as operations, because we just need 3553 // something with a def/use chain. 3554 // 3555 // We create these placeholders as having an empty name, which we know 3556 // cannot be created through normal user input, allowing us to distinguish 3557 // them. 3558 auto name = OperationName("placeholder", getContext()); 3559 auto *op = Operation::create( 3560 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 3561 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0, 3562 /*resizableOperandList=*/false); 3563 forwardRefPlaceholders[op->getResult(0)] = loc; 3564 return op->getResult(0); 3565 } 3566 3567 //===----------------------------------------------------------------------===// 3568 // Operation Parsing 3569 //===----------------------------------------------------------------------===// 3570 3571 /// Parse an operation. 3572 /// 3573 /// operation ::= op-result-list? 3574 /// (generic-operation | custom-operation) 3575 /// trailing-location? 3576 /// generic-operation ::= string-literal '(' ssa-use-list? ')' attribute-dict? 3577 /// `:` function-type 3578 /// custom-operation ::= bare-id custom-operation-format 3579 /// op-result-list ::= op-result (`,` op-result)* `=` 3580 /// op-result ::= ssa-id (`:` integer-literal) 3581 /// 3582 ParseResult OperationParser::parseOperation() { 3583 auto loc = getToken().getLoc(); 3584 SmallVector<std::tuple<StringRef, unsigned, SMLoc>, 1> resultIDs; 3585 size_t numExpectedResults = 0; 3586 if (getToken().is(Token::percent_identifier)) { 3587 // Parse the group of result ids. 3588 auto parseNextResult = [&]() -> ParseResult { 3589 // Parse the next result id. 3590 if (!getToken().is(Token::percent_identifier)) 3591 return emitError("expected valid ssa identifier"); 3592 3593 Token nameTok = getToken(); 3594 consumeToken(Token::percent_identifier); 3595 3596 // If the next token is a ':', we parse the expected result count. 3597 size_t expectedSubResults = 1; 3598 if (consumeIf(Token::colon)) { 3599 // Check that the next token is an integer. 3600 if (!getToken().is(Token::integer)) 3601 return emitError("expected integer number of results"); 3602 3603 // Check that number of results is > 0. 3604 auto val = getToken().getUInt64IntegerValue(); 3605 if (!val.hasValue() || val.getValue() < 1) 3606 return emitError("expected named operation to have atleast 1 result"); 3607 consumeToken(Token::integer); 3608 expectedSubResults = *val; 3609 } 3610 3611 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 3612 nameTok.getLoc()); 3613 numExpectedResults += expectedSubResults; 3614 return success(); 3615 }; 3616 if (parseCommaSeparatedList(parseNextResult)) 3617 return failure(); 3618 3619 if (parseToken(Token::equal, "expected '=' after SSA name")) 3620 return failure(); 3621 } 3622 3623 Operation *op; 3624 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 3625 op = parseCustomOperation(); 3626 else if (getToken().is(Token::string)) 3627 op = parseGenericOperation(); 3628 else 3629 return emitError("expected operation name in quotes"); 3630 3631 // If parsing of the basic operation failed, then this whole thing fails. 3632 if (!op) 3633 return failure(); 3634 3635 // If the operation had a name, register it. 3636 if (!resultIDs.empty()) { 3637 if (op->getNumResults() == 0) 3638 return emitError(loc, "cannot name an operation with no results"); 3639 if (numExpectedResults != op->getNumResults()) 3640 return emitError(loc, "operation defines ") 3641 << op->getNumResults() << " results but was provided " 3642 << numExpectedResults << " to bind"; 3643 3644 // Add definitions for each of the result groups. 3645 unsigned opResI = 0; 3646 for (std::tuple<StringRef, unsigned, SMLoc> &resIt : resultIDs) { 3647 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 3648 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 3649 op->getResult(opResI++))) 3650 return failure(); 3651 } 3652 } 3653 } 3654 3655 return success(); 3656 } 3657 3658 /// Parse a single operation successor and its operand list. 3659 /// 3660 /// successor ::= block-id branch-use-list? 3661 /// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)` 3662 /// 3663 ParseResult 3664 OperationParser::parseSuccessorAndUseList(Block *&dest, 3665 SmallVectorImpl<Value> &operands) { 3666 // Verify branch is identifier and get the matching block. 3667 if (!getToken().is(Token::caret_identifier)) 3668 return emitError("expected block name"); 3669 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 3670 consumeToken(); 3671 3672 // Handle optional arguments. 3673 if (consumeIf(Token::l_paren) && 3674 (parseOptionalSSAUseAndTypeList(operands) || 3675 parseToken(Token::r_paren, "expected ')' to close argument list"))) { 3676 return failure(); 3677 } 3678 3679 return success(); 3680 } 3681 3682 /// Parse a comma-separated list of operation successors in brackets. 3683 /// 3684 /// successor-list ::= `[` successor (`,` successor )* `]` 3685 /// 3686 ParseResult OperationParser::parseSuccessors( 3687 SmallVectorImpl<Block *> &destinations, 3688 SmallVectorImpl<SmallVector<Value, 4>> &operands) { 3689 if (parseToken(Token::l_square, "expected '['")) 3690 return failure(); 3691 3692 auto parseElt = [this, &destinations, &operands]() { 3693 Block *dest; 3694 SmallVector<Value, 4> destOperands; 3695 auto res = parseSuccessorAndUseList(dest, destOperands); 3696 destinations.push_back(dest); 3697 operands.push_back(destOperands); 3698 return res; 3699 }; 3700 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 3701 /*allowEmptyList=*/false); 3702 } 3703 3704 namespace { 3705 // RAII-style guard for cleaning up the regions in the operation state before 3706 // deleting them. Within the parser, regions may get deleted if parsing failed, 3707 // and other errors may be present, in particular undominated uses. This makes 3708 // sure such uses are deleted. 3709 struct CleanupOpStateRegions { 3710 ~CleanupOpStateRegions() { 3711 SmallVector<Region *, 4> regionsToClean; 3712 regionsToClean.reserve(state.regions.size()); 3713 for (auto ®ion : state.regions) 3714 if (region) 3715 for (auto &block : *region) 3716 block.dropAllDefinedValueUses(); 3717 } 3718 OperationState &state; 3719 }; 3720 } // namespace 3721 3722 Operation *OperationParser::parseGenericOperation() { 3723 // Get location information for the operation. 3724 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 3725 3726 auto name = getToken().getStringValue(); 3727 if (name.empty()) 3728 return (emitError("empty operation name is invalid"), nullptr); 3729 if (name.find('\0') != StringRef::npos) 3730 return (emitError("null character not allowed in operation name"), nullptr); 3731 3732 consumeToken(Token::string); 3733 3734 OperationState result(srcLocation, name); 3735 3736 // Generic operations have a resizable operation list. 3737 result.setOperandListToResizable(); 3738 3739 // Parse the operand list. 3740 SmallVector<SSAUseInfo, 8> operandInfos; 3741 3742 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 3743 parseOptionalSSAUseList(operandInfos) || 3744 parseToken(Token::r_paren, "expected ')' to end operand list")) { 3745 return nullptr; 3746 } 3747 3748 // Parse the successor list but don't add successors to the result yet to 3749 // avoid messing up with the argument order. 3750 SmallVector<Block *, 2> successors; 3751 SmallVector<SmallVector<Value, 4>, 2> successorOperands; 3752 if (getToken().is(Token::l_square)) { 3753 // Check if the operation is a known terminator. 3754 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 3755 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) 3756 return emitError("successors in non-terminator"), nullptr; 3757 if (parseSuccessors(successors, successorOperands)) 3758 return nullptr; 3759 } 3760 3761 // Parse the region list. 3762 CleanupOpStateRegions guard{result}; 3763 if (consumeIf(Token::l_paren)) { 3764 do { 3765 // Create temporary regions with the top level region as parent. 3766 result.regions.emplace_back(new Region(moduleOp)); 3767 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 3768 return nullptr; 3769 } while (consumeIf(Token::comma)); 3770 if (parseToken(Token::r_paren, "expected ')' to end region list")) 3771 return nullptr; 3772 } 3773 3774 if (getToken().is(Token::l_brace)) { 3775 if (parseAttributeDict(result.attributes)) 3776 return nullptr; 3777 } 3778 3779 if (parseToken(Token::colon, "expected ':' followed by operation type")) 3780 return nullptr; 3781 3782 auto typeLoc = getToken().getLoc(); 3783 auto type = parseType(); 3784 if (!type) 3785 return nullptr; 3786 auto fnType = type.dyn_cast<FunctionType>(); 3787 if (!fnType) 3788 return (emitError(typeLoc, "expected function type"), nullptr); 3789 3790 result.addTypes(fnType.getResults()); 3791 3792 // Check that we have the right number of types for the operands. 3793 auto operandTypes = fnType.getInputs(); 3794 if (operandTypes.size() != operandInfos.size()) { 3795 auto plural = "s"[operandInfos.size() == 1]; 3796 return (emitError(typeLoc, "expected ") 3797 << operandInfos.size() << " operand type" << plural 3798 << " but had " << operandTypes.size(), 3799 nullptr); 3800 } 3801 3802 // Resolve all of the operands. 3803 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 3804 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 3805 if (!result.operands.back()) 3806 return nullptr; 3807 } 3808 3809 // Add the successors, and their operands after the proper operands. 3810 for (auto succ : llvm::zip(successors, successorOperands)) { 3811 Block *successor = std::get<0>(succ); 3812 const SmallVector<Value, 4> &operands = std::get<1>(succ); 3813 result.addSuccessor(successor, operands); 3814 } 3815 3816 // Parse a location if one is present. 3817 if (parseOptionalTrailingLocation(result.location)) 3818 return nullptr; 3819 3820 return opBuilder.createOperation(result); 3821 } 3822 3823 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 3824 Block::iterator insertPt) { 3825 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 3826 opBuilder.setInsertionPoint(insertBlock, insertPt); 3827 return parseGenericOperation(); 3828 } 3829 3830 namespace { 3831 class CustomOpAsmParser : public OpAsmParser { 3832 public: 3833 CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition, 3834 OperationParser &parser) 3835 : nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {} 3836 3837 /// Parse an instance of the operation described by 'opDefinition' into the 3838 /// provided operation state. 3839 ParseResult parseOperation(OperationState &opState) { 3840 if (opDefinition->parseAssembly(*this, opState)) 3841 return failure(); 3842 return success(); 3843 } 3844 3845 Operation *parseGenericOperation(Block *insertBlock, 3846 Block::iterator insertPt) final { 3847 return parser.parseGenericOperation(insertBlock, insertPt); 3848 } 3849 3850 //===--------------------------------------------------------------------===// 3851 // Utilities 3852 //===--------------------------------------------------------------------===// 3853 3854 /// Return if any errors were emitted during parsing. 3855 bool didEmitError() const { return emittedError; } 3856 3857 /// Emit a diagnostic at the specified location and return failure. 3858 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 3859 emittedError = true; 3860 return parser.emitError(loc, "custom op '" + opDefinition->name + "' " + 3861 message); 3862 } 3863 3864 llvm::SMLoc getCurrentLocation() override { 3865 return parser.getToken().getLoc(); 3866 } 3867 3868 Builder &getBuilder() const override { return parser.builder; } 3869 3870 llvm::SMLoc getNameLoc() const override { return nameLoc; } 3871 3872 //===--------------------------------------------------------------------===// 3873 // Token Parsing 3874 //===--------------------------------------------------------------------===// 3875 3876 /// Parse a `->` token. 3877 ParseResult parseArrow() override { 3878 return parser.parseToken(Token::arrow, "expected '->'"); 3879 } 3880 3881 /// Parses a `->` if present. 3882 ParseResult parseOptionalArrow() override { 3883 return success(parser.consumeIf(Token::arrow)); 3884 } 3885 3886 /// Parse a `:` token. 3887 ParseResult parseColon() override { 3888 return parser.parseToken(Token::colon, "expected ':'"); 3889 } 3890 3891 /// Parse a `:` token if present. 3892 ParseResult parseOptionalColon() override { 3893 return success(parser.consumeIf(Token::colon)); 3894 } 3895 3896 /// Parse a `,` token. 3897 ParseResult parseComma() override { 3898 return parser.parseToken(Token::comma, "expected ','"); 3899 } 3900 3901 /// Parse a `,` token if present. 3902 ParseResult parseOptionalComma() override { 3903 return success(parser.consumeIf(Token::comma)); 3904 } 3905 3906 /// Parses a `...` if present. 3907 ParseResult parseOptionalEllipsis() override { 3908 return success(parser.consumeIf(Token::ellipsis)); 3909 } 3910 3911 /// Parse a `=` token. 3912 ParseResult parseEqual() override { 3913 return parser.parseToken(Token::equal, "expected '='"); 3914 } 3915 3916 /// Parse a '<' token. 3917 ParseResult parseLess() override { 3918 return parser.parseToken(Token::less, "expected '<'"); 3919 } 3920 3921 /// Parse a '>' token. 3922 ParseResult parseGreater() override { 3923 return parser.parseToken(Token::greater, "expected '>'"); 3924 } 3925 3926 /// Parse a `(` token. 3927 ParseResult parseLParen() override { 3928 return parser.parseToken(Token::l_paren, "expected '('"); 3929 } 3930 3931 /// Parses a '(' if present. 3932 ParseResult parseOptionalLParen() override { 3933 return success(parser.consumeIf(Token::l_paren)); 3934 } 3935 3936 /// Parse a `)` token. 3937 ParseResult parseRParen() override { 3938 return parser.parseToken(Token::r_paren, "expected ')'"); 3939 } 3940 3941 /// Parses a ')' if present. 3942 ParseResult parseOptionalRParen() override { 3943 return success(parser.consumeIf(Token::r_paren)); 3944 } 3945 3946 /// Parse a `[` token. 3947 ParseResult parseLSquare() override { 3948 return parser.parseToken(Token::l_square, "expected '['"); 3949 } 3950 3951 /// Parses a '[' if present. 3952 ParseResult parseOptionalLSquare() override { 3953 return success(parser.consumeIf(Token::l_square)); 3954 } 3955 3956 /// Parse a `]` token. 3957 ParseResult parseRSquare() override { 3958 return parser.parseToken(Token::r_square, "expected ']'"); 3959 } 3960 3961 /// Parses a ']' if present. 3962 ParseResult parseOptionalRSquare() override { 3963 return success(parser.consumeIf(Token::r_square)); 3964 } 3965 3966 //===--------------------------------------------------------------------===// 3967 // Attribute Parsing 3968 //===--------------------------------------------------------------------===// 3969 3970 /// Parse an arbitrary attribute of a given type and return it in result. This 3971 /// also adds the attribute to the specified attribute list with the specified 3972 /// name. 3973 ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName, 3974 SmallVectorImpl<NamedAttribute> &attrs) override { 3975 result = parser.parseAttribute(type); 3976 if (!result) 3977 return failure(); 3978 3979 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 3980 return success(); 3981 } 3982 3983 /// Parse a named dictionary into 'result' if it is present. 3984 ParseResult 3985 parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override { 3986 if (parser.getToken().isNot(Token::l_brace)) 3987 return success(); 3988 return parser.parseAttributeDict(result); 3989 } 3990 3991 /// Parse a named dictionary into 'result' if the `attributes` keyword is 3992 /// present. 3993 ParseResult parseOptionalAttrDictWithKeyword( 3994 SmallVectorImpl<NamedAttribute> &result) override { 3995 if (failed(parseOptionalKeyword("attributes"))) 3996 return success(); 3997 return parser.parseAttributeDict(result); 3998 } 3999 4000 /// Parse an affine map instance into 'map'. 4001 ParseResult parseAffineMap(AffineMap &map) override { 4002 return parser.parseAffineMapReference(map); 4003 } 4004 4005 /// Parse an integer set instance into 'set'. 4006 ParseResult printIntegerSet(IntegerSet &set) override { 4007 return parser.parseIntegerSetReference(set); 4008 } 4009 4010 //===--------------------------------------------------------------------===// 4011 // Identifier Parsing 4012 //===--------------------------------------------------------------------===// 4013 4014 /// Returns if the current token corresponds to a keyword. 4015 bool isCurrentTokenAKeyword() const { 4016 return parser.getToken().is(Token::bare_identifier) || 4017 parser.getToken().isKeyword(); 4018 } 4019 4020 /// Parse the given keyword if present. 4021 ParseResult parseOptionalKeyword(StringRef keyword) override { 4022 // Check that the current token has the same spelling. 4023 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 4024 return failure(); 4025 parser.consumeToken(); 4026 return success(); 4027 } 4028 4029 /// Parse a keyword, if present, into 'keyword'. 4030 ParseResult parseOptionalKeyword(StringRef *keyword) override { 4031 // Check that the current token is a keyword. 4032 if (!isCurrentTokenAKeyword()) 4033 return failure(); 4034 4035 *keyword = parser.getTokenSpelling(); 4036 parser.consumeToken(); 4037 return success(); 4038 } 4039 4040 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 4041 /// string attribute named 'attrName'. 4042 ParseResult 4043 parseOptionalSymbolName(StringAttr &result, StringRef attrName, 4044 SmallVectorImpl<NamedAttribute> &attrs) override { 4045 Token atToken = parser.getToken(); 4046 if (atToken.isNot(Token::at_identifier)) 4047 return failure(); 4048 4049 result = getBuilder().getStringAttr(extractSymbolReference(atToken)); 4050 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 4051 parser.consumeToken(); 4052 return success(); 4053 } 4054 4055 //===--------------------------------------------------------------------===// 4056 // Operand Parsing 4057 //===--------------------------------------------------------------------===// 4058 4059 /// Parse a single operand. 4060 ParseResult parseOperand(OperandType &result) override { 4061 OperationParser::SSAUseInfo useInfo; 4062 if (parser.parseSSAUse(useInfo)) 4063 return failure(); 4064 4065 result = {useInfo.loc, useInfo.name, useInfo.number}; 4066 return success(); 4067 } 4068 4069 /// Parse zero or more SSA comma-separated operand references with a specified 4070 /// surrounding delimiter, and an optional required operand count. 4071 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 4072 int requiredOperandCount = -1, 4073 Delimiter delimiter = Delimiter::None) override { 4074 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 4075 requiredOperandCount, delimiter); 4076 } 4077 4078 /// Parse zero or more SSA comma-separated operand or region arguments with 4079 /// optional surrounding delimiter and required operand count. 4080 ParseResult 4081 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 4082 bool isOperandList, int requiredOperandCount = -1, 4083 Delimiter delimiter = Delimiter::None) { 4084 auto startLoc = parser.getToken().getLoc(); 4085 4086 // Handle delimiters. 4087 switch (delimiter) { 4088 case Delimiter::None: 4089 // Don't check for the absence of a delimiter if the number of operands 4090 // is unknown (and hence the operand list could be empty). 4091 if (requiredOperandCount == -1) 4092 break; 4093 // Token already matches an identifier and so can't be a delimiter. 4094 if (parser.getToken().is(Token::percent_identifier)) 4095 break; 4096 // Test against known delimiters. 4097 if (parser.getToken().is(Token::l_paren) || 4098 parser.getToken().is(Token::l_square)) 4099 return emitError(startLoc, "unexpected delimiter"); 4100 return emitError(startLoc, "invalid operand"); 4101 case Delimiter::OptionalParen: 4102 if (parser.getToken().isNot(Token::l_paren)) 4103 return success(); 4104 LLVM_FALLTHROUGH; 4105 case Delimiter::Paren: 4106 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 4107 return failure(); 4108 break; 4109 case Delimiter::OptionalSquare: 4110 if (parser.getToken().isNot(Token::l_square)) 4111 return success(); 4112 LLVM_FALLTHROUGH; 4113 case Delimiter::Square: 4114 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 4115 return failure(); 4116 break; 4117 } 4118 4119 // Check for zero operands. 4120 if (parser.getToken().is(Token::percent_identifier)) { 4121 do { 4122 OperandType operandOrArg; 4123 if (isOperandList ? parseOperand(operandOrArg) 4124 : parseRegionArgument(operandOrArg)) 4125 return failure(); 4126 result.push_back(operandOrArg); 4127 } while (parser.consumeIf(Token::comma)); 4128 } 4129 4130 // Handle delimiters. If we reach here, the optional delimiters were 4131 // present, so we need to parse their closing one. 4132 switch (delimiter) { 4133 case Delimiter::None: 4134 break; 4135 case Delimiter::OptionalParen: 4136 case Delimiter::Paren: 4137 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 4138 return failure(); 4139 break; 4140 case Delimiter::OptionalSquare: 4141 case Delimiter::Square: 4142 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 4143 return failure(); 4144 break; 4145 } 4146 4147 if (requiredOperandCount != -1 && 4148 result.size() != static_cast<size_t>(requiredOperandCount)) 4149 return emitError(startLoc, "expected ") 4150 << requiredOperandCount << " operands"; 4151 return success(); 4152 } 4153 4154 /// Parse zero or more trailing SSA comma-separated trailing operand 4155 /// references with a specified surrounding delimiter, and an optional 4156 /// required operand count. A leading comma is expected before the operands. 4157 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 4158 int requiredOperandCount, 4159 Delimiter delimiter) override { 4160 if (parser.getToken().is(Token::comma)) { 4161 parseComma(); 4162 return parseOperandList(result, requiredOperandCount, delimiter); 4163 } 4164 if (requiredOperandCount != -1) 4165 return emitError(parser.getToken().getLoc(), "expected ") 4166 << requiredOperandCount << " operands"; 4167 return success(); 4168 } 4169 4170 /// Resolve an operand to an SSA value, emitting an error on failure. 4171 ParseResult resolveOperand(const OperandType &operand, Type type, 4172 SmallVectorImpl<Value> &result) override { 4173 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4174 operand.location}; 4175 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 4176 result.push_back(value); 4177 return success(); 4178 } 4179 return failure(); 4180 } 4181 4182 /// Parse an AffineMap of SSA ids. 4183 ParseResult 4184 parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 4185 Attribute &mapAttr, StringRef attrName, 4186 SmallVectorImpl<NamedAttribute> &attrs) override { 4187 SmallVector<OperandType, 2> dimOperands; 4188 SmallVector<OperandType, 1> symOperands; 4189 4190 auto parseElement = [&](bool isSymbol) -> ParseResult { 4191 OperandType operand; 4192 if (parseOperand(operand)) 4193 return failure(); 4194 if (isSymbol) 4195 symOperands.push_back(operand); 4196 else 4197 dimOperands.push_back(operand); 4198 return success(); 4199 }; 4200 4201 AffineMap map; 4202 if (parser.parseAffineMapOfSSAIds(map, parseElement)) 4203 return failure(); 4204 // Add AffineMap attribute. 4205 if (map) { 4206 mapAttr = AffineMapAttr::get(map); 4207 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 4208 } 4209 4210 // Add dim operands before symbol operands in 'operands'. 4211 operands.assign(dimOperands.begin(), dimOperands.end()); 4212 operands.append(symOperands.begin(), symOperands.end()); 4213 return success(); 4214 } 4215 4216 //===--------------------------------------------------------------------===// 4217 // Region Parsing 4218 //===--------------------------------------------------------------------===// 4219 4220 /// Parse a region that takes `arguments` of `argTypes` types. This 4221 /// effectively defines the SSA values of `arguments` and assigns their type. 4222 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 4223 ArrayRef<Type> argTypes, 4224 bool enableNameShadowing) override { 4225 assert(arguments.size() == argTypes.size() && 4226 "mismatching number of arguments and types"); 4227 4228 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 4229 regionArguments; 4230 for (auto pair : llvm::zip(arguments, argTypes)) { 4231 const OperandType &operand = std::get<0>(pair); 4232 Type type = std::get<1>(pair); 4233 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4234 operand.location}; 4235 regionArguments.emplace_back(operandInfo, type); 4236 } 4237 4238 // Try to parse the region. 4239 assert((!enableNameShadowing || 4240 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) && 4241 "name shadowing is only allowed on isolated regions"); 4242 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 4243 return failure(); 4244 return success(); 4245 } 4246 4247 /// Parses a region if present. 4248 ParseResult parseOptionalRegion(Region ®ion, 4249 ArrayRef<OperandType> arguments, 4250 ArrayRef<Type> argTypes, 4251 bool enableNameShadowing) override { 4252 if (parser.getToken().isNot(Token::l_brace)) 4253 return success(); 4254 return parseRegion(region, arguments, argTypes, enableNameShadowing); 4255 } 4256 4257 /// Parse a region argument. The type of the argument will be resolved later 4258 /// by a call to `parseRegion`. 4259 ParseResult parseRegionArgument(OperandType &argument) override { 4260 return parseOperand(argument); 4261 } 4262 4263 /// Parse a region argument if present. 4264 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 4265 if (parser.getToken().isNot(Token::percent_identifier)) 4266 return success(); 4267 return parseRegionArgument(argument); 4268 } 4269 4270 ParseResult 4271 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 4272 int requiredOperandCount = -1, 4273 Delimiter delimiter = Delimiter::None) override { 4274 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 4275 requiredOperandCount, delimiter); 4276 } 4277 4278 //===--------------------------------------------------------------------===// 4279 // Successor Parsing 4280 //===--------------------------------------------------------------------===// 4281 4282 /// Parse a single operation successor and its operand list. 4283 ParseResult 4284 parseSuccessorAndUseList(Block *&dest, 4285 SmallVectorImpl<Value> &operands) override { 4286 return parser.parseSuccessorAndUseList(dest, operands); 4287 } 4288 4289 //===--------------------------------------------------------------------===// 4290 // Type Parsing 4291 //===--------------------------------------------------------------------===// 4292 4293 /// Parse a type. 4294 ParseResult parseType(Type &result) override { 4295 return failure(!(result = parser.parseType())); 4296 } 4297 4298 /// Parse an optional arrow followed by a type list. 4299 ParseResult 4300 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 4301 if (!parser.consumeIf(Token::arrow)) 4302 return success(); 4303 return parser.parseFunctionResultTypes(result); 4304 } 4305 4306 /// Parse a colon followed by a type. 4307 ParseResult parseColonType(Type &result) override { 4308 return failure(parser.parseToken(Token::colon, "expected ':'") || 4309 !(result = parser.parseType())); 4310 } 4311 4312 /// Parse a colon followed by a type list, which must have at least one type. 4313 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 4314 if (parser.parseToken(Token::colon, "expected ':'")) 4315 return failure(); 4316 return parser.parseTypeListNoParens(result); 4317 } 4318 4319 /// Parse an optional colon followed by a type list, which if present must 4320 /// have at least one type. 4321 ParseResult 4322 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 4323 if (!parser.consumeIf(Token::colon)) 4324 return success(); 4325 return parser.parseTypeListNoParens(result); 4326 } 4327 4328 private: 4329 /// The source location of the operation name. 4330 SMLoc nameLoc; 4331 4332 /// The abstract information of the operation. 4333 const AbstractOperation *opDefinition; 4334 4335 /// The main operation parser. 4336 OperationParser &parser; 4337 4338 /// A flag that indicates if any errors were emitted during parsing. 4339 bool emittedError = false; 4340 }; 4341 } // end anonymous namespace. 4342 4343 Operation *OperationParser::parseCustomOperation() { 4344 auto opLoc = getToken().getLoc(); 4345 auto opName = getTokenSpelling(); 4346 4347 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 4348 if (!opDefinition && !opName.contains('.')) { 4349 // If the operation name has no namespace prefix we treat it as a standard 4350 // operation and prefix it with "std". 4351 // TODO: Would it be better to just build a mapping of the registered 4352 // operations in the standard dialect? 4353 opDefinition = 4354 AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); 4355 } 4356 4357 if (!opDefinition) { 4358 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 4359 return nullptr; 4360 } 4361 4362 consumeToken(); 4363 4364 // If the custom op parser crashes, produce some indication to help 4365 // debugging. 4366 std::string opNameStr = opName.str(); 4367 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 4368 opNameStr.c_str()); 4369 4370 // Get location information for the operation. 4371 auto srcLocation = getEncodedSourceLocation(opLoc); 4372 4373 // Have the op implementation take a crack and parsing this. 4374 OperationState opState(srcLocation, opDefinition->name); 4375 CleanupOpStateRegions guard{opState}; 4376 CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this); 4377 if (opAsmParser.parseOperation(opState)) 4378 return nullptr; 4379 4380 // If it emitted an error, we failed. 4381 if (opAsmParser.didEmitError()) 4382 return nullptr; 4383 4384 // Parse a location if one is present. 4385 if (parseOptionalTrailingLocation(opState.location)) 4386 return nullptr; 4387 4388 // Otherwise, we succeeded. Use the state it parsed as our op information. 4389 return opBuilder.createOperation(opState); 4390 } 4391 4392 //===----------------------------------------------------------------------===// 4393 // Region Parsing 4394 //===----------------------------------------------------------------------===// 4395 4396 /// Region. 4397 /// 4398 /// region ::= '{' region-body 4399 /// 4400 ParseResult OperationParser::parseRegion( 4401 Region ®ion, 4402 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 4403 bool isIsolatedNameScope) { 4404 // Parse the '{'. 4405 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 4406 return failure(); 4407 4408 // Check for an empty region. 4409 if (entryArguments.empty() && consumeIf(Token::r_brace)) 4410 return success(); 4411 auto currentPt = opBuilder.saveInsertionPoint(); 4412 4413 // Push a new named value scope. 4414 pushSSANameScope(isIsolatedNameScope); 4415 4416 // Parse the first block directly to allow for it to be unnamed. 4417 Block *block = new Block(); 4418 4419 // Add arguments to the entry block. 4420 if (!entryArguments.empty()) { 4421 for (auto &placeholderArgPair : entryArguments) { 4422 auto &argInfo = placeholderArgPair.first; 4423 // Ensure that the argument was not already defined. 4424 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 4425 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 4426 "' is already in use") 4427 .attachNote(getEncodedSourceLocation(*defLoc)) 4428 << "previously referenced here"; 4429 } 4430 if (addDefinition(placeholderArgPair.first, 4431 block->addArgument(placeholderArgPair.second))) { 4432 delete block; 4433 return failure(); 4434 } 4435 } 4436 4437 // If we had named arguments, then don't allow a block name. 4438 if (getToken().is(Token::caret_identifier)) 4439 return emitError("invalid block name in region with named arguments"); 4440 } 4441 4442 if (parseBlock(block)) { 4443 delete block; 4444 return failure(); 4445 } 4446 4447 // Verify that no other arguments were parsed. 4448 if (!entryArguments.empty() && 4449 block->getNumArguments() > entryArguments.size()) { 4450 delete block; 4451 return emitError("entry block arguments were already defined"); 4452 } 4453 4454 // Parse the rest of the region. 4455 region.push_back(block); 4456 if (parseRegionBody(region)) 4457 return failure(); 4458 4459 // Pop the SSA value scope for this region. 4460 if (popSSANameScope()) 4461 return failure(); 4462 4463 // Reset the original insertion point. 4464 opBuilder.restoreInsertionPoint(currentPt); 4465 return success(); 4466 } 4467 4468 /// Region. 4469 /// 4470 /// region-body ::= block* '}' 4471 /// 4472 ParseResult OperationParser::parseRegionBody(Region ®ion) { 4473 // Parse the list of blocks. 4474 while (!consumeIf(Token::r_brace)) { 4475 Block *newBlock = nullptr; 4476 if (parseBlock(newBlock)) 4477 return failure(); 4478 region.push_back(newBlock); 4479 } 4480 return success(); 4481 } 4482 4483 //===----------------------------------------------------------------------===// 4484 // Block Parsing 4485 //===----------------------------------------------------------------------===// 4486 4487 /// Block declaration. 4488 /// 4489 /// block ::= block-label? operation* 4490 /// block-label ::= block-id block-arg-list? `:` 4491 /// block-id ::= caret-id 4492 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 4493 /// 4494 ParseResult OperationParser::parseBlock(Block *&block) { 4495 // The first block of a region may already exist, if it does the caret 4496 // identifier is optional. 4497 if (block && getToken().isNot(Token::caret_identifier)) 4498 return parseBlockBody(block); 4499 4500 SMLoc nameLoc = getToken().getLoc(); 4501 auto name = getTokenSpelling(); 4502 if (parseToken(Token::caret_identifier, "expected block name")) 4503 return failure(); 4504 4505 block = defineBlockNamed(name, nameLoc, block); 4506 4507 // Fail if the block was already defined. 4508 if (!block) 4509 return emitError(nameLoc, "redefinition of block '") << name << "'"; 4510 4511 // If an argument list is present, parse it. 4512 if (consumeIf(Token::l_paren)) { 4513 SmallVector<BlockArgument, 8> bbArgs; 4514 if (parseOptionalBlockArgList(bbArgs, block) || 4515 parseToken(Token::r_paren, "expected ')' to end argument list")) 4516 return failure(); 4517 } 4518 4519 if (parseToken(Token::colon, "expected ':' after block name")) 4520 return failure(); 4521 4522 return parseBlockBody(block); 4523 } 4524 4525 ParseResult OperationParser::parseBlockBody(Block *block) { 4526 // Set the insertion point to the end of the block to parse. 4527 opBuilder.setInsertionPointToEnd(block); 4528 4529 // Parse the list of operations that make up the body of the block. 4530 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 4531 if (parseOperation()) 4532 return failure(); 4533 4534 return success(); 4535 } 4536 4537 /// Get the block with the specified name, creating it if it doesn't already 4538 /// exist. The location specified is the point of use, which allows 4539 /// us to diagnose references to blocks that are not defined precisely. 4540 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 4541 auto &blockAndLoc = getBlockInfoByName(name); 4542 if (!blockAndLoc.first) { 4543 blockAndLoc = {new Block(), loc}; 4544 insertForwardRef(blockAndLoc.first, loc); 4545 } 4546 4547 return blockAndLoc.first; 4548 } 4549 4550 /// Define the block with the specified name. Returns the Block* or nullptr in 4551 /// the case of redefinition. 4552 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 4553 Block *existing) { 4554 auto &blockAndLoc = getBlockInfoByName(name); 4555 if (!blockAndLoc.first) { 4556 // If the caller provided a block, use it. Otherwise create a new one. 4557 if (!existing) 4558 existing = new Block(); 4559 blockAndLoc.first = existing; 4560 blockAndLoc.second = loc; 4561 return blockAndLoc.first; 4562 } 4563 4564 // Forward declarations are removed once defined, so if we are defining a 4565 // existing block and it is not a forward declaration, then it is a 4566 // redeclaration. 4567 if (!eraseForwardRef(blockAndLoc.first)) 4568 return nullptr; 4569 return blockAndLoc.first; 4570 } 4571 4572 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 4573 /// 4574 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 4575 /// 4576 ParseResult OperationParser::parseOptionalBlockArgList( 4577 SmallVectorImpl<BlockArgument> &results, Block *owner) { 4578 if (getToken().is(Token::r_brace)) 4579 return success(); 4580 4581 // If the block already has arguments, then we're handling the entry block. 4582 // Parse and register the names for the arguments, but do not add them. 4583 bool definingExistingArgs = owner->getNumArguments() != 0; 4584 unsigned nextArgument = 0; 4585 4586 return parseCommaSeparatedList([&]() -> ParseResult { 4587 return parseSSADefOrUseAndType( 4588 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 4589 // If this block did not have existing arguments, define a new one. 4590 if (!definingExistingArgs) 4591 return addDefinition(useInfo, owner->addArgument(type)); 4592 4593 // Otherwise, ensure that this argument has already been created. 4594 if (nextArgument >= owner->getNumArguments()) 4595 return emitError("too many arguments specified in argument list"); 4596 4597 // Finally, make sure the existing argument has the correct type. 4598 auto arg = owner->getArgument(nextArgument++); 4599 if (arg.getType() != type) 4600 return emitError("argument and block argument type mismatch"); 4601 return addDefinition(useInfo, arg); 4602 }); 4603 }); 4604 } 4605 4606 //===----------------------------------------------------------------------===// 4607 // Top-level entity parsing. 4608 //===----------------------------------------------------------------------===// 4609 4610 namespace { 4611 /// This parser handles entities that are only valid at the top level of the 4612 /// file. 4613 class ModuleParser : public Parser { 4614 public: 4615 explicit ModuleParser(ParserState &state) : Parser(state) {} 4616 4617 ParseResult parseModule(ModuleOp module); 4618 4619 private: 4620 /// Parse an attribute alias declaration. 4621 ParseResult parseAttributeAliasDef(); 4622 4623 /// Parse an attribute alias declaration. 4624 ParseResult parseTypeAliasDef(); 4625 }; 4626 } // end anonymous namespace 4627 4628 /// Parses an attribute alias declaration. 4629 /// 4630 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 4631 /// 4632 ParseResult ModuleParser::parseAttributeAliasDef() { 4633 assert(getToken().is(Token::hash_identifier)); 4634 StringRef aliasName = getTokenSpelling().drop_front(); 4635 4636 // Check for redefinitions. 4637 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 4638 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 4639 4640 // Make sure this isn't invading the dialect attribute namespace. 4641 if (aliasName.contains('.')) 4642 return emitError("attribute names with a '.' are reserved for " 4643 "dialect-defined names"); 4644 4645 consumeToken(Token::hash_identifier); 4646 4647 // Parse the '='. 4648 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 4649 return failure(); 4650 4651 // Parse the attribute value. 4652 Attribute attr = parseAttribute(); 4653 if (!attr) 4654 return failure(); 4655 4656 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 4657 return success(); 4658 } 4659 4660 /// Parse a type alias declaration. 4661 /// 4662 /// type-alias-def ::= '!' alias-name `=` 'type' type 4663 /// 4664 ParseResult ModuleParser::parseTypeAliasDef() { 4665 assert(getToken().is(Token::exclamation_identifier)); 4666 StringRef aliasName = getTokenSpelling().drop_front(); 4667 4668 // Check for redefinitions. 4669 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 4670 return emitError("redefinition of type alias id '" + aliasName + "'"); 4671 4672 // Make sure this isn't invading the dialect type namespace. 4673 if (aliasName.contains('.')) 4674 return emitError("type names with a '.' are reserved for " 4675 "dialect-defined names"); 4676 4677 consumeToken(Token::exclamation_identifier); 4678 4679 // Parse the '=' and 'type'. 4680 if (parseToken(Token::equal, "expected '=' in type alias definition") || 4681 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 4682 return failure(); 4683 4684 // Parse the type. 4685 Type aliasedType = parseType(); 4686 if (!aliasedType) 4687 return failure(); 4688 4689 // Register this alias with the parser state. 4690 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 4691 return success(); 4692 } 4693 4694 /// This is the top-level module parser. 4695 ParseResult ModuleParser::parseModule(ModuleOp module) { 4696 OperationParser opParser(getState(), module); 4697 4698 // Module itself is a name scope. 4699 opParser.pushSSANameScope(/*isIsolated=*/true); 4700 4701 while (true) { 4702 switch (getToken().getKind()) { 4703 default: 4704 // Parse a top-level operation. 4705 if (opParser.parseOperation()) 4706 return failure(); 4707 break; 4708 4709 // If we got to the end of the file, then we're done. 4710 case Token::eof: { 4711 if (opParser.finalize()) 4712 return failure(); 4713 4714 // Handle the case where the top level module was explicitly defined. 4715 auto &bodyBlocks = module.getBodyRegion().getBlocks(); 4716 auto &operations = bodyBlocks.front().getOperations(); 4717 assert(!operations.empty() && "expected a valid module terminator"); 4718 4719 // Check that the first operation is a module, and it is the only 4720 // non-terminator operation. 4721 ModuleOp nested = dyn_cast<ModuleOp>(operations.front()); 4722 if (nested && std::next(operations.begin(), 2) == operations.end()) { 4723 // Merge the data of the nested module operation into 'module'. 4724 module.setLoc(nested.getLoc()); 4725 module.setAttrs(nested.getOperation()->getAttrList()); 4726 bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks()); 4727 4728 // Erase the original module body. 4729 bodyBlocks.pop_front(); 4730 } 4731 4732 return opParser.popSSANameScope(); 4733 } 4734 4735 // If we got an error token, then the lexer already emitted an error, just 4736 // stop. Someday we could introduce error recovery if there was demand 4737 // for it. 4738 case Token::error: 4739 return failure(); 4740 4741 // Parse an attribute alias. 4742 case Token::hash_identifier: 4743 if (parseAttributeAliasDef()) 4744 return failure(); 4745 break; 4746 4747 // Parse a type alias. 4748 case Token::exclamation_identifier: 4749 if (parseTypeAliasDef()) 4750 return failure(); 4751 break; 4752 } 4753 } 4754 } 4755 4756 //===----------------------------------------------------------------------===// 4757 4758 /// This parses the file specified by the indicated SourceMgr and returns an 4759 /// MLIR module if it was valid. If not, it emits diagnostics and returns 4760 /// null. 4761 OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 4762 MLIRContext *context) { 4763 auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 4764 4765 // This is the result module we are parsing into. 4766 OwningModuleRef module(ModuleOp::create(FileLineColLoc::get( 4767 sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context))); 4768 4769 SymbolState aliasState; 4770 ParserState state(sourceMgr, context, aliasState); 4771 if (ModuleParser(state).parseModule(*module)) 4772 return nullptr; 4773 4774 // Make sure the parse module has no other structural problems detected by 4775 // the verifier. 4776 if (failed(verify(*module))) 4777 return nullptr; 4778 4779 return module; 4780 } 4781 4782 /// This parses the file specified by the indicated filename and returns an 4783 /// MLIR module if it was valid. If not, the error message is emitted through 4784 /// the error handler registered in the context, and a null pointer is returned. 4785 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4786 MLIRContext *context) { 4787 llvm::SourceMgr sourceMgr; 4788 return parseSourceFile(filename, sourceMgr, context); 4789 } 4790 4791 /// This parses the file specified by the indicated filename using the provided 4792 /// SourceMgr and returns an MLIR module if it was valid. If not, the error 4793 /// message is emitted through the error handler registered in the context, and 4794 /// a null pointer is returned. 4795 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4796 llvm::SourceMgr &sourceMgr, 4797 MLIRContext *context) { 4798 if (sourceMgr.getNumBuffers() != 0) { 4799 // TODO(b/136086478): Extend to support multiple buffers. 4800 emitError(mlir::UnknownLoc::get(context), 4801 "only main buffer parsed at the moment"); 4802 return nullptr; 4803 } 4804 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 4805 if (std::error_code error = file_or_err.getError()) { 4806 emitError(mlir::UnknownLoc::get(context), 4807 "could not open input file " + filename); 4808 return nullptr; 4809 } 4810 4811 // Load the MLIR module. 4812 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 4813 return parseSourceFile(sourceMgr, context); 4814 } 4815 4816 /// This parses the program string to a MLIR module if it was valid. If not, 4817 /// it emits diagnostics and returns null. 4818 OwningModuleRef mlir::parseSourceString(StringRef moduleStr, 4819 MLIRContext *context) { 4820 auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); 4821 if (!memBuffer) 4822 return nullptr; 4823 4824 SourceMgr sourceMgr; 4825 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 4826 return parseSourceFile(sourceMgr, context); 4827 } 4828 4829 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 4830 /// parsing failed, nullptr is returned. The number of bytes read from the input 4831 /// string is returned in 'numRead'. 4832 template <typename T, typename ParserFn> 4833 static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead, 4834 ParserFn &&parserFn) { 4835 SymbolState aliasState; 4836 return parseSymbol<T>( 4837 inputStr, context, aliasState, 4838 [&](Parser &parser) { 4839 SourceMgrDiagnosticHandler handler( 4840 const_cast<llvm::SourceMgr &>(parser.getSourceMgr()), 4841 parser.getContext()); 4842 return parserFn(parser); 4843 }, 4844 &numRead); 4845 } 4846 4847 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) { 4848 size_t numRead = 0; 4849 return parseAttribute(attrStr, context, numRead); 4850 } 4851 Attribute mlir::parseAttribute(StringRef attrStr, Type type) { 4852 size_t numRead = 0; 4853 return parseAttribute(attrStr, type, numRead); 4854 } 4855 4856 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context, 4857 size_t &numRead) { 4858 return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) { 4859 return parser.parseAttribute(); 4860 }); 4861 } 4862 Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) { 4863 return parseSymbol<Attribute>( 4864 attrStr, type.getContext(), numRead, 4865 [type](Parser &parser) { return parser.parseAttribute(type); }); 4866 } 4867 4868 Type mlir::parseType(StringRef typeStr, MLIRContext *context) { 4869 size_t numRead = 0; 4870 return parseType(typeStr, context, numRead); 4871 } 4872 4873 Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) { 4874 return parseSymbol<Type>(typeStr, context, numRead, 4875 [](Parser &parser) { return parser.parseType(); }); 4876 } 4877