1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Parser.h" 14 #include "AsmParserImpl.h" 15 #include "mlir/IR/AffineMap.h" 16 #include "mlir/IR/BuiltinOps.h" 17 #include "mlir/IR/Dialect.h" 18 #include "mlir/IR/Verifier.h" 19 #include "mlir/Parser/AsmParserState.h" 20 #include "mlir/Parser/Parser.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/ScopeExit.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/bit.h" 25 #include "llvm/Support/PrettyStackTrace.h" 26 #include "llvm/Support/SourceMgr.h" 27 #include <algorithm> 28 29 using namespace mlir; 30 using namespace mlir::detail; 31 using llvm::MemoryBuffer; 32 using llvm::SourceMgr; 33 34 //===----------------------------------------------------------------------===// 35 // Parser 36 //===----------------------------------------------------------------------===// 37 38 /// Parse a list of comma-separated items with an optional delimiter. If a 39 /// delimiter is provided, then an empty list is allowed. If not, then at 40 /// least one element will be parsed. 41 ParseResult 42 Parser::parseCommaSeparatedList(Delimiter delimiter, 43 function_ref<ParseResult()> parseElementFn, 44 StringRef contextMessage) { 45 switch (delimiter) { 46 case Delimiter::None: 47 break; 48 case Delimiter::OptionalParen: 49 if (getToken().isNot(Token::l_paren)) 50 return success(); 51 LLVM_FALLTHROUGH; 52 case Delimiter::Paren: 53 if (parseToken(Token::l_paren, "expected '('" + contextMessage)) 54 return failure(); 55 // Check for empty list. 56 if (consumeIf(Token::r_paren)) 57 return success(); 58 break; 59 case Delimiter::OptionalLessGreater: 60 // Check for absent list. 61 if (getToken().isNot(Token::less)) 62 return success(); 63 LLVM_FALLTHROUGH; 64 case Delimiter::LessGreater: 65 if (parseToken(Token::less, "expected '<'" + contextMessage)) 66 return success(); 67 // Check for empty list. 68 if (consumeIf(Token::greater)) 69 return success(); 70 break; 71 case Delimiter::OptionalSquare: 72 if (getToken().isNot(Token::l_square)) 73 return success(); 74 LLVM_FALLTHROUGH; 75 case Delimiter::Square: 76 if (parseToken(Token::l_square, "expected '['" + contextMessage)) 77 return failure(); 78 // Check for empty list. 79 if (consumeIf(Token::r_square)) 80 return success(); 81 break; 82 case Delimiter::OptionalBraces: 83 if (getToken().isNot(Token::l_brace)) 84 return success(); 85 LLVM_FALLTHROUGH; 86 case Delimiter::Braces: 87 if (parseToken(Token::l_brace, "expected '{'" + contextMessage)) 88 return failure(); 89 // Check for empty list. 90 if (consumeIf(Token::r_brace)) 91 return success(); 92 break; 93 } 94 95 // Non-empty case starts with an element. 96 if (parseElementFn()) 97 return failure(); 98 99 // Otherwise we have a list of comma separated elements. 100 while (consumeIf(Token::comma)) { 101 if (parseElementFn()) 102 return failure(); 103 } 104 105 switch (delimiter) { 106 case Delimiter::None: 107 return success(); 108 case Delimiter::OptionalParen: 109 case Delimiter::Paren: 110 return parseToken(Token::r_paren, "expected ')'" + contextMessage); 111 case Delimiter::OptionalLessGreater: 112 case Delimiter::LessGreater: 113 return parseToken(Token::greater, "expected '>'" + contextMessage); 114 case Delimiter::OptionalSquare: 115 case Delimiter::Square: 116 return parseToken(Token::r_square, "expected ']'" + contextMessage); 117 case Delimiter::OptionalBraces: 118 case Delimiter::Braces: 119 return parseToken(Token::r_brace, "expected '}'" + contextMessage); 120 } 121 llvm_unreachable("Unknown delimiter"); 122 } 123 124 /// Parse a comma-separated list of elements, terminated with an arbitrary 125 /// token. This allows empty lists if allowEmptyList is true. 126 /// 127 /// abstract-list ::= rightToken // if allowEmptyList == true 128 /// abstract-list ::= element (',' element)* rightToken 129 /// 130 ParseResult 131 Parser::parseCommaSeparatedListUntil(Token::Kind rightToken, 132 function_ref<ParseResult()> parseElement, 133 bool allowEmptyList) { 134 // Handle the empty case. 135 if (getToken().is(rightToken)) { 136 if (!allowEmptyList) 137 return emitError("expected list element"); 138 consumeToken(rightToken); 139 return success(); 140 } 141 142 if (parseCommaSeparatedList(parseElement) || 143 parseToken(rightToken, "expected ',' or '" + 144 Token::getTokenSpelling(rightToken) + "'")) 145 return failure(); 146 147 return success(); 148 } 149 150 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 151 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 152 153 // If we hit a parse error in response to a lexer error, then the lexer 154 // already reported the error. 155 if (getToken().is(Token::error)) 156 diag.abandon(); 157 return diag; 158 } 159 160 /// Consume the specified token if present and return success. On failure, 161 /// output a diagnostic and return failure. 162 ParseResult Parser::parseToken(Token::Kind expectedToken, 163 const Twine &message) { 164 if (consumeIf(expectedToken)) 165 return success(); 166 return emitError(message); 167 } 168 169 /// Parse an optional integer value from the stream. 170 OptionalParseResult Parser::parseOptionalInteger(APInt &result) { 171 Token curToken = getToken(); 172 if (curToken.isNot(Token::integer, Token::minus)) 173 return llvm::None; 174 175 bool negative = consumeIf(Token::minus); 176 Token curTok = getToken(); 177 if (parseToken(Token::integer, "expected integer value")) 178 return failure(); 179 180 StringRef spelling = curTok.getSpelling(); 181 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 182 if (spelling.getAsInteger(isHex ? 0 : 10, result)) 183 return emitError(curTok.getLoc(), "integer value too large"); 184 185 // Make sure we have a zero at the top so we return the right signedness. 186 if (result.isNegative()) 187 result = result.zext(result.getBitWidth() + 1); 188 189 // Process the negative sign if present. 190 if (negative) 191 result.negate(); 192 193 return success(); 194 } 195 196 /// Parse a floating point value from an integer literal token. 197 ParseResult Parser::parseFloatFromIntegerLiteral( 198 Optional<APFloat> &result, const Token &tok, bool isNegative, 199 const llvm::fltSemantics &semantics, size_t typeSizeInBits) { 200 SMLoc loc = tok.getLoc(); 201 StringRef spelling = tok.getSpelling(); 202 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 203 if (!isHex) { 204 return emitError(loc, "unexpected decimal integer literal for a " 205 "floating point value") 206 .attachNote() 207 << "add a trailing dot to make the literal a float"; 208 } 209 if (isNegative) { 210 return emitError(loc, "hexadecimal float literal should not have a " 211 "leading minus"); 212 } 213 214 Optional<uint64_t> value = tok.getUInt64IntegerValue(); 215 if (!value.hasValue()) 216 return emitError(loc, "hexadecimal float constant out of range for type"); 217 218 if (&semantics == &APFloat::IEEEdouble()) { 219 result = APFloat(semantics, APInt(typeSizeInBits, *value)); 220 return success(); 221 } 222 223 APInt apInt(typeSizeInBits, *value); 224 if (apInt != *value) 225 return emitError(loc, "hexadecimal float constant out of range for type"); 226 result = APFloat(semantics, apInt); 227 228 return success(); 229 } 230 231 //===----------------------------------------------------------------------===// 232 // OperationParser 233 //===----------------------------------------------------------------------===// 234 235 namespace { 236 /// This class provides support for parsing operations and regions of 237 /// operations. 238 class OperationParser : public Parser { 239 public: 240 OperationParser(ParserState &state, ModuleOp topLevelOp); 241 ~OperationParser(); 242 243 /// After parsing is finished, this function must be called to see if there 244 /// are any remaining issues. 245 ParseResult finalize(); 246 247 //===--------------------------------------------------------------------===// 248 // SSA Value Handling 249 //===--------------------------------------------------------------------===// 250 251 using UnresolvedOperand = OpAsmParser::UnresolvedOperand; 252 using Argument = OpAsmParser::Argument; 253 254 struct DeferredLocInfo { 255 SMLoc loc; 256 StringRef identifier; 257 }; 258 259 /// Push a new SSA name scope to the parser. 260 void pushSSANameScope(bool isIsolated); 261 262 /// Pop the last SSA name scope from the parser. 263 ParseResult popSSANameScope(); 264 265 /// Register a definition of a value with the symbol table. 266 ParseResult addDefinition(UnresolvedOperand useInfo, Value value); 267 268 /// Parse an optional list of SSA uses into 'results'. 269 ParseResult 270 parseOptionalSSAUseList(SmallVectorImpl<UnresolvedOperand> &results); 271 272 /// Parse a single SSA use into 'result'. If 'allowResultNumber' is true then 273 /// we allow #42 syntax. 274 ParseResult parseSSAUse(UnresolvedOperand &result, 275 bool allowResultNumber = true); 276 277 /// Given a reference to an SSA value and its type, return a reference. This 278 /// returns null on failure. 279 Value resolveSSAUse(UnresolvedOperand useInfo, Type type); 280 281 ParseResult parseSSADefOrUseAndType( 282 function_ref<ParseResult(UnresolvedOperand, Type)> action); 283 284 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 285 286 /// Return the location of the value identified by its name and number if it 287 /// has been already reference. 288 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 289 auto &values = isolatedNameScopes.back().values; 290 if (!values.count(name) || number >= values[name].size()) 291 return {}; 292 if (values[name][number].value) 293 return values[name][number].loc; 294 return {}; 295 } 296 297 //===--------------------------------------------------------------------===// 298 // Operation Parsing 299 //===--------------------------------------------------------------------===// 300 301 /// Parse an operation instance. 302 ParseResult parseOperation(); 303 304 /// Parse a single operation successor. 305 ParseResult parseSuccessor(Block *&dest); 306 307 /// Parse a comma-separated list of operation successors in brackets. 308 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations); 309 310 /// Parse an operation instance that is in the generic form. 311 Operation *parseGenericOperation(); 312 313 /// Parse different components, viz., use-info of operand(s), successor(s), 314 /// region(s), attribute(s) and function-type, of the generic form of an 315 /// operation instance and populate the input operation-state 'result' with 316 /// those components. If any of the components is explicitly provided, then 317 /// skip parsing that component. 318 ParseResult parseGenericOperationAfterOpName( 319 OperationState &result, 320 Optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo = llvm::None, 321 Optional<ArrayRef<Block *>> parsedSuccessors = llvm::None, 322 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions = 323 llvm::None, 324 Optional<ArrayRef<NamedAttribute>> parsedAttributes = llvm::None, 325 Optional<FunctionType> parsedFnType = llvm::None); 326 327 /// Parse an operation instance that is in the generic form and insert it at 328 /// the provided insertion point. 329 Operation *parseGenericOperation(Block *insertBlock, 330 Block::iterator insertPt); 331 332 /// This type is used to keep track of things that are either an Operation or 333 /// a BlockArgument. We cannot use Value for this, because not all Operations 334 /// have results. 335 using OpOrArgument = llvm::PointerUnion<Operation *, BlockArgument>; 336 337 /// Parse an optional trailing location and add it to the specifier Operation 338 /// or `UnresolvedOperand` if present. 339 /// 340 /// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))? 341 /// 342 ParseResult parseTrailingLocationSpecifier(OpOrArgument opOrArgument); 343 344 /// Parse a location alias, that is a sequence looking like: #loc42 345 /// The alias may have already be defined or may be defined later, in which 346 /// case an OpaqueLoc is used a placeholder. 347 ParseResult parseLocationAlias(LocationAttr &loc); 348 349 /// This is the structure of a result specifier in the assembly syntax, 350 /// including the name, number of results, and location. 351 using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>; 352 353 /// Parse an operation instance that is in the op-defined custom form. 354 /// resultInfo specifies information about the "%name =" specifiers. 355 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs); 356 357 /// Parse the name of an operation, in the custom form. On success, return a 358 /// an object of type 'OperationName'. Otherwise, failure is returned. 359 FailureOr<OperationName> parseCustomOperationName(); 360 361 //===--------------------------------------------------------------------===// 362 // Region Parsing 363 //===--------------------------------------------------------------------===// 364 365 /// Parse a region into 'region' with the provided entry block arguments. 366 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 367 /// isolated from those above. 368 ParseResult parseRegion(Region ®ion, ArrayRef<Argument> entryArguments, 369 bool isIsolatedNameScope = false); 370 371 /// Parse a region body into 'region'. 372 ParseResult parseRegionBody(Region ®ion, SMLoc startLoc, 373 ArrayRef<Argument> entryArguments, 374 bool isIsolatedNameScope); 375 376 //===--------------------------------------------------------------------===// 377 // Block Parsing 378 //===--------------------------------------------------------------------===// 379 380 /// Parse a new block into 'block'. 381 ParseResult parseBlock(Block *&block); 382 383 /// Parse a list of operations into 'block'. 384 ParseResult parseBlockBody(Block *block); 385 386 /// Parse a (possibly empty) list of block arguments. 387 ParseResult parseOptionalBlockArgList(Block *owner); 388 389 /// Get the block with the specified name, creating it if it doesn't 390 /// already exist. The location specified is the point of use, which allows 391 /// us to diagnose references to blocks that are not defined precisely. 392 Block *getBlockNamed(StringRef name, SMLoc loc); 393 394 private: 395 /// This class represents a definition of a Block. 396 struct BlockDefinition { 397 /// A pointer to the defined Block. 398 Block *block; 399 /// The location that the Block was defined at. 400 SMLoc loc; 401 }; 402 /// This class represents a definition of a Value. 403 struct ValueDefinition { 404 /// A pointer to the defined Value. 405 Value value; 406 /// The location that the Value was defined at. 407 SMLoc loc; 408 }; 409 410 /// Returns the info for a block at the current scope for the given name. 411 BlockDefinition &getBlockInfoByName(StringRef name) { 412 return blocksByName.back()[name]; 413 } 414 415 /// Insert a new forward reference to the given block. 416 void insertForwardRef(Block *block, SMLoc loc) { 417 forwardRef.back().try_emplace(block, loc); 418 } 419 420 /// Erase any forward reference to the given block. 421 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 422 423 /// Record that a definition was added at the current scope. 424 void recordDefinition(StringRef def); 425 426 /// Get the value entry for the given SSA name. 427 SmallVectorImpl<ValueDefinition> &getSSAValueEntry(StringRef name); 428 429 /// Create a forward reference placeholder value with the given location and 430 /// result type. 431 Value createForwardRefPlaceholder(SMLoc loc, Type type); 432 433 /// Return true if this is a forward reference. 434 bool isForwardRefPlaceholder(Value value) { 435 return forwardRefPlaceholders.count(value); 436 } 437 438 /// This struct represents an isolated SSA name scope. This scope may contain 439 /// other nested non-isolated scopes. These scopes are used for operations 440 /// that are known to be isolated to allow for reusing names within their 441 /// regions, even if those names are used above. 442 struct IsolatedSSANameScope { 443 /// Record that a definition was added at the current scope. 444 void recordDefinition(StringRef def) { 445 definitionsPerScope.back().insert(def); 446 } 447 448 /// Push a nested name scope. 449 void pushSSANameScope() { definitionsPerScope.push_back({}); } 450 451 /// Pop a nested name scope. 452 void popSSANameScope() { 453 for (auto &def : definitionsPerScope.pop_back_val()) 454 values.erase(def.getKey()); 455 } 456 457 /// This keeps track of all of the SSA values we are tracking for each name 458 /// scope, indexed by their name. This has one entry per result number. 459 llvm::StringMap<SmallVector<ValueDefinition, 1>> values; 460 461 /// This keeps track of all of the values defined by a specific name scope. 462 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 463 }; 464 465 /// A list of isolated name scopes. 466 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 467 468 /// This keeps track of the block names as well as the location of the first 469 /// reference for each nested name scope. This is used to diagnose invalid 470 /// block references and memorize them. 471 SmallVector<DenseMap<StringRef, BlockDefinition>, 2> blocksByName; 472 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 473 474 /// These are all of the placeholders we've made along with the location of 475 /// their first reference, to allow checking for use of undefined values. 476 DenseMap<Value, SMLoc> forwardRefPlaceholders; 477 478 /// Deffered locations: when parsing `loc(#loc42)` we add an entry to this 479 /// map. After parsing the definition `#loc42 = ...` we'll patch back users 480 /// of this location. 481 std::vector<DeferredLocInfo> deferredLocsReferences; 482 483 /// The builder used when creating parsed operation instances. 484 OpBuilder opBuilder; 485 486 /// The top level operation that holds all of the parsed operations. 487 Operation *topLevelOp; 488 }; 489 } // namespace 490 491 MLIR_DECLARE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *) 492 MLIR_DEFINE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *) 493 494 OperationParser::OperationParser(ParserState &state, ModuleOp topLevelOp) 495 : Parser(state), opBuilder(topLevelOp.getRegion()), topLevelOp(topLevelOp) { 496 // The top level operation starts a new name scope. 497 pushSSANameScope(/*isIsolated=*/true); 498 499 // If we are populating the parser state, prepare it for parsing. 500 if (state.asmState) 501 state.asmState->initialize(topLevelOp); 502 } 503 504 OperationParser::~OperationParser() { 505 for (auto &fwd : forwardRefPlaceholders) { 506 // Drop all uses of undefined forward declared reference and destroy 507 // defining operation. 508 fwd.first.dropAllUses(); 509 fwd.first.getDefiningOp()->destroy(); 510 } 511 for (const auto &scope : forwardRef) { 512 for (const auto &fwd : scope) { 513 // Delete all blocks that were created as forward references but never 514 // included into a region. 515 fwd.first->dropAllUses(); 516 delete fwd.first; 517 } 518 } 519 } 520 521 /// After parsing is finished, this function must be called to see if there are 522 /// any remaining issues. 523 ParseResult OperationParser::finalize() { 524 // Check for any forward references that are left. If we find any, error 525 // out. 526 if (!forwardRefPlaceholders.empty()) { 527 SmallVector<const char *, 4> errors; 528 // Iteration over the map isn't deterministic, so sort by source location. 529 for (auto entry : forwardRefPlaceholders) 530 errors.push_back(entry.second.getPointer()); 531 llvm::array_pod_sort(errors.begin(), errors.end()); 532 533 for (const char *entry : errors) { 534 auto loc = SMLoc::getFromPointer(entry); 535 emitError(loc, "use of undeclared SSA value name"); 536 } 537 return failure(); 538 } 539 540 // Resolve the locations of any deferred operations. 541 auto &attributeAliases = state.symbols.attributeAliasDefinitions; 542 auto locID = TypeID::get<DeferredLocInfo *>(); 543 auto resolveLocation = [&, this](auto &opOrArgument) -> LogicalResult { 544 auto fwdLoc = opOrArgument.getLoc().template dyn_cast<OpaqueLoc>(); 545 if (!fwdLoc || fwdLoc.getUnderlyingTypeID() != locID) 546 return success(); 547 auto locInfo = deferredLocsReferences[fwdLoc.getUnderlyingLocation()]; 548 Attribute attr = attributeAliases.lookup(locInfo.identifier); 549 if (!attr) 550 return this->emitError(locInfo.loc) 551 << "operation location alias was never defined"; 552 auto locAttr = attr.dyn_cast<LocationAttr>(); 553 if (!locAttr) 554 return this->emitError(locInfo.loc) 555 << "expected location, but found '" << attr << "'"; 556 opOrArgument.setLoc(locAttr); 557 return success(); 558 }; 559 560 auto walkRes = topLevelOp->walk([&](Operation *op) { 561 if (failed(resolveLocation(*op))) 562 return WalkResult::interrupt(); 563 for (Region ®ion : op->getRegions()) 564 for (Block &block : region.getBlocks()) 565 for (BlockArgument arg : block.getArguments()) 566 if (failed(resolveLocation(arg))) 567 return WalkResult::interrupt(); 568 return WalkResult::advance(); 569 }); 570 if (walkRes.wasInterrupted()) 571 return failure(); 572 573 // Pop the top level name scope. 574 if (failed(popSSANameScope())) 575 return failure(); 576 577 // Verify that the parsed operations are valid. 578 if (failed(verify(topLevelOp))) 579 return failure(); 580 581 // If we are populating the parser state, finalize the top-level operation. 582 if (state.asmState) 583 state.asmState->finalize(topLevelOp); 584 return success(); 585 } 586 587 //===----------------------------------------------------------------------===// 588 // SSA Value Handling 589 //===----------------------------------------------------------------------===// 590 591 void OperationParser::pushSSANameScope(bool isIsolated) { 592 blocksByName.push_back(DenseMap<StringRef, BlockDefinition>()); 593 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 594 595 // Push back a new name definition scope. 596 if (isIsolated) 597 isolatedNameScopes.push_back({}); 598 isolatedNameScopes.back().pushSSANameScope(); 599 } 600 601 ParseResult OperationParser::popSSANameScope() { 602 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 603 604 // Verify that all referenced blocks were defined. 605 if (!forwardRefInCurrentScope.empty()) { 606 SmallVector<std::pair<const char *, Block *>, 4> errors; 607 // Iteration over the map isn't deterministic, so sort by source location. 608 for (auto entry : forwardRefInCurrentScope) { 609 errors.push_back({entry.second.getPointer(), entry.first}); 610 // Add this block to the top-level region to allow for automatic cleanup. 611 topLevelOp->getRegion(0).push_back(entry.first); 612 } 613 llvm::array_pod_sort(errors.begin(), errors.end()); 614 615 for (auto entry : errors) { 616 auto loc = SMLoc::getFromPointer(entry.first); 617 emitError(loc, "reference to an undefined block"); 618 } 619 return failure(); 620 } 621 622 // Pop the next nested namescope. If there is only one internal namescope, 623 // just pop the isolated scope. 624 auto ¤tNameScope = isolatedNameScopes.back(); 625 if (currentNameScope.definitionsPerScope.size() == 1) 626 isolatedNameScopes.pop_back(); 627 else 628 currentNameScope.popSSANameScope(); 629 630 blocksByName.pop_back(); 631 return success(); 632 } 633 634 /// Register a definition of a value with the symbol table. 635 ParseResult OperationParser::addDefinition(UnresolvedOperand useInfo, 636 Value value) { 637 auto &entries = getSSAValueEntry(useInfo.name); 638 639 // Make sure there is a slot for this value. 640 if (entries.size() <= useInfo.number) 641 entries.resize(useInfo.number + 1); 642 643 // If we already have an entry for this, check to see if it was a definition 644 // or a forward reference. 645 if (auto existing = entries[useInfo.number].value) { 646 if (!isForwardRefPlaceholder(existing)) { 647 return emitError(useInfo.location) 648 .append("redefinition of SSA value '", useInfo.name, "'") 649 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 650 .append("previously defined here"); 651 } 652 653 if (existing.getType() != value.getType()) { 654 return emitError(useInfo.location) 655 .append("definition of SSA value '", useInfo.name, "#", 656 useInfo.number, "' has type ", value.getType()) 657 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 658 .append("previously used here with type ", existing.getType()); 659 } 660 661 // If it was a forward reference, update everything that used it to use 662 // the actual definition instead, delete the forward ref, and remove it 663 // from our set of forward references we track. 664 existing.replaceAllUsesWith(value); 665 existing.getDefiningOp()->destroy(); 666 forwardRefPlaceholders.erase(existing); 667 668 // If a definition of the value already exists, replace it in the assembly 669 // state. 670 if (state.asmState) 671 state.asmState->refineDefinition(existing, value); 672 } 673 674 /// Record this definition for the current scope. 675 entries[useInfo.number] = {value, useInfo.location}; 676 recordDefinition(useInfo.name); 677 return success(); 678 } 679 680 /// Parse a (possibly empty) list of SSA operands. 681 /// 682 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 683 /// ssa-use-list-opt ::= ssa-use-list? 684 /// 685 ParseResult OperationParser::parseOptionalSSAUseList( 686 SmallVectorImpl<UnresolvedOperand> &results) { 687 if (getToken().isNot(Token::percent_identifier)) 688 return success(); 689 return parseCommaSeparatedList([&]() -> ParseResult { 690 UnresolvedOperand result; 691 if (parseSSAUse(result)) 692 return failure(); 693 results.push_back(result); 694 return success(); 695 }); 696 } 697 698 /// Parse a SSA operand for an operation. 699 /// 700 /// ssa-use ::= ssa-id 701 /// 702 ParseResult OperationParser::parseSSAUse(UnresolvedOperand &result, 703 bool allowResultNumber) { 704 result.name = getTokenSpelling(); 705 result.number = 0; 706 result.location = getToken().getLoc(); 707 if (parseToken(Token::percent_identifier, "expected SSA operand")) 708 return failure(); 709 710 // If we have an attribute ID, it is a result number. 711 if (getToken().is(Token::hash_identifier)) { 712 if (!allowResultNumber) 713 return emitError("result number not allowed in argument list"); 714 715 if (auto value = getToken().getHashIdentifierNumber()) 716 result.number = value.getValue(); 717 else 718 return emitError("invalid SSA value result number"); 719 consumeToken(Token::hash_identifier); 720 } 721 722 return success(); 723 } 724 725 /// Given an unbound reference to an SSA value and its type, return the value 726 /// it specifies. This returns null on failure. 727 Value OperationParser::resolveSSAUse(UnresolvedOperand useInfo, Type type) { 728 auto &entries = getSSAValueEntry(useInfo.name); 729 730 // Functor used to record the use of the given value if the assembly state 731 // field is populated. 732 auto maybeRecordUse = [&](Value value) { 733 if (state.asmState) 734 state.asmState->addUses(value, useInfo.location); 735 return value; 736 }; 737 738 // If we have already seen a value of this name, return it. 739 if (useInfo.number < entries.size() && entries[useInfo.number].value) { 740 Value result = entries[useInfo.number].value; 741 // Check that the type matches the other uses. 742 if (result.getType() == type) 743 return maybeRecordUse(result); 744 745 emitError(useInfo.location, "use of value '") 746 .append(useInfo.name, 747 "' expects different type than prior uses: ", type, " vs ", 748 result.getType()) 749 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 750 .append("prior use here"); 751 return nullptr; 752 } 753 754 // Make sure we have enough slots for this. 755 if (entries.size() <= useInfo.number) 756 entries.resize(useInfo.number + 1); 757 758 // If the value has already been defined and this is an overly large result 759 // number, diagnose that. 760 if (entries[0].value && !isForwardRefPlaceholder(entries[0].value)) 761 return (emitError(useInfo.location, "reference to invalid result number"), 762 nullptr); 763 764 // Otherwise, this is a forward reference. Create a placeholder and remember 765 // that we did so. 766 Value result = createForwardRefPlaceholder(useInfo.location, type); 767 entries[useInfo.number] = {result, useInfo.location}; 768 return maybeRecordUse(result); 769 } 770 771 /// Parse an SSA use with an associated type. 772 /// 773 /// ssa-use-and-type ::= ssa-use `:` type 774 ParseResult OperationParser::parseSSADefOrUseAndType( 775 function_ref<ParseResult(UnresolvedOperand, Type)> action) { 776 UnresolvedOperand useInfo; 777 if (parseSSAUse(useInfo) || 778 parseToken(Token::colon, "expected ':' and type for SSA operand")) 779 return failure(); 780 781 auto type = parseType(); 782 if (!type) 783 return failure(); 784 785 return action(useInfo, type); 786 } 787 788 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 789 /// followed by a type list. 790 /// 791 /// ssa-use-and-type-list 792 /// ::= ssa-use-list ':' type-list-no-parens 793 /// 794 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 795 SmallVectorImpl<Value> &results) { 796 SmallVector<UnresolvedOperand, 4> valueIDs; 797 if (parseOptionalSSAUseList(valueIDs)) 798 return failure(); 799 800 // If there were no operands, then there is no colon or type lists. 801 if (valueIDs.empty()) 802 return success(); 803 804 SmallVector<Type, 4> types; 805 if (parseToken(Token::colon, "expected ':' in operand list") || 806 parseTypeListNoParens(types)) 807 return failure(); 808 809 if (valueIDs.size() != types.size()) 810 return emitError("expected ") 811 << valueIDs.size() << " types to match operand list"; 812 813 results.reserve(valueIDs.size()); 814 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 815 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 816 results.push_back(value); 817 else 818 return failure(); 819 } 820 821 return success(); 822 } 823 824 /// Record that a definition was added at the current scope. 825 void OperationParser::recordDefinition(StringRef def) { 826 isolatedNameScopes.back().recordDefinition(def); 827 } 828 829 /// Get the value entry for the given SSA name. 830 auto OperationParser::getSSAValueEntry(StringRef name) 831 -> SmallVectorImpl<ValueDefinition> & { 832 return isolatedNameScopes.back().values[name]; 833 } 834 835 /// Create and remember a new placeholder for a forward reference. 836 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 837 // Forward references are always created as operations, because we just need 838 // something with a def/use chain. 839 // 840 // We create these placeholders as having an empty name, which we know 841 // cannot be created through normal user input, allowing us to distinguish 842 // them. 843 auto name = OperationName("builtin.unrealized_conversion_cast", getContext()); 844 auto *op = Operation::create( 845 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 846 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0); 847 forwardRefPlaceholders[op->getResult(0)] = loc; 848 return op->getResult(0); 849 } 850 851 //===----------------------------------------------------------------------===// 852 // Operation Parsing 853 //===----------------------------------------------------------------------===// 854 855 /// Parse an operation. 856 /// 857 /// operation ::= op-result-list? 858 /// (generic-operation | custom-operation) 859 /// trailing-location? 860 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 861 /// successor-list? (`(` region-list `)`)? 862 /// attribute-dict? `:` function-type 863 /// custom-operation ::= bare-id custom-operation-format 864 /// op-result-list ::= op-result (`,` op-result)* `=` 865 /// op-result ::= ssa-id (`:` integer-literal) 866 /// 867 ParseResult OperationParser::parseOperation() { 868 auto loc = getToken().getLoc(); 869 SmallVector<ResultRecord, 1> resultIDs; 870 size_t numExpectedResults = 0; 871 if (getToken().is(Token::percent_identifier)) { 872 // Parse the group of result ids. 873 auto parseNextResult = [&]() -> ParseResult { 874 // Parse the next result id. 875 if (!getToken().is(Token::percent_identifier)) 876 return emitError("expected valid ssa identifier"); 877 878 Token nameTok = getToken(); 879 consumeToken(Token::percent_identifier); 880 881 // If the next token is a ':', we parse the expected result count. 882 size_t expectedSubResults = 1; 883 if (consumeIf(Token::colon)) { 884 // Check that the next token is an integer. 885 if (!getToken().is(Token::integer)) 886 return emitError("expected integer number of results"); 887 888 // Check that number of results is > 0. 889 auto val = getToken().getUInt64IntegerValue(); 890 if (!val.hasValue() || val.getValue() < 1) 891 return emitError("expected named operation to have atleast 1 result"); 892 consumeToken(Token::integer); 893 expectedSubResults = *val; 894 } 895 896 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 897 nameTok.getLoc()); 898 numExpectedResults += expectedSubResults; 899 return success(); 900 }; 901 if (parseCommaSeparatedList(parseNextResult)) 902 return failure(); 903 904 if (parseToken(Token::equal, "expected '=' after SSA name")) 905 return failure(); 906 } 907 908 Operation *op; 909 Token nameTok = getToken(); 910 if (nameTok.is(Token::bare_identifier) || nameTok.isKeyword()) 911 op = parseCustomOperation(resultIDs); 912 else if (nameTok.is(Token::string)) 913 op = parseGenericOperation(); 914 else 915 return emitError("expected operation name in quotes"); 916 917 // If parsing of the basic operation failed, then this whole thing fails. 918 if (!op) 919 return failure(); 920 921 // If the operation had a name, register it. 922 if (!resultIDs.empty()) { 923 if (op->getNumResults() == 0) 924 return emitError(loc, "cannot name an operation with no results"); 925 if (numExpectedResults != op->getNumResults()) 926 return emitError(loc, "operation defines ") 927 << op->getNumResults() << " results but was provided " 928 << numExpectedResults << " to bind"; 929 930 // Add this operation to the assembly state if it was provided to populate. 931 if (state.asmState) { 932 unsigned resultIt = 0; 933 SmallVector<std::pair<unsigned, SMLoc>> asmResultGroups; 934 asmResultGroups.reserve(resultIDs.size()); 935 for (ResultRecord &record : resultIDs) { 936 asmResultGroups.emplace_back(resultIt, std::get<2>(record)); 937 resultIt += std::get<1>(record); 938 } 939 state.asmState->finalizeOperationDefinition( 940 op, nameTok.getLocRange(), /*endLoc=*/getToken().getLoc(), 941 asmResultGroups); 942 } 943 944 // Add definitions for each of the result groups. 945 unsigned opResI = 0; 946 for (ResultRecord &resIt : resultIDs) { 947 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 948 if (addDefinition({std::get<2>(resIt), std::get<0>(resIt), subRes}, 949 op->getResult(opResI++))) 950 return failure(); 951 } 952 } 953 954 // Add this operation to the assembly state if it was provided to populate. 955 } else if (state.asmState) { 956 state.asmState->finalizeOperationDefinition(op, nameTok.getLocRange(), 957 /*endLoc=*/getToken().getLoc()); 958 } 959 960 return success(); 961 } 962 963 /// Parse a single operation successor. 964 /// 965 /// successor ::= block-id 966 /// 967 ParseResult OperationParser::parseSuccessor(Block *&dest) { 968 // Verify branch is identifier and get the matching block. 969 if (!getToken().is(Token::caret_identifier)) 970 return emitError("expected block name"); 971 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 972 consumeToken(); 973 return success(); 974 } 975 976 /// Parse a comma-separated list of operation successors in brackets. 977 /// 978 /// successor-list ::= `[` successor (`,` successor )* `]` 979 /// 980 ParseResult 981 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) { 982 if (parseToken(Token::l_square, "expected '['")) 983 return failure(); 984 985 auto parseElt = [this, &destinations] { 986 Block *dest; 987 ParseResult res = parseSuccessor(dest); 988 destinations.push_back(dest); 989 return res; 990 }; 991 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 992 /*allowEmptyList=*/false); 993 } 994 995 namespace { 996 // RAII-style guard for cleaning up the regions in the operation state before 997 // deleting them. Within the parser, regions may get deleted if parsing failed, 998 // and other errors may be present, in particular undominated uses. This makes 999 // sure such uses are deleted. 1000 struct CleanupOpStateRegions { 1001 ~CleanupOpStateRegions() { 1002 SmallVector<Region *, 4> regionsToClean; 1003 regionsToClean.reserve(state.regions.size()); 1004 for (auto ®ion : state.regions) 1005 if (region) 1006 for (auto &block : *region) 1007 block.dropAllDefinedValueUses(); 1008 } 1009 OperationState &state; 1010 }; 1011 } // namespace 1012 1013 ParseResult OperationParser::parseGenericOperationAfterOpName( 1014 OperationState &result, 1015 Optional<ArrayRef<UnresolvedOperand>> parsedOperandUseInfo, 1016 Optional<ArrayRef<Block *>> parsedSuccessors, 1017 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions, 1018 Optional<ArrayRef<NamedAttribute>> parsedAttributes, 1019 Optional<FunctionType> parsedFnType) { 1020 1021 // Parse the operand list, if not explicitly provided. 1022 SmallVector<UnresolvedOperand, 8> opInfo; 1023 if (!parsedOperandUseInfo) { 1024 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 1025 parseOptionalSSAUseList(opInfo) || 1026 parseToken(Token::r_paren, "expected ')' to end operand list")) { 1027 return failure(); 1028 } 1029 parsedOperandUseInfo = opInfo; 1030 } 1031 1032 // Parse the successor list, if not explicitly provided. 1033 if (!parsedSuccessors) { 1034 if (getToken().is(Token::l_square)) { 1035 // Check if the operation is not a known terminator. 1036 if (!result.name.mightHaveTrait<OpTrait::IsTerminator>()) 1037 return emitError("successors in non-terminator"); 1038 1039 SmallVector<Block *, 2> successors; 1040 if (parseSuccessors(successors)) 1041 return failure(); 1042 result.addSuccessors(successors); 1043 } 1044 } else { 1045 result.addSuccessors(*parsedSuccessors); 1046 } 1047 1048 // Parse the region list, if not explicitly provided. 1049 if (!parsedRegions) { 1050 if (consumeIf(Token::l_paren)) { 1051 do { 1052 // Create temporary regions with the top level region as parent. 1053 result.regions.emplace_back(new Region(topLevelOp)); 1054 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 1055 return failure(); 1056 } while (consumeIf(Token::comma)); 1057 if (parseToken(Token::r_paren, "expected ')' to end region list")) 1058 return failure(); 1059 } 1060 } else { 1061 result.addRegions(*parsedRegions); 1062 } 1063 1064 // Parse the attributes, if not explicitly provided. 1065 if (!parsedAttributes) { 1066 if (getToken().is(Token::l_brace)) { 1067 if (parseAttributeDict(result.attributes)) 1068 return failure(); 1069 } 1070 } else { 1071 result.addAttributes(*parsedAttributes); 1072 } 1073 1074 // Parse the operation type, if not explicitly provided. 1075 Location typeLoc = result.location; 1076 if (!parsedFnType) { 1077 if (parseToken(Token::colon, "expected ':' followed by operation type")) 1078 return failure(); 1079 1080 typeLoc = getEncodedSourceLocation(getToken().getLoc()); 1081 auto type = parseType(); 1082 if (!type) 1083 return failure(); 1084 auto fnType = type.dyn_cast<FunctionType>(); 1085 if (!fnType) 1086 return mlir::emitError(typeLoc, "expected function type"); 1087 1088 parsedFnType = fnType; 1089 } 1090 1091 result.addTypes(parsedFnType->getResults()); 1092 1093 // Check that we have the right number of types for the operands. 1094 ArrayRef<Type> operandTypes = parsedFnType->getInputs(); 1095 if (operandTypes.size() != parsedOperandUseInfo->size()) { 1096 auto plural = "s"[parsedOperandUseInfo->size() == 1]; 1097 return mlir::emitError(typeLoc, "expected ") 1098 << parsedOperandUseInfo->size() << " operand type" << plural 1099 << " but had " << operandTypes.size(); 1100 } 1101 1102 // Resolve all of the operands. 1103 for (unsigned i = 0, e = parsedOperandUseInfo->size(); i != e; ++i) { 1104 result.operands.push_back( 1105 resolveSSAUse((*parsedOperandUseInfo)[i], operandTypes[i])); 1106 if (!result.operands.back()) 1107 return failure(); 1108 } 1109 1110 return success(); 1111 } 1112 1113 Operation *OperationParser::parseGenericOperation() { 1114 // Get location information for the operation. 1115 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 1116 1117 std::string name = getToken().getStringValue(); 1118 if (name.empty()) 1119 return (emitError("empty operation name is invalid"), nullptr); 1120 if (name.find('\0') != StringRef::npos) 1121 return (emitError("null character not allowed in operation name"), nullptr); 1122 1123 consumeToken(Token::string); 1124 1125 OperationState result(srcLocation, name); 1126 CleanupOpStateRegions guard{result}; 1127 1128 // Lazy load dialects in the context as needed. 1129 if (!result.name.isRegistered()) { 1130 StringRef dialectName = StringRef(name).split('.').first; 1131 if (!getContext()->getLoadedDialect(dialectName) && 1132 !getContext()->getOrLoadDialect(dialectName) && 1133 !getContext()->allowsUnregisteredDialects()) { 1134 // Emit an error if the dialect couldn't be loaded (i.e., it was not 1135 // registered) and unregistered dialects aren't allowed. 1136 emitError("operation being parsed with an unregistered dialect. If " 1137 "this is intended, please use -allow-unregistered-dialect " 1138 "with the MLIR tool used"); 1139 return nullptr; 1140 } 1141 } 1142 1143 // If we are populating the parser state, start a new operation definition. 1144 if (state.asmState) 1145 state.asmState->startOperationDefinition(result.name); 1146 1147 if (parseGenericOperationAfterOpName(result)) 1148 return nullptr; 1149 1150 // Create the operation and try to parse a location for it. 1151 Operation *op = opBuilder.create(result); 1152 if (parseTrailingLocationSpecifier(op)) 1153 return nullptr; 1154 return op; 1155 } 1156 1157 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 1158 Block::iterator insertPt) { 1159 Token nameToken = getToken(); 1160 1161 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 1162 opBuilder.setInsertionPoint(insertBlock, insertPt); 1163 Operation *op = parseGenericOperation(); 1164 if (!op) 1165 return nullptr; 1166 1167 // If we are populating the parser asm state, finalize this operation 1168 // definition. 1169 if (state.asmState) 1170 state.asmState->finalizeOperationDefinition(op, nameToken.getLocRange(), 1171 /*endLoc=*/getToken().getLoc()); 1172 return op; 1173 } 1174 1175 namespace { 1176 class CustomOpAsmParser : public AsmParserImpl<OpAsmParser> { 1177 public: 1178 CustomOpAsmParser( 1179 SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs, 1180 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly, 1181 bool isIsolatedFromAbove, StringRef opName, OperationParser &parser) 1182 : AsmParserImpl<OpAsmParser>(nameLoc, parser), resultIDs(resultIDs), 1183 parseAssembly(parseAssembly), isIsolatedFromAbove(isIsolatedFromAbove), 1184 opName(opName), parser(parser) { 1185 (void)isIsolatedFromAbove; // Only used in assert, silence unused warning. 1186 } 1187 1188 /// Parse an instance of the operation described by 'opDefinition' into the 1189 /// provided operation state. 1190 ParseResult parseOperation(OperationState &opState) { 1191 if (parseAssembly(*this, opState)) 1192 return failure(); 1193 // Verify that the parsed attributes does not have duplicate attributes. 1194 // This can happen if an attribute set during parsing is also specified in 1195 // the attribute dictionary in the assembly, or the attribute is set 1196 // multiple during parsing. 1197 Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate(); 1198 if (duplicate) 1199 return emitError(getNameLoc(), "attribute '") 1200 << duplicate->getName().getValue() 1201 << "' occurs more than once in the attribute list"; 1202 return success(); 1203 } 1204 1205 Operation *parseGenericOperation(Block *insertBlock, 1206 Block::iterator insertPt) final { 1207 return parser.parseGenericOperation(insertBlock, insertPt); 1208 } 1209 1210 FailureOr<OperationName> parseCustomOperationName() final { 1211 return parser.parseCustomOperationName(); 1212 } 1213 1214 ParseResult parseGenericOperationAfterOpName( 1215 OperationState &result, 1216 Optional<ArrayRef<UnresolvedOperand>> parsedUnresolvedOperands, 1217 Optional<ArrayRef<Block *>> parsedSuccessors, 1218 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions, 1219 Optional<ArrayRef<NamedAttribute>> parsedAttributes, 1220 Optional<FunctionType> parsedFnType) final { 1221 return parser.parseGenericOperationAfterOpName( 1222 result, parsedUnresolvedOperands, parsedSuccessors, parsedRegions, 1223 parsedAttributes, parsedFnType); 1224 } 1225 //===--------------------------------------------------------------------===// 1226 // Utilities 1227 //===--------------------------------------------------------------------===// 1228 1229 /// Return the name of the specified result in the specified syntax, as well 1230 /// as the subelement in the name. For example, in this operation: 1231 /// 1232 /// %x, %y:2, %z = foo.op 1233 /// 1234 /// getResultName(0) == {"x", 0 } 1235 /// getResultName(1) == {"y", 0 } 1236 /// getResultName(2) == {"y", 1 } 1237 /// getResultName(3) == {"z", 0 } 1238 std::pair<StringRef, unsigned> 1239 getResultName(unsigned resultNo) const override { 1240 // Scan for the resultID that contains this result number. 1241 for (const auto &entry : resultIDs) { 1242 if (resultNo < std::get<1>(entry)) { 1243 // Don't pass on the leading %. 1244 StringRef name = std::get<0>(entry).drop_front(); 1245 return {name, resultNo}; 1246 } 1247 resultNo -= std::get<1>(entry); 1248 } 1249 1250 // Invalid result number. 1251 return {"", ~0U}; 1252 } 1253 1254 /// Return the number of declared SSA results. This returns 4 for the foo.op 1255 /// example in the comment for getResultName. 1256 size_t getNumResults() const override { 1257 size_t count = 0; 1258 for (auto &entry : resultIDs) 1259 count += std::get<1>(entry); 1260 return count; 1261 } 1262 1263 /// Emit a diagnostic at the specified location and return failure. 1264 InFlightDiagnostic emitError(SMLoc loc, const Twine &message) override { 1265 return AsmParserImpl<OpAsmParser>::emitError(loc, "custom op '" + opName + 1266 "' " + message); 1267 } 1268 1269 //===--------------------------------------------------------------------===// 1270 // Operand Parsing 1271 //===--------------------------------------------------------------------===// 1272 1273 /// Parse a single operand. 1274 ParseResult parseOperand(UnresolvedOperand &result, 1275 bool allowResultNumber = true) override { 1276 OperationParser::UnresolvedOperand useInfo; 1277 if (parser.parseSSAUse(useInfo, allowResultNumber)) 1278 return failure(); 1279 1280 result = {useInfo.location, useInfo.name, useInfo.number}; 1281 return success(); 1282 } 1283 1284 /// Parse a single operand if present. 1285 OptionalParseResult 1286 parseOptionalOperand(UnresolvedOperand &result, 1287 bool allowResultNumber = true) override { 1288 if (parser.getToken().is(Token::percent_identifier)) 1289 return parseOperand(result, allowResultNumber); 1290 return llvm::None; 1291 } 1292 1293 /// Parse zero or more SSA comma-separated operand references with a specified 1294 /// surrounding delimiter, and an optional required operand count. 1295 ParseResult parseOperandList(SmallVectorImpl<UnresolvedOperand> &result, 1296 Delimiter delimiter = Delimiter::None, 1297 bool allowResultNumber = true, 1298 int requiredOperandCount = -1) override { 1299 auto startLoc = parser.getToken().getLoc(); 1300 1301 // The no-delimiter case has some special handling for better diagnostics. 1302 if (delimiter == Delimiter::None) { 1303 // parseCommaSeparatedList doesn't handle the missing case for "none", 1304 // so we handle it custom here. 1305 if (parser.getToken().isNot(Token::percent_identifier)) { 1306 // If we didn't require any operands or required exactly zero (weird) 1307 // then this is success. 1308 if (requiredOperandCount == -1 || requiredOperandCount == 0) 1309 return success(); 1310 1311 // Otherwise, try to produce a nice error message. 1312 if (parser.getToken().is(Token::l_paren) || 1313 parser.getToken().is(Token::l_square)) 1314 return emitError(startLoc, "unexpected delimiter"); 1315 return emitError(startLoc, "invalid operand"); 1316 } 1317 } 1318 1319 auto parseOneOperand = [&]() -> ParseResult { 1320 return parseOperand(result.emplace_back(), allowResultNumber); 1321 }; 1322 1323 if (parseCommaSeparatedList(delimiter, parseOneOperand, " in operand list")) 1324 return failure(); 1325 1326 // Check that we got the expected # of elements. 1327 if (requiredOperandCount != -1 && 1328 result.size() != static_cast<size_t>(requiredOperandCount)) 1329 return emitError(startLoc, "expected ") 1330 << requiredOperandCount << " operands"; 1331 return success(); 1332 } 1333 1334 /// Resolve an operand to an SSA value, emitting an error on failure. 1335 ParseResult resolveOperand(const UnresolvedOperand &operand, Type type, 1336 SmallVectorImpl<Value> &result) override { 1337 if (auto value = parser.resolveSSAUse(operand, type)) { 1338 result.push_back(value); 1339 return success(); 1340 } 1341 return failure(); 1342 } 1343 1344 /// Parse an AffineMap of SSA ids. 1345 ParseResult 1346 parseAffineMapOfSSAIds(SmallVectorImpl<UnresolvedOperand> &operands, 1347 Attribute &mapAttr, StringRef attrName, 1348 NamedAttrList &attrs, Delimiter delimiter) override { 1349 SmallVector<UnresolvedOperand, 2> dimOperands; 1350 SmallVector<UnresolvedOperand, 1> symOperands; 1351 1352 auto parseElement = [&](bool isSymbol) -> ParseResult { 1353 UnresolvedOperand operand; 1354 if (parseOperand(operand)) 1355 return failure(); 1356 if (isSymbol) 1357 symOperands.push_back(operand); 1358 else 1359 dimOperands.push_back(operand); 1360 return success(); 1361 }; 1362 1363 AffineMap map; 1364 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 1365 return failure(); 1366 // Add AffineMap attribute. 1367 if (map) { 1368 mapAttr = AffineMapAttr::get(map); 1369 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 1370 } 1371 1372 // Add dim operands before symbol operands in 'operands'. 1373 operands.assign(dimOperands.begin(), dimOperands.end()); 1374 operands.append(symOperands.begin(), symOperands.end()); 1375 return success(); 1376 } 1377 1378 /// Parse an AffineExpr of SSA ids. 1379 ParseResult 1380 parseAffineExprOfSSAIds(SmallVectorImpl<UnresolvedOperand> &dimOperands, 1381 SmallVectorImpl<UnresolvedOperand> &symbOperands, 1382 AffineExpr &expr) override { 1383 auto parseElement = [&](bool isSymbol) -> ParseResult { 1384 UnresolvedOperand operand; 1385 if (parseOperand(operand)) 1386 return failure(); 1387 if (isSymbol) 1388 symbOperands.push_back(operand); 1389 else 1390 dimOperands.push_back(operand); 1391 return success(); 1392 }; 1393 1394 return parser.parseAffineExprOfSSAIds(expr, parseElement); 1395 } 1396 1397 //===--------------------------------------------------------------------===// 1398 // Argument Parsing 1399 //===--------------------------------------------------------------------===// 1400 1401 /// Parse a single argument with the following syntax: 1402 /// 1403 /// `%ssaname : !type { optionalAttrDict} loc(optionalSourceLoc)` 1404 /// 1405 /// If `allowType` is false or `allowAttrs` are false then the respective 1406 /// parts of the grammar are not parsed. 1407 ParseResult parseArgument(Argument &result, bool allowType = false, 1408 bool allowAttrs = false) override { 1409 NamedAttrList attrs; 1410 if (parseOperand(result.ssaName, /*allowResultNumber=*/false) || 1411 (allowType && parseColonType(result.type)) || 1412 (allowAttrs && parseOptionalAttrDict(attrs)) || 1413 parseOptionalLocationSpecifier(result.sourceLoc)) 1414 return failure(); 1415 result.attrs = attrs.getDictionary(getContext()); 1416 return success(); 1417 } 1418 1419 /// Parse a single argument if present. 1420 OptionalParseResult parseOptionalArgument(Argument &result, bool allowType, 1421 bool allowAttrs) override { 1422 if (parser.getToken().is(Token::percent_identifier)) 1423 return parseArgument(result, allowType, allowAttrs); 1424 return llvm::None; 1425 } 1426 1427 ParseResult parseArgumentList(SmallVectorImpl<Argument> &result, 1428 Delimiter delimiter, bool allowType, 1429 bool allowAttrs) override { 1430 // The no-delimiter case has some special handling for the empty case. 1431 if (delimiter == Delimiter::None && 1432 parser.getToken().isNot(Token::percent_identifier)) 1433 return success(); 1434 1435 auto parseOneArgument = [&]() -> ParseResult { 1436 return parseArgument(result.emplace_back(), allowType, allowAttrs); 1437 }; 1438 return parseCommaSeparatedList(delimiter, parseOneArgument, 1439 " in argument list"); 1440 } 1441 1442 //===--------------------------------------------------------------------===// 1443 // Region Parsing 1444 //===--------------------------------------------------------------------===// 1445 1446 /// Parse a region that takes `arguments` of `argTypes` types. This 1447 /// effectively defines the SSA values of `arguments` and assigns their type. 1448 ParseResult parseRegion(Region ®ion, ArrayRef<Argument> arguments, 1449 bool enableNameShadowing) override { 1450 // Try to parse the region. 1451 (void)isIsolatedFromAbove; 1452 assert((!enableNameShadowing || isIsolatedFromAbove) && 1453 "name shadowing is only allowed on isolated regions"); 1454 if (parser.parseRegion(region, arguments, enableNameShadowing)) 1455 return failure(); 1456 return success(); 1457 } 1458 1459 /// Parses a region if present. 1460 OptionalParseResult parseOptionalRegion(Region ®ion, 1461 ArrayRef<Argument> arguments, 1462 bool enableNameShadowing) override { 1463 if (parser.getToken().isNot(Token::l_brace)) 1464 return llvm::None; 1465 return parseRegion(region, arguments, enableNameShadowing); 1466 } 1467 1468 /// Parses a region if present. If the region is present, a new region is 1469 /// allocated and placed in `region`. If no region is present, `region` 1470 /// remains untouched. 1471 OptionalParseResult 1472 parseOptionalRegion(std::unique_ptr<Region> ®ion, 1473 ArrayRef<Argument> arguments, 1474 bool enableNameShadowing = false) override { 1475 if (parser.getToken().isNot(Token::l_brace)) 1476 return llvm::None; 1477 std::unique_ptr<Region> newRegion = std::make_unique<Region>(); 1478 if (parseRegion(*newRegion, arguments, enableNameShadowing)) 1479 return failure(); 1480 1481 region = std::move(newRegion); 1482 return success(); 1483 } 1484 1485 //===--------------------------------------------------------------------===// 1486 // Successor Parsing 1487 //===--------------------------------------------------------------------===// 1488 1489 /// Parse a single operation successor. 1490 ParseResult parseSuccessor(Block *&dest) override { 1491 return parser.parseSuccessor(dest); 1492 } 1493 1494 /// Parse an optional operation successor and its operand list. 1495 OptionalParseResult parseOptionalSuccessor(Block *&dest) override { 1496 if (parser.getToken().isNot(Token::caret_identifier)) 1497 return llvm::None; 1498 return parseSuccessor(dest); 1499 } 1500 1501 /// Parse a single operation successor and its operand list. 1502 ParseResult 1503 parseSuccessorAndUseList(Block *&dest, 1504 SmallVectorImpl<Value> &operands) override { 1505 if (parseSuccessor(dest)) 1506 return failure(); 1507 1508 // Handle optional arguments. 1509 if (succeeded(parseOptionalLParen()) && 1510 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) { 1511 return failure(); 1512 } 1513 return success(); 1514 } 1515 1516 //===--------------------------------------------------------------------===// 1517 // Type Parsing 1518 //===--------------------------------------------------------------------===// 1519 1520 /// Parse a list of assignments of the form 1521 /// (%x1 = %y1, %x2 = %y2, ...). 1522 OptionalParseResult parseOptionalAssignmentList( 1523 SmallVectorImpl<Argument> &lhs, 1524 SmallVectorImpl<UnresolvedOperand> &rhs) override { 1525 if (failed(parseOptionalLParen())) 1526 return llvm::None; 1527 1528 auto parseElt = [&]() -> ParseResult { 1529 if (parseArgument(lhs.emplace_back()) || parseEqual() || 1530 parseOperand(rhs.emplace_back())) 1531 return failure(); 1532 return success(); 1533 }; 1534 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 1535 } 1536 1537 /// Parse a loc(...) specifier if present, filling in result if so. 1538 ParseResult 1539 parseOptionalLocationSpecifier(Optional<Location> &result) override { 1540 // If there is a 'loc' we parse a trailing location. 1541 if (!parser.consumeIf(Token::kw_loc)) 1542 return success(); 1543 LocationAttr directLoc; 1544 if (parser.parseToken(Token::l_paren, "expected '(' in location")) 1545 return failure(); 1546 1547 Token tok = parser.getToken(); 1548 1549 // Check to see if we are parsing a location alias. 1550 // Otherwise, we parse the location directly. 1551 if (tok.is(Token::hash_identifier)) { 1552 if (parser.parseLocationAlias(directLoc)) 1553 return failure(); 1554 } else if (parser.parseLocationInstance(directLoc)) { 1555 return failure(); 1556 } 1557 1558 if (parser.parseToken(Token::r_paren, "expected ')' in location")) 1559 return failure(); 1560 1561 result = directLoc; 1562 return success(); 1563 } 1564 1565 private: 1566 /// Information about the result name specifiers. 1567 ArrayRef<OperationParser::ResultRecord> resultIDs; 1568 1569 /// The abstract information of the operation. 1570 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly; 1571 bool isIsolatedFromAbove; 1572 StringRef opName; 1573 1574 /// The backing operation parser. 1575 OperationParser &parser; 1576 }; 1577 } // namespace 1578 1579 FailureOr<OperationName> OperationParser::parseCustomOperationName() { 1580 std::string opName = getTokenSpelling().str(); 1581 if (opName.empty()) 1582 return (emitError("empty operation name is invalid"), failure()); 1583 1584 consumeToken(); 1585 1586 Optional<RegisteredOperationName> opInfo = 1587 RegisteredOperationName::lookup(opName, getContext()); 1588 StringRef defaultDialect = getState().defaultDialectStack.back(); 1589 Dialect *dialect = nullptr; 1590 if (opInfo) { 1591 dialect = &opInfo->getDialect(); 1592 } else { 1593 if (StringRef(opName).contains('.')) { 1594 // This op has a dialect, we try to check if we can register it in the 1595 // context on the fly. 1596 StringRef dialectName = StringRef(opName).split('.').first; 1597 dialect = getContext()->getLoadedDialect(dialectName); 1598 if (!dialect && (dialect = getContext()->getOrLoadDialect(dialectName))) 1599 opInfo = RegisteredOperationName::lookup(opName, getContext()); 1600 } else { 1601 // If the operation name has no namespace prefix we lookup the current 1602 // default dialect (set through OpAsmOpInterface). 1603 opInfo = RegisteredOperationName::lookup( 1604 Twine(defaultDialect + "." + opName).str(), getContext()); 1605 // FIXME: Remove this in favor of using default dialects. 1606 if (!opInfo && getContext()->getOrLoadDialect("func")) { 1607 opInfo = RegisteredOperationName::lookup(Twine("func." + opName).str(), 1608 getContext()); 1609 } 1610 if (opInfo) { 1611 dialect = &opInfo->getDialect(); 1612 opName = opInfo->getStringRef().str(); 1613 } else if (!defaultDialect.empty()) { 1614 dialect = getContext()->getOrLoadDialect(defaultDialect); 1615 opName = (defaultDialect + "." + opName).str(); 1616 } 1617 } 1618 } 1619 1620 return OperationName(opName, getContext()); 1621 } 1622 1623 Operation * 1624 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) { 1625 SMLoc opLoc = getToken().getLoc(); 1626 1627 FailureOr<OperationName> opNameInfo = parseCustomOperationName(); 1628 if (failed(opNameInfo)) 1629 return nullptr; 1630 1631 StringRef opName = opNameInfo->getStringRef(); 1632 Dialect *dialect = opNameInfo->getDialect(); 1633 Optional<RegisteredOperationName> opInfo = opNameInfo->getRegisteredInfo(); 1634 1635 // This is the actual hook for the custom op parsing, usually implemented by 1636 // the op itself (`Op::parse()`). We retrieve it either from the 1637 // RegisteredOperationName or from the Dialect. 1638 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssemblyFn; 1639 bool isIsolatedFromAbove = false; 1640 1641 StringRef defaultDialect = ""; 1642 if (opInfo) { 1643 parseAssemblyFn = opInfo->getParseAssemblyFn(); 1644 isIsolatedFromAbove = opInfo->hasTrait<OpTrait::IsIsolatedFromAbove>(); 1645 auto *iface = opInfo->getInterface<OpAsmOpInterface>(); 1646 if (iface && !iface->getDefaultDialect().empty()) 1647 defaultDialect = iface->getDefaultDialect(); 1648 } else { 1649 Optional<Dialect::ParseOpHook> dialectHook; 1650 if (dialect) 1651 dialectHook = dialect->getParseOperationHook(opName); 1652 if (!dialectHook.hasValue()) { 1653 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 1654 return nullptr; 1655 } 1656 parseAssemblyFn = *dialectHook; 1657 } 1658 getState().defaultDialectStack.push_back(defaultDialect); 1659 auto restoreDefaultDialect = llvm::make_scope_exit( 1660 [&]() { getState().defaultDialectStack.pop_back(); }); 1661 1662 // If the custom op parser crashes, produce some indication to help 1663 // debugging. 1664 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 1665 opNameInfo->getIdentifier().data()); 1666 1667 // Get location information for the operation. 1668 auto srcLocation = getEncodedSourceLocation(opLoc); 1669 OperationState opState(srcLocation, *opNameInfo); 1670 1671 // If we are populating the parser state, start a new operation definition. 1672 if (state.asmState) 1673 state.asmState->startOperationDefinition(opState.name); 1674 1675 // Have the op implementation take a crack and parsing this. 1676 CleanupOpStateRegions guard{opState}; 1677 CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn, 1678 isIsolatedFromAbove, opName, *this); 1679 if (opAsmParser.parseOperation(opState)) 1680 return nullptr; 1681 1682 // If it emitted an error, we failed. 1683 if (opAsmParser.didEmitError()) 1684 return nullptr; 1685 1686 // Otherwise, create the operation and try to parse a location for it. 1687 Operation *op = opBuilder.create(opState); 1688 if (parseTrailingLocationSpecifier(op)) 1689 return nullptr; 1690 return op; 1691 } 1692 1693 ParseResult OperationParser::parseLocationAlias(LocationAttr &loc) { 1694 Token tok = getToken(); 1695 consumeToken(Token::hash_identifier); 1696 StringRef identifier = tok.getSpelling().drop_front(); 1697 if (identifier.contains('.')) { 1698 return emitError(tok.getLoc()) 1699 << "expected location, but found dialect attribute: '#" << identifier 1700 << "'"; 1701 } 1702 1703 // If this alias can be resolved, do it now. 1704 Attribute attr = state.symbols.attributeAliasDefinitions.lookup(identifier); 1705 if (attr) { 1706 if (!(loc = attr.dyn_cast<LocationAttr>())) 1707 return emitError(tok.getLoc()) 1708 << "expected location, but found '" << attr << "'"; 1709 } else { 1710 // Otherwise, remember this operation and resolve its location later. 1711 // In the meantime, use a special OpaqueLoc as a marker. 1712 loc = OpaqueLoc::get(deferredLocsReferences.size(), 1713 TypeID::get<DeferredLocInfo *>(), 1714 UnknownLoc::get(getContext())); 1715 deferredLocsReferences.push_back(DeferredLocInfo{tok.getLoc(), identifier}); 1716 } 1717 return success(); 1718 } 1719 1720 ParseResult 1721 OperationParser::parseTrailingLocationSpecifier(OpOrArgument opOrArgument) { 1722 // If there is a 'loc' we parse a trailing location. 1723 if (!consumeIf(Token::kw_loc)) 1724 return success(); 1725 if (parseToken(Token::l_paren, "expected '(' in location")) 1726 return failure(); 1727 Token tok = getToken(); 1728 1729 // Check to see if we are parsing a location alias. 1730 // Otherwise, we parse the location directly. 1731 LocationAttr directLoc; 1732 if (tok.is(Token::hash_identifier)) { 1733 if (parseLocationAlias(directLoc)) 1734 return failure(); 1735 } else if (parseLocationInstance(directLoc)) { 1736 return failure(); 1737 } 1738 1739 if (parseToken(Token::r_paren, "expected ')' in location")) 1740 return failure(); 1741 1742 if (auto *op = opOrArgument.dyn_cast<Operation *>()) 1743 op->setLoc(directLoc); 1744 else 1745 opOrArgument.get<BlockArgument>().setLoc(directLoc); 1746 return success(); 1747 } 1748 1749 //===----------------------------------------------------------------------===// 1750 // Region Parsing 1751 //===----------------------------------------------------------------------===// 1752 1753 ParseResult OperationParser::parseRegion(Region ®ion, 1754 ArrayRef<Argument> entryArguments, 1755 bool isIsolatedNameScope) { 1756 // Parse the '{'. 1757 Token lBraceTok = getToken(); 1758 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 1759 return failure(); 1760 1761 // If we are populating the parser state, start a new region definition. 1762 if (state.asmState) 1763 state.asmState->startRegionDefinition(); 1764 1765 // Parse the region body. 1766 if ((!entryArguments.empty() || getToken().isNot(Token::r_brace)) && 1767 parseRegionBody(region, lBraceTok.getLoc(), entryArguments, 1768 isIsolatedNameScope)) { 1769 return failure(); 1770 } 1771 consumeToken(Token::r_brace); 1772 1773 // If we are populating the parser state, finalize this region. 1774 if (state.asmState) 1775 state.asmState->finalizeRegionDefinition(); 1776 1777 return success(); 1778 } 1779 1780 ParseResult OperationParser::parseRegionBody(Region ®ion, SMLoc startLoc, 1781 ArrayRef<Argument> entryArguments, 1782 bool isIsolatedNameScope) { 1783 auto currentPt = opBuilder.saveInsertionPoint(); 1784 1785 // Push a new named value scope. 1786 pushSSANameScope(isIsolatedNameScope); 1787 1788 // Parse the first block directly to allow for it to be unnamed. 1789 auto owningBlock = std::make_unique<Block>(); 1790 Block *block = owningBlock.get(); 1791 1792 // If this block is not defined in the source file, add a definition for it 1793 // now in the assembly state. Blocks with a name will be defined when the name 1794 // is parsed. 1795 if (state.asmState && getToken().isNot(Token::caret_identifier)) 1796 state.asmState->addDefinition(block, startLoc); 1797 1798 // Add arguments to the entry block if we had the form with explicit names. 1799 if (!entryArguments.empty() && !entryArguments[0].ssaName.name.empty()) { 1800 // If we had named arguments, then don't allow a block name. 1801 if (getToken().is(Token::caret_identifier)) 1802 return emitError("invalid block name in region with named arguments"); 1803 1804 for (auto &entryArg : entryArguments) { 1805 auto &argInfo = entryArg.ssaName; 1806 1807 // Ensure that the argument was not already defined. 1808 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 1809 return emitError(argInfo.location, "region entry argument '" + 1810 argInfo.name + 1811 "' is already in use") 1812 .attachNote(getEncodedSourceLocation(*defLoc)) 1813 << "previously referenced here"; 1814 } 1815 Location loc = entryArg.sourceLoc.hasValue() 1816 ? entryArg.sourceLoc.getValue() 1817 : getEncodedSourceLocation(argInfo.location); 1818 BlockArgument arg = block->addArgument(entryArg.type, loc); 1819 1820 // Add a definition of this arg to the assembly state if provided. 1821 if (state.asmState) 1822 state.asmState->addDefinition(arg, argInfo.location); 1823 1824 // Record the definition for this argument. 1825 if (addDefinition(argInfo, arg)) 1826 return failure(); 1827 } 1828 } 1829 1830 if (parseBlock(block)) 1831 return failure(); 1832 1833 // Verify that no other arguments were parsed. 1834 if (!entryArguments.empty() && 1835 block->getNumArguments() > entryArguments.size()) { 1836 return emitError("entry block arguments were already defined"); 1837 } 1838 1839 // Parse the rest of the region. 1840 region.push_back(owningBlock.release()); 1841 while (getToken().isNot(Token::r_brace)) { 1842 Block *newBlock = nullptr; 1843 if (parseBlock(newBlock)) 1844 return failure(); 1845 region.push_back(newBlock); 1846 } 1847 1848 // Pop the SSA value scope for this region. 1849 if (popSSANameScope()) 1850 return failure(); 1851 1852 // Reset the original insertion point. 1853 opBuilder.restoreInsertionPoint(currentPt); 1854 return success(); 1855 } 1856 1857 //===----------------------------------------------------------------------===// 1858 // Block Parsing 1859 //===----------------------------------------------------------------------===// 1860 1861 /// Block declaration. 1862 /// 1863 /// block ::= block-label? operation* 1864 /// block-label ::= block-id block-arg-list? `:` 1865 /// block-id ::= caret-id 1866 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 1867 /// 1868 ParseResult OperationParser::parseBlock(Block *&block) { 1869 // The first block of a region may already exist, if it does the caret 1870 // identifier is optional. 1871 if (block && getToken().isNot(Token::caret_identifier)) 1872 return parseBlockBody(block); 1873 1874 SMLoc nameLoc = getToken().getLoc(); 1875 auto name = getTokenSpelling(); 1876 if (parseToken(Token::caret_identifier, "expected block name")) 1877 return failure(); 1878 1879 // Define the block with the specified name. 1880 auto &blockAndLoc = getBlockInfoByName(name); 1881 blockAndLoc.loc = nameLoc; 1882 1883 // Use a unique pointer for in-flight block being parsed. Release ownership 1884 // only in the case of a successful parse. This ensures that the Block 1885 // allocated is released if the parse fails and control returns early. 1886 std::unique_ptr<Block> inflightBlock; 1887 1888 // If a block has yet to be set, this is a new definition. If the caller 1889 // provided a block, use it. Otherwise create a new one. 1890 if (!blockAndLoc.block) { 1891 if (block) { 1892 blockAndLoc.block = block; 1893 } else { 1894 inflightBlock = std::make_unique<Block>(); 1895 blockAndLoc.block = inflightBlock.get(); 1896 } 1897 1898 // Otherwise, the block has a forward declaration. Forward declarations are 1899 // removed once defined, so if we are defining a existing block and it is 1900 // not a forward declaration, then it is a redeclaration. Fail if the block 1901 // was already defined. 1902 } else if (!eraseForwardRef(blockAndLoc.block)) { 1903 return emitError(nameLoc, "redefinition of block '") << name << "'"; 1904 } 1905 1906 // Populate the high level assembly state if necessary. 1907 if (state.asmState) 1908 state.asmState->addDefinition(blockAndLoc.block, nameLoc); 1909 1910 block = blockAndLoc.block; 1911 1912 // If an argument list is present, parse it. 1913 if (getToken().is(Token::l_paren)) 1914 if (parseOptionalBlockArgList(block)) 1915 return failure(); 1916 1917 if (parseToken(Token::colon, "expected ':' after block name")) 1918 return failure(); 1919 1920 ParseResult res = parseBlockBody(block); 1921 if (succeeded(res)) 1922 inflightBlock.release(); 1923 return res; 1924 } 1925 1926 ParseResult OperationParser::parseBlockBody(Block *block) { 1927 // Set the insertion point to the end of the block to parse. 1928 opBuilder.setInsertionPointToEnd(block); 1929 1930 // Parse the list of operations that make up the body of the block. 1931 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 1932 if (parseOperation()) 1933 return failure(); 1934 1935 return success(); 1936 } 1937 1938 /// Get the block with the specified name, creating it if it doesn't already 1939 /// exist. The location specified is the point of use, which allows 1940 /// us to diagnose references to blocks that are not defined precisely. 1941 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 1942 BlockDefinition &blockDef = getBlockInfoByName(name); 1943 if (!blockDef.block) { 1944 blockDef = {new Block(), loc}; 1945 insertForwardRef(blockDef.block, blockDef.loc); 1946 } 1947 1948 // Populate the high level assembly state if necessary. 1949 if (state.asmState) 1950 state.asmState->addUses(blockDef.block, loc); 1951 1952 return blockDef.block; 1953 } 1954 1955 /// Parse a (possibly empty) list of SSA operands with types as block arguments 1956 /// enclosed in parentheses. 1957 /// 1958 /// value-id-and-type-list ::= value-id-and-type (`,` ssa-id-and-type)* 1959 /// block-arg-list ::= `(` value-id-and-type-list? `)` 1960 /// 1961 ParseResult OperationParser::parseOptionalBlockArgList(Block *owner) { 1962 if (getToken().is(Token::r_brace)) 1963 return success(); 1964 1965 // If the block already has arguments, then we're handling the entry block. 1966 // Parse and register the names for the arguments, but do not add them. 1967 bool definingExistingArgs = owner->getNumArguments() != 0; 1968 unsigned nextArgument = 0; 1969 1970 return parseCommaSeparatedList(Delimiter::Paren, [&]() -> ParseResult { 1971 return parseSSADefOrUseAndType( 1972 [&](UnresolvedOperand useInfo, Type type) -> ParseResult { 1973 BlockArgument arg; 1974 1975 // If we are defining existing arguments, ensure that the argument 1976 // has already been created with the right type. 1977 if (definingExistingArgs) { 1978 // Otherwise, ensure that this argument has already been created. 1979 if (nextArgument >= owner->getNumArguments()) 1980 return emitError("too many arguments specified in argument list"); 1981 1982 // Finally, make sure the existing argument has the correct type. 1983 arg = owner->getArgument(nextArgument++); 1984 if (arg.getType() != type) 1985 return emitError("argument and block argument type mismatch"); 1986 } else { 1987 auto loc = getEncodedSourceLocation(useInfo.location); 1988 arg = owner->addArgument(type, loc); 1989 } 1990 1991 // If the argument has an explicit loc(...) specifier, parse and apply 1992 // it. 1993 if (parseTrailingLocationSpecifier(arg)) 1994 return failure(); 1995 1996 // Mark this block argument definition in the parser state if it was 1997 // provided. 1998 if (state.asmState) 1999 state.asmState->addDefinition(arg, useInfo.location); 2000 2001 return addDefinition(useInfo, arg); 2002 }); 2003 }); 2004 } 2005 2006 //===----------------------------------------------------------------------===// 2007 // Top-level entity parsing. 2008 //===----------------------------------------------------------------------===// 2009 2010 namespace { 2011 /// This parser handles entities that are only valid at the top level of the 2012 /// file. 2013 class TopLevelOperationParser : public Parser { 2014 public: 2015 explicit TopLevelOperationParser(ParserState &state) : Parser(state) {} 2016 2017 /// Parse a set of operations into the end of the given Block. 2018 ParseResult parse(Block *topLevelBlock, Location parserLoc); 2019 2020 private: 2021 /// Parse an attribute alias declaration. 2022 ParseResult parseAttributeAliasDef(); 2023 2024 /// Parse an attribute alias declaration. 2025 ParseResult parseTypeAliasDef(); 2026 }; 2027 } // namespace 2028 2029 /// Parses an attribute alias declaration. 2030 /// 2031 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 2032 /// 2033 ParseResult TopLevelOperationParser::parseAttributeAliasDef() { 2034 assert(getToken().is(Token::hash_identifier)); 2035 StringRef aliasName = getTokenSpelling().drop_front(); 2036 2037 // Check for redefinitions. 2038 if (state.symbols.attributeAliasDefinitions.count(aliasName) > 0) 2039 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 2040 2041 // Make sure this isn't invading the dialect attribute namespace. 2042 if (aliasName.contains('.')) 2043 return emitError("attribute names with a '.' are reserved for " 2044 "dialect-defined names"); 2045 2046 consumeToken(Token::hash_identifier); 2047 2048 // Parse the '='. 2049 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 2050 return failure(); 2051 2052 // Parse the attribute value. 2053 Attribute attr = parseAttribute(); 2054 if (!attr) 2055 return failure(); 2056 2057 state.symbols.attributeAliasDefinitions[aliasName] = attr; 2058 return success(); 2059 } 2060 2061 /// Parse a type alias declaration. 2062 /// 2063 /// type-alias-def ::= '!' alias-name `=` 'type' type 2064 /// 2065 ParseResult TopLevelOperationParser::parseTypeAliasDef() { 2066 assert(getToken().is(Token::exclamation_identifier)); 2067 StringRef aliasName = getTokenSpelling().drop_front(); 2068 2069 // Check for redefinitions. 2070 if (state.symbols.typeAliasDefinitions.count(aliasName) > 0) 2071 return emitError("redefinition of type alias id '" + aliasName + "'"); 2072 2073 // Make sure this isn't invading the dialect type namespace. 2074 if (aliasName.contains('.')) 2075 return emitError("type names with a '.' are reserved for " 2076 "dialect-defined names"); 2077 2078 consumeToken(Token::exclamation_identifier); 2079 2080 // Parse the '=' and 'type'. 2081 if (parseToken(Token::equal, "expected '=' in type alias definition") || 2082 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 2083 return failure(); 2084 2085 // Parse the type. 2086 Type aliasedType = parseType(); 2087 if (!aliasedType) 2088 return failure(); 2089 2090 // Register this alias with the parser state. 2091 state.symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 2092 return success(); 2093 } 2094 2095 ParseResult TopLevelOperationParser::parse(Block *topLevelBlock, 2096 Location parserLoc) { 2097 // Create a top-level operation to contain the parsed state. 2098 OwningOpRef<ModuleOp> topLevelOp(ModuleOp::create(parserLoc)); 2099 OperationParser opParser(state, topLevelOp.get()); 2100 while (true) { 2101 switch (getToken().getKind()) { 2102 default: 2103 // Parse a top-level operation. 2104 if (opParser.parseOperation()) 2105 return failure(); 2106 break; 2107 2108 // If we got to the end of the file, then we're done. 2109 case Token::eof: { 2110 if (opParser.finalize()) 2111 return failure(); 2112 2113 // Splice the blocks of the parsed operation over to the provided 2114 // top-level block. 2115 auto &parsedOps = topLevelOp->getBody()->getOperations(); 2116 auto &destOps = topLevelBlock->getOperations(); 2117 destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()), 2118 parsedOps, parsedOps.begin(), parsedOps.end()); 2119 return success(); 2120 } 2121 2122 // If we got an error token, then the lexer already emitted an error, just 2123 // stop. Someday we could introduce error recovery if there was demand 2124 // for it. 2125 case Token::error: 2126 return failure(); 2127 2128 // Parse an attribute alias. 2129 case Token::hash_identifier: 2130 if (parseAttributeAliasDef()) 2131 return failure(); 2132 break; 2133 2134 // Parse a type alias. 2135 case Token::exclamation_identifier: 2136 if (parseTypeAliasDef()) 2137 return failure(); 2138 break; 2139 } 2140 } 2141 } 2142 2143 //===----------------------------------------------------------------------===// 2144 2145 LogicalResult mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 2146 Block *block, MLIRContext *context, 2147 LocationAttr *sourceFileLoc, 2148 AsmParserState *asmState) { 2149 const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 2150 2151 Location parserLoc = FileLineColLoc::get( 2152 context, sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0); 2153 if (sourceFileLoc) 2154 *sourceFileLoc = parserLoc; 2155 2156 SymbolState aliasState; 2157 ParserState state(sourceMgr, context, aliasState, asmState); 2158 return TopLevelOperationParser(state).parse(block, parserLoc); 2159 } 2160 2161 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, Block *block, 2162 MLIRContext *context, 2163 LocationAttr *sourceFileLoc) { 2164 llvm::SourceMgr sourceMgr; 2165 return parseSourceFile(filename, sourceMgr, block, context, sourceFileLoc); 2166 } 2167 2168 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, 2169 llvm::SourceMgr &sourceMgr, Block *block, 2170 MLIRContext *context, 2171 LocationAttr *sourceFileLoc, 2172 AsmParserState *asmState) { 2173 if (sourceMgr.getNumBuffers() != 0) { 2174 // TODO: Extend to support multiple buffers. 2175 return emitError(mlir::UnknownLoc::get(context), 2176 "only main buffer parsed at the moment"); 2177 } 2178 auto fileOrErr = llvm::MemoryBuffer::getFileOrSTDIN(filename); 2179 if (std::error_code error = fileOrErr.getError()) 2180 return emitError(mlir::UnknownLoc::get(context), 2181 "could not open input file " + filename); 2182 2183 // Load the MLIR source file. 2184 sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), SMLoc()); 2185 return parseSourceFile(sourceMgr, block, context, sourceFileLoc, asmState); 2186 } 2187 2188 LogicalResult mlir::parseSourceString(llvm::StringRef sourceStr, Block *block, 2189 MLIRContext *context, 2190 LocationAttr *sourceFileLoc) { 2191 auto memBuffer = MemoryBuffer::getMemBuffer(sourceStr); 2192 if (!memBuffer) 2193 return failure(); 2194 2195 SourceMgr sourceMgr; 2196 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 2197 return parseSourceFile(sourceMgr, block, context, sourceFileLoc); 2198 } 2199