1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
2 //
3 // Copyright 2019 The MLIR Authors.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 //   http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 // =============================================================================
17 //
18 // This file implements the parser for the MLIR textual form.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "mlir/Parser.h"
23 #include "Lexer.h"
24 #include "mlir/Analysis/Verifier.h"
25 #include "mlir/IR/AffineExpr.h"
26 #include "mlir/IR/AffineMap.h"
27 #include "mlir/IR/Attributes.h"
28 #include "mlir/IR/Builders.h"
29 #include "mlir/IR/Dialect.h"
30 #include "mlir/IR/IntegerSet.h"
31 #include "mlir/IR/Location.h"
32 #include "mlir/IR/MLIRContext.h"
33 #include "mlir/IR/Module.h"
34 #include "mlir/IR/OpImplementation.h"
35 #include "mlir/IR/StandardTypes.h"
36 #include "mlir/Support/STLExtras.h"
37 #include "llvm/ADT/APInt.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/StringSet.h"
40 #include "llvm/ADT/bit.h"
41 #include "llvm/Support/MemoryBuffer.h"
42 #include "llvm/Support/PrettyStackTrace.h"
43 #include "llvm/Support/SMLoc.h"
44 #include "llvm/Support/SourceMgr.h"
45 #include <algorithm>
46 using namespace mlir;
47 using llvm::MemoryBuffer;
48 using llvm::SMLoc;
49 using llvm::SourceMgr;
50 
51 namespace {
52 class Parser;
53 
54 //===----------------------------------------------------------------------===//
55 // ParserState
56 //===----------------------------------------------------------------------===//
57 
58 /// This class refers to all of the state maintained globally by the parser,
59 /// such as the current lexer position etc. The Parser base class provides
60 /// methods to access this.
61 class ParserState {
62 public:
63   ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx)
64       : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()) {}
65 
66   // A map from attribute alias identifier to Attribute.
67   llvm::StringMap<Attribute> attributeAliasDefinitions;
68 
69   // A map from type alias identifier to Type.
70   llvm::StringMap<Type> typeAliasDefinitions;
71 
72 private:
73   ParserState(const ParserState &) = delete;
74   void operator=(const ParserState &) = delete;
75 
76   friend class Parser;
77 
78   // The context we're parsing into.
79   MLIRContext *const context;
80 
81   // The lexer for the source file we're parsing.
82   Lexer lex;
83 
84   // This is the next token that hasn't been consumed yet.
85   Token curToken;
86 };
87 
88 //===----------------------------------------------------------------------===//
89 // Parser
90 //===----------------------------------------------------------------------===//
91 
92 /// This class implement support for parsing global entities like types and
93 /// shared entities like SSA names.  It is intended to be subclassed by
94 /// specialized subparsers that include state, e.g. when a local symbol table.
95 class Parser {
96 public:
97   Builder builder;
98 
99   Parser(ParserState &state) : builder(state.context), state(state) {}
100 
101   // Helper methods to get stuff from the parser-global state.
102   ParserState &getState() const { return state; }
103   MLIRContext *getContext() const { return state.context; }
104   const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); }
105 
106   /// Parse a comma-separated list of elements up until the specified end token.
107   ParseResult
108   parseCommaSeparatedListUntil(Token::Kind rightToken,
109                                const std::function<ParseResult()> &parseElement,
110                                bool allowEmptyList = true);
111 
112   /// Parse a comma separated list of elements that must have at least one entry
113   /// in it.
114   ParseResult
115   parseCommaSeparatedList(const std::function<ParseResult()> &parseElement);
116 
117   ParseResult parsePrettyDialectSymbolName(StringRef &prettyName);
118 
119   // We have two forms of parsing methods - those that return a non-null
120   // pointer on success, and those that return a ParseResult to indicate whether
121   // they returned a failure.  The second class fills in by-reference arguments
122   // as the results of their action.
123 
124   //===--------------------------------------------------------------------===//
125   // Error Handling
126   //===--------------------------------------------------------------------===//
127 
128   /// Emit an error and return failure.
129   InFlightDiagnostic emitError(const Twine &message = {}) {
130     return emitError(state.curToken.getLoc(), message);
131   }
132   InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {});
133 
134   /// Encode the specified source location information into an attribute for
135   /// attachment to the IR.
136   Location getEncodedSourceLocation(llvm::SMLoc loc) {
137     return state.lex.getEncodedSourceLocation(loc);
138   }
139 
140   //===--------------------------------------------------------------------===//
141   // Token Parsing
142   //===--------------------------------------------------------------------===//
143 
144   /// Return the current token the parser is inspecting.
145   const Token &getToken() const { return state.curToken; }
146   StringRef getTokenSpelling() const { return state.curToken.getSpelling(); }
147 
148   /// If the current token has the specified kind, consume it and return true.
149   /// If not, return false.
150   bool consumeIf(Token::Kind kind) {
151     if (state.curToken.isNot(kind))
152       return false;
153     consumeToken(kind);
154     return true;
155   }
156 
157   /// Advance the current lexer onto the next token.
158   void consumeToken() {
159     assert(state.curToken.isNot(Token::eof, Token::error) &&
160            "shouldn't advance past EOF or errors");
161     state.curToken = state.lex.lexToken();
162   }
163 
164   /// Advance the current lexer onto the next token, asserting what the expected
165   /// current token is.  This is preferred to the above method because it leads
166   /// to more self-documenting code with better checking.
167   void consumeToken(Token::Kind kind) {
168     assert(state.curToken.is(kind) && "consumed an unexpected token");
169     consumeToken();
170   }
171 
172   /// Consume the specified token if present and return success.  On failure,
173   /// output a diagnostic and return failure.
174   ParseResult parseToken(Token::Kind expectedToken, const Twine &message);
175 
176   //===--------------------------------------------------------------------===//
177   // Type Parsing
178   //===--------------------------------------------------------------------===//
179 
180   ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements);
181   ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements);
182   ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements);
183 
184   /// Parse an arbitrary type.
185   Type parseType();
186 
187   /// Parse a complex type.
188   Type parseComplexType();
189 
190   /// Parse an extended type.
191   Type parseExtendedType();
192 
193   /// Parse a function type.
194   Type parseFunctionType();
195 
196   /// Parse a memref type.
197   Type parseMemRefType();
198 
199   /// Parse a non function type.
200   Type parseNonFunctionType();
201 
202   /// Parse a tensor type.
203   Type parseTensorType();
204 
205   /// Parse a tuple type.
206   Type parseTupleType();
207 
208   /// Parse a vector type.
209   VectorType parseVectorType();
210   ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
211                                        bool allowDynamic = true);
212   ParseResult parseXInDimensionList();
213 
214   //===--------------------------------------------------------------------===//
215   // Attribute Parsing
216   //===--------------------------------------------------------------------===//
217 
218   /// Parse an arbitrary attribute with an optional type.
219   Attribute parseAttribute(Type type = {});
220 
221   /// Parse an attribute dictionary.
222   ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes);
223 
224   /// Parse an extended attribute.
225   Attribute parseExtendedAttr(Type type);
226 
227   /// Parse a float attribute.
228   Attribute parseFloatAttr(Type type, bool isNegative);
229 
230   /// Parse a decimal or a hexadecimal literal, which can be either an integer
231   /// or a float attribute.
232   Attribute parseDecOrHexAttr(Type type, bool isNegative);
233 
234   /// Parse an opaque elements attribute.
235   Attribute parseOpaqueElementsAttr();
236 
237   /// Parse a dense elements attribute.
238   Attribute parseDenseElementsAttr();
239   ShapedType parseElementsLiteralType();
240 
241   /// Parse a sparse elements attribute.
242   Attribute parseSparseElementsAttr();
243 
244   //===--------------------------------------------------------------------===//
245   // Location Parsing
246   //===--------------------------------------------------------------------===//
247 
248   /// Parse an inline location.
249   ParseResult parseLocation(LocationAttr &loc);
250 
251   /// Parse a raw location instance.
252   ParseResult parseLocationInstance(LocationAttr &loc);
253 
254   /// Parse a callsite location instance.
255   ParseResult parseCallSiteLocation(LocationAttr &loc);
256 
257   /// Parse a fused location instance.
258   ParseResult parseFusedLocation(LocationAttr &loc);
259 
260   /// Parse a name or FileLineCol location instance.
261   ParseResult parseNameOrFileLineColLocation(LocationAttr &loc);
262 
263   /// Parse an optional trailing location.
264   ///
265   ///   trailing-location     ::= location?
266   ///
267   template <typename Owner>
268   ParseResult parseOptionalTrailingLocation(Owner *owner) {
269     // If there is a 'loc' we parse a trailing location.
270     if (!getToken().is(Token::kw_loc))
271       return success();
272 
273     // Parse the location.
274     LocationAttr directLoc;
275     if (parseLocation(directLoc))
276       return failure();
277     owner->setLoc(directLoc);
278     return success();
279   }
280 
281   //===--------------------------------------------------------------------===//
282   // Affine Parsing
283   //===--------------------------------------------------------------------===//
284 
285   ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map,
286                                                   IntegerSet &set);
287 
288   /// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
289   ParseResult
290   parseAffineMapOfSSAIds(AffineMap &map,
291                          llvm::function_ref<ParseResult(bool)> parseElement);
292 
293 private:
294   /// The Parser is subclassed and reinstantiated.  Do not add additional
295   /// non-trivial state here, add it to the ParserState class.
296   ParserState &state;
297 };
298 } // end anonymous namespace
299 
300 //===----------------------------------------------------------------------===//
301 // Helper methods.
302 //===----------------------------------------------------------------------===//
303 
304 /// Parse a comma separated list of elements that must have at least one entry
305 /// in it.
306 ParseResult Parser::parseCommaSeparatedList(
307     const std::function<ParseResult()> &parseElement) {
308   // Non-empty case starts with an element.
309   if (parseElement())
310     return failure();
311 
312   // Otherwise we have a list of comma separated elements.
313   while (consumeIf(Token::comma)) {
314     if (parseElement())
315       return failure();
316   }
317   return success();
318 }
319 
320 /// Parse a comma-separated list of elements, terminated with an arbitrary
321 /// token.  This allows empty lists if allowEmptyList is true.
322 ///
323 ///   abstract-list ::= rightToken                  // if allowEmptyList == true
324 ///   abstract-list ::= element (',' element)* rightToken
325 ///
326 ParseResult Parser::parseCommaSeparatedListUntil(
327     Token::Kind rightToken, const std::function<ParseResult()> &parseElement,
328     bool allowEmptyList) {
329   // Handle the empty case.
330   if (getToken().is(rightToken)) {
331     if (!allowEmptyList)
332       return emitError("expected list element");
333     consumeToken(rightToken);
334     return success();
335   }
336 
337   if (parseCommaSeparatedList(parseElement) ||
338       parseToken(rightToken, "expected ',' or '" +
339                                  Token::getTokenSpelling(rightToken) + "'"))
340     return failure();
341 
342   return success();
343 }
344 
345 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s,
346 /// and may be recursive.  Return with the 'prettyName' StringRef encompasing
347 /// the entire pretty name.
348 ///
349 ///   pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>'
350 ///   pretty-dialect-sym-contents ::= pretty-dialect-sym-body
351 ///                                  | '(' pretty-dialect-sym-contents+ ')'
352 ///                                  | '[' pretty-dialect-sym-contents+ ']'
353 ///                                  | '{' pretty-dialect-sym-contents+ '}'
354 ///                                  | '[^[<({>\])}\0]+'
355 ///
356 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) {
357   // Pretty symbol names are a relatively unstructured format that contains a
358   // series of properly nested punctuation, with anything else in the middle.
359   // Scan ahead to find it and consume it if successful, otherwise emit an
360   // error.
361   auto *curPtr = getTokenSpelling().data();
362 
363   SmallVector<char, 8> nestedPunctuation;
364 
365   // Scan over the nested punctuation, bailing out on error and consuming until
366   // we find the end.  We know that we're currently looking at the '<', so we
367   // can go until we find the matching '>' character.
368   assert(*curPtr == '<');
369   do {
370     char c = *curPtr++;
371     switch (c) {
372     case '\0':
373       // This also handles the EOF case.
374       return emitError("unexpected nul or EOF in pretty dialect name");
375     case '<':
376     case '[':
377     case '(':
378     case '{':
379       nestedPunctuation.push_back(c);
380       continue;
381 
382     case '-':
383       // The sequence `->` is treated as special token.
384       if (*curPtr == '>')
385         ++curPtr;
386       continue;
387 
388     case '>':
389       if (nestedPunctuation.pop_back_val() != '<')
390         return emitError("unbalanced '>' character in pretty dialect name");
391       break;
392     case ']':
393       if (nestedPunctuation.pop_back_val() != '[')
394         return emitError("unbalanced ']' character in pretty dialect name");
395       break;
396     case ')':
397       if (nestedPunctuation.pop_back_val() != '(')
398         return emitError("unbalanced ')' character in pretty dialect name");
399       break;
400     case '}':
401       if (nestedPunctuation.pop_back_val() != '{')
402         return emitError("unbalanced '}' character in pretty dialect name");
403       break;
404 
405     default:
406       continue;
407     }
408   } while (!nestedPunctuation.empty());
409 
410   // Ok, we succeeded, remember where we stopped, reset the lexer to know it is
411   // consuming all this stuff, and return.
412   state.lex.resetPointer(curPtr);
413 
414   unsigned length = curPtr - prettyName.begin();
415   prettyName = StringRef(prettyName.begin(), length);
416   consumeToken();
417   return success();
418 }
419 
420 /// Parse an extended dialect symbol.
421 template <typename Symbol, typename SymbolAliasMap, typename CreateFn>
422 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok,
423                                   SymbolAliasMap &aliases,
424                                   CreateFn &&createSymbol) {
425   // Parse the dialect namespace.
426   StringRef identifier = p.getTokenSpelling().drop_front();
427   auto loc = p.getToken().getLoc();
428   p.consumeToken(identifierTok);
429 
430   // If there is no '<' token following this, and if the typename contains no
431   // dot, then we are parsing a symbol alias.
432   if (p.getToken().isNot(Token::less) && !identifier.contains('.')) {
433     // Check for an alias for this type.
434     auto aliasIt = aliases.find(identifier);
435     if (aliasIt == aliases.end())
436       return (p.emitError("undefined symbol alias id '" + identifier + "'"),
437               nullptr);
438     return aliasIt->second;
439   }
440 
441   // Otherwise, we are parsing a dialect-specific symbol.  If the name contains
442   // a dot, then this is the "pretty" form.  If not, it is the verbose form that
443   // looks like <"...">.
444   std::string symbolData;
445   auto dialectName = identifier;
446 
447   // Handle the verbose form, where "identifier" is a simple dialect name.
448   if (!identifier.contains('.')) {
449     // Consume the '<'.
450     if (p.parseToken(Token::less, "expected '<' in dialect type"))
451       return nullptr;
452 
453     // Parse the symbol specific data.
454     if (p.getToken().isNot(Token::string))
455       return (p.emitError("expected string literal data in dialect symbol"),
456               nullptr);
457     symbolData = p.getToken().getStringValue();
458     loc = p.getToken().getLoc();
459     p.consumeToken(Token::string);
460 
461     // Consume the '>'.
462     if (p.parseToken(Token::greater, "expected '>' in dialect symbol"))
463       return nullptr;
464   } else {
465     // Ok, the dialect name is the part of the identifier before the dot, the
466     // part after the dot is the dialect's symbol, or the start thereof.
467     auto dotHalves = identifier.split('.');
468     dialectName = dotHalves.first;
469     auto prettyName = dotHalves.second;
470 
471     // If the dialect's symbol is followed immediately by a <, then lex the body
472     // of it into prettyName.
473     if (p.getToken().is(Token::less) &&
474         prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) {
475       if (p.parsePrettyDialectSymbolName(prettyName))
476         return nullptr;
477     }
478 
479     symbolData = prettyName.str();
480   }
481 
482   // Call into the provided symbol construction function.
483   auto encodedLoc = p.getEncodedSourceLocation(loc);
484   return createSymbol(dialectName, symbolData, encodedLoc);
485 }
486 
487 //===----------------------------------------------------------------------===//
488 // Error Handling
489 //===----------------------------------------------------------------------===//
490 
491 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
492   auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);
493 
494   // If we hit a parse error in response to a lexer error, then the lexer
495   // already reported the error.
496   if (getToken().is(Token::error))
497     diag.abandon();
498   return diag;
499 }
500 
501 //===----------------------------------------------------------------------===//
502 // Token Parsing
503 //===----------------------------------------------------------------------===//
504 
505 /// Consume the specified token if present and return success.  On failure,
506 /// output a diagnostic and return failure.
507 ParseResult Parser::parseToken(Token::Kind expectedToken,
508                                const Twine &message) {
509   if (consumeIf(expectedToken))
510     return success();
511   return emitError(message);
512 }
513 
514 //===----------------------------------------------------------------------===//
515 // Type Parsing
516 //===----------------------------------------------------------------------===//
517 
518 /// Parse an arbitrary type.
519 ///
520 ///   type ::= function-type
521 ///          | non-function-type
522 ///
523 Type Parser::parseType() {
524   if (getToken().is(Token::l_paren))
525     return parseFunctionType();
526   return parseNonFunctionType();
527 }
528 
529 /// Parse a function result type.
530 ///
531 ///   function-result-type ::= type-list-parens
532 ///                          | non-function-type
533 ///
534 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) {
535   if (getToken().is(Token::l_paren))
536     return parseTypeListParens(elements);
537 
538   Type t = parseNonFunctionType();
539   if (!t)
540     return failure();
541   elements.push_back(t);
542   return success();
543 }
544 
545 /// Parse a list of types without an enclosing parenthesis.  The list must have
546 /// at least one member.
547 ///
548 ///   type-list-no-parens ::=  type (`,` type)*
549 ///
550 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) {
551   auto parseElt = [&]() -> ParseResult {
552     auto elt = parseType();
553     elements.push_back(elt);
554     return elt ? success() : failure();
555   };
556 
557   return parseCommaSeparatedList(parseElt);
558 }
559 
560 /// Parse a parenthesized list of types.
561 ///
562 ///   type-list-parens ::= `(` `)`
563 ///                      | `(` type-list-no-parens `)`
564 ///
565 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) {
566   if (parseToken(Token::l_paren, "expected '('"))
567     return failure();
568 
569   // Handle empty lists.
570   if (getToken().is(Token::r_paren))
571     return consumeToken(), success();
572 
573   if (parseTypeListNoParens(elements) ||
574       parseToken(Token::r_paren, "expected ')'"))
575     return failure();
576   return success();
577 }
578 
579 /// Parse a complex type.
580 ///
581 ///   complex-type ::= `complex` `<` type `>`
582 ///
583 Type Parser::parseComplexType() {
584   consumeToken(Token::kw_complex);
585 
586   // Parse the '<'.
587   if (parseToken(Token::less, "expected '<' in complex type"))
588     return nullptr;
589 
590   auto typeLocation = getEncodedSourceLocation(getToken().getLoc());
591   auto elementType = parseType();
592   if (!elementType ||
593       parseToken(Token::greater, "expected '>' in complex type"))
594     return nullptr;
595 
596   return ComplexType::getChecked(elementType, typeLocation);
597 }
598 
599 /// Parse an extended type.
600 ///
601 ///   extended-type ::= (dialect-type | type-alias)
602 ///   dialect-type  ::= `!` dialect-namespace `<` `"` type-data `"` `>`
603 ///   dialect-type  ::= `!` alias-name pretty-dialect-attribute-body?
604 ///   type-alias    ::= `!` alias-name
605 ///
606 Type Parser::parseExtendedType() {
607   return parseExtendedSymbol<Type>(
608       *this, Token::exclamation_identifier, state.typeAliasDefinitions,
609       [&](StringRef dialectName, StringRef symbolData, Location loc) -> Type {
610         // If we found a registered dialect, then ask it to parse the type.
611         if (auto *dialect = state.context->getRegisteredDialect(dialectName))
612           return dialect->parseType(symbolData, loc);
613 
614         // Otherwise, form a new opaque type.
615         return OpaqueType::getChecked(
616             Identifier::get(dialectName, state.context), symbolData,
617             state.context, loc);
618       });
619 }
620 
621 /// Parse a function type.
622 ///
623 ///   function-type ::= type-list-parens `->` function-result-type
624 ///
625 Type Parser::parseFunctionType() {
626   assert(getToken().is(Token::l_paren));
627 
628   SmallVector<Type, 4> arguments, results;
629   if (parseTypeListParens(arguments) ||
630       parseToken(Token::arrow, "expected '->' in function type") ||
631       parseFunctionResultTypes(results))
632     return nullptr;
633 
634   return builder.getFunctionType(arguments, results);
635 }
636 
637 /// Parse a memref type.
638 ///
639 ///   memref-type ::= `memref` `<` dimension-list-ranked type
640 ///                   (`,` semi-affine-map-composition)? (`,` memory-space)? `>`
641 ///
642 ///   semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map
643 ///   memory-space ::= integer-literal /* | TODO: address-space-id */
644 ///
645 Type Parser::parseMemRefType() {
646   consumeToken(Token::kw_memref);
647 
648   if (parseToken(Token::less, "expected '<' in memref type"))
649     return nullptr;
650 
651   SmallVector<int64_t, 4> dimensions;
652   if (parseDimensionListRanked(dimensions))
653     return nullptr;
654 
655   // Parse the element type.
656   auto typeLoc = getToken().getLoc();
657   auto elementType = parseType();
658   if (!elementType)
659     return nullptr;
660 
661   // Parse semi-affine-map-composition.
662   SmallVector<AffineMap, 2> affineMapComposition;
663   unsigned memorySpace = 0;
664   bool parsedMemorySpace = false;
665 
666   auto parseElt = [&]() -> ParseResult {
667     if (getToken().is(Token::integer)) {
668       // Parse memory space.
669       if (parsedMemorySpace)
670         return emitError("multiple memory spaces specified in memref type");
671       auto v = getToken().getUnsignedIntegerValue();
672       if (!v.hasValue())
673         return emitError("invalid memory space in memref type");
674       memorySpace = v.getValue();
675       consumeToken(Token::integer);
676       parsedMemorySpace = true;
677     } else {
678       // Parse affine map.
679       if (parsedMemorySpace)
680         return emitError("affine map after memory space in memref type");
681       auto affineMap = parseAttribute();
682       if (!affineMap)
683         return failure();
684 
685       // Verify that the parsed attribute is an affine map.
686       if (auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>())
687         affineMapComposition.push_back(affineMapAttr.getValue());
688       else
689         return emitError("expected affine map in memref type");
690     }
691     return success();
692   };
693 
694   // Parse a list of mappings and address space if present.
695   if (consumeIf(Token::comma)) {
696     // Parse comma separated list of affine maps, followed by memory space.
697     if (parseCommaSeparatedListUntil(Token::greater, parseElt,
698                                      /*allowEmptyList=*/false)) {
699       return nullptr;
700     }
701   } else {
702     if (parseToken(Token::greater, "expected ',' or '>' in memref type"))
703       return nullptr;
704   }
705 
706   return MemRefType::getChecked(dimensions, elementType, affineMapComposition,
707                                 memorySpace, getEncodedSourceLocation(typeLoc));
708 }
709 
710 /// Parse any type except the function type.
711 ///
712 ///   non-function-type ::= integer-type
713 ///                       | index-type
714 ///                       | float-type
715 ///                       | extended-type
716 ///                       | vector-type
717 ///                       | tensor-type
718 ///                       | memref-type
719 ///                       | complex-type
720 ///                       | tuple-type
721 ///                       | none-type
722 ///
723 ///   index-type ::= `index`
724 ///   float-type ::= `f16` | `bf16` | `f32` | `f64`
725 ///   none-type ::= `none`
726 ///
727 Type Parser::parseNonFunctionType() {
728   switch (getToken().getKind()) {
729   default:
730     return (emitError("expected non-function type"), nullptr);
731   case Token::kw_memref:
732     return parseMemRefType();
733   case Token::kw_tensor:
734     return parseTensorType();
735   case Token::kw_complex:
736     return parseComplexType();
737   case Token::kw_tuple:
738     return parseTupleType();
739   case Token::kw_vector:
740     return parseVectorType();
741   // integer-type
742   case Token::inttype: {
743     auto width = getToken().getIntTypeBitwidth();
744     if (!width.hasValue())
745       return (emitError("invalid integer width"), nullptr);
746     auto loc = getEncodedSourceLocation(getToken().getLoc());
747     consumeToken(Token::inttype);
748     return IntegerType::getChecked(width.getValue(), builder.getContext(), loc);
749   }
750 
751   // float-type
752   case Token::kw_bf16:
753     consumeToken(Token::kw_bf16);
754     return builder.getBF16Type();
755   case Token::kw_f16:
756     consumeToken(Token::kw_f16);
757     return builder.getF16Type();
758   case Token::kw_f32:
759     consumeToken(Token::kw_f32);
760     return builder.getF32Type();
761   case Token::kw_f64:
762     consumeToken(Token::kw_f64);
763     return builder.getF64Type();
764 
765   // index-type
766   case Token::kw_index:
767     consumeToken(Token::kw_index);
768     return builder.getIndexType();
769 
770   // none-type
771   case Token::kw_none:
772     consumeToken(Token::kw_none);
773     return builder.getNoneType();
774 
775   // extended type
776   case Token::exclamation_identifier:
777     return parseExtendedType();
778   }
779 }
780 
781 /// Parse a tensor type.
782 ///
783 ///   tensor-type ::= `tensor` `<` dimension-list type `>`
784 ///   dimension-list ::= dimension-list-ranked | `*x`
785 ///
786 Type Parser::parseTensorType() {
787   consumeToken(Token::kw_tensor);
788 
789   if (parseToken(Token::less, "expected '<' in tensor type"))
790     return nullptr;
791 
792   bool isUnranked;
793   SmallVector<int64_t, 4> dimensions;
794 
795   if (consumeIf(Token::star)) {
796     // This is an unranked tensor type.
797     isUnranked = true;
798 
799     if (parseXInDimensionList())
800       return nullptr;
801 
802   } else {
803     isUnranked = false;
804     if (parseDimensionListRanked(dimensions))
805       return nullptr;
806   }
807 
808   // Parse the element type.
809   auto typeLocation = getEncodedSourceLocation(getToken().getLoc());
810   auto elementType = parseType();
811   if (!elementType || parseToken(Token::greater, "expected '>' in tensor type"))
812     return nullptr;
813 
814   if (isUnranked)
815     return UnrankedTensorType::getChecked(elementType, typeLocation);
816   return RankedTensorType::getChecked(dimensions, elementType, typeLocation);
817 }
818 
819 /// Parse a tuple type.
820 ///
821 ///   tuple-type ::= `tuple` `<` (type (`,` type)*)? `>`
822 ///
823 Type Parser::parseTupleType() {
824   consumeToken(Token::kw_tuple);
825 
826   // Parse the '<'.
827   if (parseToken(Token::less, "expected '<' in tuple type"))
828     return nullptr;
829 
830   // Check for an empty tuple by directly parsing '>'.
831   if (consumeIf(Token::greater))
832     return TupleType::get(getContext());
833 
834   // Parse the element types and the '>'.
835   SmallVector<Type, 4> types;
836   if (parseTypeListNoParens(types) ||
837       parseToken(Token::greater, "expected '>' in tuple type"))
838     return nullptr;
839 
840   return TupleType::get(types, getContext());
841 }
842 
843 /// Parse a vector type.
844 ///
845 ///   vector-type ::= `vector` `<` non-empty-static-dimension-list type `>`
846 ///   non-empty-static-dimension-list ::= decimal-literal `x`
847 ///                                       static-dimension-list
848 ///   static-dimension-list ::= (decimal-literal `x`)*
849 ///
850 VectorType Parser::parseVectorType() {
851   consumeToken(Token::kw_vector);
852 
853   if (parseToken(Token::less, "expected '<' in vector type"))
854     return nullptr;
855 
856   SmallVector<int64_t, 4> dimensions;
857   if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false))
858     return nullptr;
859   if (dimensions.empty())
860     return (emitError("expected dimension size in vector type"), nullptr);
861 
862   // Parse the element type.
863   auto typeLoc = getToken().getLoc();
864   auto elementType = parseType();
865   if (!elementType || parseToken(Token::greater, "expected '>' in vector type"))
866     return nullptr;
867 
868   return VectorType::getChecked(dimensions, elementType,
869                                 getEncodedSourceLocation(typeLoc));
870 }
871 
872 /// Parse a dimension list of a tensor or memref type.  This populates the
873 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and
874 /// errors out on `?` otherwise.
875 ///
876 ///   dimension-list-ranked ::= (dimension `x`)*
877 ///   dimension ::= `?` | decimal-literal
878 ///
879 /// When `allowDynamic` is not set, this is used to parse:
880 ///
881 ///   static-dimension-list ::= (decimal-literal `x`)*
882 ParseResult
883 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions,
884                                  bool allowDynamic) {
885   while (getToken().isAny(Token::integer, Token::question)) {
886     if (consumeIf(Token::question)) {
887       if (!allowDynamic)
888         return emitError("expected static shape");
889       dimensions.push_back(-1);
890     } else {
891       // Hexadecimal integer literals (starting with `0x`) are not allowed in
892       // aggregate type declarations.  Therefore, `0xf32` should be processed as
893       // a sequence of separate elements `0`, `x`, `f32`.
894       if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') {
895         // We can get here only if the token is an integer literal.  Hexadecimal
896         // integer literals can only start with `0x` (`1x` wouldn't lex as a
897         // literal, just `1` would, at which point we don't get into this
898         // branch).
899         assert(getTokenSpelling()[0] == '0' && "invalid integer literal");
900         dimensions.push_back(0);
901         state.lex.resetPointer(getTokenSpelling().data() + 1);
902         consumeToken();
903       } else {
904         // Make sure this integer value is in bound and valid.
905         auto dimension = getToken().getUnsignedIntegerValue();
906         if (!dimension.hasValue())
907           return emitError("invalid dimension");
908         dimensions.push_back((int64_t)dimension.getValue());
909         consumeToken(Token::integer);
910       }
911     }
912 
913     // Make sure we have an 'x' or something like 'xbf32'.
914     if (parseXInDimensionList())
915       return failure();
916   }
917 
918   return success();
919 }
920 
921 /// Parse an 'x' token in a dimension list, handling the case where the x is
922 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next
923 /// token.
924 ParseResult Parser::parseXInDimensionList() {
925   if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x')
926     return emitError("expected 'x' in dimension list");
927 
928   // If we had a prefix of 'x', lex the next token immediately after the 'x'.
929   if (getTokenSpelling().size() != 1)
930     state.lex.resetPointer(getTokenSpelling().data() + 1);
931 
932   // Consume the 'x'.
933   consumeToken(Token::bare_identifier);
934 
935   return success();
936 }
937 
938 //===----------------------------------------------------------------------===//
939 // Attribute parsing.
940 //===----------------------------------------------------------------------===//
941 
942 /// Parse an arbitrary attribute.
943 ///
944 ///  attribute-value ::= `unit`
945 ///                    | bool-literal
946 ///                    | integer-literal (`:` (index-type | integer-type))?
947 ///                    | float-literal (`:` float-type)?
948 ///                    | string-literal (`:` type)?
949 ///                    | type
950 ///                    | `[` (attribute-value (`,` attribute-value)*)? `]`
951 ///                    | `{` (attribute-entry (`,` attribute-entry)*)? `}`
952 ///                    | symbol-ref-id
953 ///                    | `dense` `<` attribute-value `>` `:`
954 ///                      (tensor-type | vector-type)
955 ///                    | `sparse` `<` attribute-value `,` attribute-value `>`
956 ///                      `:` (tensor-type | vector-type)
957 ///                    | `opaque` `<` dialect-namespace  `,` hex-string-literal
958 ///                      `>` `:` (tensor-type | vector-type)
959 ///                    | extended-attribute
960 ///
961 Attribute Parser::parseAttribute(Type type) {
962   switch (getToken().getKind()) {
963   // Parse an AffineMap or IntegerSet attribute.
964   case Token::l_paren: {
965     // Try to parse an affine map or an integer set reference.
966     AffineMap map;
967     IntegerSet set;
968     if (parseAffineMapOrIntegerSetReference(map, set))
969       return nullptr;
970     if (map)
971       return builder.getAffineMapAttr(map);
972     assert(set);
973     return builder.getIntegerSetAttr(set);
974   }
975 
976   // Parse an array attribute.
977   case Token::l_square: {
978     consumeToken(Token::l_square);
979 
980     SmallVector<Attribute, 4> elements;
981     auto parseElt = [&]() -> ParseResult {
982       elements.push_back(parseAttribute());
983       return elements.back() ? success() : failure();
984     };
985 
986     if (parseCommaSeparatedListUntil(Token::r_square, parseElt))
987       return nullptr;
988     return builder.getArrayAttr(elements);
989   }
990 
991   // Parse a boolean attribute.
992   case Token::kw_false:
993     consumeToken(Token::kw_false);
994     return builder.getBoolAttr(false);
995   case Token::kw_true:
996     consumeToken(Token::kw_true);
997     return builder.getBoolAttr(true);
998 
999   // Parse a dense elements attribute.
1000   case Token::kw_dense:
1001     return parseDenseElementsAttr();
1002 
1003   // Parse a dictionary attribute.
1004   case Token::l_brace: {
1005     SmallVector<NamedAttribute, 4> elements;
1006     if (parseAttributeDict(elements))
1007       return nullptr;
1008     return builder.getDictionaryAttr(elements);
1009   }
1010 
1011   // Parse an extended attribute, i.e. alias or dialect attribute.
1012   case Token::hash_identifier:
1013     return parseExtendedAttr(type);
1014 
1015   // Parse floating point and integer attributes.
1016   case Token::floatliteral:
1017     return parseFloatAttr(type, /*isNegative=*/false);
1018   case Token::integer:
1019     return parseDecOrHexAttr(type, /*isNegative=*/false);
1020   case Token::minus: {
1021     consumeToken(Token::minus);
1022     if (getToken().is(Token::integer))
1023       return parseDecOrHexAttr(type, /*isNegative=*/true);
1024     if (getToken().is(Token::floatliteral))
1025       return parseFloatAttr(type, /*isNegative=*/true);
1026 
1027     return (emitError("expected constant integer or floating point value"),
1028             nullptr);
1029   }
1030 
1031   // Parse a location attribute.
1032   case Token::kw_loc: {
1033     LocationAttr attr;
1034     return failed(parseLocation(attr)) ? Attribute() : attr;
1035   }
1036 
1037   // Parse an opaque elements attribute.
1038   case Token::kw_opaque:
1039     return parseOpaqueElementsAttr();
1040 
1041   // Parse a sparse elements attribute.
1042   case Token::kw_sparse:
1043     return parseSparseElementsAttr();
1044 
1045   // Parse a string attribute.
1046   case Token::string: {
1047     auto val = getToken().getStringValue();
1048     consumeToken(Token::string);
1049     // Parse the optional trailing colon type if one wasn't explicitly provided.
1050     if (!type && consumeIf(Token::colon) && !(type = parseType()))
1051       return Attribute();
1052 
1053     return type ? StringAttr::get(val, type)
1054                 : StringAttr::get(val, getContext());
1055   }
1056 
1057   // Parse a symbol reference attribute.
1058   case Token::at_identifier: {
1059     auto nameStr = getTokenSpelling();
1060     consumeToken(Token::at_identifier);
1061     return builder.getSymbolRefAttr(nameStr.drop_front());
1062   }
1063 
1064   // Parse a 'unit' attribute.
1065   case Token::kw_unit:
1066     consumeToken(Token::kw_unit);
1067     return builder.getUnitAttr();
1068 
1069   default:
1070     // Parse a type attribute.
1071     if (Type type = parseType())
1072       return builder.getTypeAttr(type);
1073     return nullptr;
1074   }
1075 }
1076 
1077 /// Attribute dictionary.
1078 ///
1079 ///   attribute-dict ::= `{` `}`
1080 ///                    | `{` attribute-entry (`,` attribute-entry)* `}`
1081 ///   attribute-entry ::= bare-id `=` attribute-value
1082 ///
1083 ParseResult
1084 Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) {
1085   if (!consumeIf(Token::l_brace))
1086     return failure();
1087 
1088   auto parseElt = [&]() -> ParseResult {
1089     // We allow keywords as attribute names.
1090     if (getToken().isNot(Token::bare_identifier, Token::inttype) &&
1091         !getToken().isKeyword())
1092       return emitError("expected attribute name");
1093     Identifier nameId = builder.getIdentifier(getTokenSpelling());
1094     consumeToken();
1095 
1096     // Try to parse the '=' for the attribute value.
1097     if (!consumeIf(Token::equal)) {
1098       // If there is no '=', we treat this as a unit attribute.
1099       attributes.push_back({nameId, builder.getUnitAttr()});
1100       return success();
1101     }
1102 
1103     auto attr = parseAttribute();
1104     if (!attr)
1105       return failure();
1106 
1107     attributes.push_back({nameId, attr});
1108     return success();
1109   };
1110 
1111   if (parseCommaSeparatedListUntil(Token::r_brace, parseElt))
1112     return failure();
1113 
1114   return success();
1115 }
1116 
1117 /// Parse an extended attribute.
1118 ///
1119 ///   extended-attribute ::= (dialect-attribute | attribute-alias)
1120 ///   dialect-attribute  ::= `#` dialect-namespace `<` `"` attr-data `"` `>`
1121 ///   dialect-attribute  ::= `#` alias-name pretty-dialect-sym-body?
1122 ///   attribute-alias    ::= `#` alias-name
1123 ///
1124 Attribute Parser::parseExtendedAttr(Type type) {
1125   Attribute attr = parseExtendedSymbol<Attribute>(
1126       *this, Token::hash_identifier, state.attributeAliasDefinitions,
1127       [&](StringRef dialectName, StringRef symbolData,
1128           Location loc) -> Attribute {
1129         // Parse an optional trailing colon type.
1130         Type attrType = type;
1131         if (consumeIf(Token::colon) && !(attrType = parseType()))
1132           return Attribute();
1133 
1134         // If we found a registered dialect, then ask it to parse the attribute.
1135         if (auto *dialect = state.context->getRegisteredDialect(dialectName))
1136           return dialect->parseAttribute(symbolData, attrType, loc);
1137 
1138         // Otherwise, form a new opaque attribute.
1139         return OpaqueAttr::getChecked(
1140             Identifier::get(dialectName, state.context), symbolData,
1141             attrType ? attrType : NoneType::get(state.context), loc);
1142       });
1143 
1144   // Ensure that the attribute has the same type as requested.
1145   if (attr && type && attr.getType() != type) {
1146     emitError("attribute type different than expected: expected ")
1147         << type << ", but got " << attr.getType();
1148     return nullptr;
1149   }
1150   return attr;
1151 }
1152 
1153 /// Parse a float attribute.
1154 Attribute Parser::parseFloatAttr(Type type, bool isNegative) {
1155   auto val = getToken().getFloatingPointValue();
1156   if (!val.hasValue())
1157     return (emitError("floating point value too large for attribute"), nullptr);
1158   consumeToken(Token::floatliteral);
1159   if (!type) {
1160     // Default to F64 when no type is specified.
1161     if (!consumeIf(Token::colon))
1162       type = builder.getF64Type();
1163     else if (!(type = parseType()))
1164       return nullptr;
1165   }
1166   if (!type.isa<FloatType>())
1167     return (emitError("floating point value not valid for specified type"),
1168             nullptr);
1169   return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue());
1170 }
1171 
1172 /// Construct a float attribute bitwise equivalent to the integer literal.
1173 static FloatAttr buildHexadecimalFloatLiteral(Parser *p, FloatType type,
1174                                               uint64_t value) {
1175   int width = type.getIntOrFloatBitWidth();
1176   APInt apInt(width, value);
1177   if (apInt != value) {
1178     p->emitError("hexadecimal float constant out of range for type");
1179     return nullptr;
1180   }
1181   APFloat apFloat(type.getFloatSemantics(), apInt);
1182   return p->builder.getFloatAttr(type, apFloat);
1183 }
1184 
1185 /// Parse a decimal or a hexadecimal literal, which can be either an integer
1186 /// or a float attribute.
1187 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) {
1188   auto val = getToken().getUInt64IntegerValue();
1189   if (!val.hasValue())
1190     return (emitError("integer constant out of range for attribute"), nullptr);
1191 
1192   // Remember if the literal is hexadecimal.
1193   StringRef spelling = getToken().getSpelling();
1194   bool isHex = spelling.size() > 1 && spelling[1] == 'x';
1195 
1196   consumeToken(Token::integer);
1197   if (!type) {
1198     // Default to i64 if not type is specified.
1199     if (!consumeIf(Token::colon))
1200       type = builder.getIntegerType(64);
1201     else if (!(type = parseType()))
1202       return nullptr;
1203   }
1204 
1205   // Hexadecimal representation of float literals is not supported for bfloat16.
1206   // When supported, the literal should be unsigned.
1207   auto floatType = type.dyn_cast<FloatType>();
1208   if (floatType && !type.isBF16()) {
1209     if (isNegative) {
1210       emitError("hexadecimal float literal should not have a leading minus");
1211       return nullptr;
1212     }
1213     if (!isHex) {
1214       emitError("unexpected decimal integer literal for a float attribute")
1215               .attachNote()
1216           << "add a trailing dot to make the literal a float";
1217       return nullptr;
1218     }
1219 
1220     // Construct a float attribute bitwise equivalent to the integer literal.
1221     return buildHexadecimalFloatLiteral(this, floatType, *val);
1222   }
1223 
1224   if (!type.isIntOrIndex())
1225     return (emitError("integer literal not valid for specified type"), nullptr);
1226 
1227   // Parse the integer literal.
1228   int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth();
1229   APInt apInt(width, *val, isNegative);
1230   if (apInt != *val)
1231     return (emitError("integer constant out of range for attribute"), nullptr);
1232 
1233   // Otherwise construct an integer attribute.
1234   if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0)
1235     return (emitError("integer constant out of range for attribute"), nullptr);
1236 
1237   return builder.getIntegerAttr(type, isNegative ? -apInt : apInt);
1238 }
1239 
1240 /// Parse an opaque elements attribute.
1241 Attribute Parser::parseOpaqueElementsAttr() {
1242   consumeToken(Token::kw_opaque);
1243   if (parseToken(Token::less, "expected '<' after 'opaque'"))
1244     return nullptr;
1245 
1246   if (getToken().isNot(Token::string))
1247     return (emitError("expected dialect namespace"), nullptr);
1248 
1249   auto name = getToken().getStringValue();
1250   auto *dialect = builder.getContext()->getRegisteredDialect(name);
1251   // TODO(shpeisman): Allow for having an unknown dialect on an opaque
1252   // attribute. Otherwise, it can't be roundtripped without having the dialect
1253   // registered.
1254   if (!dialect)
1255     return (emitError("no registered dialect with namespace '" + name + "'"),
1256             nullptr);
1257 
1258   consumeToken(Token::string);
1259   if (parseToken(Token::comma, "expected ','"))
1260     return nullptr;
1261 
1262   if (getToken().getKind() != Token::string)
1263     return (emitError("opaque string should start with '0x'"), nullptr);
1264 
1265   auto val = getToken().getStringValue();
1266   if (val.size() < 2 || val[0] != '0' || val[1] != 'x')
1267     return (emitError("opaque string should start with '0x'"), nullptr);
1268 
1269   val = val.substr(2);
1270   if (!llvm::all_of(val, llvm::isHexDigit))
1271     return (emitError("opaque string only contains hex digits"), nullptr);
1272 
1273   consumeToken(Token::string);
1274   if (parseToken(Token::greater, "expected '>'") ||
1275       parseToken(Token::colon, "expected ':'"))
1276     return nullptr;
1277 
1278   auto type = parseElementsLiteralType();
1279   if (!type)
1280     return nullptr;
1281 
1282   return builder.getOpaqueElementsAttr(dialect, type, llvm::fromHex(val));
1283 }
1284 
1285 namespace {
1286 class TensorLiteralParser {
1287 public:
1288   TensorLiteralParser(Parser &p) : p(p) {}
1289 
1290   ParseResult parse() {
1291     if (p.getToken().is(Token::l_square))
1292       return parseList(shape);
1293     return parseElement();
1294   }
1295 
1296   /// Build a dense attribute instance with the parsed elements and the given
1297   /// shaped type.
1298   DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type);
1299 
1300   ArrayRef<int64_t> getShape() const { return shape; }
1301 
1302 private:
1303   enum class ElementKind { Boolean, Integer, Float };
1304 
1305   /// Return a string to represent the given element kind.
1306   const char *getElementKindStr(ElementKind kind) {
1307     switch (kind) {
1308     case ElementKind::Boolean:
1309       return "'boolean'";
1310     case ElementKind::Integer:
1311       return "'integer'";
1312     case ElementKind::Float:
1313       return "'float'";
1314     }
1315     llvm_unreachable("unknown element kind");
1316   }
1317 
1318   /// Build a Dense Integer attribute for the given type.
1319   DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type,
1320                                IntegerType eltTy);
1321 
1322   /// Build a Dense Float attribute for the given type.
1323   DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type,
1324                                  FloatType eltTy);
1325 
1326   /// Parse a single element, returning failure if it isn't a valid element
1327   /// literal. For example:
1328   /// parseElement(1) -> Success, 1
1329   /// parseElement([1]) -> Failure
1330   ParseResult parseElement();
1331 
1332   /// Parse a list of either lists or elements, returning the dimensions of the
1333   /// parsed sub-tensors in dims. For example:
1334   ///   parseList([1, 2, 3]) -> Success, [3]
1335   ///   parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
1336   ///   parseList([[1, 2], 3]) -> Failure
1337   ///   parseList([[1, [2, 3]], [4, [5]]]) -> Failure
1338   ParseResult parseList(llvm::SmallVectorImpl<int64_t> &dims);
1339 
1340   Parser &p;
1341 
1342   /// The shape inferred from the parsed elements.
1343   SmallVector<int64_t, 4> shape;
1344 
1345   /// Storage used when parsing elements, this is a pair of <is_negated, token>.
1346   std::vector<std::pair<bool, Token>> storage;
1347 
1348   /// A flag that indicates the type of elements that have been parsed.
1349   llvm::Optional<ElementKind> knownEltKind;
1350 };
1351 } // namespace
1352 
1353 /// Build a dense attribute instance with the parsed elements and the given
1354 /// shaped type.
1355 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc,
1356                                                ShapedType type) {
1357   // Check that the parsed storage size has the same number of elements to the
1358   // type, or is a known splat.
1359   if (!shape.empty() && getShape() != type.getShape()) {
1360     p.emitError(loc) << "inferred shape of elements literal ([" << getShape()
1361                      << "]) does not match type ([" << type.getShape() << "])";
1362     return nullptr;
1363   }
1364 
1365   // If the type is an integer, build a set of APInt values from the storage
1366   // with the correct bitwidth.
1367   if (auto intTy = type.getElementType().dyn_cast<IntegerType>())
1368     return getIntAttr(loc, type, intTy);
1369 
1370   // Otherwise, this must be a floating point type.
1371   auto floatTy = type.getElementType().dyn_cast<FloatType>();
1372   if (!floatTy) {
1373     p.emitError(loc) << "expected floating-point or integer element type, got "
1374                      << type.getElementType();
1375     return nullptr;
1376   }
1377   return getFloatAttr(loc, type, floatTy);
1378 }
1379 
1380 /// Build a Dense Integer attribute for the given type.
1381 DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc,
1382                                                   ShapedType type,
1383                                                   IntegerType eltTy) {
1384   std::vector<APInt> intElements;
1385   intElements.reserve(storage.size());
1386   for (const auto &signAndToken : storage) {
1387     bool isNegative = signAndToken.first;
1388     const Token &token = signAndToken.second;
1389 
1390     // Check to see if floating point values were parsed.
1391     if (token.is(Token::floatliteral)) {
1392       p.emitError() << "expected integer elements, but parsed floating-point";
1393       return nullptr;
1394     }
1395 
1396     assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) &&
1397            "unexpected token type");
1398     if (token.isAny(Token::kw_true, Token::kw_false)) {
1399       if (!eltTy.isInteger(1))
1400         p.emitError() << "expected i1 type for 'true' or 'false' values";
1401       APInt apInt(eltTy.getWidth(), token.is(Token::kw_true),
1402                   /*isSigned=*/false);
1403       intElements.push_back(apInt);
1404       continue;
1405     }
1406 
1407     // Create APInt values for each element with the correct bitwidth.
1408     auto val = token.getUInt64IntegerValue();
1409     if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0
1410                                        : (int64_t)val.getValue() < 0)) {
1411       p.emitError(token.getLoc(),
1412                   "integer constant out of range for attribute");
1413       return nullptr;
1414     }
1415     APInt apInt(eltTy.getWidth(), val.getValue(), isNegative);
1416     if (apInt != val.getValue())
1417       return (p.emitError("integer constant out of range for type"), nullptr);
1418     intElements.push_back(isNegative ? -apInt : apInt);
1419   }
1420 
1421   return DenseElementsAttr::get(type, intElements);
1422 }
1423 
1424 /// Build a Dense Float attribute for the given type.
1425 DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc,
1426                                                     ShapedType type,
1427                                                     FloatType eltTy) {
1428   std::vector<Attribute> floatValues;
1429   floatValues.reserve(storage.size());
1430   for (const auto &signAndToken : storage) {
1431     bool isNegative = signAndToken.first;
1432     const Token &token = signAndToken.second;
1433 
1434     // Handle hexadecimal float literals.
1435     if (token.is(Token::integer) && token.getSpelling().startswith("0x")) {
1436       if (isNegative) {
1437         p.emitError(token.getLoc())
1438             << "hexadecimal float literal should not have a leading minus";
1439         return nullptr;
1440       }
1441       auto val = token.getUInt64IntegerValue();
1442       if (!val.hasValue()) {
1443         p.emitError("hexadecimal float constant out of range for attribute");
1444         return nullptr;
1445       }
1446       FloatAttr attr = buildHexadecimalFloatLiteral(&p, eltTy, *val);
1447       if (!attr)
1448         return nullptr;
1449       floatValues.push_back(attr);
1450       continue;
1451     }
1452 
1453     // Check to see if any decimal integers or booleans were parsed.
1454     if (!token.is(Token::floatliteral)) {
1455       p.emitError() << "expected floating-point elements, but parsed integer";
1456       return nullptr;
1457     }
1458 
1459     // Build the float values from tokens.
1460     auto val = token.getFloatingPointValue();
1461     if (!val.hasValue()) {
1462       p.emitError("floating point value too large for attribute");
1463       return nullptr;
1464     }
1465     floatValues.push_back(FloatAttr::get(eltTy, isNegative ? -*val : *val));
1466   }
1467 
1468   return DenseElementsAttr::get(type, floatValues);
1469 }
1470 
1471 ParseResult TensorLiteralParser::parseElement() {
1472   switch (p.getToken().getKind()) {
1473   // Parse a boolean element.
1474   case Token::kw_true:
1475   case Token::kw_false:
1476   case Token::floatliteral:
1477   case Token::integer:
1478     storage.emplace_back(/*isNegative=*/false, p.getToken());
1479     p.consumeToken();
1480     break;
1481 
1482   // Parse a signed integer or a negative floating-point element.
1483   case Token::minus:
1484     p.consumeToken(Token::minus);
1485     if (!p.getToken().isAny(Token::floatliteral, Token::integer))
1486       return p.emitError("expected integer or floating point literal");
1487     storage.emplace_back(/*isNegative=*/true, p.getToken());
1488     p.consumeToken();
1489     break;
1490 
1491   default:
1492     return p.emitError("expected element literal of primitive type");
1493   }
1494 
1495   return success();
1496 }
1497 
1498 /// Parse a list of either lists or elements, returning the dimensions of the
1499 /// parsed sub-tensors in dims. For example:
1500 ///   parseList([1, 2, 3]) -> Success, [3]
1501 ///   parseList([[1, 2], [3, 4]]) -> Success, [2, 2]
1502 ///   parseList([[1, 2], 3]) -> Failure
1503 ///   parseList([[1, [2, 3]], [4, [5]]]) -> Failure
1504 ParseResult
1505 TensorLiteralParser::parseList(llvm::SmallVectorImpl<int64_t> &dims) {
1506   p.consumeToken(Token::l_square);
1507 
1508   auto checkDims =
1509       [&](const llvm::SmallVectorImpl<int64_t> &prevDims,
1510           const llvm::SmallVectorImpl<int64_t> &newDims) -> ParseResult {
1511     if (prevDims == newDims)
1512       return success();
1513     return p.emitError("tensor literal is invalid; ranks are not consistent "
1514                        "between elements");
1515   };
1516 
1517   bool first = true;
1518   llvm::SmallVector<int64_t, 4> newDims;
1519   unsigned size = 0;
1520   auto parseCommaSeparatedList = [&]() -> ParseResult {
1521     llvm::SmallVector<int64_t, 4> thisDims;
1522     if (p.getToken().getKind() == Token::l_square) {
1523       if (parseList(thisDims))
1524         return failure();
1525     } else if (parseElement()) {
1526       return failure();
1527     }
1528     ++size;
1529     if (!first)
1530       return checkDims(newDims, thisDims);
1531     newDims = thisDims;
1532     first = false;
1533     return success();
1534   };
1535   if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList))
1536     return failure();
1537 
1538   // Return the sublists' dimensions with 'size' prepended.
1539   dims.clear();
1540   dims.push_back(size);
1541   dims.append(newDims.begin(), newDims.end());
1542   return success();
1543 }
1544 
1545 /// Parse a dense elements attribute.
1546 Attribute Parser::parseDenseElementsAttr() {
1547   consumeToken(Token::kw_dense);
1548   if (parseToken(Token::less, "expected '<' after 'dense'"))
1549     return nullptr;
1550 
1551   // Parse the literal data.
1552   TensorLiteralParser literalParser(*this);
1553   if (literalParser.parse())
1554     return nullptr;
1555 
1556   if (parseToken(Token::greater, "expected '>'") ||
1557       parseToken(Token::colon, "expected ':'"))
1558     return nullptr;
1559 
1560   auto typeLoc = getToken().getLoc();
1561   auto type = parseElementsLiteralType();
1562   if (!type)
1563     return nullptr;
1564   return literalParser.getAttr(typeLoc, type);
1565 }
1566 
1567 /// Shaped type for elements attribute.
1568 ///
1569 ///   elements-literal-type ::= vector-type | ranked-tensor-type
1570 ///
1571 /// This method also checks the type has static shape.
1572 ShapedType Parser::parseElementsLiteralType() {
1573   auto type = parseType();
1574   if (!type)
1575     return nullptr;
1576 
1577   if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) {
1578     emitError("elements literal must be a ranked tensor or vector type");
1579     return nullptr;
1580   }
1581 
1582   auto sType = type.cast<ShapedType>();
1583   if (!sType.hasStaticShape())
1584     return (emitError("elements literal type must have static shape"), nullptr);
1585 
1586   return sType;
1587 }
1588 
1589 /// Parse a sparse elements attribute.
1590 Attribute Parser::parseSparseElementsAttr() {
1591   consumeToken(Token::kw_sparse);
1592   if (parseToken(Token::less, "Expected '<' after 'sparse'"))
1593     return nullptr;
1594 
1595   /// Parse indices
1596   auto indicesLoc = getToken().getLoc();
1597   TensorLiteralParser indiceParser(*this);
1598   if (indiceParser.parse())
1599     return nullptr;
1600 
1601   if (parseToken(Token::comma, "expected ','"))
1602     return nullptr;
1603 
1604   /// Parse values.
1605   auto valuesLoc = getToken().getLoc();
1606   TensorLiteralParser valuesParser(*this);
1607   if (valuesParser.parse())
1608     return nullptr;
1609 
1610   if (parseToken(Token::greater, "expected '>'") ||
1611       parseToken(Token::colon, "expected ':'"))
1612     return nullptr;
1613 
1614   auto type = parseElementsLiteralType();
1615   if (!type)
1616     return nullptr;
1617 
1618   // If the indices are a splat, i.e. the literal parser parsed an element and
1619   // not a list, we set the shape explicitly. The indices are represented by a
1620   // 2-dimensional shape where the second dimension is the rank of the type.
1621   // Given that the parsed indices is a splat, we know that we only have one
1622   // indice and thus one for the first dimension.
1623   auto indiceEltType = builder.getIntegerType(64);
1624   ShapedType indicesType;
1625   if (indiceParser.getShape().empty()) {
1626     indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType);
1627   } else {
1628     // Otherwise, set the shape to the one parsed by the literal parser.
1629     indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType);
1630   }
1631   auto indices = indiceParser.getAttr(indicesLoc, indicesType);
1632 
1633   // If the values are a splat, set the shape explicitly based on the number of
1634   // indices. The number of indices is encoded in the first dimension of the
1635   // indice shape type.
1636   auto valuesEltType = type.getElementType();
1637   ShapedType valuesType =
1638       valuesParser.getShape().empty()
1639           ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType)
1640           : RankedTensorType::get(valuesParser.getShape(), valuesEltType);
1641   auto values = valuesParser.getAttr(valuesLoc, valuesType);
1642 
1643   /// Sanity check.
1644   if (valuesType.getRank() != 1)
1645     return (emitError("expected 1-d tensor for values"), nullptr);
1646 
1647   auto sameShape = (indicesType.getRank() == 1) ||
1648                    (type.getRank() == indicesType.getDimSize(1));
1649   auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0);
1650   if (!sameShape || !sameElementNum) {
1651     emitError() << "expected shape ([" << type.getShape()
1652                 << "]); inferred shape of indices literal (["
1653                 << indicesType.getShape()
1654                 << "]); inferred shape of values literal (["
1655                 << valuesType.getShape() << "])";
1656     return nullptr;
1657   }
1658 
1659   // Build the sparse elements attribute by the indices and values.
1660   return SparseElementsAttr::get(type, indices, values);
1661 }
1662 
1663 //===----------------------------------------------------------------------===//
1664 // Location parsing.
1665 //===----------------------------------------------------------------------===//
1666 
1667 /// Parse a location.
1668 ///
1669 ///   location           ::= `loc` inline-location
1670 ///   inline-location    ::= '(' location-inst ')'
1671 ///
1672 ParseResult Parser::parseLocation(LocationAttr &loc) {
1673   // Check for 'loc' identifier.
1674   if (parseToken(Token::kw_loc, "expected 'loc' keyword"))
1675     return emitError();
1676 
1677   // Parse the inline-location.
1678   if (parseToken(Token::l_paren, "expected '(' in inline location") ||
1679       parseLocationInstance(loc) ||
1680       parseToken(Token::r_paren, "expected ')' in inline location"))
1681     return failure();
1682   return success();
1683 }
1684 
1685 /// Specific location instances.
1686 ///
1687 /// location-inst ::= filelinecol-location |
1688 ///                   name-location |
1689 ///                   callsite-location |
1690 ///                   fused-location |
1691 ///                   unknown-location
1692 /// filelinecol-location ::= string-literal ':' integer-literal
1693 ///                                         ':' integer-literal
1694 /// name-location ::= string-literal
1695 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')'
1696 /// fused-location ::= fused ('<' attribute-value '>')?
1697 ///                    '[' location-inst (location-inst ',')* ']'
1698 /// unknown-location ::= 'unknown'
1699 ///
1700 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) {
1701   consumeToken(Token::bare_identifier);
1702 
1703   // Parse the '('.
1704   if (parseToken(Token::l_paren, "expected '(' in callsite location"))
1705     return failure();
1706 
1707   // Parse the callee location.
1708   LocationAttr calleeLoc;
1709   if (parseLocationInstance(calleeLoc))
1710     return failure();
1711 
1712   // Parse the 'at'.
1713   if (getToken().isNot(Token::bare_identifier) ||
1714       getToken().getSpelling() != "at")
1715     return emitError("expected 'at' in callsite location");
1716   consumeToken(Token::bare_identifier);
1717 
1718   // Parse the caller location.
1719   LocationAttr callerLoc;
1720   if (parseLocationInstance(callerLoc))
1721     return failure();
1722 
1723   // Parse the ')'.
1724   if (parseToken(Token::r_paren, "expected ')' in callsite location"))
1725     return failure();
1726 
1727   // Return the callsite location.
1728   loc = CallSiteLoc::get(calleeLoc, callerLoc);
1729   return success();
1730 }
1731 
1732 ParseResult Parser::parseFusedLocation(LocationAttr &loc) {
1733   consumeToken(Token::bare_identifier);
1734 
1735   // Try to parse the optional metadata.
1736   Attribute metadata;
1737   if (consumeIf(Token::less)) {
1738     metadata = parseAttribute();
1739     if (!metadata)
1740       return emitError("expected valid attribute metadata");
1741     // Parse the '>' token.
1742     if (parseToken(Token::greater,
1743                    "expected '>' after fused location metadata"))
1744       return failure();
1745   }
1746 
1747   llvm::SmallVector<Location, 4> locations;
1748   auto parseElt = [&] {
1749     LocationAttr newLoc;
1750     if (parseLocationInstance(newLoc))
1751       return failure();
1752     locations.push_back(newLoc);
1753     return success();
1754   };
1755 
1756   if (parseToken(Token::l_square, "expected '[' in fused location") ||
1757       parseCommaSeparatedList(parseElt) ||
1758       parseToken(Token::r_square, "expected ']' in fused location"))
1759     return failure();
1760 
1761   // Return the fused location.
1762   loc = FusedLoc::get(locations, metadata, getContext());
1763   return success();
1764 }
1765 
1766 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) {
1767   auto *ctx = getContext();
1768   auto str = getToken().getStringValue();
1769   consumeToken(Token::string);
1770 
1771   // If the next token is ':' this is a filelinecol location.
1772   if (consumeIf(Token::colon)) {
1773     // Parse the line number.
1774     if (getToken().isNot(Token::integer))
1775       return emitError("expected integer line number in FileLineColLoc");
1776     auto line = getToken().getUnsignedIntegerValue();
1777     if (!line.hasValue())
1778       return emitError("expected integer line number in FileLineColLoc");
1779     consumeToken(Token::integer);
1780 
1781     // Parse the ':'.
1782     if (parseToken(Token::colon, "expected ':' in FileLineColLoc"))
1783       return failure();
1784 
1785     // Parse the column number.
1786     if (getToken().isNot(Token::integer))
1787       return emitError("expected integer column number in FileLineColLoc");
1788     auto column = getToken().getUnsignedIntegerValue();
1789     if (!column.hasValue())
1790       return emitError("expected integer column number in FileLineColLoc");
1791     consumeToken(Token::integer);
1792 
1793     loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx);
1794     return success();
1795   }
1796 
1797   // Otherwise, this is a NameLoc.
1798 
1799   // Check for a child location.
1800   if (consumeIf(Token::l_paren)) {
1801     auto childSourceLoc = getToken().getLoc();
1802 
1803     // Parse the child location.
1804     LocationAttr childLoc;
1805     if (parseLocationInstance(childLoc))
1806       return failure();
1807 
1808     // The child must not be another NameLoc.
1809     if (childLoc.isa<NameLoc>())
1810       return emitError(childSourceLoc,
1811                        "child of NameLoc cannot be another NameLoc");
1812     loc = NameLoc::get(Identifier::get(str, ctx), childLoc);
1813 
1814     // Parse the closing ')'.
1815     if (parseToken(Token::r_paren,
1816                    "expected ')' after child location of NameLoc"))
1817       return failure();
1818   } else {
1819     loc = NameLoc::get(Identifier::get(str, ctx), ctx);
1820   }
1821 
1822   return success();
1823 }
1824 
1825 ParseResult Parser::parseLocationInstance(LocationAttr &loc) {
1826   // Handle either name or filelinecol locations.
1827   if (getToken().is(Token::string))
1828     return parseNameOrFileLineColLocation(loc);
1829 
1830   // Bare tokens required for other cases.
1831   if (!getToken().is(Token::bare_identifier))
1832     return emitError("expected location instance");
1833 
1834   // Check for the 'callsite' signifying a callsite location.
1835   if (getToken().getSpelling() == "callsite")
1836     return parseCallSiteLocation(loc);
1837 
1838   // If the token is 'fused', then this is a fused location.
1839   if (getToken().getSpelling() == "fused")
1840     return parseFusedLocation(loc);
1841 
1842   // Check for a 'unknown' for an unknown location.
1843   if (getToken().getSpelling() == "unknown") {
1844     consumeToken(Token::bare_identifier);
1845     loc = UnknownLoc::get(getContext());
1846     return success();
1847   }
1848 
1849   return emitError("expected location instance");
1850 }
1851 
1852 //===----------------------------------------------------------------------===//
1853 // Affine parsing.
1854 //===----------------------------------------------------------------------===//
1855 
1856 /// Lower precedence ops (all at the same precedence level). LNoOp is false in
1857 /// the boolean sense.
1858 enum AffineLowPrecOp {
1859   /// Null value.
1860   LNoOp,
1861   Add,
1862   Sub
1863 };
1864 
1865 /// Higher precedence ops - all at the same precedence level. HNoOp is false
1866 /// in the boolean sense.
1867 enum AffineHighPrecOp {
1868   /// Null value.
1869   HNoOp,
1870   Mul,
1871   FloorDiv,
1872   CeilDiv,
1873   Mod
1874 };
1875 
1876 namespace {
1877 /// This is a specialized parser for affine structures (affine maps, affine
1878 /// expressions, and integer sets), maintaining the state transient to their
1879 /// bodies.
1880 class AffineParser : public Parser {
1881 public:
1882   AffineParser(ParserState &state, bool allowParsingSSAIds = false,
1883                llvm::function_ref<ParseResult(bool)> parseElement = nullptr)
1884       : Parser(state), allowParsingSSAIds(allowParsingSSAIds),
1885         parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {}
1886 
1887   AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
1888   ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
1889   IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
1890   ParseResult parseAffineMapOfSSAIds(AffineMap &map);
1891   void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
1892                               unsigned &numDims);
1893 
1894 private:
1895   // Binary affine op parsing.
1896   AffineLowPrecOp consumeIfLowPrecOp();
1897   AffineHighPrecOp consumeIfHighPrecOp();
1898 
1899   // Identifier lists for polyhedral structures.
1900   ParseResult parseDimIdList(unsigned &numDims);
1901   ParseResult parseSymbolIdList(unsigned &numSymbols);
1902   ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
1903                                               unsigned &numSymbols);
1904   ParseResult parseIdentifierDefinition(AffineExpr idExpr);
1905 
1906   AffineExpr parseAffineExpr();
1907   AffineExpr parseParentheticalExpr();
1908   AffineExpr parseNegateExpression(AffineExpr lhs);
1909   AffineExpr parseIntegerExpr();
1910   AffineExpr parseBareIdExpr();
1911   AffineExpr parseSSAIdExpr(bool isSymbol);
1912   AffineExpr parseSymbolSSAIdExpr();
1913 
1914   AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
1915                                    AffineExpr rhs, SMLoc opLoc);
1916   AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
1917                                    AffineExpr rhs);
1918   AffineExpr parseAffineOperandExpr(AffineExpr lhs);
1919   AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
1920   AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
1921                                        SMLoc llhsOpLoc);
1922   AffineExpr parseAffineConstraint(bool *isEq);
1923 
1924 private:
1925   bool allowParsingSSAIds;
1926   llvm::function_ref<ParseResult(bool)> parseElement;
1927   unsigned numDimOperands;
1928   unsigned numSymbolOperands;
1929   SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
1930 };
1931 } // end anonymous namespace
1932 
1933 /// Create an affine binary high precedence op expression (mul's, div's, mod).
1934 /// opLoc is the location of the op token to be used to report errors
1935 /// for non-conforming expressions.
1936 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
1937                                                AffineExpr lhs, AffineExpr rhs,
1938                                                SMLoc opLoc) {
1939   // TODO: make the error location info accurate.
1940   switch (op) {
1941   case Mul:
1942     if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
1943       emitError(opLoc, "non-affine expression: at least one of the multiply "
1944                        "operands has to be either a constant or symbolic");
1945       return nullptr;
1946     }
1947     return lhs * rhs;
1948   case FloorDiv:
1949     if (!rhs.isSymbolicOrConstant()) {
1950       emitError(opLoc, "non-affine expression: right operand of floordiv "
1951                        "has to be either a constant or symbolic");
1952       return nullptr;
1953     }
1954     return lhs.floorDiv(rhs);
1955   case CeilDiv:
1956     if (!rhs.isSymbolicOrConstant()) {
1957       emitError(opLoc, "non-affine expression: right operand of ceildiv "
1958                        "has to be either a constant or symbolic");
1959       return nullptr;
1960     }
1961     return lhs.ceilDiv(rhs);
1962   case Mod:
1963     if (!rhs.isSymbolicOrConstant()) {
1964       emitError(opLoc, "non-affine expression: right operand of mod "
1965                        "has to be either a constant or symbolic");
1966       return nullptr;
1967     }
1968     return lhs % rhs;
1969   case HNoOp:
1970     llvm_unreachable("can't create affine expression for null high prec op");
1971     return nullptr;
1972   }
1973   llvm_unreachable("Unknown AffineHighPrecOp");
1974 }
1975 
1976 /// Create an affine binary low precedence op expression (add, sub).
1977 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
1978                                                AffineExpr lhs, AffineExpr rhs) {
1979   switch (op) {
1980   case AffineLowPrecOp::Add:
1981     return lhs + rhs;
1982   case AffineLowPrecOp::Sub:
1983     return lhs - rhs;
1984   case AffineLowPrecOp::LNoOp:
1985     llvm_unreachable("can't create affine expression for null low prec op");
1986     return nullptr;
1987   }
1988   llvm_unreachable("Unknown AffineLowPrecOp");
1989 }
1990 
1991 /// Consume this token if it is a lower precedence affine op (there are only
1992 /// two precedence levels).
1993 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
1994   switch (getToken().getKind()) {
1995   case Token::plus:
1996     consumeToken(Token::plus);
1997     return AffineLowPrecOp::Add;
1998   case Token::minus:
1999     consumeToken(Token::minus);
2000     return AffineLowPrecOp::Sub;
2001   default:
2002     return AffineLowPrecOp::LNoOp;
2003   }
2004 }
2005 
2006 /// Consume this token if it is a higher precedence affine op (there are only
2007 /// two precedence levels)
2008 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
2009   switch (getToken().getKind()) {
2010   case Token::star:
2011     consumeToken(Token::star);
2012     return Mul;
2013   case Token::kw_floordiv:
2014     consumeToken(Token::kw_floordiv);
2015     return FloorDiv;
2016   case Token::kw_ceildiv:
2017     consumeToken(Token::kw_ceildiv);
2018     return CeilDiv;
2019   case Token::kw_mod:
2020     consumeToken(Token::kw_mod);
2021     return Mod;
2022   default:
2023     return HNoOp;
2024   }
2025 }
2026 
2027 /// Parse a high precedence op expression list: mul, div, and mod are high
2028 /// precedence binary ops, i.e., parse a
2029 ///   expr_1 op_1 expr_2 op_2 ... expr_n
2030 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
2031 /// All affine binary ops are left associative.
2032 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
2033 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
2034 /// null. llhsOpLoc is the location of the llhsOp token that will be used to
2035 /// report an error for non-conforming expressions.
2036 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
2037                                                    AffineHighPrecOp llhsOp,
2038                                                    SMLoc llhsOpLoc) {
2039   AffineExpr lhs = parseAffineOperandExpr(llhs);
2040   if (!lhs)
2041     return nullptr;
2042 
2043   // Found an LHS. Parse the remaining expression.
2044   auto opLoc = getToken().getLoc();
2045   if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
2046     if (llhs) {
2047       AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
2048       if (!expr)
2049         return nullptr;
2050       return parseAffineHighPrecOpExpr(expr, op, opLoc);
2051     }
2052     // No LLHS, get RHS
2053     return parseAffineHighPrecOpExpr(lhs, op, opLoc);
2054   }
2055 
2056   // This is the last operand in this expression.
2057   if (llhs)
2058     return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
2059 
2060   // No llhs, 'lhs' itself is the expression.
2061   return lhs;
2062 }
2063 
2064 /// Parse an affine expression inside parentheses.
2065 ///
2066 ///   affine-expr ::= `(` affine-expr `)`
2067 AffineExpr AffineParser::parseParentheticalExpr() {
2068   if (parseToken(Token::l_paren, "expected '('"))
2069     return nullptr;
2070   if (getToken().is(Token::r_paren))
2071     return (emitError("no expression inside parentheses"), nullptr);
2072 
2073   auto expr = parseAffineExpr();
2074   if (!expr)
2075     return nullptr;
2076   if (parseToken(Token::r_paren, "expected ')'"))
2077     return nullptr;
2078 
2079   return expr;
2080 }
2081 
2082 /// Parse the negation expression.
2083 ///
2084 ///   affine-expr ::= `-` affine-expr
2085 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
2086   if (parseToken(Token::minus, "expected '-'"))
2087     return nullptr;
2088 
2089   AffineExpr operand = parseAffineOperandExpr(lhs);
2090   // Since negation has the highest precedence of all ops (including high
2091   // precedence ops) but lower than parentheses, we are only going to use
2092   // parseAffineOperandExpr instead of parseAffineExpr here.
2093   if (!operand)
2094     // Extra error message although parseAffineOperandExpr would have
2095     // complained. Leads to a better diagnostic.
2096     return (emitError("missing operand of negation"), nullptr);
2097   return (-1) * operand;
2098 }
2099 
2100 /// Parse a bare id that may appear in an affine expression.
2101 ///
2102 ///   affine-expr ::= bare-id
2103 AffineExpr AffineParser::parseBareIdExpr() {
2104   if (getToken().isNot(Token::bare_identifier))
2105     return (emitError("expected bare identifier"), nullptr);
2106 
2107   StringRef sRef = getTokenSpelling();
2108   for (auto entry : dimsAndSymbols) {
2109     if (entry.first == sRef) {
2110       consumeToken(Token::bare_identifier);
2111       return entry.second;
2112     }
2113   }
2114 
2115   return (emitError("use of undeclared identifier"), nullptr);
2116 }
2117 
2118 /// Parse an SSA id which may appear in an affine expression.
2119 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
2120   if (!allowParsingSSAIds)
2121     return (emitError("unexpected ssa identifier"), nullptr);
2122   if (getToken().isNot(Token::percent_identifier))
2123     return (emitError("expected ssa identifier"), nullptr);
2124   auto name = getTokenSpelling();
2125   // Check if we already parsed this SSA id.
2126   for (auto entry : dimsAndSymbols) {
2127     if (entry.first == name) {
2128       consumeToken(Token::percent_identifier);
2129       return entry.second;
2130     }
2131   }
2132   // Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
2133   if (parseElement(isSymbol))
2134     return (emitError("failed to parse ssa identifier"), nullptr);
2135   auto idExpr = isSymbol
2136                     ? getAffineSymbolExpr(numSymbolOperands++, getContext())
2137                     : getAffineDimExpr(numDimOperands++, getContext());
2138   dimsAndSymbols.push_back({name, idExpr});
2139   return idExpr;
2140 }
2141 
2142 AffineExpr AffineParser::parseSymbolSSAIdExpr() {
2143   if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
2144       parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
2145     return nullptr;
2146   AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
2147   if (!symbolExpr)
2148     return nullptr;
2149   if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
2150     return nullptr;
2151   return symbolExpr;
2152 }
2153 
2154 /// Parse a positive integral constant appearing in an affine expression.
2155 ///
2156 ///   affine-expr ::= integer-literal
2157 AffineExpr AffineParser::parseIntegerExpr() {
2158   auto val = getToken().getUInt64IntegerValue();
2159   if (!val.hasValue() || (int64_t)val.getValue() < 0)
2160     return (emitError("constant too large for index"), nullptr);
2161 
2162   consumeToken(Token::integer);
2163   return builder.getAffineConstantExpr((int64_t)val.getValue());
2164 }
2165 
2166 /// Parses an expression that can be a valid operand of an affine expression.
2167 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
2168 /// operator, the rhs of which is being parsed. This is used to determine
2169 /// whether an error should be emitted for a missing right operand.
2170 //  Eg: for an expression without parentheses (like i + j + k + l), each
2171 //  of the four identifiers is an operand. For i + j*k + l, j*k is not an
2172 //  operand expression, it's an op expression and will be parsed via
2173 //  parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
2174 //  -l are valid operands that will be parsed by this function.
2175 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
2176   switch (getToken().getKind()) {
2177   case Token::bare_identifier:
2178     return parseBareIdExpr();
2179   case Token::kw_symbol:
2180     return parseSymbolSSAIdExpr();
2181   case Token::percent_identifier:
2182     return parseSSAIdExpr(/*isSymbol=*/false);
2183   case Token::integer:
2184     return parseIntegerExpr();
2185   case Token::l_paren:
2186     return parseParentheticalExpr();
2187   case Token::minus:
2188     return parseNegateExpression(lhs);
2189   case Token::kw_ceildiv:
2190   case Token::kw_floordiv:
2191   case Token::kw_mod:
2192   case Token::plus:
2193   case Token::star:
2194     if (lhs)
2195       emitError("missing right operand of binary operator");
2196     else
2197       emitError("missing left operand of binary operator");
2198     return nullptr;
2199   default:
2200     if (lhs)
2201       emitError("missing right operand of binary operator");
2202     else
2203       emitError("expected affine expression");
2204     return nullptr;
2205   }
2206 }
2207 
2208 /// Parse affine expressions that are bare-id's, integer constants,
2209 /// parenthetical affine expressions, and affine op expressions that are a
2210 /// composition of those.
2211 ///
2212 /// All binary op's associate from left to right.
2213 ///
2214 /// {add, sub} have lower precedence than {mul, div, and mod}.
2215 ///
2216 /// Add, sub'are themselves at the same precedence level. Mul, floordiv,
2217 /// ceildiv, and mod are at the same higher precedence level. Negation has
2218 /// higher precedence than any binary op.
2219 ///
2220 /// llhs: the affine expression appearing on the left of the one being parsed.
2221 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
2222 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
2223 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left
2224 /// associativity.
2225 ///
2226 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
2227 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
2228 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
2229 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
2230                                                   AffineLowPrecOp llhsOp) {
2231   AffineExpr lhs;
2232   if (!(lhs = parseAffineOperandExpr(llhs)))
2233     return nullptr;
2234 
2235   // Found an LHS. Deal with the ops.
2236   if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
2237     if (llhs) {
2238       AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
2239       return parseAffineLowPrecOpExpr(sum, lOp);
2240     }
2241     // No LLHS, get RHS and form the expression.
2242     return parseAffineLowPrecOpExpr(lhs, lOp);
2243   }
2244   auto opLoc = getToken().getLoc();
2245   if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
2246     // We have a higher precedence op here. Get the rhs operand for the llhs
2247     // through parseAffineHighPrecOpExpr.
2248     AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
2249     if (!highRes)
2250       return nullptr;
2251 
2252     // If llhs is null, the product forms the first operand of the yet to be
2253     // found expression. If non-null, the op to associate with llhs is llhsOp.
2254     AffineExpr expr =
2255         llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
2256 
2257     // Recurse for subsequent low prec op's after the affine high prec op
2258     // expression.
2259     if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
2260       return parseAffineLowPrecOpExpr(expr, nextOp);
2261     return expr;
2262   }
2263   // Last operand in the expression list.
2264   if (llhs)
2265     return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
2266   // No llhs, 'lhs' itself is the expression.
2267   return lhs;
2268 }
2269 
2270 /// Parse an affine expression.
2271 ///  affine-expr ::= `(` affine-expr `)`
2272 ///                | `-` affine-expr
2273 ///                | affine-expr `+` affine-expr
2274 ///                | affine-expr `-` affine-expr
2275 ///                | affine-expr `*` affine-expr
2276 ///                | affine-expr `floordiv` affine-expr
2277 ///                | affine-expr `ceildiv` affine-expr
2278 ///                | affine-expr `mod` affine-expr
2279 ///                | bare-id
2280 ///                | integer-literal
2281 ///
2282 /// Additional conditions are checked depending on the production. For eg.,
2283 /// one of the operands for `*` has to be either constant/symbolic; the second
2284 /// operand for floordiv, ceildiv, and mod has to be a positive integer.
2285 AffineExpr AffineParser::parseAffineExpr() {
2286   return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
2287 }
2288 
2289 /// Parse a dim or symbol from the lists appearing before the actual
2290 /// expressions of the affine map. Update our state to store the
2291 /// dimensional/symbolic identifier.
2292 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
2293   if (getToken().isNot(Token::bare_identifier))
2294     return emitError("expected bare identifier");
2295 
2296   auto name = getTokenSpelling();
2297   for (auto entry : dimsAndSymbols) {
2298     if (entry.first == name)
2299       return emitError("redefinition of identifier '" + name + "'");
2300   }
2301   consumeToken(Token::bare_identifier);
2302 
2303   dimsAndSymbols.push_back({name, idExpr});
2304   return success();
2305 }
2306 
2307 /// Parse the list of dimensional identifiers to an affine map.
2308 ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
2309   if (parseToken(Token::l_paren,
2310                  "expected '(' at start of dimensional identifiers list")) {
2311     return failure();
2312   }
2313 
2314   auto parseElt = [&]() -> ParseResult {
2315     auto dimension = getAffineDimExpr(numDims++, getContext());
2316     return parseIdentifierDefinition(dimension);
2317   };
2318   return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
2319 }
2320 
2321 /// Parse the list of symbolic identifiers to an affine map.
2322 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
2323   consumeToken(Token::l_square);
2324   auto parseElt = [&]() -> ParseResult {
2325     auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
2326     return parseIdentifierDefinition(symbol);
2327   };
2328   return parseCommaSeparatedListUntil(Token::r_square, parseElt);
2329 }
2330 
2331 /// Parse the list of symbolic identifiers to an affine map.
2332 ParseResult
2333 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
2334                                               unsigned &numSymbols) {
2335   if (parseDimIdList(numDims)) {
2336     return failure();
2337   }
2338   if (!getToken().is(Token::l_square)) {
2339     numSymbols = 0;
2340     return success();
2341   }
2342   return parseSymbolIdList(numSymbols);
2343 }
2344 
2345 /// Parses an ambiguous affine map or integer set definition inline.
2346 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
2347                                                            IntegerSet &set) {
2348   unsigned numDims = 0, numSymbols = 0;
2349 
2350   // List of dimensional and optional symbol identifiers.
2351   if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) {
2352     return failure();
2353   }
2354 
2355   // This is needed for parsing attributes as we wouldn't know whether we would
2356   // be parsing an integer set attribute or an affine map attribute.
2357   bool isArrow = getToken().is(Token::arrow);
2358   bool isColon = getToken().is(Token::colon);
2359   if (!isArrow && !isColon) {
2360     return emitError("expected '->' or ':'");
2361   } else if (isArrow) {
2362     parseToken(Token::arrow, "expected '->' or '['");
2363     map = parseAffineMapRange(numDims, numSymbols);
2364     return map ? success() : failure();
2365   } else if (parseToken(Token::colon, "expected ':' or '['")) {
2366     return failure();
2367   }
2368 
2369   if ((set = parseIntegerSetConstraints(numDims, numSymbols)))
2370     return success();
2371 
2372   return failure();
2373 }
2374 
2375 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
2376 ParseResult AffineParser::parseAffineMapOfSSAIds(AffineMap &map) {
2377   if (parseToken(Token::l_square, "expected '['"))
2378     return failure();
2379 
2380   SmallVector<AffineExpr, 4> exprs;
2381   auto parseElt = [&]() -> ParseResult {
2382     auto elt = parseAffineExpr();
2383     exprs.push_back(elt);
2384     return elt ? success() : failure();
2385   };
2386 
2387   // Parse a multi-dimensional affine expression (a comma-separated list of
2388   // 1-d affine expressions); the list cannot be empty. Grammar:
2389   // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
2390   if (parseCommaSeparatedListUntil(Token::r_square, parseElt,
2391                                    /*allowEmptyList=*/true))
2392     return failure();
2393   // Parsed a valid affine map.
2394   if (exprs.empty())
2395     map = AffineMap();
2396   else
2397     map = builder.getAffineMap(numDimOperands,
2398                                dimsAndSymbols.size() - numDimOperands, exprs);
2399   return success();
2400 }
2401 
2402 /// Parse the range and sizes affine map definition inline.
2403 ///
2404 ///  affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
2405 ///
2406 ///  multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
2407 AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
2408                                             unsigned numSymbols) {
2409   parseToken(Token::l_paren, "expected '(' at start of affine map range");
2410 
2411   SmallVector<AffineExpr, 4> exprs;
2412   auto parseElt = [&]() -> ParseResult {
2413     auto elt = parseAffineExpr();
2414     ParseResult res = elt ? success() : failure();
2415     exprs.push_back(elt);
2416     return res;
2417   };
2418 
2419   // Parse a multi-dimensional affine expression (a comma-separated list of
2420   // 1-d affine expressions); the list cannot be empty. Grammar:
2421   // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
2422   if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, false))
2423     return AffineMap();
2424 
2425   // Parsed a valid affine map.
2426   return builder.getAffineMap(numDims, numSymbols, exprs);
2427 }
2428 
2429 /// Parse an affine constraint.
2430 ///  affine-constraint ::= affine-expr `>=` `0`
2431 ///                      | affine-expr `==` `0`
2432 ///
2433 /// isEq is set to true if the parsed constraint is an equality, false if it
2434 /// is an inequality (greater than or equal).
2435 ///
2436 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
2437   AffineExpr expr = parseAffineExpr();
2438   if (!expr)
2439     return nullptr;
2440 
2441   if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
2442       getToken().is(Token::integer)) {
2443     auto dim = getToken().getUnsignedIntegerValue();
2444     if (dim.hasValue() && dim.getValue() == 0) {
2445       consumeToken(Token::integer);
2446       *isEq = false;
2447       return expr;
2448     }
2449     return (emitError("expected '0' after '>='"), nullptr);
2450   }
2451 
2452   if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
2453       getToken().is(Token::integer)) {
2454     auto dim = getToken().getUnsignedIntegerValue();
2455     if (dim.hasValue() && dim.getValue() == 0) {
2456       consumeToken(Token::integer);
2457       *isEq = true;
2458       return expr;
2459     }
2460     return (emitError("expected '0' after '=='"), nullptr);
2461   }
2462 
2463   return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
2464           nullptr);
2465 }
2466 
2467 /// Parse the constraints that are part of an integer set definition.
2468 ///  integer-set-inline
2469 ///                ::= dim-and-symbol-id-lists `:`
2470 ///                '(' affine-constraint-conjunction? ')'
2471 ///  affine-constraint-conjunction ::= affine-constraint (`,`
2472 ///                                       affine-constraint)*
2473 ///
2474 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
2475                                                     unsigned numSymbols) {
2476   if (parseToken(Token::l_paren,
2477                  "expected '(' at start of integer set constraint list"))
2478     return IntegerSet();
2479 
2480   SmallVector<AffineExpr, 4> constraints;
2481   SmallVector<bool, 4> isEqs;
2482   auto parseElt = [&]() -> ParseResult {
2483     bool isEq;
2484     auto elt = parseAffineConstraint(&isEq);
2485     ParseResult res = elt ? success() : failure();
2486     if (elt) {
2487       constraints.push_back(elt);
2488       isEqs.push_back(isEq);
2489     }
2490     return res;
2491   };
2492 
2493   // Parse a list of affine constraints (comma-separated).
2494   if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
2495     return IntegerSet();
2496 
2497   // If no constraints were parsed, then treat this as a degenerate 'true' case.
2498   if (constraints.empty()) {
2499     /* 0 == 0 */
2500     auto zero = getAffineConstantExpr(0, getContext());
2501     return builder.getIntegerSet(numDims, numSymbols, zero, true);
2502   }
2503 
2504   // Parsed a valid integer set.
2505   return builder.getIntegerSet(numDims, numSymbols, constraints, isEqs);
2506 }
2507 
2508 /// Parse an ambiguous reference to either and affine map or an integer set.
2509 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
2510                                                         IntegerSet &set) {
2511   return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
2512 }
2513 
2514 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
2515 /// parse SSA value uses encountered while parsing affine expressions.
2516 ParseResult Parser::parseAffineMapOfSSAIds(
2517     AffineMap &map, llvm::function_ref<ParseResult(bool)> parseElement) {
2518   return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
2519       .parseAffineMapOfSSAIds(map);
2520 }
2521 
2522 //===----------------------------------------------------------------------===//
2523 // OperationParser
2524 //===----------------------------------------------------------------------===//
2525 
2526 namespace {
2527 /// This class provides support for parsing operations and regions of
2528 /// operations.
2529 class OperationParser : public Parser {
2530 public:
2531   OperationParser(ParserState &state, ModuleOp moduleOp)
2532       : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) {
2533   }
2534 
2535   ~OperationParser();
2536 
2537   /// After parsing is finished, this function must be called to see if there
2538   /// are any remaining issues.
2539   ParseResult finalize();
2540 
2541   //===--------------------------------------------------------------------===//
2542   // SSA Value Handling
2543   //===--------------------------------------------------------------------===//
2544 
2545   /// This represents a use of an SSA value in the program.  The first two
2546   /// entries in the tuple are the name and result number of a reference.  The
2547   /// third is the location of the reference, which is used in case this ends
2548   /// up being a use of an undefined value.
2549   struct SSAUseInfo {
2550     StringRef name;  // Value name, e.g. %42 or %abc
2551     unsigned number; // Number, specified with #12
2552     SMLoc loc;       // Location of first definition or use.
2553   };
2554 
2555   /// Push a new SSA name scope to the parser.
2556   void pushSSANameScope(bool isIsolated);
2557 
2558   /// Pop the last SSA name scope from the parser.
2559   ParseResult popSSANameScope();
2560 
2561   /// Register a definition of a value with the symbol table.
2562   ParseResult addDefinition(SSAUseInfo useInfo, Value *value);
2563 
2564   /// Parse an optional list of SSA uses into 'results'.
2565   ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);
2566 
2567   /// Parse a single SSA use into 'result'.
2568   ParseResult parseSSAUse(SSAUseInfo &result);
2569 
2570   /// Given a reference to an SSA value and its type, return a reference. This
2571   /// returns null on failure.
2572   Value *resolveSSAUse(SSAUseInfo useInfo, Type type);
2573 
2574   ParseResult parseSSADefOrUseAndType(
2575       const std::function<ParseResult(SSAUseInfo, Type)> &action);
2576 
2577   ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value *> &results);
2578 
2579   /// Return the location of the value identified by its name and number if it
2580   /// has been already reference.
2581   llvm::Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
2582     auto &values = isolatedNameScopes.back().values;
2583     if (!values.count(name) || number >= values[name].size())
2584       return {};
2585     if (values[name][number].first)
2586       return values[name][number].second;
2587     return {};
2588   }
2589 
2590   //===--------------------------------------------------------------------===//
2591   // Operation Parsing
2592   //===--------------------------------------------------------------------===//
2593 
2594   /// Parse an operation instance.
2595   ParseResult parseOperation();
2596 
2597   /// Parse a single operation successor and its operand list.
2598   ParseResult parseSuccessorAndUseList(Block *&dest,
2599                                        SmallVectorImpl<Value *> &operands);
2600 
2601   /// Parse a comma-separated list of operation successors in brackets.
2602   ParseResult
2603   parseSuccessors(SmallVectorImpl<Block *> &destinations,
2604                   SmallVectorImpl<SmallVector<Value *, 4>> &operands);
2605 
2606   /// Parse an operation instance that is in the generic form.
2607   Operation *parseGenericOperation();
2608 
2609   /// Parse an operation instance that is in the op-defined custom form.
2610   Operation *parseCustomOperation();
2611 
2612   //===--------------------------------------------------------------------===//
2613   // Region Parsing
2614   //===--------------------------------------------------------------------===//
2615 
2616   /// Parse a region into 'region' with the provided entry block arguments.
2617   /// 'isIsolatedNameScope' indicates if the naming scope of this region is
2618   /// isolated from those above.
2619   ParseResult parseRegion(Region &region,
2620                           ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
2621                           bool isIsolatedNameScope = false);
2622 
2623   /// Parse a region body into 'region'.
2624   ParseResult parseRegionBody(Region &region);
2625 
2626   //===--------------------------------------------------------------------===//
2627   // Block Parsing
2628   //===--------------------------------------------------------------------===//
2629 
2630   /// Parse a new block into 'block'.
2631   ParseResult parseBlock(Block *&block);
2632 
2633   /// Parse a list of operations into 'block'.
2634   ParseResult parseBlockBody(Block *block);
2635 
2636   /// Parse a (possibly empty) list of block arguments.
2637   ParseResult
2638   parseOptionalBlockArgList(SmallVectorImpl<BlockArgument *> &results,
2639                             Block *owner);
2640 
2641   /// Get the block with the specified name, creating it if it doesn't
2642   /// already exist.  The location specified is the point of use, which allows
2643   /// us to diagnose references to blocks that are not defined precisely.
2644   Block *getBlockNamed(StringRef name, SMLoc loc);
2645 
2646   /// Define the block with the specified name. Returns the Block* or nullptr in
2647   /// the case of redefinition.
2648   Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);
2649 
2650 private:
2651   /// Returns the info for a block at the current scope for the given name.
2652   std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) {
2653     return blocksByName.back()[name];
2654   }
2655 
2656   /// Insert a new forward reference to the given block.
2657   void insertForwardRef(Block *block, SMLoc loc) {
2658     forwardRef.back().try_emplace(block, loc);
2659   }
2660 
2661   /// Erase any forward reference to the given block.
2662   bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }
2663 
2664   /// Record that a definition was added at the current scope.
2665   void recordDefinition(StringRef def);
2666 
2667   /// Get the value entry for the given SSA name.
2668   SmallVectorImpl<std::pair<Value *, SMLoc>> &getSSAValueEntry(StringRef name);
2669 
2670   /// Create a forward reference placeholder value with the given location and
2671   /// result type.
2672   Value *createForwardRefPlaceholder(SMLoc loc, Type type);
2673 
2674   /// Return true if this is a forward reference.
2675   bool isForwardRefPlaceholder(Value *value) {
2676     return forwardRefPlaceholders.count(value);
2677   }
2678 
2679   /// This struct represents an isolated SSA name scope. This scope may contain
2680   /// other nested non-isolated scopes. These scopes are used for operations
2681   /// that are known to be isolated to allow for reusing names within their
2682   /// regions, even if those names are used above.
2683   struct IsolatedSSANameScope {
2684     /// Record that a definition was added at the current scope.
2685     void recordDefinition(StringRef def) {
2686       definitionsPerScope.back().insert(def);
2687     }
2688 
2689     /// Push a nested name scope.
2690     void pushSSANameScope() { definitionsPerScope.push_back({}); }
2691 
2692     /// Pop a nested name scope.
2693     void popSSANameScope() {
2694       for (auto &def : definitionsPerScope.pop_back_val())
2695         values.erase(def.getKey());
2696     }
2697 
2698     /// This keeps track of all of the SSA values we are tracking for each name
2699     /// scope, indexed by their name. This has one entry per result number.
2700     llvm::StringMap<SmallVector<std::pair<Value *, SMLoc>, 1>> values;
2701 
2702     /// This keeps track of all of the values defined by a specific name scope.
2703     SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
2704   };
2705 
2706   /// A list of isolated name scopes.
2707   SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;
2708 
2709   /// This keeps track of the block names as well as the location of the first
2710   /// reference for each nested name scope. This is used to diagnose invalid
2711   /// block references and memoize them.
2712   SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName;
2713   SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;
2714 
2715   /// These are all of the placeholders we've made along with the location of
2716   /// their first reference, to allow checking for use of undefined values.
2717   DenseMap<Value *, SMLoc> forwardRefPlaceholders;
2718 
2719   /// The builder used when creating parsed operation instances.
2720   OpBuilder opBuilder;
2721 
2722   /// The top level module operation.
2723   ModuleOp moduleOp;
2724 };
2725 } // end anonymous namespace
2726 
2727 OperationParser::~OperationParser() {
2728   for (auto &fwd : forwardRefPlaceholders) {
2729     // Drop all uses of undefined forward declared reference and destroy
2730     // defining operation.
2731     fwd.first->dropAllUses();
2732     fwd.first->getDefiningOp()->destroy();
2733   }
2734 }
2735 
2736 /// After parsing is finished, this function must be called to see if there are
2737 /// any remaining issues.
2738 ParseResult OperationParser::finalize() {
2739   // Check for any forward references that are left.  If we find any, error
2740   // out.
2741   if (!forwardRefPlaceholders.empty()) {
2742     SmallVector<std::pair<const char *, Value *>, 4> errors;
2743     // Iteration over the map isn't deterministic, so sort by source location.
2744     for (auto entry : forwardRefPlaceholders)
2745       errors.push_back({entry.second.getPointer(), entry.first});
2746     llvm::array_pod_sort(errors.begin(), errors.end());
2747 
2748     for (auto entry : errors) {
2749       auto loc = SMLoc::getFromPointer(entry.first);
2750       emitError(loc, "use of undeclared SSA value name");
2751     }
2752     return failure();
2753   }
2754 
2755   return success();
2756 }
2757 
2758 //===----------------------------------------------------------------------===//
2759 // SSA Value Handling
2760 //===----------------------------------------------------------------------===//
2761 
2762 void OperationParser::pushSSANameScope(bool isIsolated) {
2763   blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>());
2764   forwardRef.push_back(DenseMap<Block *, SMLoc>());
2765 
2766   // Push back a new name definition scope.
2767   if (isIsolated)
2768     isolatedNameScopes.push_back({});
2769   isolatedNameScopes.back().pushSSANameScope();
2770 }
2771 
2772 ParseResult OperationParser::popSSANameScope() {
2773   auto forwardRefInCurrentScope = forwardRef.pop_back_val();
2774 
2775   // Verify that all referenced blocks were defined.
2776   if (!forwardRefInCurrentScope.empty()) {
2777     SmallVector<std::pair<const char *, Block *>, 4> errors;
2778     // Iteration over the map isn't deterministic, so sort by source location.
2779     for (auto entry : forwardRefInCurrentScope) {
2780       errors.push_back({entry.second.getPointer(), entry.first});
2781       // Add this block to the top-level region to allow for automatic cleanup.
2782       moduleOp.getOperation()->getRegion(0).push_back(entry.first);
2783     }
2784     llvm::array_pod_sort(errors.begin(), errors.end());
2785 
2786     for (auto entry : errors) {
2787       auto loc = SMLoc::getFromPointer(entry.first);
2788       emitError(loc, "reference to an undefined block");
2789     }
2790     return failure();
2791   }
2792 
2793   // Pop the next nested namescope. If there is only one internal namescope,
2794   // just pop the isolated scope.
2795   auto &currentNameScope = isolatedNameScopes.back();
2796   if (currentNameScope.definitionsPerScope.size() == 1)
2797     isolatedNameScopes.pop_back();
2798   else
2799     currentNameScope.popSSANameScope();
2800 
2801   blocksByName.pop_back();
2802   return success();
2803 }
2804 
2805 /// Register a definition of a value with the symbol table.
2806 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value *value) {
2807   auto &entries = getSSAValueEntry(useInfo.name);
2808 
2809   // Make sure there is a slot for this value.
2810   if (entries.size() <= useInfo.number)
2811     entries.resize(useInfo.number + 1);
2812 
2813   // If we already have an entry for this, check to see if it was a definition
2814   // or a forward reference.
2815   if (auto *existing = entries[useInfo.number].first) {
2816     if (!isForwardRefPlaceholder(existing)) {
2817       return emitError(useInfo.loc)
2818           .append("redefinition of SSA value '", useInfo.name, "'")
2819           .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
2820           .append("previously defined here");
2821     }
2822 
2823     // If it was a forward reference, update everything that used it to use
2824     // the actual definition instead, delete the forward ref, and remove it
2825     // from our set of forward references we track.
2826     existing->replaceAllUsesWith(value);
2827     existing->getDefiningOp()->destroy();
2828     forwardRefPlaceholders.erase(existing);
2829   }
2830 
2831   /// Record this definition for the current scope.
2832   entries[useInfo.number] = {value, useInfo.loc};
2833   recordDefinition(useInfo.name);
2834   return success();
2835 }
2836 
2837 /// Parse a (possibly empty) list of SSA operands.
2838 ///
2839 ///   ssa-use-list ::= ssa-use (`,` ssa-use)*
2840 ///   ssa-use-list-opt ::= ssa-use-list?
2841 ///
2842 ParseResult
2843 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
2844   if (getToken().isNot(Token::percent_identifier))
2845     return success();
2846   return parseCommaSeparatedList([&]() -> ParseResult {
2847     SSAUseInfo result;
2848     if (parseSSAUse(result))
2849       return failure();
2850     results.push_back(result);
2851     return success();
2852   });
2853 }
2854 
2855 /// Parse a SSA operand for an operation.
2856 ///
2857 ///   ssa-use ::= ssa-id
2858 ///
2859 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
2860   result.name = getTokenSpelling();
2861   result.number = 0;
2862   result.loc = getToken().getLoc();
2863   if (parseToken(Token::percent_identifier, "expected SSA operand"))
2864     return failure();
2865 
2866   // If we have an attribute ID, it is a result number.
2867   if (getToken().is(Token::hash_identifier)) {
2868     if (auto value = getToken().getHashIdentifierNumber())
2869       result.number = value.getValue();
2870     else
2871       return emitError("invalid SSA value result number");
2872     consumeToken(Token::hash_identifier);
2873   }
2874 
2875   return success();
2876 }
2877 
2878 /// Given an unbound reference to an SSA value and its type, return the value
2879 /// it specifies.  This returns null on failure.
2880 Value *OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
2881   auto &entries = getSSAValueEntry(useInfo.name);
2882 
2883   // If we have already seen a value of this name, return it.
2884   if (useInfo.number < entries.size() && entries[useInfo.number].first) {
2885     auto *result = entries[useInfo.number].first;
2886     // Check that the type matches the other uses.
2887     if (result->getType() == type)
2888       return result;
2889 
2890     emitError(useInfo.loc, "use of value '")
2891         .append(useInfo.name,
2892                 "' expects different type than prior uses: ", type, " vs ",
2893                 result->getType())
2894         .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
2895         .append("prior use here");
2896     return nullptr;
2897   }
2898 
2899   // Make sure we have enough slots for this.
2900   if (entries.size() <= useInfo.number)
2901     entries.resize(useInfo.number + 1);
2902 
2903   // If the value has already been defined and this is an overly large result
2904   // number, diagnose that.
2905   if (entries[0].first && !isForwardRefPlaceholder(entries[0].first))
2906     return (emitError(useInfo.loc, "reference to invalid result number"),
2907             nullptr);
2908 
2909   // Otherwise, this is a forward reference.  Create a placeholder and remember
2910   // that we did so.
2911   auto *result = createForwardRefPlaceholder(useInfo.loc, type);
2912   entries[useInfo.number].first = result;
2913   entries[useInfo.number].second = useInfo.loc;
2914   return result;
2915 }
2916 
2917 /// Parse an SSA use with an associated type.
2918 ///
2919 ///   ssa-use-and-type ::= ssa-use `:` type
2920 ParseResult OperationParser::parseSSADefOrUseAndType(
2921     const std::function<ParseResult(SSAUseInfo, Type)> &action) {
2922   SSAUseInfo useInfo;
2923   if (parseSSAUse(useInfo) ||
2924       parseToken(Token::colon, "expected ':' and type for SSA operand"))
2925     return failure();
2926 
2927   auto type = parseType();
2928   if (!type)
2929     return failure();
2930 
2931   return action(useInfo, type);
2932 }
2933 
2934 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then
2935 /// followed by a type list.
2936 ///
2937 ///   ssa-use-and-type-list
2938 ///     ::= ssa-use-list ':' type-list-no-parens
2939 ///
2940 ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
2941     SmallVectorImpl<Value *> &results) {
2942   SmallVector<SSAUseInfo, 4> valueIDs;
2943   if (parseOptionalSSAUseList(valueIDs))
2944     return failure();
2945 
2946   // If there were no operands, then there is no colon or type lists.
2947   if (valueIDs.empty())
2948     return success();
2949 
2950   SmallVector<Type, 4> types;
2951   if (parseToken(Token::colon, "expected ':' in operand list") ||
2952       parseTypeListNoParens(types))
2953     return failure();
2954 
2955   if (valueIDs.size() != types.size())
2956     return emitError("expected ")
2957            << valueIDs.size() << " types to match operand list";
2958 
2959   results.reserve(valueIDs.size());
2960   for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
2961     if (auto *value = resolveSSAUse(valueIDs[i], types[i]))
2962       results.push_back(value);
2963     else
2964       return failure();
2965   }
2966 
2967   return success();
2968 }
2969 
2970 /// Record that a definition was added at the current scope.
2971 void OperationParser::recordDefinition(StringRef def) {
2972   isolatedNameScopes.back().recordDefinition(def);
2973 }
2974 
2975 /// Get the value entry for the given SSA name.
2976 SmallVectorImpl<std::pair<Value *, SMLoc>> &
2977 OperationParser::getSSAValueEntry(StringRef name) {
2978   return isolatedNameScopes.back().values[name];
2979 }
2980 
2981 /// Create and remember a new placeholder for a forward reference.
2982 Value *OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
2983   // Forward references are always created as operations, because we just need
2984   // something with a def/use chain.
2985   //
2986   // We create these placeholders as having an empty name, which we know
2987   // cannot be created through normal user input, allowing us to distinguish
2988   // them.
2989   auto name = OperationName("placeholder", getContext());
2990   auto *op = Operation::create(
2991       getEncodedSourceLocation(loc), name, /*operands=*/{}, type,
2992       /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0,
2993       /*resizableOperandList=*/false);
2994   forwardRefPlaceholders[op->getResult(0)] = loc;
2995   return op->getResult(0);
2996 }
2997 
2998 //===----------------------------------------------------------------------===//
2999 // Operation Parsing
3000 //===----------------------------------------------------------------------===//
3001 
3002 /// Parse an operation.
3003 ///
3004 ///  operation ::=
3005 ///    operation-result? string '(' ssa-use-list? ')' attribute-dict?
3006 ///    `:` function-type trailing-location?
3007 ///  operation-result ::= ssa-id ((`:` integer-literal) | (`,` ssa-id)*) `=`
3008 ///
3009 ParseResult OperationParser::parseOperation() {
3010   auto loc = getToken().getLoc();
3011   SmallVector<std::pair<StringRef, SMLoc>, 1> resultIDs;
3012   size_t numExpectedResults;
3013   if (getToken().is(Token::percent_identifier)) {
3014     // Parse the first result id.
3015     resultIDs.emplace_back(getTokenSpelling(), loc);
3016     consumeToken(Token::percent_identifier);
3017 
3018     // If the next token is a ':', we parse the expected result count.
3019     if (consumeIf(Token::colon)) {
3020       // Check that the next token is an integer.
3021       if (!getToken().is(Token::integer))
3022         return emitError("expected integer number of results");
3023 
3024       // Check that number of results is > 0.
3025       auto val = getToken().getUInt64IntegerValue();
3026       if (!val.hasValue() || val.getValue() < 1)
3027         return emitError("expected named operation to have atleast 1 result");
3028       consumeToken(Token::integer);
3029       numExpectedResults = *val;
3030     } else {
3031       // Otherwise, this is a comma separated list of result ids.
3032       if (consumeIf(Token::comma)) {
3033         auto parseNextResult = [&]() -> ParseResult {
3034           // Parse the next result id.
3035           if (!getToken().is(Token::percent_identifier))
3036             return emitError("expected valid ssa identifier");
3037 
3038           resultIDs.emplace_back(getTokenSpelling(), getToken().getLoc());
3039           consumeToken(Token::percent_identifier);
3040           return success();
3041         };
3042 
3043         if (parseCommaSeparatedList(parseNextResult))
3044           return failure();
3045       }
3046       numExpectedResults = resultIDs.size();
3047     }
3048 
3049     if (parseToken(Token::equal, "expected '=' after SSA name"))
3050       return failure();
3051   }
3052 
3053   Operation *op;
3054   if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
3055     op = parseCustomOperation();
3056   else if (getToken().is(Token::string))
3057     op = parseGenericOperation();
3058   else
3059     return emitError("expected operation name in quotes");
3060 
3061   // If parsing of the basic operation failed, then this whole thing fails.
3062   if (!op)
3063     return failure();
3064 
3065   // If the operation had a name, register it.
3066   if (!resultIDs.empty()) {
3067     if (op->getNumResults() == 0)
3068       return emitError(loc, "cannot name an operation with no results");
3069     if (numExpectedResults != op->getNumResults())
3070       return emitError(loc, "operation defines ")
3071              << op->getNumResults() << " results but was provided "
3072              << numExpectedResults << " to bind";
3073 
3074     // If the number of result names matches the number of operation results, we
3075     // can directly use the provided names.
3076     if (resultIDs.size() == op->getNumResults()) {
3077       for (unsigned i = 0, e = op->getNumResults(); i != e; ++i)
3078         if (addDefinition({resultIDs[i].first, 0, resultIDs[i].second},
3079                           op->getResult(i)))
3080           return failure();
3081     } else {
3082       // Otherwise, we use the same name for all results.
3083       StringRef name = resultIDs.front().first;
3084       for (unsigned i = 0, e = op->getNumResults(); i != e; ++i)
3085         if (addDefinition({name, i, loc}, op->getResult(i)))
3086           return failure();
3087     }
3088   }
3089 
3090   // Try to parse the optional trailing location.
3091   if (parseOptionalTrailingLocation(op))
3092     return failure();
3093 
3094   return success();
3095 }
3096 
3097 /// Parse a single operation successor and its operand list.
3098 ///
3099 ///   successor ::= block-id branch-use-list?
3100 ///   branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)`
3101 ///
3102 ParseResult
3103 OperationParser::parseSuccessorAndUseList(Block *&dest,
3104                                           SmallVectorImpl<Value *> &operands) {
3105   // Verify branch is identifier and get the matching block.
3106   if (!getToken().is(Token::caret_identifier))
3107     return emitError("expected block name");
3108   dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
3109   consumeToken();
3110 
3111   // Handle optional arguments.
3112   if (consumeIf(Token::l_paren) &&
3113       (parseOptionalSSAUseAndTypeList(operands) ||
3114        parseToken(Token::r_paren, "expected ')' to close argument list"))) {
3115     return failure();
3116   }
3117 
3118   return success();
3119 }
3120 
3121 /// Parse a comma-separated list of operation successors in brackets.
3122 ///
3123 ///   successor-list ::= `[` successor (`,` successor )* `]`
3124 ///
3125 ParseResult OperationParser::parseSuccessors(
3126     SmallVectorImpl<Block *> &destinations,
3127     SmallVectorImpl<SmallVector<Value *, 4>> &operands) {
3128   if (parseToken(Token::l_square, "expected '['"))
3129     return failure();
3130 
3131   auto parseElt = [this, &destinations, &operands]() {
3132     Block *dest;
3133     SmallVector<Value *, 4> destOperands;
3134     auto res = parseSuccessorAndUseList(dest, destOperands);
3135     destinations.push_back(dest);
3136     operands.push_back(destOperands);
3137     return res;
3138   };
3139   return parseCommaSeparatedListUntil(Token::r_square, parseElt,
3140                                       /*allowEmptyList=*/false);
3141 }
3142 
3143 namespace {
3144 // RAII-style guard for cleaning up the regions in the operation state before
3145 // deleting them.  Within the parser, regions may get deleted if parsing failed,
3146 // and other errors may be present, in praticular undominated uses.  This makes
3147 // sure such uses are deleted.
3148 struct CleanupOpStateRegions {
3149   ~CleanupOpStateRegions() {
3150     SmallVector<Region *, 4> regionsToClean;
3151     regionsToClean.reserve(state.regions.size());
3152     for (auto &region : state.regions)
3153       if (region)
3154         for (auto &block : *region)
3155           block.dropAllDefinedValueUses();
3156   }
3157   OperationState &state;
3158 };
3159 } // namespace
3160 
3161 Operation *OperationParser::parseGenericOperation() {
3162   // Get location information for the operation.
3163   auto srcLocation = getEncodedSourceLocation(getToken().getLoc());
3164 
3165   auto name = getToken().getStringValue();
3166   if (name.empty())
3167     return (emitError("empty operation name is invalid"), nullptr);
3168   if (name.find('\0') != StringRef::npos)
3169     return (emitError("null character not allowed in operation name"), nullptr);
3170 
3171   consumeToken(Token::string);
3172 
3173   OperationState result(srcLocation, name);
3174 
3175   // Generic operations have a resizable operation list.
3176   result.setOperandListToResizable();
3177 
3178   // Parse the operand list.
3179   SmallVector<SSAUseInfo, 8> operandInfos;
3180 
3181   if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
3182       parseOptionalSSAUseList(operandInfos) ||
3183       parseToken(Token::r_paren, "expected ')' to end operand list")) {
3184     return nullptr;
3185   }
3186 
3187   // Parse the successor list but don't add successors to the result yet to
3188   // avoid messing up with the argument order.
3189   SmallVector<Block *, 2> successors;
3190   SmallVector<SmallVector<Value *, 4>, 2> successorOperands;
3191   if (getToken().is(Token::l_square)) {
3192     // Check if the operation is a known terminator.
3193     const AbstractOperation *abstractOp = result.name.getAbstractOperation();
3194     if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator))
3195       return emitError("successors in non-terminator"), nullptr;
3196     if (parseSuccessors(successors, successorOperands))
3197       return nullptr;
3198   }
3199 
3200   // Parse the region list.
3201   CleanupOpStateRegions guard{result};
3202   if (consumeIf(Token::l_paren)) {
3203     do {
3204       // Create temporary regions with the top level region as parent.
3205       result.regions.emplace_back(new Region(moduleOp));
3206       if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
3207         return nullptr;
3208     } while (consumeIf(Token::comma));
3209     if (parseToken(Token::r_paren, "expected ')' to end region list"))
3210       return nullptr;
3211   }
3212 
3213   if (getToken().is(Token::l_brace)) {
3214     if (parseAttributeDict(result.attributes))
3215       return nullptr;
3216   }
3217 
3218   if (parseToken(Token::colon, "expected ':' followed by operation type"))
3219     return nullptr;
3220 
3221   auto typeLoc = getToken().getLoc();
3222   auto type = parseType();
3223   if (!type)
3224     return nullptr;
3225   auto fnType = type.dyn_cast<FunctionType>();
3226   if (!fnType)
3227     return (emitError(typeLoc, "expected function type"), nullptr);
3228 
3229   result.addTypes(fnType.getResults());
3230 
3231   // Check that we have the right number of types for the operands.
3232   auto operandTypes = fnType.getInputs();
3233   if (operandTypes.size() != operandInfos.size()) {
3234     auto plural = "s"[operandInfos.size() == 1];
3235     return (emitError(typeLoc, "expected ")
3236                 << operandInfos.size() << " operand type" << plural
3237                 << " but had " << operandTypes.size(),
3238             nullptr);
3239   }
3240 
3241   // Resolve all of the operands.
3242   for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
3243     result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
3244     if (!result.operands.back())
3245       return nullptr;
3246   }
3247 
3248   // Add the sucessors, and their operands after the proper operands.
3249   for (const auto &succ : llvm::zip(successors, successorOperands)) {
3250     Block *successor = std::get<0>(succ);
3251     const SmallVector<Value *, 4> &operands = std::get<1>(succ);
3252     result.addSuccessor(successor, operands);
3253   }
3254 
3255   return opBuilder.createOperation(result);
3256 }
3257 
3258 namespace {
3259 class CustomOpAsmParser : public OpAsmParser {
3260 public:
3261   CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition,
3262                     OperationParser &parser)
3263       : nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {}
3264 
3265   /// Parse an instance of the operation described by 'opDefinition' into the
3266   /// provided operation state.
3267   ParseResult parseOperation(OperationState *opState) {
3268     if (opDefinition->parseAssembly(this, opState))
3269       return failure();
3270     return success();
3271   }
3272 
3273   //===--------------------------------------------------------------------===//
3274   // Utilities
3275   //===--------------------------------------------------------------------===//
3276 
3277   /// Return if any errors were emitted during parsing.
3278   bool didEmitError() const { return emittedError; }
3279 
3280   /// Emit a diagnostic at the specified location and return failure.
3281   InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
3282     emittedError = true;
3283     return parser.emitError(loc, "custom op '" + opDefinition->name + "' " +
3284                                      message);
3285   }
3286 
3287   llvm::SMLoc getCurrentLocation() override {
3288     return parser.getToken().getLoc();
3289   }
3290 
3291   Builder &getBuilder() const override { return parser.builder; }
3292 
3293   llvm::SMLoc getNameLoc() const override { return nameLoc; }
3294 
3295   //===--------------------------------------------------------------------===//
3296   // Token Parsing
3297   //===--------------------------------------------------------------------===//
3298 
3299   /// Parse a `->` token.
3300   ParseResult parseArrow() override {
3301     return parser.parseToken(Token::arrow, "expected '->'");
3302   }
3303 
3304   /// Parses a `->` if present.
3305   ParseResult parseOptionalArrow() override {
3306     return success(parser.consumeIf(Token::arrow));
3307   }
3308 
3309   /// Parse a `:` token.
3310   ParseResult parseColon() override {
3311     return parser.parseToken(Token::colon, "expected ':'");
3312   }
3313 
3314   /// Parse a `:` token if present.
3315   ParseResult parseOptionalColon() override {
3316     return success(parser.consumeIf(Token::colon));
3317   }
3318 
3319   /// Parse a `,` token.
3320   ParseResult parseComma() override {
3321     return parser.parseToken(Token::comma, "expected ','");
3322   }
3323 
3324   /// Parse a `,` token if present.
3325   ParseResult parseOptionalComma() override {
3326     return success(parser.consumeIf(Token::comma));
3327   }
3328 
3329   /// Parses a `...` if present.
3330   ParseResult parseOptionalEllipsis() override {
3331     return success(parser.consumeIf(Token::ellipsis));
3332   }
3333 
3334   /// Parse a `=` token.
3335   ParseResult parseEqual() override {
3336     return parser.parseToken(Token::equal, "expected '='");
3337   }
3338 
3339   /// Parse a keyword if present.
3340   ParseResult parseOptionalKeyword(const char *keyword) override {
3341     // Check that the current token is a bare identifier or keyword.
3342     if (parser.getToken().isNot(Token::bare_identifier) &&
3343         !parser.getToken().isKeyword())
3344       return failure();
3345 
3346     if (parser.getTokenSpelling() == keyword) {
3347       parser.consumeToken();
3348       return success();
3349     }
3350     return failure();
3351   }
3352 
3353   /// Parse a `(` token.
3354   ParseResult parseLParen() override {
3355     return parser.parseToken(Token::l_paren, "expected '('");
3356   }
3357 
3358   /// Parses a '(' if present.
3359   ParseResult parseOptionalLParen() override {
3360     return success(parser.consumeIf(Token::l_paren));
3361   }
3362 
3363   /// Parse a `)` token.
3364   ParseResult parseRParen() override {
3365     return parser.parseToken(Token::r_paren, "expected ')'");
3366   }
3367 
3368   /// Parses a ')' if present.
3369   ParseResult parseOptionalRParen() override {
3370     return success(parser.consumeIf(Token::r_paren));
3371   }
3372 
3373   /// Parse a `[` token.
3374   ParseResult parseLSquare() override {
3375     return parser.parseToken(Token::l_square, "expected '['");
3376   }
3377 
3378   /// Parses a '[' if present.
3379   ParseResult parseOptionalLSquare() override {
3380     return success(parser.consumeIf(Token::l_square));
3381   }
3382 
3383   /// Parse a `]` token.
3384   ParseResult parseRSquare() override {
3385     return parser.parseToken(Token::r_square, "expected ']'");
3386   }
3387 
3388   /// Parses a ']' if present.
3389   ParseResult parseOptionalRSquare() override {
3390     return success(parser.consumeIf(Token::r_square));
3391   }
3392 
3393   //===--------------------------------------------------------------------===//
3394   // Attribute Parsing
3395   //===--------------------------------------------------------------------===//
3396 
3397   /// Parse an arbitrary attribute of a given type and return it in result. This
3398   /// also adds the attribute to the specified attribute list with the specified
3399   /// name.
3400   ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName,
3401                              SmallVectorImpl<NamedAttribute> &attrs) override {
3402     result = parser.parseAttribute(type);
3403     if (!result)
3404       return failure();
3405 
3406     attrs.push_back(parser.builder.getNamedAttr(attrName, result));
3407     return success();
3408   }
3409 
3410   /// Parse a named dictionary into 'result' if it is present.
3411   ParseResult
3412   parseOptionalAttributeDict(SmallVectorImpl<NamedAttribute> &result) override {
3413     if (parser.getToken().isNot(Token::l_brace))
3414       return success();
3415     return parser.parseAttributeDict(result);
3416   }
3417 
3418   //===--------------------------------------------------------------------===//
3419   // Identifier Parsing
3420   //===--------------------------------------------------------------------===//
3421 
3422   /// Parse an @-identifier and store it (without the '@' symbol) in a string
3423   /// attribute named 'attrName'.
3424   ParseResult parseSymbolName(StringAttr &result, StringRef attrName,
3425                               SmallVectorImpl<NamedAttribute> &attrs) override {
3426     if (parser.getToken().isNot(Token::at_identifier))
3427       return failure();
3428     result = getBuilder().getStringAttr(parser.getTokenSpelling().drop_front());
3429     attrs.push_back(getBuilder().getNamedAttr(attrName, result));
3430     parser.consumeToken();
3431     return success();
3432   }
3433 
3434   //===--------------------------------------------------------------------===//
3435   // Operand Parsing
3436   //===--------------------------------------------------------------------===//
3437 
3438   /// Parse a single operand.
3439   ParseResult parseOperand(OperandType &result) override {
3440     OperationParser::SSAUseInfo useInfo;
3441     if (parser.parseSSAUse(useInfo))
3442       return failure();
3443 
3444     result = {useInfo.loc, useInfo.name, useInfo.number};
3445     return success();
3446   }
3447 
3448   /// Parse zero or more SSA comma-separated operand references with a specified
3449   /// surrounding delimiter, and an optional required operand count.
3450   ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
3451                                int requiredOperandCount = -1,
3452                                Delimiter delimiter = Delimiter::None) override {
3453     return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
3454                                        requiredOperandCount, delimiter);
3455   }
3456 
3457   /// Parse zero or more SSA comma-separated operand or region arguments with
3458   ///  optional surrounding delimiter and required operand count.
3459   ParseResult
3460   parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
3461                               bool isOperandList, int requiredOperandCount = -1,
3462                               Delimiter delimiter = Delimiter::None) {
3463     auto startLoc = parser.getToken().getLoc();
3464 
3465     // Handle delimiters.
3466     switch (delimiter) {
3467     case Delimiter::None:
3468       // Don't check for the absence of a delimiter if the number of operands
3469       // is unknown (and hence the operand list could be empty).
3470       if (requiredOperandCount == -1)
3471         break;
3472       // Token already matches an identifier and so can't be a delimiter.
3473       if (parser.getToken().is(Token::percent_identifier))
3474         break;
3475       // Test against known delimiters.
3476       if (parser.getToken().is(Token::l_paren) ||
3477           parser.getToken().is(Token::l_square))
3478         return emitError(startLoc, "unexpected delimiter");
3479       return emitError(startLoc, "invalid operand");
3480     case Delimiter::OptionalParen:
3481       if (parser.getToken().isNot(Token::l_paren))
3482         return success();
3483       LLVM_FALLTHROUGH;
3484     case Delimiter::Paren:
3485       if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
3486         return failure();
3487       break;
3488     case Delimiter::OptionalSquare:
3489       if (parser.getToken().isNot(Token::l_square))
3490         return success();
3491       LLVM_FALLTHROUGH;
3492     case Delimiter::Square:
3493       if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
3494         return failure();
3495       break;
3496     }
3497 
3498     // Check for zero operands.
3499     if (parser.getToken().is(Token::percent_identifier)) {
3500       do {
3501         OperandType operandOrArg;
3502         if (isOperandList ? parseOperand(operandOrArg)
3503                           : parseRegionArgument(operandOrArg))
3504           return failure();
3505         result.push_back(operandOrArg);
3506       } while (parser.consumeIf(Token::comma));
3507     }
3508 
3509     // Handle delimiters.   If we reach here, the optional delimiters were
3510     // present, so we need to parse their closing one.
3511     switch (delimiter) {
3512     case Delimiter::None:
3513       break;
3514     case Delimiter::OptionalParen:
3515     case Delimiter::Paren:
3516       if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
3517         return failure();
3518       break;
3519     case Delimiter::OptionalSquare:
3520     case Delimiter::Square:
3521       if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
3522         return failure();
3523       break;
3524     }
3525 
3526     if (requiredOperandCount != -1 &&
3527         result.size() != static_cast<size_t>(requiredOperandCount))
3528       return emitError(startLoc, "expected ")
3529              << requiredOperandCount << " operands";
3530     return success();
3531   }
3532 
3533   /// Parse zero or more trailing SSA comma-separated trailing operand
3534   /// references with a specified surrounding delimiter, and an optional
3535   /// required operand count. A leading comma is expected before the operands.
3536   ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
3537                                        int requiredOperandCount,
3538                                        Delimiter delimiter) override {
3539     if (parser.getToken().is(Token::comma)) {
3540       parseComma();
3541       return parseOperandList(result, requiredOperandCount, delimiter);
3542     }
3543     if (requiredOperandCount != -1)
3544       return emitError(parser.getToken().getLoc(), "expected ")
3545              << requiredOperandCount << " operands";
3546     return success();
3547   }
3548 
3549   /// Resolve an operand to an SSA value, emitting an error on failure.
3550   ParseResult resolveOperand(const OperandType &operand, Type type,
3551                              SmallVectorImpl<Value *> &result) override {
3552     OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
3553                                                operand.location};
3554     if (auto *value = parser.resolveSSAUse(operandInfo, type)) {
3555       result.push_back(value);
3556       return success();
3557     }
3558     return failure();
3559   }
3560 
3561   /// Parse an AffineMap of SSA ids.
3562   ParseResult
3563   parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
3564                          Attribute &mapAttr, StringRef attrName,
3565                          SmallVectorImpl<NamedAttribute> &attrs) override {
3566     SmallVector<OperandType, 2> dimOperands;
3567     SmallVector<OperandType, 1> symOperands;
3568 
3569     auto parseElement = [&](bool isSymbol) -> ParseResult {
3570       OperandType operand;
3571       if (parseOperand(operand))
3572         return failure();
3573       if (isSymbol)
3574         symOperands.push_back(operand);
3575       else
3576         dimOperands.push_back(operand);
3577       return success();
3578     };
3579 
3580     AffineMap map;
3581     if (parser.parseAffineMapOfSSAIds(map, parseElement))
3582       return failure();
3583     // Add AffineMap attribute.
3584     if (map) {
3585       mapAttr = parser.builder.getAffineMapAttr(map);
3586       attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
3587     }
3588 
3589     // Add dim operands before symbol operands in 'operands'.
3590     operands.assign(dimOperands.begin(), dimOperands.end());
3591     operands.append(symOperands.begin(), symOperands.end());
3592     return success();
3593   }
3594 
3595   //===--------------------------------------------------------------------===//
3596   // Region Parsing
3597   //===--------------------------------------------------------------------===//
3598 
3599   /// Parse a region that takes `arguments` of `argTypes` types.  This
3600   /// effectively defines the SSA values of `arguments` and assignes their type.
3601   ParseResult parseRegion(Region &region, ArrayRef<OperandType> arguments,
3602                           ArrayRef<Type> argTypes,
3603                           bool enableNameShadowing) override {
3604     assert(arguments.size() == argTypes.size() &&
3605            "mismatching number of arguments and types");
3606 
3607     SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
3608         regionArguments;
3609     for (const auto &pair : llvm::zip(arguments, argTypes)) {
3610       const OperandType &operand = std::get<0>(pair);
3611       Type type = std::get<1>(pair);
3612       OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
3613                                                  operand.location};
3614       regionArguments.emplace_back(operandInfo, type);
3615     }
3616 
3617     // Try to parse the region.
3618     assert((!enableNameShadowing ||
3619             opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) &&
3620            "name shadowing is only allowed on isolated regions");
3621     if (parser.parseRegion(region, regionArguments, enableNameShadowing))
3622       return failure();
3623     return success();
3624   }
3625 
3626   /// Parses a region if present.
3627   ParseResult parseOptionalRegion(Region &region,
3628                                   ArrayRef<OperandType> arguments,
3629                                   ArrayRef<Type> argTypes,
3630                                   bool enableNameShadowing) override {
3631     if (parser.getToken().isNot(Token::l_brace))
3632       return success();
3633     return parseRegion(region, arguments, argTypes, enableNameShadowing);
3634   }
3635 
3636   /// Parse a region argument. The type of the argument will be resolved later
3637   /// by a call to `parseRegion`.
3638   ParseResult parseRegionArgument(OperandType &argument) override {
3639     return parseOperand(argument);
3640   }
3641 
3642   /// Parse a region argument if present.
3643   ParseResult parseOptionalRegionArgument(OperandType &argument) override {
3644     if (parser.getToken().isNot(Token::percent_identifier))
3645       return success();
3646     return parseRegionArgument(argument);
3647   }
3648 
3649   ParseResult
3650   parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
3651                           int requiredOperandCount = -1,
3652                           Delimiter delimiter = Delimiter::None) override {
3653     return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
3654                                        requiredOperandCount, delimiter);
3655   }
3656 
3657   //===--------------------------------------------------------------------===//
3658   // Successor Parsing
3659   //===--------------------------------------------------------------------===//
3660 
3661   /// Parse a single operation successor and its operand list.
3662   ParseResult
3663   parseSuccessorAndUseList(Block *&dest,
3664                            SmallVectorImpl<Value *> &operands) override {
3665     return parser.parseSuccessorAndUseList(dest, operands);
3666   }
3667 
3668   //===--------------------------------------------------------------------===//
3669   // Type Parsing
3670   //===--------------------------------------------------------------------===//
3671 
3672   /// Parse a type.
3673   ParseResult parseType(Type &result) override {
3674     return failure(!(result = parser.parseType()));
3675   }
3676 
3677   /// Parse an optional arrow followed by a type list.
3678   ParseResult
3679   parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override {
3680     if (!parser.consumeIf(Token::arrow))
3681       return success();
3682     return parser.parseFunctionResultTypes(result);
3683   }
3684 
3685   /// Parse a colon followed by a type.
3686   ParseResult parseColonType(Type &result) override {
3687     return failure(parser.parseToken(Token::colon, "expected ':'") ||
3688                    !(result = parser.parseType()));
3689   }
3690 
3691   /// Parse a colon followed by a type list, which must have at least one type.
3692   ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override {
3693     if (parser.parseToken(Token::colon, "expected ':'"))
3694       return failure();
3695     return parser.parseTypeListNoParens(result);
3696   }
3697 
3698   /// Parse an optional colon followed by a type list, which if present must
3699   /// have at least one type.
3700   ParseResult
3701   parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override {
3702     if (!parser.consumeIf(Token::colon))
3703       return success();
3704     return parser.parseTypeListNoParens(result);
3705   }
3706 
3707 private:
3708   /// The source location of the operation name.
3709   SMLoc nameLoc;
3710 
3711   /// The abstract information of the operation.
3712   const AbstractOperation *opDefinition;
3713 
3714   /// The main operation parser.
3715   OperationParser &parser;
3716 
3717   /// A flag that indicates if any errors were emitted during parsing.
3718   bool emittedError = false;
3719 };
3720 } // end anonymous namespace.
3721 
3722 Operation *OperationParser::parseCustomOperation() {
3723   auto opLoc = getToken().getLoc();
3724   auto opName = getTokenSpelling();
3725 
3726   auto *opDefinition = AbstractOperation::lookup(opName, getContext());
3727   if (!opDefinition && !opName.contains('.')) {
3728     // If the operation name has no namespace prefix we treat it as a standard
3729     // operation and prefix it with "std".
3730     // TODO: Would it be better to just build a mapping of the registered
3731     // operations in the standard dialect?
3732     opDefinition =
3733         AbstractOperation::lookup(Twine("std." + opName).str(), getContext());
3734   }
3735 
3736   if (!opDefinition) {
3737     emitError(opLoc) << "custom op '" << opName << "' is unknown";
3738     return nullptr;
3739   }
3740 
3741   consumeToken();
3742 
3743   // If the custom op parser crashes, produce some indication to help
3744   // debugging.
3745   std::string opNameStr = opName.str();
3746   llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
3747                                    opNameStr.c_str());
3748 
3749   // Get location information for the operation.
3750   auto srcLocation = getEncodedSourceLocation(opLoc);
3751 
3752   // Have the op implementation take a crack and parsing this.
3753   OperationState opState(srcLocation, opDefinition->name);
3754   CleanupOpStateRegions guard{opState};
3755   CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this);
3756   if (opAsmParser.parseOperation(&opState))
3757     return nullptr;
3758 
3759   // If it emitted an error, we failed.
3760   if (opAsmParser.didEmitError())
3761     return nullptr;
3762 
3763   // Otherwise, we succeeded.  Use the state it parsed as our op information.
3764   return opBuilder.createOperation(opState);
3765 }
3766 
3767 //===----------------------------------------------------------------------===//
3768 // Region Parsing
3769 //===----------------------------------------------------------------------===//
3770 
3771 /// Region.
3772 ///
3773 ///   region ::= '{' region-body
3774 ///
3775 ParseResult OperationParser::parseRegion(
3776     Region &region,
3777     ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
3778     bool isIsolatedNameScope) {
3779   // Parse the '{'.
3780   if (parseToken(Token::l_brace, "expected '{' to begin a region"))
3781     return failure();
3782 
3783   // Check for an empty region.
3784   if (entryArguments.empty() && consumeIf(Token::r_brace))
3785     return success();
3786   auto currentPt = opBuilder.saveInsertionPoint();
3787 
3788   // Push a new named value scope.
3789   pushSSANameScope(isIsolatedNameScope);
3790 
3791   // Parse the first block directly to allow for it to be unnamed.
3792   Block *block = new Block();
3793 
3794   // Add arguments to the entry block.
3795   if (!entryArguments.empty()) {
3796     for (auto &placeholderArgPair : entryArguments) {
3797       auto &argInfo = placeholderArgPair.first;
3798       // Ensure that the argument was not already defined.
3799       if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
3800         return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
3801                                           "' is already in use")
3802                    .attachNote(getEncodedSourceLocation(*defLoc))
3803                << "previously referenced here";
3804       }
3805       if (addDefinition(placeholderArgPair.first,
3806                         block->addArgument(placeholderArgPair.second))) {
3807         delete block;
3808         return failure();
3809       }
3810     }
3811 
3812     // If we had named arguments, then don't allow a block name.
3813     if (getToken().is(Token::caret_identifier))
3814       return emitError("invalid block name in region with named arguments");
3815   }
3816 
3817   if (parseBlock(block)) {
3818     delete block;
3819     return failure();
3820   }
3821 
3822   // Verify that no other arguments were parsed.
3823   if (!entryArguments.empty() &&
3824       block->getNumArguments() > entryArguments.size()) {
3825     delete block;
3826     return emitError("entry block arguments were already defined");
3827   }
3828 
3829   // Parse the rest of the region.
3830   region.push_back(block);
3831   if (parseRegionBody(region))
3832     return failure();
3833 
3834   // Pop the SSA value scope for this region.
3835   if (popSSANameScope())
3836     return failure();
3837 
3838   // Reset the original insertion point.
3839   opBuilder.restoreInsertionPoint(currentPt);
3840   return success();
3841 }
3842 
3843 /// Region.
3844 ///
3845 ///   region-body ::= block* '}'
3846 ///
3847 ParseResult OperationParser::parseRegionBody(Region &region) {
3848   // Parse the list of blocks.
3849   while (!consumeIf(Token::r_brace)) {
3850     Block *newBlock = nullptr;
3851     if (parseBlock(newBlock))
3852       return failure();
3853     region.push_back(newBlock);
3854   }
3855   return success();
3856 }
3857 
3858 //===----------------------------------------------------------------------===//
3859 // Block Parsing
3860 //===----------------------------------------------------------------------===//
3861 
3862 /// Block declaration.
3863 ///
3864 ///   block ::= block-label? operation*
3865 ///   block-label    ::= block-id block-arg-list? `:`
3866 ///   block-id       ::= caret-id
3867 ///   block-arg-list ::= `(` ssa-id-and-type-list? `)`
3868 ///
3869 ParseResult OperationParser::parseBlock(Block *&block) {
3870   // The first block of a region may already exist, if it does the caret
3871   // identifier is optional.
3872   if (block && getToken().isNot(Token::caret_identifier))
3873     return parseBlockBody(block);
3874 
3875   SMLoc nameLoc = getToken().getLoc();
3876   auto name = getTokenSpelling();
3877   if (parseToken(Token::caret_identifier, "expected block name"))
3878     return failure();
3879 
3880   block = defineBlockNamed(name, nameLoc, block);
3881 
3882   // Fail if the block was already defined.
3883   if (!block)
3884     return emitError(nameLoc, "redefinition of block '") << name << "'";
3885 
3886   // If an argument list is present, parse it.
3887   if (consumeIf(Token::l_paren)) {
3888     SmallVector<BlockArgument *, 8> bbArgs;
3889     if (parseOptionalBlockArgList(bbArgs, block) ||
3890         parseToken(Token::r_paren, "expected ')' to end argument list"))
3891       return failure();
3892   }
3893 
3894   if (parseToken(Token::colon, "expected ':' after block name"))
3895     return failure();
3896 
3897   return parseBlockBody(block);
3898 }
3899 
3900 ParseResult OperationParser::parseBlockBody(Block *block) {
3901   // Set the insertion point to the end of the block to parse.
3902   opBuilder.setInsertionPointToEnd(block);
3903 
3904   // Parse the list of operations that make up the body of the block.
3905   while (getToken().isNot(Token::caret_identifier, Token::r_brace))
3906     if (parseOperation())
3907       return failure();
3908 
3909   return success();
3910 }
3911 
3912 /// Get the block with the specified name, creating it if it doesn't already
3913 /// exist.  The location specified is the point of use, which allows
3914 /// us to diagnose references to blocks that are not defined precisely.
3915 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
3916   auto &blockAndLoc = getBlockInfoByName(name);
3917   if (!blockAndLoc.first) {
3918     blockAndLoc = {new Block(), loc};
3919     insertForwardRef(blockAndLoc.first, loc);
3920   }
3921 
3922   return blockAndLoc.first;
3923 }
3924 
3925 /// Define the block with the specified name. Returns the Block* or nullptr in
3926 /// the case of redefinition.
3927 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
3928                                          Block *existing) {
3929   auto &blockAndLoc = getBlockInfoByName(name);
3930   if (!blockAndLoc.first) {
3931     // If the caller provided a block, use it.  Otherwise create a new one.
3932     if (!existing)
3933       existing = new Block();
3934     blockAndLoc.first = existing;
3935     blockAndLoc.second = loc;
3936     return blockAndLoc.first;
3937   }
3938 
3939   // Forward declarations are removed once defined, so if we are defining a
3940   // existing block and it is not a forward declaration, then it is a
3941   // redeclaration.
3942   if (!eraseForwardRef(blockAndLoc.first))
3943     return nullptr;
3944   return blockAndLoc.first;
3945 }
3946 
3947 /// Parse a (possibly empty) list of SSA operands with types as block arguments.
3948 ///
3949 ///   ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
3950 ///
3951 ParseResult OperationParser::parseOptionalBlockArgList(
3952     SmallVectorImpl<BlockArgument *> &results, Block *owner) {
3953   if (getToken().is(Token::r_brace))
3954     return success();
3955 
3956   // If the block already has arguments, then we're handling the entry block.
3957   // Parse and register the names for the arguments, but do not add them.
3958   bool definingExistingArgs = owner->getNumArguments() != 0;
3959   unsigned nextArgument = 0;
3960 
3961   return parseCommaSeparatedList([&]() -> ParseResult {
3962     return parseSSADefOrUseAndType(
3963         [&](SSAUseInfo useInfo, Type type) -> ParseResult {
3964           // If this block did not have existing arguments, define a new one.
3965           if (!definingExistingArgs)
3966             return addDefinition(useInfo, owner->addArgument(type));
3967 
3968           // Otherwise, ensure that this argument has already been created.
3969           if (nextArgument >= owner->getNumArguments())
3970             return emitError("too many arguments specified in argument list");
3971 
3972           // Finally, make sure the existing argument has the correct type.
3973           auto *arg = owner->getArgument(nextArgument++);
3974           if (arg->getType() != type)
3975             return emitError("argument and block argument type mismatch");
3976           return addDefinition(useInfo, arg);
3977         });
3978   });
3979 }
3980 
3981 //===----------------------------------------------------------------------===//
3982 // Top-level entity parsing.
3983 //===----------------------------------------------------------------------===//
3984 
3985 namespace {
3986 /// This parser handles entities that are only valid at the top level of the
3987 /// file.
3988 class ModuleParser : public Parser {
3989 public:
3990   explicit ModuleParser(ParserState &state) : Parser(state) {}
3991 
3992   ParseResult parseModule(ModuleOp module);
3993 
3994 private:
3995   /// Parse an attribute alias declaration.
3996   ParseResult parseAttributeAliasDef();
3997 
3998   /// Parse an attribute alias declaration.
3999   ParseResult parseTypeAliasDef();
4000 };
4001 } // end anonymous namespace
4002 
4003 /// Parses an attribute alias declaration.
4004 ///
4005 ///   attribute-alias-def ::= '#' alias-name `=` attribute-value
4006 ///
4007 ParseResult ModuleParser::parseAttributeAliasDef() {
4008   assert(getToken().is(Token::hash_identifier));
4009   StringRef aliasName = getTokenSpelling().drop_front();
4010 
4011   // Check for redefinitions.
4012   if (getState().attributeAliasDefinitions.count(aliasName) > 0)
4013     return emitError("redefinition of attribute alias id '" + aliasName + "'");
4014 
4015   // Make sure this isn't invading the dialect attribute namespace.
4016   if (aliasName.contains('.'))
4017     return emitError("attribute names with a '.' are reserved for "
4018                      "dialect-defined names");
4019 
4020   consumeToken(Token::hash_identifier);
4021 
4022   // Parse the '='.
4023   if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
4024     return failure();
4025 
4026   // Parse the attribute value.
4027   Attribute attr = parseAttribute();
4028   if (!attr)
4029     return failure();
4030 
4031   getState().attributeAliasDefinitions[aliasName] = attr;
4032   return success();
4033 }
4034 
4035 /// Parse a type alias declaration.
4036 ///
4037 ///   type-alias-def ::= '!' alias-name `=` 'type' type
4038 ///
4039 ParseResult ModuleParser::parseTypeAliasDef() {
4040   assert(getToken().is(Token::exclamation_identifier));
4041   StringRef aliasName = getTokenSpelling().drop_front();
4042 
4043   // Check for redefinitions.
4044   if (getState().typeAliasDefinitions.count(aliasName) > 0)
4045     return emitError("redefinition of type alias id '" + aliasName + "'");
4046 
4047   // Make sure this isn't invading the dialect type namespace.
4048   if (aliasName.contains('.'))
4049     return emitError("type names with a '.' are reserved for "
4050                      "dialect-defined names");
4051 
4052   consumeToken(Token::exclamation_identifier);
4053 
4054   // Parse the '=' and 'type'.
4055   if (parseToken(Token::equal, "expected '=' in type alias definition") ||
4056       parseToken(Token::kw_type, "expected 'type' in type alias definition"))
4057     return failure();
4058 
4059   // Parse the type.
4060   Type aliasedType = parseType();
4061   if (!aliasedType)
4062     return failure();
4063 
4064   // Register this alias with the parser state.
4065   getState().typeAliasDefinitions.try_emplace(aliasName, aliasedType);
4066   return success();
4067 }
4068 
4069 /// This is the top-level module parser.
4070 ParseResult ModuleParser::parseModule(ModuleOp module) {
4071   OperationParser opParser(getState(), module);
4072 
4073   // Module itself is a name scope.
4074   opParser.pushSSANameScope(/*isIsolated=*/true);
4075 
4076   while (1) {
4077     switch (getToken().getKind()) {
4078     default:
4079       // Parse a top-level operation.
4080       if (opParser.parseOperation())
4081         return failure();
4082       break;
4083 
4084     // If we got to the end of the file, then we're done.
4085     case Token::eof: {
4086       if (opParser.finalize())
4087         return failure();
4088 
4089       // Handle the case where the top level module was explicitly defined.
4090       auto &bodyBlocks = module.getBodyRegion().getBlocks();
4091       auto &operations = bodyBlocks.front().getOperations();
4092       assert(!operations.empty() && "expected a valid module terminator");
4093 
4094       // Check that the first operation is a module, and it is the only
4095       // non-terminator operation.
4096       ModuleOp nested = dyn_cast<ModuleOp>(operations.front());
4097       if (nested && std::next(operations.begin(), 2) == operations.end()) {
4098         // Merge the data of the nested module operation into 'module'.
4099         module.setLoc(nested.getLoc());
4100         module.setAttrs(nested.getOperation()->getAttrList());
4101         bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks());
4102 
4103         // Erase the original module body.
4104         bodyBlocks.pop_front();
4105       }
4106 
4107       return opParser.popSSANameScope();
4108     }
4109 
4110     // If we got an error token, then the lexer already emitted an error, just
4111     // stop.  Someday we could introduce error recovery if there was demand
4112     // for it.
4113     case Token::error:
4114       return failure();
4115 
4116     // Parse an attribute alias.
4117     case Token::hash_identifier:
4118       if (parseAttributeAliasDef())
4119         return failure();
4120       break;
4121 
4122     // Parse a type alias.
4123     case Token::exclamation_identifier:
4124       if (parseTypeAliasDef())
4125         return failure();
4126       break;
4127     }
4128   }
4129 }
4130 
4131 //===----------------------------------------------------------------------===//
4132 
4133 /// This parses the file specified by the indicated SourceMgr and returns an
4134 /// MLIR module if it was valid.  If not, it emits diagnostics and returns
4135 /// null.
4136 ModuleOp mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
4137                                MLIRContext *context) {
4138   auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());
4139 
4140   // This is the result module we are parsing into.
4141   OwningModuleRef module(ModuleOp::create(FileLineColLoc::get(
4142       sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context)));
4143 
4144   ParserState state(sourceMgr, context);
4145   if (ModuleParser(state).parseModule(*module))
4146     return nullptr;
4147 
4148   // Make sure the parse module has no other structural problems detected by
4149   // the verifier.
4150   if (failed(verify(*module)))
4151     return nullptr;
4152 
4153   return module.release();
4154 }
4155 
4156 /// This parses the file specified by the indicated filename and returns an
4157 /// MLIR module if it was valid.  If not, the error message is emitted through
4158 /// the error handler registered in the context, and a null pointer is returned.
4159 ModuleOp mlir::parseSourceFile(StringRef filename, MLIRContext *context) {
4160   llvm::SourceMgr sourceMgr;
4161   return parseSourceFile(filename, sourceMgr, context);
4162 }
4163 
4164 /// This parses the file specified by the indicated filename using the provided
4165 /// SourceMgr and returns an MLIR module if it was valid.  If not, the error
4166 /// message is emitted through the error handler registered in the context, and
4167 /// a null pointer is returned.
4168 ModuleOp mlir::parseSourceFile(StringRef filename, llvm::SourceMgr &sourceMgr,
4169                                MLIRContext *context) {
4170   if (sourceMgr.getNumBuffers() != 0) {
4171     // TODO(b/136086478): Extend to support multiple buffers.
4172     emitError(mlir::UnknownLoc::get(context),
4173               "only main buffer parsed at the moment");
4174     return nullptr;
4175   }
4176   auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename);
4177   if (std::error_code error = file_or_err.getError()) {
4178     emitError(mlir::UnknownLoc::get(context),
4179               "could not open input file " + filename);
4180     return nullptr;
4181   }
4182 
4183   // Load the MLIR module.
4184   sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc());
4185   return parseSourceFile(sourceMgr, context);
4186 }
4187 
4188 /// This parses the program string to a MLIR module if it was valid. If not,
4189 /// it emits diagnostics and returns null.
4190 ModuleOp mlir::parseSourceString(StringRef moduleStr, MLIRContext *context) {
4191   auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr);
4192   if (!memBuffer)
4193     return nullptr;
4194 
4195   SourceMgr sourceMgr;
4196   sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
4197   return parseSourceFile(sourceMgr, context);
4198 }
4199 
4200 Type mlir::parseType(llvm::StringRef typeStr, MLIRContext *context) {
4201   SourceMgr sourceMgr;
4202   auto memBuffer =
4203       MemoryBuffer::getMemBuffer(typeStr, /*BufferName=*/"<mlir_type_buffer>",
4204                                  /*RequiresNullTerminator=*/false);
4205   sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
4206   SourceMgrDiagnosticHandler sourceMgrHandler(sourceMgr, context);
4207   ParserState state(sourceMgr, context);
4208   Parser parser(state);
4209   auto start = parser.getToken().getLoc();
4210   auto ty = parser.parseType();
4211   if (!ty)
4212     return Type();
4213 
4214   auto end = parser.getToken().getLoc();
4215   auto read = end.getPointer() - start.getPointer();
4216   // Make sure that the parsing of type consumes the entire string
4217   if (static_cast<size_t>(read) < typeStr.size()) {
4218     parser.emitError("unexpected additional tokens: '")
4219         << typeStr.substr(read) << "' after parsing type: " << ty;
4220     return Type();
4221   }
4222   return ty;
4223 }
4224