1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Copyright 2019 The MLIR Authors. 4 // 5 // Licensed under the Apache License, Version 2.0 (the "License"); 6 // you may not use this file except in compliance with the License. 7 // You may obtain a copy of the License at 8 // 9 // http://www.apache.org/licenses/LICENSE-2.0 10 // 11 // Unless required by applicable law or agreed to in writing, software 12 // distributed under the License is distributed on an "AS IS" BASIS, 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 // See the License for the specific language governing permissions and 15 // limitations under the License. 16 // ============================================================================= 17 // 18 // This file implements the parser for the MLIR textual form. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "mlir/Parser.h" 23 #include "Lexer.h" 24 #include "mlir/Analysis/Verifier.h" 25 #include "mlir/IR/AffineExpr.h" 26 #include "mlir/IR/AffineMap.h" 27 #include "mlir/IR/Attributes.h" 28 #include "mlir/IR/Builders.h" 29 #include "mlir/IR/Dialect.h" 30 #include "mlir/IR/DialectImplementation.h" 31 #include "mlir/IR/IntegerSet.h" 32 #include "mlir/IR/Location.h" 33 #include "mlir/IR/MLIRContext.h" 34 #include "mlir/IR/Module.h" 35 #include "mlir/IR/OpImplementation.h" 36 #include "mlir/IR/StandardTypes.h" 37 #include "mlir/Support/STLExtras.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/DenseMap.h" 40 #include "llvm/ADT/StringSet.h" 41 #include "llvm/ADT/bit.h" 42 #include "llvm/Support/PrettyStackTrace.h" 43 #include "llvm/Support/SMLoc.h" 44 #include "llvm/Support/SourceMgr.h" 45 #include <algorithm> 46 using namespace mlir; 47 using llvm::MemoryBuffer; 48 using llvm::SMLoc; 49 using llvm::SourceMgr; 50 51 namespace { 52 class Parser; 53 54 //===----------------------------------------------------------------------===// 55 // SymbolState 56 //===----------------------------------------------------------------------===// 57 58 /// This class contains record of any parsed top-level symbols. 59 struct SymbolState { 60 // A map from attribute alias identifier to Attribute. 61 llvm::StringMap<Attribute> attributeAliasDefinitions; 62 63 // A map from type alias identifier to Type. 64 llvm::StringMap<Type> typeAliasDefinitions; 65 66 /// A set of locations into the main parser memory buffer for each of the 67 /// active nested parsers. Given that some nested parsers, i.e. custom dialect 68 /// parsers, operate on a temporary memory buffer, this provides an anchor 69 /// point for emitting diagnostics. 70 SmallVector<llvm::SMLoc, 1> nestedParserLocs; 71 72 /// The top-level lexer that contains the original memory buffer provided by 73 /// the user. This is used by nested parsers to get a properly encoded source 74 /// location. 75 Lexer *topLevelLexer = nullptr; 76 }; 77 78 //===----------------------------------------------------------------------===// 79 // ParserState 80 //===----------------------------------------------------------------------===// 81 82 /// This class refers to all of the state maintained globally by the parser, 83 /// such as the current lexer position etc. 84 struct ParserState { 85 ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx, 86 SymbolState &symbols) 87 : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()), 88 symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) { 89 // Set the top level lexer for the symbol state if one doesn't exist. 90 if (!symbols.topLevelLexer) 91 symbols.topLevelLexer = &lex; 92 } 93 ~ParserState() { 94 // Reset the top level lexer if it refers the lexer in our state. 95 if (symbols.topLevelLexer == &lex) 96 symbols.topLevelLexer = nullptr; 97 } 98 ParserState(const ParserState &) = delete; 99 void operator=(const ParserState &) = delete; 100 101 /// The context we're parsing into. 102 MLIRContext *const context; 103 104 /// The lexer for the source file we're parsing. 105 Lexer lex; 106 107 /// This is the next token that hasn't been consumed yet. 108 Token curToken; 109 110 /// The current state for symbol parsing. 111 SymbolState &symbols; 112 113 /// The depth of this parser in the nested parsing stack. 114 size_t parserDepth; 115 }; 116 117 //===----------------------------------------------------------------------===// 118 // Parser 119 //===----------------------------------------------------------------------===// 120 121 /// This class implement support for parsing global entities like types and 122 /// shared entities like SSA names. It is intended to be subclassed by 123 /// specialized subparsers that include state, e.g. when a local symbol table. 124 class Parser { 125 public: 126 Builder builder; 127 128 Parser(ParserState &state) : builder(state.context), state(state) {} 129 130 // Helper methods to get stuff from the parser-global state. 131 ParserState &getState() const { return state; } 132 MLIRContext *getContext() const { return state.context; } 133 const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } 134 135 /// Parse a comma-separated list of elements up until the specified end token. 136 ParseResult 137 parseCommaSeparatedListUntil(Token::Kind rightToken, 138 const std::function<ParseResult()> &parseElement, 139 bool allowEmptyList = true); 140 141 /// Parse a comma separated list of elements that must have at least one entry 142 /// in it. 143 ParseResult 144 parseCommaSeparatedList(const std::function<ParseResult()> &parseElement); 145 146 ParseResult parsePrettyDialectSymbolName(StringRef &prettyName); 147 148 // We have two forms of parsing methods - those that return a non-null 149 // pointer on success, and those that return a ParseResult to indicate whether 150 // they returned a failure. The second class fills in by-reference arguments 151 // as the results of their action. 152 153 //===--------------------------------------------------------------------===// 154 // Error Handling 155 //===--------------------------------------------------------------------===// 156 157 /// Emit an error and return failure. 158 InFlightDiagnostic emitError(const Twine &message = {}) { 159 return emitError(state.curToken.getLoc(), message); 160 } 161 InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {}); 162 163 /// Encode the specified source location information into an attribute for 164 /// attachment to the IR. 165 Location getEncodedSourceLocation(llvm::SMLoc loc) { 166 // If there are no active nested parsers, we can get the encoded source 167 // location directly. 168 if (state.parserDepth == 0) 169 return state.lex.getEncodedSourceLocation(loc); 170 // Otherwise, we need to re-encode it to point to the top level buffer. 171 return state.symbols.topLevelLexer->getEncodedSourceLocation( 172 remapLocationToTopLevelBuffer(loc)); 173 } 174 175 /// Remaps the given SMLoc to the top level lexer of the parser. This is used 176 /// to adjust locations of potentially nested parsers to ensure that they can 177 /// be emitted properly as diagnostics. 178 llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) { 179 // If there are no active nested parsers, we can return location directly. 180 SymbolState &symbols = state.symbols; 181 if (state.parserDepth == 0) 182 return loc; 183 assert(symbols.topLevelLexer && "expected valid top-level lexer"); 184 185 // Otherwise, we need to remap the location to the main parser. This is 186 // simply offseting the location onto the location of the last nested 187 // parser. 188 size_t offset = loc.getPointer() - state.lex.getBufferBegin(); 189 auto *rawLoc = 190 symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset; 191 return llvm::SMLoc::getFromPointer(rawLoc); 192 } 193 194 //===--------------------------------------------------------------------===// 195 // Token Parsing 196 //===--------------------------------------------------------------------===// 197 198 /// Return the current token the parser is inspecting. 199 const Token &getToken() const { return state.curToken; } 200 StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } 201 202 /// If the current token has the specified kind, consume it and return true. 203 /// If not, return false. 204 bool consumeIf(Token::Kind kind) { 205 if (state.curToken.isNot(kind)) 206 return false; 207 consumeToken(kind); 208 return true; 209 } 210 211 /// Advance the current lexer onto the next token. 212 void consumeToken() { 213 assert(state.curToken.isNot(Token::eof, Token::error) && 214 "shouldn't advance past EOF or errors"); 215 state.curToken = state.lex.lexToken(); 216 } 217 218 /// Advance the current lexer onto the next token, asserting what the expected 219 /// current token is. This is preferred to the above method because it leads 220 /// to more self-documenting code with better checking. 221 void consumeToken(Token::Kind kind) { 222 assert(state.curToken.is(kind) && "consumed an unexpected token"); 223 consumeToken(); 224 } 225 226 /// Consume the specified token if present and return success. On failure, 227 /// output a diagnostic and return failure. 228 ParseResult parseToken(Token::Kind expectedToken, const Twine &message); 229 230 //===--------------------------------------------------------------------===// 231 // Type Parsing 232 //===--------------------------------------------------------------------===// 233 234 ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements); 235 ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements); 236 ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements); 237 238 /// Parse an arbitrary type. 239 Type parseType(); 240 241 /// Parse a complex type. 242 Type parseComplexType(); 243 244 /// Parse an extended type. 245 Type parseExtendedType(); 246 247 /// Parse a function type. 248 Type parseFunctionType(); 249 250 /// Parse a memref type. 251 Type parseMemRefType(); 252 253 /// Parse a non function type. 254 Type parseNonFunctionType(); 255 256 /// Parse a tensor type. 257 Type parseTensorType(); 258 259 /// Parse a tuple type. 260 Type parseTupleType(); 261 262 /// Parse a vector type. 263 VectorType parseVectorType(); 264 ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 265 bool allowDynamic = true); 266 ParseResult parseXInDimensionList(); 267 268 /// Parse strided layout specification. 269 ParseResult parseStridedLayout(int64_t &offset, 270 SmallVectorImpl<int64_t> &strides); 271 272 // Parse a brace-delimiter list of comma-separated integers with `?` as an 273 // unknown marker. 274 ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions); 275 276 //===--------------------------------------------------------------------===// 277 // Attribute Parsing 278 //===--------------------------------------------------------------------===// 279 280 /// Parse an arbitrary attribute with an optional type. 281 Attribute parseAttribute(Type type = {}); 282 283 /// Parse an attribute dictionary. 284 ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes); 285 286 /// Parse an extended attribute. 287 Attribute parseExtendedAttr(Type type); 288 289 /// Parse a float attribute. 290 Attribute parseFloatAttr(Type type, bool isNegative); 291 292 /// Parse a decimal or a hexadecimal literal, which can be either an integer 293 /// or a float attribute. 294 Attribute parseDecOrHexAttr(Type type, bool isNegative); 295 296 /// Parse an opaque elements attribute. 297 Attribute parseOpaqueElementsAttr(); 298 299 /// Parse a dense elements attribute. 300 Attribute parseDenseElementsAttr(); 301 ShapedType parseElementsLiteralType(); 302 303 /// Parse a sparse elements attribute. 304 Attribute parseSparseElementsAttr(); 305 306 //===--------------------------------------------------------------------===// 307 // Location Parsing 308 //===--------------------------------------------------------------------===// 309 310 /// Parse an inline location. 311 ParseResult parseLocation(LocationAttr &loc); 312 313 /// Parse a raw location instance. 314 ParseResult parseLocationInstance(LocationAttr &loc); 315 316 /// Parse a callsite location instance. 317 ParseResult parseCallSiteLocation(LocationAttr &loc); 318 319 /// Parse a fused location instance. 320 ParseResult parseFusedLocation(LocationAttr &loc); 321 322 /// Parse a name or FileLineCol location instance. 323 ParseResult parseNameOrFileLineColLocation(LocationAttr &loc); 324 325 /// Parse an optional trailing location. 326 /// 327 /// trailing-location ::= (`loc` `(` location `)`)? 328 /// 329 ParseResult parseOptionalTrailingLocation(Location &loc) { 330 // If there is a 'loc' we parse a trailing location. 331 if (!getToken().is(Token::kw_loc)) 332 return success(); 333 334 // Parse the location. 335 LocationAttr directLoc; 336 if (parseLocation(directLoc)) 337 return failure(); 338 loc = directLoc; 339 return success(); 340 } 341 342 //===--------------------------------------------------------------------===// 343 // Affine Parsing 344 //===--------------------------------------------------------------------===// 345 346 ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, 347 IntegerSet &set); 348 349 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 350 ParseResult 351 parseAffineMapOfSSAIds(AffineMap &map, 352 llvm::function_ref<ParseResult(bool)> parseElement); 353 354 private: 355 /// The Parser is subclassed and reinstantiated. Do not add additional 356 /// non-trivial state here, add it to the ParserState class. 357 ParserState &state; 358 }; 359 } // end anonymous namespace 360 361 //===----------------------------------------------------------------------===// 362 // Helper methods. 363 //===----------------------------------------------------------------------===// 364 365 /// Parse a comma separated list of elements that must have at least one entry 366 /// in it. 367 ParseResult Parser::parseCommaSeparatedList( 368 const std::function<ParseResult()> &parseElement) { 369 // Non-empty case starts with an element. 370 if (parseElement()) 371 return failure(); 372 373 // Otherwise we have a list of comma separated elements. 374 while (consumeIf(Token::comma)) { 375 if (parseElement()) 376 return failure(); 377 } 378 return success(); 379 } 380 381 /// Parse a comma-separated list of elements, terminated with an arbitrary 382 /// token. This allows empty lists if allowEmptyList is true. 383 /// 384 /// abstract-list ::= rightToken // if allowEmptyList == true 385 /// abstract-list ::= element (',' element)* rightToken 386 /// 387 ParseResult Parser::parseCommaSeparatedListUntil( 388 Token::Kind rightToken, const std::function<ParseResult()> &parseElement, 389 bool allowEmptyList) { 390 // Handle the empty case. 391 if (getToken().is(rightToken)) { 392 if (!allowEmptyList) 393 return emitError("expected list element"); 394 consumeToken(rightToken); 395 return success(); 396 } 397 398 if (parseCommaSeparatedList(parseElement) || 399 parseToken(rightToken, "expected ',' or '" + 400 Token::getTokenSpelling(rightToken) + "'")) 401 return failure(); 402 403 return success(); 404 } 405 406 //===----------------------------------------------------------------------===// 407 // DialectAsmParser 408 //===----------------------------------------------------------------------===// 409 410 namespace { 411 /// This class provides the main implementation of the DialectAsmParser that 412 /// allows for dialects to parse attributes and types. This allows for dialect 413 /// hooking into the main MLIR parsing logic. 414 class CustomDialectAsmParser : public DialectAsmParser { 415 public: 416 CustomDialectAsmParser(StringRef fullSpec, Parser &parser) 417 : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()), 418 parser(parser) {} 419 ~CustomDialectAsmParser() override {} 420 421 /// Emit a diagnostic at the specified location and return failure. 422 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 423 return parser.emitError(loc, message); 424 } 425 426 /// Return a builder which provides useful access to MLIRContext, global 427 /// objects like types and attributes. 428 Builder &getBuilder() const override { return parser.builder; } 429 430 /// Get the location of the next token and store it into the argument. This 431 /// always succeeds. 432 llvm::SMLoc getCurrentLocation() override { 433 return parser.getToken().getLoc(); 434 } 435 436 /// Return the location of the original name token. 437 llvm::SMLoc getNameLoc() const override { return nameLoc; } 438 439 /// Re-encode the given source location as an MLIR location and return it. 440 Location getEncodedSourceLoc(llvm::SMLoc loc) override { 441 return parser.getEncodedSourceLocation(loc); 442 } 443 444 /// Returns the full specification of the symbol being parsed. This allows 445 /// for using a separate parser if necessary. 446 StringRef getFullSymbolSpec() const override { return fullSpec; } 447 448 /// Parse a floating point value from the stream. 449 ParseResult parseFloat(double &result) override { 450 bool negative = parser.consumeIf(Token::minus); 451 Token curTok = parser.getToken(); 452 453 // Check for a floating point value. 454 if (curTok.is(Token::floatliteral)) { 455 auto val = curTok.getFloatingPointValue(); 456 if (!val.hasValue()) 457 return emitError(curTok.getLoc(), "floating point value too large"); 458 parser.consumeToken(Token::floatliteral); 459 result = negative ? -*val : *val; 460 return success(); 461 } 462 463 // TODO(riverriddle) support hex floating point values. 464 return emitError(getCurrentLocation(), "expected floating point literal"); 465 } 466 467 /// Parse an optional integer value from the stream. 468 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 469 Token curToken = parser.getToken(); 470 if (curToken.isNot(Token::integer, Token::minus)) 471 return llvm::None; 472 473 bool negative = parser.consumeIf(Token::minus); 474 Token curTok = parser.getToken(); 475 if (parser.parseToken(Token::integer, "expected integer value")) 476 return failure(); 477 478 auto val = curTok.getUInt64IntegerValue(); 479 if (!val) 480 return emitError(curTok.getLoc(), "integer value too large"); 481 result = negative ? -*val : *val; 482 return success(); 483 } 484 485 //===--------------------------------------------------------------------===// 486 // Token Parsing 487 //===--------------------------------------------------------------------===// 488 489 /// Parse a `->` token. 490 ParseResult parseArrow() override { 491 return parser.parseToken(Token::arrow, "expected '->'"); 492 } 493 494 /// Parses a `->` if present. 495 ParseResult parseOptionalArrow() override { 496 return success(parser.consumeIf(Token::arrow)); 497 } 498 499 /// Parse a '{' token. 500 ParseResult parseLBrace() override { 501 return parser.parseToken(Token::l_brace, "expected '{'"); 502 } 503 504 /// Parse a '{' token if present 505 ParseResult parseOptionalLBrace() override { 506 return success(parser.consumeIf(Token::l_brace)); 507 } 508 509 /// Parse a `}` token. 510 ParseResult parseRBrace() override { 511 return parser.parseToken(Token::r_brace, "expected '}'"); 512 } 513 514 /// Parse a `}` token if present 515 ParseResult parseOptionalRBrace() override { 516 return success(parser.consumeIf(Token::r_brace)); 517 } 518 519 /// Parse a `:` token. 520 ParseResult parseColon() override { 521 return parser.parseToken(Token::colon, "expected ':'"); 522 } 523 524 /// Parse a `:` token if present. 525 ParseResult parseOptionalColon() override { 526 return success(parser.consumeIf(Token::colon)); 527 } 528 529 /// Parse a `,` token. 530 ParseResult parseComma() override { 531 return parser.parseToken(Token::comma, "expected ','"); 532 } 533 534 /// Parse a `,` token if present. 535 ParseResult parseOptionalComma() override { 536 return success(parser.consumeIf(Token::comma)); 537 } 538 539 /// Parses a `...` if present. 540 ParseResult parseOptionalEllipsis() override { 541 return success(parser.consumeIf(Token::ellipsis)); 542 } 543 544 /// Parse a `=` token. 545 ParseResult parseEqual() override { 546 return parser.parseToken(Token::equal, "expected '='"); 547 } 548 549 /// Parse a '<' token. 550 ParseResult parseLess() override { 551 return parser.parseToken(Token::less, "expected '<'"); 552 } 553 554 /// Parse a `<` token if present. 555 ParseResult parseOptionalLess() override { 556 return success(parser.consumeIf(Token::less)); 557 } 558 559 /// Parse a '>' token. 560 ParseResult parseGreater() override { 561 return parser.parseToken(Token::greater, "expected '>'"); 562 } 563 564 /// Parse a `>` token if present. 565 ParseResult parseOptionalGreater() override { 566 return success(parser.consumeIf(Token::greater)); 567 } 568 569 /// Parse a `(` token. 570 ParseResult parseLParen() override { 571 return parser.parseToken(Token::l_paren, "expected '('"); 572 } 573 574 /// Parses a '(' if present. 575 ParseResult parseOptionalLParen() override { 576 return success(parser.consumeIf(Token::l_paren)); 577 } 578 579 /// Parse a `)` token. 580 ParseResult parseRParen() override { 581 return parser.parseToken(Token::r_paren, "expected ')'"); 582 } 583 584 /// Parses a ')' if present. 585 ParseResult parseOptionalRParen() override { 586 return success(parser.consumeIf(Token::r_paren)); 587 } 588 589 /// Parse a `[` token. 590 ParseResult parseLSquare() override { 591 return parser.parseToken(Token::l_square, "expected '['"); 592 } 593 594 /// Parses a '[' if present. 595 ParseResult parseOptionalLSquare() override { 596 return success(parser.consumeIf(Token::l_square)); 597 } 598 599 /// Parse a `]` token. 600 ParseResult parseRSquare() override { 601 return parser.parseToken(Token::r_square, "expected ']'"); 602 } 603 604 /// Parses a ']' if present. 605 ParseResult parseOptionalRSquare() override { 606 return success(parser.consumeIf(Token::r_square)); 607 } 608 609 /// Parses a '?' if present. 610 ParseResult parseOptionalQuestion() override { 611 return success(parser.consumeIf(Token::question)); 612 } 613 614 /// Parses a '*' if present. 615 ParseResult parseOptionalStar() override { 616 return success(parser.consumeIf(Token::star)); 617 } 618 619 /// Returns if the current token corresponds to a keyword. 620 bool isCurrentTokenAKeyword() const { 621 return parser.getToken().is(Token::bare_identifier) || 622 parser.getToken().isKeyword(); 623 } 624 625 /// Parse the given keyword if present. 626 ParseResult parseOptionalKeyword(StringRef keyword) override { 627 // Check that the current token has the same spelling. 628 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 629 return failure(); 630 parser.consumeToken(); 631 return success(); 632 } 633 634 /// Parse a keyword, if present, into 'keyword'. 635 ParseResult parseOptionalKeyword(StringRef *keyword) override { 636 // Check that the current token is a keyword. 637 if (!isCurrentTokenAKeyword()) 638 return failure(); 639 640 *keyword = parser.getTokenSpelling(); 641 parser.consumeToken(); 642 return success(); 643 } 644 645 //===--------------------------------------------------------------------===// 646 // Attribute Parsing 647 //===--------------------------------------------------------------------===// 648 649 /// Parse an arbitrary attribute and return it in result. 650 ParseResult parseAttribute(Attribute &result, Type type) override { 651 result = parser.parseAttribute(type); 652 return success(static_cast<bool>(result)); 653 } 654 655 //===--------------------------------------------------------------------===// 656 // Type Parsing 657 //===--------------------------------------------------------------------===// 658 659 ParseResult parseType(Type &result) override { 660 result = parser.parseType(); 661 return success(static_cast<bool>(result)); 662 } 663 664 ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions, 665 bool allowDynamic) override { 666 return parser.parseDimensionListRanked(dimensions, allowDynamic); 667 } 668 669 private: 670 /// The full symbol specification. 671 StringRef fullSpec; 672 673 /// The source location of the dialect symbol. 674 SMLoc nameLoc; 675 676 /// The main parser. 677 Parser &parser; 678 }; 679 } // namespace 680 681 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s, 682 /// and may be recursive. Return with the 'prettyName' StringRef encompassing 683 /// the entire pretty name. 684 /// 685 /// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>' 686 /// pretty-dialect-sym-contents ::= pretty-dialect-sym-body 687 /// | '(' pretty-dialect-sym-contents+ ')' 688 /// | '[' pretty-dialect-sym-contents+ ']' 689 /// | '{' pretty-dialect-sym-contents+ '}' 690 /// | '[^[<({>\])}\0]+' 691 /// 692 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) { 693 // Pretty symbol names are a relatively unstructured format that contains a 694 // series of properly nested punctuation, with anything else in the middle. 695 // Scan ahead to find it and consume it if successful, otherwise emit an 696 // error. 697 auto *curPtr = getTokenSpelling().data(); 698 699 SmallVector<char, 8> nestedPunctuation; 700 701 // Scan over the nested punctuation, bailing out on error and consuming until 702 // we find the end. We know that we're currently looking at the '<', so we 703 // can go until we find the matching '>' character. 704 assert(*curPtr == '<'); 705 do { 706 char c = *curPtr++; 707 switch (c) { 708 case '\0': 709 // This also handles the EOF case. 710 return emitError("unexpected nul or EOF in pretty dialect name"); 711 case '<': 712 case '[': 713 case '(': 714 case '{': 715 nestedPunctuation.push_back(c); 716 continue; 717 718 case '-': 719 // The sequence `->` is treated as special token. 720 if (*curPtr == '>') 721 ++curPtr; 722 continue; 723 724 case '>': 725 if (nestedPunctuation.pop_back_val() != '<') 726 return emitError("unbalanced '>' character in pretty dialect name"); 727 break; 728 case ']': 729 if (nestedPunctuation.pop_back_val() != '[') 730 return emitError("unbalanced ']' character in pretty dialect name"); 731 break; 732 case ')': 733 if (nestedPunctuation.pop_back_val() != '(') 734 return emitError("unbalanced ')' character in pretty dialect name"); 735 break; 736 case '}': 737 if (nestedPunctuation.pop_back_val() != '{') 738 return emitError("unbalanced '}' character in pretty dialect name"); 739 break; 740 741 default: 742 continue; 743 } 744 } while (!nestedPunctuation.empty()); 745 746 // Ok, we succeeded, remember where we stopped, reset the lexer to know it is 747 // consuming all this stuff, and return. 748 state.lex.resetPointer(curPtr); 749 750 unsigned length = curPtr - prettyName.begin(); 751 prettyName = StringRef(prettyName.begin(), length); 752 consumeToken(); 753 return success(); 754 } 755 756 /// Parse an extended dialect symbol. 757 template <typename Symbol, typename SymbolAliasMap, typename CreateFn> 758 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok, 759 SymbolAliasMap &aliases, 760 CreateFn &&createSymbol) { 761 // Parse the dialect namespace. 762 StringRef identifier = p.getTokenSpelling().drop_front(); 763 auto loc = p.getToken().getLoc(); 764 p.consumeToken(identifierTok); 765 766 // If there is no '<' token following this, and if the typename contains no 767 // dot, then we are parsing a symbol alias. 768 if (p.getToken().isNot(Token::less) && !identifier.contains('.')) { 769 // Check for an alias for this type. 770 auto aliasIt = aliases.find(identifier); 771 if (aliasIt == aliases.end()) 772 return (p.emitError("undefined symbol alias id '" + identifier + "'"), 773 nullptr); 774 return aliasIt->second; 775 } 776 777 // Otherwise, we are parsing a dialect-specific symbol. If the name contains 778 // a dot, then this is the "pretty" form. If not, it is the verbose form that 779 // looks like <"...">. 780 std::string symbolData; 781 auto dialectName = identifier; 782 783 // Handle the verbose form, where "identifier" is a simple dialect name. 784 if (!identifier.contains('.')) { 785 // Consume the '<'. 786 if (p.parseToken(Token::less, "expected '<' in dialect type")) 787 return nullptr; 788 789 // Parse the symbol specific data. 790 if (p.getToken().isNot(Token::string)) 791 return (p.emitError("expected string literal data in dialect symbol"), 792 nullptr); 793 symbolData = p.getToken().getStringValue(); 794 loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1); 795 p.consumeToken(Token::string); 796 797 // Consume the '>'. 798 if (p.parseToken(Token::greater, "expected '>' in dialect symbol")) 799 return nullptr; 800 } else { 801 // Ok, the dialect name is the part of the identifier before the dot, the 802 // part after the dot is the dialect's symbol, or the start thereof. 803 auto dotHalves = identifier.split('.'); 804 dialectName = dotHalves.first; 805 auto prettyName = dotHalves.second; 806 loc = llvm::SMLoc::getFromPointer(prettyName.data()); 807 808 // If the dialect's symbol is followed immediately by a <, then lex the body 809 // of it into prettyName. 810 if (p.getToken().is(Token::less) && 811 prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) { 812 if (p.parsePrettyDialectSymbolName(prettyName)) 813 return nullptr; 814 } 815 816 symbolData = prettyName.str(); 817 } 818 819 // Record the name location of the type remapped to the top level buffer. 820 llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc); 821 p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer); 822 823 // Call into the provided symbol construction function. 824 Symbol sym = createSymbol(dialectName, symbolData, loc); 825 826 // Pop the last parser location. 827 p.getState().symbols.nestedParserLocs.pop_back(); 828 return sym; 829 } 830 831 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 832 /// parsing failed, nullptr is returned. The number of bytes read from the input 833 /// string is returned in 'numRead'. 834 template <typename T, typename ParserFn> 835 static T parseSymbol(llvm::StringRef inputStr, MLIRContext *context, 836 SymbolState &symbolState, ParserFn &&parserFn, 837 size_t *numRead = nullptr) { 838 SourceMgr sourceMgr; 839 auto memBuffer = MemoryBuffer::getMemBuffer( 840 inputStr, /*BufferName=*/"<mlir_parser_buffer>", 841 /*RequiresNullTerminator=*/false); 842 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 843 ParserState state(sourceMgr, context, symbolState); 844 Parser parser(state); 845 846 Token startTok = parser.getToken(); 847 T symbol = parserFn(parser); 848 if (!symbol) 849 return T(); 850 851 // If 'numRead' is valid, then provide the number of bytes that were read. 852 Token endTok = parser.getToken(); 853 if (numRead) { 854 *numRead = static_cast<size_t>(endTok.getLoc().getPointer() - 855 startTok.getLoc().getPointer()); 856 857 // Otherwise, ensure that all of the tokens were parsed. 858 } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) { 859 parser.emitError(endTok.getLoc(), "encountered unexpected token"); 860 return T(); 861 } 862 return symbol; 863 } 864 865 //===----------------------------------------------------------------------===// 866 // Error Handling 867 //===----------------------------------------------------------------------===// 868 869 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 870 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 871 872 // If we hit a parse error in response to a lexer error, then the lexer 873 // already reported the error. 874 if (getToken().is(Token::error)) 875 diag.abandon(); 876 return diag; 877 } 878 879 //===----------------------------------------------------------------------===// 880 // Token Parsing 881 //===----------------------------------------------------------------------===// 882 883 /// Consume the specified token if present and return success. On failure, 884 /// output a diagnostic and return failure. 885 ParseResult Parser::parseToken(Token::Kind expectedToken, 886 const Twine &message) { 887 if (consumeIf(expectedToken)) 888 return success(); 889 return emitError(message); 890 } 891 892 //===----------------------------------------------------------------------===// 893 // Type Parsing 894 //===----------------------------------------------------------------------===// 895 896 /// Parse an arbitrary type. 897 /// 898 /// type ::= function-type 899 /// | non-function-type 900 /// 901 Type Parser::parseType() { 902 if (getToken().is(Token::l_paren)) 903 return parseFunctionType(); 904 return parseNonFunctionType(); 905 } 906 907 /// Parse a function result type. 908 /// 909 /// function-result-type ::= type-list-parens 910 /// | non-function-type 911 /// 912 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) { 913 if (getToken().is(Token::l_paren)) 914 return parseTypeListParens(elements); 915 916 Type t = parseNonFunctionType(); 917 if (!t) 918 return failure(); 919 elements.push_back(t); 920 return success(); 921 } 922 923 /// Parse a list of types without an enclosing parenthesis. The list must have 924 /// at least one member. 925 /// 926 /// type-list-no-parens ::= type (`,` type)* 927 /// 928 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) { 929 auto parseElt = [&]() -> ParseResult { 930 auto elt = parseType(); 931 elements.push_back(elt); 932 return elt ? success() : failure(); 933 }; 934 935 return parseCommaSeparatedList(parseElt); 936 } 937 938 /// Parse a parenthesized list of types. 939 /// 940 /// type-list-parens ::= `(` `)` 941 /// | `(` type-list-no-parens `)` 942 /// 943 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) { 944 if (parseToken(Token::l_paren, "expected '('")) 945 return failure(); 946 947 // Handle empty lists. 948 if (getToken().is(Token::r_paren)) 949 return consumeToken(), success(); 950 951 if (parseTypeListNoParens(elements) || 952 parseToken(Token::r_paren, "expected ')'")) 953 return failure(); 954 return success(); 955 } 956 957 /// Parse a complex type. 958 /// 959 /// complex-type ::= `complex` `<` type `>` 960 /// 961 Type Parser::parseComplexType() { 962 consumeToken(Token::kw_complex); 963 964 // Parse the '<'. 965 if (parseToken(Token::less, "expected '<' in complex type")) 966 return nullptr; 967 968 auto typeLocation = getEncodedSourceLocation(getToken().getLoc()); 969 auto elementType = parseType(); 970 if (!elementType || 971 parseToken(Token::greater, "expected '>' in complex type")) 972 return nullptr; 973 974 return ComplexType::getChecked(elementType, typeLocation); 975 } 976 977 /// Parse an extended type. 978 /// 979 /// extended-type ::= (dialect-type | type-alias) 980 /// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>` 981 /// dialect-type ::= `!` alias-name pretty-dialect-attribute-body? 982 /// type-alias ::= `!` alias-name 983 /// 984 Type Parser::parseExtendedType() { 985 return parseExtendedSymbol<Type>( 986 *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions, 987 [&](StringRef dialectName, StringRef symbolData, 988 llvm::SMLoc loc) -> Type { 989 // If we found a registered dialect, then ask it to parse the type. 990 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 991 return parseSymbol<Type>( 992 symbolData, state.context, state.symbols, [&](Parser &parser) { 993 CustomDialectAsmParser customParser(symbolData, parser); 994 return dialect->parseType(customParser); 995 }); 996 } 997 998 // Otherwise, form a new opaque type. 999 return OpaqueType::getChecked( 1000 Identifier::get(dialectName, state.context), symbolData, 1001 state.context, getEncodedSourceLocation(loc)); 1002 }); 1003 } 1004 1005 /// Parse a function type. 1006 /// 1007 /// function-type ::= type-list-parens `->` function-result-type 1008 /// 1009 Type Parser::parseFunctionType() { 1010 assert(getToken().is(Token::l_paren)); 1011 1012 SmallVector<Type, 4> arguments, results; 1013 if (parseTypeListParens(arguments) || 1014 parseToken(Token::arrow, "expected '->' in function type") || 1015 parseFunctionResultTypes(results)) 1016 return nullptr; 1017 1018 return builder.getFunctionType(arguments, results); 1019 } 1020 1021 /// Parse the offset and strides from a strided layout specification. 1022 /// 1023 /// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list 1024 /// 1025 ParseResult Parser::parseStridedLayout(int64_t &offset, 1026 SmallVectorImpl<int64_t> &strides) { 1027 // Parse offset. 1028 consumeToken(Token::kw_offset); 1029 if (!consumeIf(Token::colon)) 1030 return emitError("expected colon after `offset` keyword"); 1031 auto maybeOffset = getToken().getUnsignedIntegerValue(); 1032 bool question = getToken().is(Token::question); 1033 if (!maybeOffset && !question) 1034 return emitError("invalid offset"); 1035 offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue()) 1036 : MemRefType::getDynamicStrideOrOffset(); 1037 consumeToken(); 1038 1039 if (!consumeIf(Token::comma)) 1040 return emitError("expected comma after offset value"); 1041 1042 // Parse stride list. 1043 if (!consumeIf(Token::kw_strides)) 1044 return emitError("expected `strides` keyword after offset specification"); 1045 if (!consumeIf(Token::colon)) 1046 return emitError("expected colon after `strides` keyword"); 1047 if (failed(parseStrideList(strides))) 1048 return emitError("invalid braces-enclosed stride list"); 1049 if (llvm::any_of(strides, [](int64_t st) { return st == 0; })) 1050 return emitError("invalid memref stride"); 1051 1052 return success(); 1053 } 1054 1055 /// Parse a memref type. 1056 /// 1057 /// memref-type ::= ranked-memref-type | unranked-memref-type 1058 /// 1059 /// ranked-memref-type ::= `memref` `<` dimension-list-ranked type 1060 /// (`,` semi-affine-map-composition)? (`,` 1061 /// memory-space)? `>` 1062 /// 1063 /// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>` 1064 /// 1065 /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map 1066 /// memory-space ::= integer-literal /* | TODO: address-space-id */ 1067 /// 1068 Type Parser::parseMemRefType() { 1069 consumeToken(Token::kw_memref); 1070 1071 if (parseToken(Token::less, "expected '<' in memref type")) 1072 return nullptr; 1073 1074 bool isUnranked; 1075 SmallVector<int64_t, 4> dimensions; 1076 1077 if (consumeIf(Token::star)) { 1078 // This is an unranked memref type. 1079 isUnranked = true; 1080 if (parseXInDimensionList()) 1081 return nullptr; 1082 1083 } else { 1084 isUnranked = false; 1085 if (parseDimensionListRanked(dimensions)) 1086 return nullptr; 1087 } 1088 1089 // Parse the element type. 1090 auto typeLoc = getToken().getLoc(); 1091 auto elementType = parseType(); 1092 if (!elementType) 1093 return nullptr; 1094 1095 // Parse semi-affine-map-composition. 1096 SmallVector<AffineMap, 2> affineMapComposition; 1097 unsigned memorySpace = 0; 1098 bool parsedMemorySpace = false; 1099 1100 auto parseElt = [&]() -> ParseResult { 1101 if (getToken().is(Token::integer)) { 1102 // Parse memory space. 1103 if (parsedMemorySpace) 1104 return emitError("multiple memory spaces specified in memref type"); 1105 auto v = getToken().getUnsignedIntegerValue(); 1106 if (!v.hasValue()) 1107 return emitError("invalid memory space in memref type"); 1108 memorySpace = v.getValue(); 1109 consumeToken(Token::integer); 1110 parsedMemorySpace = true; 1111 } else { 1112 if (isUnranked) 1113 return emitError("cannot have affine map for unranked memref type"); 1114 if (parsedMemorySpace) 1115 return emitError("expected memory space to be last in memref type"); 1116 if (getToken().is(Token::kw_offset)) { 1117 int64_t offset; 1118 SmallVector<int64_t, 4> strides; 1119 if (failed(parseStridedLayout(offset, strides))) 1120 return failure(); 1121 // Construct strided affine map. 1122 auto map = makeStridedLinearLayoutMap(strides, offset, 1123 elementType.getContext()); 1124 affineMapComposition.push_back(map); 1125 } else { 1126 // Parse affine map. 1127 auto affineMap = parseAttribute(); 1128 if (!affineMap) 1129 return failure(); 1130 // Verify that the parsed attribute is an affine map. 1131 if (auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>()) 1132 affineMapComposition.push_back(affineMapAttr.getValue()); 1133 else 1134 return emitError("expected affine map in memref type"); 1135 } 1136 } 1137 return success(); 1138 }; 1139 1140 // Parse a list of mappings and address space if present. 1141 if (consumeIf(Token::comma)) { 1142 // Parse comma separated list of affine maps, followed by memory space. 1143 if (parseCommaSeparatedListUntil(Token::greater, parseElt, 1144 /*allowEmptyList=*/false)) { 1145 return nullptr; 1146 } 1147 } else { 1148 if (parseToken(Token::greater, "expected ',' or '>' in memref type")) 1149 return nullptr; 1150 } 1151 1152 if (isUnranked) 1153 return UnrankedMemRefType::getChecked(elementType, memorySpace, 1154 getEncodedSourceLocation(typeLoc)); 1155 1156 return MemRefType::getChecked(dimensions, elementType, affineMapComposition, 1157 memorySpace, getEncodedSourceLocation(typeLoc)); 1158 } 1159 1160 /// Parse any type except the function type. 1161 /// 1162 /// non-function-type ::= integer-type 1163 /// | index-type 1164 /// | float-type 1165 /// | extended-type 1166 /// | vector-type 1167 /// | tensor-type 1168 /// | memref-type 1169 /// | complex-type 1170 /// | tuple-type 1171 /// | none-type 1172 /// 1173 /// index-type ::= `index` 1174 /// float-type ::= `f16` | `bf16` | `f32` | `f64` 1175 /// none-type ::= `none` 1176 /// 1177 Type Parser::parseNonFunctionType() { 1178 switch (getToken().getKind()) { 1179 default: 1180 return (emitError("expected non-function type"), nullptr); 1181 case Token::kw_memref: 1182 return parseMemRefType(); 1183 case Token::kw_tensor: 1184 return parseTensorType(); 1185 case Token::kw_complex: 1186 return parseComplexType(); 1187 case Token::kw_tuple: 1188 return parseTupleType(); 1189 case Token::kw_vector: 1190 return parseVectorType(); 1191 // integer-type 1192 case Token::inttype: { 1193 auto width = getToken().getIntTypeBitwidth(); 1194 if (!width.hasValue()) 1195 return (emitError("invalid integer width"), nullptr); 1196 auto loc = getEncodedSourceLocation(getToken().getLoc()); 1197 consumeToken(Token::inttype); 1198 return IntegerType::getChecked(width.getValue(), builder.getContext(), loc); 1199 } 1200 1201 // float-type 1202 case Token::kw_bf16: 1203 consumeToken(Token::kw_bf16); 1204 return builder.getBF16Type(); 1205 case Token::kw_f16: 1206 consumeToken(Token::kw_f16); 1207 return builder.getF16Type(); 1208 case Token::kw_f32: 1209 consumeToken(Token::kw_f32); 1210 return builder.getF32Type(); 1211 case Token::kw_f64: 1212 consumeToken(Token::kw_f64); 1213 return builder.getF64Type(); 1214 1215 // index-type 1216 case Token::kw_index: 1217 consumeToken(Token::kw_index); 1218 return builder.getIndexType(); 1219 1220 // none-type 1221 case Token::kw_none: 1222 consumeToken(Token::kw_none); 1223 return builder.getNoneType(); 1224 1225 // extended type 1226 case Token::exclamation_identifier: 1227 return parseExtendedType(); 1228 } 1229 } 1230 1231 /// Parse a tensor type. 1232 /// 1233 /// tensor-type ::= `tensor` `<` dimension-list type `>` 1234 /// dimension-list ::= dimension-list-ranked | `*x` 1235 /// 1236 Type Parser::parseTensorType() { 1237 consumeToken(Token::kw_tensor); 1238 1239 if (parseToken(Token::less, "expected '<' in tensor type")) 1240 return nullptr; 1241 1242 bool isUnranked; 1243 SmallVector<int64_t, 4> dimensions; 1244 1245 if (consumeIf(Token::star)) { 1246 // This is an unranked tensor type. 1247 isUnranked = true; 1248 1249 if (parseXInDimensionList()) 1250 return nullptr; 1251 1252 } else { 1253 isUnranked = false; 1254 if (parseDimensionListRanked(dimensions)) 1255 return nullptr; 1256 } 1257 1258 // Parse the element type. 1259 auto typeLocation = getEncodedSourceLocation(getToken().getLoc()); 1260 auto elementType = parseType(); 1261 if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) 1262 return nullptr; 1263 1264 if (isUnranked) 1265 return UnrankedTensorType::getChecked(elementType, typeLocation); 1266 return RankedTensorType::getChecked(dimensions, elementType, typeLocation); 1267 } 1268 1269 /// Parse a tuple type. 1270 /// 1271 /// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>` 1272 /// 1273 Type Parser::parseTupleType() { 1274 consumeToken(Token::kw_tuple); 1275 1276 // Parse the '<'. 1277 if (parseToken(Token::less, "expected '<' in tuple type")) 1278 return nullptr; 1279 1280 // Check for an empty tuple by directly parsing '>'. 1281 if (consumeIf(Token::greater)) 1282 return TupleType::get(getContext()); 1283 1284 // Parse the element types and the '>'. 1285 SmallVector<Type, 4> types; 1286 if (parseTypeListNoParens(types) || 1287 parseToken(Token::greater, "expected '>' in tuple type")) 1288 return nullptr; 1289 1290 return TupleType::get(types, getContext()); 1291 } 1292 1293 /// Parse a vector type. 1294 /// 1295 /// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>` 1296 /// non-empty-static-dimension-list ::= decimal-literal `x` 1297 /// static-dimension-list 1298 /// static-dimension-list ::= (decimal-literal `x`)* 1299 /// 1300 VectorType Parser::parseVectorType() { 1301 consumeToken(Token::kw_vector); 1302 1303 if (parseToken(Token::less, "expected '<' in vector type")) 1304 return nullptr; 1305 1306 SmallVector<int64_t, 4> dimensions; 1307 if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) 1308 return nullptr; 1309 if (dimensions.empty()) 1310 return (emitError("expected dimension size in vector type"), nullptr); 1311 1312 // Parse the element type. 1313 auto typeLoc = getToken().getLoc(); 1314 auto elementType = parseType(); 1315 if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) 1316 return nullptr; 1317 1318 return VectorType::getChecked(dimensions, elementType, 1319 getEncodedSourceLocation(typeLoc)); 1320 } 1321 1322 /// Parse a dimension list of a tensor or memref type. This populates the 1323 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and 1324 /// errors out on `?` otherwise. 1325 /// 1326 /// dimension-list-ranked ::= (dimension `x`)* 1327 /// dimension ::= `?` | decimal-literal 1328 /// 1329 /// When `allowDynamic` is not set, this is used to parse: 1330 /// 1331 /// static-dimension-list ::= (decimal-literal `x`)* 1332 ParseResult 1333 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 1334 bool allowDynamic) { 1335 while (getToken().isAny(Token::integer, Token::question)) { 1336 if (consumeIf(Token::question)) { 1337 if (!allowDynamic) 1338 return emitError("expected static shape"); 1339 dimensions.push_back(-1); 1340 } else { 1341 // Hexadecimal integer literals (starting with `0x`) are not allowed in 1342 // aggregate type declarations. Therefore, `0xf32` should be processed as 1343 // a sequence of separate elements `0`, `x`, `f32`. 1344 if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { 1345 // We can get here only if the token is an integer literal. Hexadecimal 1346 // integer literals can only start with `0x` (`1x` wouldn't lex as a 1347 // literal, just `1` would, at which point we don't get into this 1348 // branch). 1349 assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); 1350 dimensions.push_back(0); 1351 state.lex.resetPointer(getTokenSpelling().data() + 1); 1352 consumeToken(); 1353 } else { 1354 // Make sure this integer value is in bound and valid. 1355 auto dimension = getToken().getUnsignedIntegerValue(); 1356 if (!dimension.hasValue()) 1357 return emitError("invalid dimension"); 1358 dimensions.push_back((int64_t)dimension.getValue()); 1359 consumeToken(Token::integer); 1360 } 1361 } 1362 1363 // Make sure we have an 'x' or something like 'xbf32'. 1364 if (parseXInDimensionList()) 1365 return failure(); 1366 } 1367 1368 return success(); 1369 } 1370 1371 /// Parse an 'x' token in a dimension list, handling the case where the x is 1372 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next 1373 /// token. 1374 ParseResult Parser::parseXInDimensionList() { 1375 if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') 1376 return emitError("expected 'x' in dimension list"); 1377 1378 // If we had a prefix of 'x', lex the next token immediately after the 'x'. 1379 if (getTokenSpelling().size() != 1) 1380 state.lex.resetPointer(getTokenSpelling().data() + 1); 1381 1382 // Consume the 'x'. 1383 consumeToken(Token::bare_identifier); 1384 1385 return success(); 1386 } 1387 1388 // Parse a comma-separated list of dimensions, possibly empty: 1389 // stride-list ::= `[` (dimension (`,` dimension)*)? `]` 1390 ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) { 1391 if (!consumeIf(Token::l_square)) 1392 return failure(); 1393 // Empty list early exit. 1394 if (consumeIf(Token::r_square)) 1395 return success(); 1396 while (true) { 1397 if (consumeIf(Token::question)) { 1398 dimensions.push_back(MemRefType::getDynamicStrideOrOffset()); 1399 } else { 1400 // This must be an integer value. 1401 int64_t val; 1402 if (getToken().getSpelling().getAsInteger(10, val)) 1403 return emitError("invalid integer value: ") << getToken().getSpelling(); 1404 // Make sure it is not the one value for `?`. 1405 if (ShapedType::isDynamic(val)) 1406 return emitError("invalid integer value: ") 1407 << getToken().getSpelling() 1408 << ", use `?` to specify a dynamic dimension"; 1409 dimensions.push_back(val); 1410 consumeToken(Token::integer); 1411 } 1412 if (!consumeIf(Token::comma)) 1413 break; 1414 } 1415 if (!consumeIf(Token::r_square)) 1416 return failure(); 1417 return success(); 1418 } 1419 1420 //===----------------------------------------------------------------------===// 1421 // Attribute parsing. 1422 //===----------------------------------------------------------------------===// 1423 1424 /// Return the symbol reference referred to by the given token, that is known to 1425 /// be an @-identifier. 1426 static std::string extractSymbolReference(Token tok) { 1427 assert(tok.is(Token::at_identifier) && "expected valid @-identifier"); 1428 StringRef nameStr = tok.getSpelling().drop_front(); 1429 1430 // Check to see if the reference is a string literal, or a bare identifier. 1431 if (nameStr.front() == '"') 1432 return tok.getStringValue(); 1433 return nameStr; 1434 } 1435 1436 /// Parse an arbitrary attribute. 1437 /// 1438 /// attribute-value ::= `unit` 1439 /// | bool-literal 1440 /// | integer-literal (`:` (index-type | integer-type))? 1441 /// | float-literal (`:` float-type)? 1442 /// | string-literal (`:` type)? 1443 /// | type 1444 /// | `[` (attribute-value (`,` attribute-value)*)? `]` 1445 /// | `{` (attribute-entry (`,` attribute-entry)*)? `}` 1446 /// | symbol-ref-id (`::` symbol-ref-id)* 1447 /// | `dense` `<` attribute-value `>` `:` 1448 /// (tensor-type | vector-type) 1449 /// | `sparse` `<` attribute-value `,` attribute-value `>` 1450 /// `:` (tensor-type | vector-type) 1451 /// | `opaque` `<` dialect-namespace `,` hex-string-literal 1452 /// `>` `:` (tensor-type | vector-type) 1453 /// | extended-attribute 1454 /// 1455 Attribute Parser::parseAttribute(Type type) { 1456 switch (getToken().getKind()) { 1457 // Parse an AffineMap or IntegerSet attribute. 1458 case Token::l_paren: { 1459 // Try to parse an affine map or an integer set reference. 1460 AffineMap map; 1461 IntegerSet set; 1462 if (parseAffineMapOrIntegerSetReference(map, set)) 1463 return nullptr; 1464 if (map) 1465 return AffineMapAttr::get(map); 1466 assert(set); 1467 return IntegerSetAttr::get(set); 1468 } 1469 1470 // Parse an array attribute. 1471 case Token::l_square: { 1472 consumeToken(Token::l_square); 1473 1474 SmallVector<Attribute, 4> elements; 1475 auto parseElt = [&]() -> ParseResult { 1476 elements.push_back(parseAttribute()); 1477 return elements.back() ? success() : failure(); 1478 }; 1479 1480 if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) 1481 return nullptr; 1482 return builder.getArrayAttr(elements); 1483 } 1484 1485 // Parse a boolean attribute. 1486 case Token::kw_false: 1487 consumeToken(Token::kw_false); 1488 return builder.getBoolAttr(false); 1489 case Token::kw_true: 1490 consumeToken(Token::kw_true); 1491 return builder.getBoolAttr(true); 1492 1493 // Parse a dense elements attribute. 1494 case Token::kw_dense: 1495 return parseDenseElementsAttr(); 1496 1497 // Parse a dictionary attribute. 1498 case Token::l_brace: { 1499 SmallVector<NamedAttribute, 4> elements; 1500 if (parseAttributeDict(elements)) 1501 return nullptr; 1502 return builder.getDictionaryAttr(elements); 1503 } 1504 1505 // Parse an extended attribute, i.e. alias or dialect attribute. 1506 case Token::hash_identifier: 1507 return parseExtendedAttr(type); 1508 1509 // Parse floating point and integer attributes. 1510 case Token::floatliteral: 1511 return parseFloatAttr(type, /*isNegative=*/false); 1512 case Token::integer: 1513 return parseDecOrHexAttr(type, /*isNegative=*/false); 1514 case Token::minus: { 1515 consumeToken(Token::minus); 1516 if (getToken().is(Token::integer)) 1517 return parseDecOrHexAttr(type, /*isNegative=*/true); 1518 if (getToken().is(Token::floatliteral)) 1519 return parseFloatAttr(type, /*isNegative=*/true); 1520 1521 return (emitError("expected constant integer or floating point value"), 1522 nullptr); 1523 } 1524 1525 // Parse a location attribute. 1526 case Token::kw_loc: { 1527 LocationAttr attr; 1528 return failed(parseLocation(attr)) ? Attribute() : attr; 1529 } 1530 1531 // Parse an opaque elements attribute. 1532 case Token::kw_opaque: 1533 return parseOpaqueElementsAttr(); 1534 1535 // Parse a sparse elements attribute. 1536 case Token::kw_sparse: 1537 return parseSparseElementsAttr(); 1538 1539 // Parse a string attribute. 1540 case Token::string: { 1541 auto val = getToken().getStringValue(); 1542 consumeToken(Token::string); 1543 // Parse the optional trailing colon type if one wasn't explicitly provided. 1544 if (!type && consumeIf(Token::colon) && !(type = parseType())) 1545 return Attribute(); 1546 1547 return type ? StringAttr::get(val, type) 1548 : StringAttr::get(val, getContext()); 1549 } 1550 1551 // Parse a symbol reference attribute. 1552 case Token::at_identifier: { 1553 std::string nameStr = extractSymbolReference(getToken()); 1554 consumeToken(Token::at_identifier); 1555 1556 // Parse any nested references. 1557 std::vector<FlatSymbolRefAttr> nestedRefs; 1558 while (getToken().is(Token::colon)) { 1559 // Check for the '::' prefix. 1560 const char *curPointer = getToken().getLoc().getPointer(); 1561 consumeToken(Token::colon); 1562 if (!consumeIf(Token::colon)) { 1563 state.lex.resetPointer(curPointer); 1564 consumeToken(); 1565 break; 1566 } 1567 // Parse the reference itself. 1568 auto curLoc = getToken().getLoc(); 1569 if (getToken().isNot(Token::at_identifier)) { 1570 emitError(curLoc, "expected nested symbol reference identifier"); 1571 return Attribute(); 1572 } 1573 1574 std::string nameStr = extractSymbolReference(getToken()); 1575 consumeToken(Token::at_identifier); 1576 nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext())); 1577 } 1578 1579 return builder.getSymbolRefAttr(nameStr, nestedRefs); 1580 } 1581 1582 // Parse a 'unit' attribute. 1583 case Token::kw_unit: 1584 consumeToken(Token::kw_unit); 1585 return builder.getUnitAttr(); 1586 1587 default: 1588 // Parse a type attribute. 1589 if (Type type = parseType()) 1590 return TypeAttr::get(type); 1591 return nullptr; 1592 } 1593 } 1594 1595 /// Attribute dictionary. 1596 /// 1597 /// attribute-dict ::= `{` `}` 1598 /// | `{` attribute-entry (`,` attribute-entry)* `}` 1599 /// attribute-entry ::= bare-id `=` attribute-value 1600 /// 1601 ParseResult 1602 Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) { 1603 if (parseToken(Token::l_brace, "expected '{' in attribute dictionary")) 1604 return failure(); 1605 1606 auto parseElt = [&]() -> ParseResult { 1607 // We allow keywords as attribute names. 1608 if (getToken().isNot(Token::bare_identifier, Token::inttype) && 1609 !getToken().isKeyword()) 1610 return emitError("expected attribute name"); 1611 Identifier nameId = builder.getIdentifier(getTokenSpelling()); 1612 consumeToken(); 1613 1614 // Try to parse the '=' for the attribute value. 1615 if (!consumeIf(Token::equal)) { 1616 // If there is no '=', we treat this as a unit attribute. 1617 attributes.push_back({nameId, builder.getUnitAttr()}); 1618 return success(); 1619 } 1620 1621 auto attr = parseAttribute(); 1622 if (!attr) 1623 return failure(); 1624 1625 attributes.push_back({nameId, attr}); 1626 return success(); 1627 }; 1628 1629 if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) 1630 return failure(); 1631 1632 return success(); 1633 } 1634 1635 /// Parse an extended attribute. 1636 /// 1637 /// extended-attribute ::= (dialect-attribute | attribute-alias) 1638 /// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>` 1639 /// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body? 1640 /// attribute-alias ::= `#` alias-name 1641 /// 1642 Attribute Parser::parseExtendedAttr(Type type) { 1643 Attribute attr = parseExtendedSymbol<Attribute>( 1644 *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions, 1645 [&](StringRef dialectName, StringRef symbolData, 1646 llvm::SMLoc loc) -> Attribute { 1647 // Parse an optional trailing colon type. 1648 Type attrType = type; 1649 if (consumeIf(Token::colon) && !(attrType = parseType())) 1650 return Attribute(); 1651 1652 // If we found a registered dialect, then ask it to parse the attribute. 1653 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1654 return parseSymbol<Attribute>( 1655 symbolData, state.context, state.symbols, [&](Parser &parser) { 1656 CustomDialectAsmParser customParser(symbolData, parser); 1657 return dialect->parseAttribute(customParser, attrType); 1658 }); 1659 } 1660 1661 // Otherwise, form a new opaque attribute. 1662 return OpaqueAttr::getChecked( 1663 Identifier::get(dialectName, state.context), symbolData, 1664 attrType ? attrType : NoneType::get(state.context), 1665 getEncodedSourceLocation(loc)); 1666 }); 1667 1668 // Ensure that the attribute has the same type as requested. 1669 if (attr && type && attr.getType() != type) { 1670 emitError("attribute type different than expected: expected ") 1671 << type << ", but got " << attr.getType(); 1672 return nullptr; 1673 } 1674 return attr; 1675 } 1676 1677 /// Parse a float attribute. 1678 Attribute Parser::parseFloatAttr(Type type, bool isNegative) { 1679 auto val = getToken().getFloatingPointValue(); 1680 if (!val.hasValue()) 1681 return (emitError("floating point value too large for attribute"), nullptr); 1682 consumeToken(Token::floatliteral); 1683 if (!type) { 1684 // Default to F64 when no type is specified. 1685 if (!consumeIf(Token::colon)) 1686 type = builder.getF64Type(); 1687 else if (!(type = parseType())) 1688 return nullptr; 1689 } 1690 if (!type.isa<FloatType>()) 1691 return (emitError("floating point value not valid for specified type"), 1692 nullptr); 1693 return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue()); 1694 } 1695 1696 /// Construct a float attribute bitwise equivalent to the integer literal. 1697 static FloatAttr buildHexadecimalFloatLiteral(Parser *p, FloatType type, 1698 uint64_t value) { 1699 int width = type.getIntOrFloatBitWidth(); 1700 APInt apInt(width, value); 1701 if (apInt != value) { 1702 p->emitError("hexadecimal float constant out of range for type"); 1703 return nullptr; 1704 } 1705 APFloat apFloat(type.getFloatSemantics(), apInt); 1706 return p->builder.getFloatAttr(type, apFloat); 1707 } 1708 1709 /// Parse a decimal or a hexadecimal literal, which can be either an integer 1710 /// or a float attribute. 1711 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) { 1712 auto val = getToken().getUInt64IntegerValue(); 1713 if (!val.hasValue()) 1714 return (emitError("integer constant out of range for attribute"), nullptr); 1715 1716 // Remember if the literal is hexadecimal. 1717 StringRef spelling = getToken().getSpelling(); 1718 auto loc = state.curToken.getLoc(); 1719 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1720 1721 consumeToken(Token::integer); 1722 if (!type) { 1723 // Default to i64 if not type is specified. 1724 if (!consumeIf(Token::colon)) 1725 type = builder.getIntegerType(64); 1726 else if (!(type = parseType())) 1727 return nullptr; 1728 } 1729 1730 if (auto floatType = type.dyn_cast<FloatType>()) { 1731 // TODO(zinenko): Update once hex format for bfloat16 is supported. 1732 if (type.isBF16()) 1733 return emitError(loc, 1734 "hexadecimal float literal not supported for bfloat16"), 1735 nullptr; 1736 if (isNegative) 1737 return emitError( 1738 loc, 1739 "hexadecimal float literal should not have a leading minus"), 1740 nullptr; 1741 if (!isHex) { 1742 emitError(loc, "unexpected decimal integer literal for a float attribute") 1743 .attachNote() 1744 << "add a trailing dot to make the literal a float"; 1745 return nullptr; 1746 } 1747 1748 // Construct a float attribute bitwise equivalent to the integer literal. 1749 return buildHexadecimalFloatLiteral(this, floatType, *val); 1750 } 1751 1752 if (!type.isIntOrIndex()) 1753 return emitError(loc, "integer literal not valid for specified type"), 1754 nullptr; 1755 1756 // Parse the integer literal. 1757 int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); 1758 APInt apInt(width, *val, isNegative); 1759 if (apInt != *val) 1760 return emitError(loc, "integer constant out of range for attribute"), 1761 nullptr; 1762 1763 // Otherwise construct an integer attribute. 1764 if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0) 1765 return emitError(loc, "integer constant out of range for attribute"), 1766 nullptr; 1767 1768 return builder.getIntegerAttr(type, isNegative ? -apInt : apInt); 1769 } 1770 1771 /// Parse an opaque elements attribute. 1772 Attribute Parser::parseOpaqueElementsAttr() { 1773 consumeToken(Token::kw_opaque); 1774 if (parseToken(Token::less, "expected '<' after 'opaque'")) 1775 return nullptr; 1776 1777 if (getToken().isNot(Token::string)) 1778 return (emitError("expected dialect namespace"), nullptr); 1779 1780 auto name = getToken().getStringValue(); 1781 auto *dialect = builder.getContext()->getRegisteredDialect(name); 1782 // TODO(shpeisman): Allow for having an unknown dialect on an opaque 1783 // attribute. Otherwise, it can't be roundtripped without having the dialect 1784 // registered. 1785 if (!dialect) 1786 return (emitError("no registered dialect with namespace '" + name + "'"), 1787 nullptr); 1788 1789 consumeToken(Token::string); 1790 if (parseToken(Token::comma, "expected ','")) 1791 return nullptr; 1792 1793 if (getToken().getKind() != Token::string) 1794 return (emitError("opaque string should start with '0x'"), nullptr); 1795 1796 auto val = getToken().getStringValue(); 1797 if (val.size() < 2 || val[0] != '0' || val[1] != 'x') 1798 return (emitError("opaque string should start with '0x'"), nullptr); 1799 1800 val = val.substr(2); 1801 if (!llvm::all_of(val, llvm::isHexDigit)) 1802 return (emitError("opaque string only contains hex digits"), nullptr); 1803 1804 consumeToken(Token::string); 1805 if (parseToken(Token::greater, "expected '>'") || 1806 parseToken(Token::colon, "expected ':'")) 1807 return nullptr; 1808 1809 auto type = parseElementsLiteralType(); 1810 if (!type) 1811 return nullptr; 1812 1813 return OpaqueElementsAttr::get(dialect, type, llvm::fromHex(val)); 1814 } 1815 1816 namespace { 1817 class TensorLiteralParser { 1818 public: 1819 TensorLiteralParser(Parser &p) : p(p) {} 1820 1821 ParseResult parse() { 1822 if (p.getToken().is(Token::l_square)) 1823 return parseList(shape); 1824 return parseElement(); 1825 } 1826 1827 /// Build a dense attribute instance with the parsed elements and the given 1828 /// shaped type. 1829 DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type); 1830 1831 ArrayRef<int64_t> getShape() const { return shape; } 1832 1833 private: 1834 enum class ElementKind { Boolean, Integer, Float }; 1835 1836 /// Return a string to represent the given element kind. 1837 const char *getElementKindStr(ElementKind kind) { 1838 switch (kind) { 1839 case ElementKind::Boolean: 1840 return "'boolean'"; 1841 case ElementKind::Integer: 1842 return "'integer'"; 1843 case ElementKind::Float: 1844 return "'float'"; 1845 } 1846 llvm_unreachable("unknown element kind"); 1847 } 1848 1849 /// Build a Dense Integer attribute for the given type. 1850 DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type, 1851 IntegerType eltTy); 1852 1853 /// Build a Dense Float attribute for the given type. 1854 DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type, 1855 FloatType eltTy); 1856 1857 /// Parse a single element, returning failure if it isn't a valid element 1858 /// literal. For example: 1859 /// parseElement(1) -> Success, 1 1860 /// parseElement([1]) -> Failure 1861 ParseResult parseElement(); 1862 1863 /// Parse a list of either lists or elements, returning the dimensions of the 1864 /// parsed sub-tensors in dims. For example: 1865 /// parseList([1, 2, 3]) -> Success, [3] 1866 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 1867 /// parseList([[1, 2], 3]) -> Failure 1868 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 1869 ParseResult parseList(llvm::SmallVectorImpl<int64_t> &dims); 1870 1871 Parser &p; 1872 1873 /// The shape inferred from the parsed elements. 1874 SmallVector<int64_t, 4> shape; 1875 1876 /// Storage used when parsing elements, this is a pair of <is_negated, token>. 1877 std::vector<std::pair<bool, Token>> storage; 1878 1879 /// A flag that indicates the type of elements that have been parsed. 1880 llvm::Optional<ElementKind> knownEltKind; 1881 }; 1882 } // namespace 1883 1884 /// Build a dense attribute instance with the parsed elements and the given 1885 /// shaped type. 1886 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc, 1887 ShapedType type) { 1888 // Check that the parsed storage size has the same number of elements to the 1889 // type, or is a known splat. 1890 if (!shape.empty() && getShape() != type.getShape()) { 1891 p.emitError(loc) << "inferred shape of elements literal ([" << getShape() 1892 << "]) does not match type ([" << type.getShape() << "])"; 1893 return nullptr; 1894 } 1895 1896 // If the type is an integer, build a set of APInt values from the storage 1897 // with the correct bitwidth. 1898 if (auto intTy = type.getElementType().dyn_cast<IntegerType>()) 1899 return getIntAttr(loc, type, intTy); 1900 1901 // Otherwise, this must be a floating point type. 1902 auto floatTy = type.getElementType().dyn_cast<FloatType>(); 1903 if (!floatTy) { 1904 p.emitError(loc) << "expected floating-point or integer element type, got " 1905 << type.getElementType(); 1906 return nullptr; 1907 } 1908 return getFloatAttr(loc, type, floatTy); 1909 } 1910 1911 /// Build a Dense Integer attribute for the given type. 1912 DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc, 1913 ShapedType type, 1914 IntegerType eltTy) { 1915 std::vector<APInt> intElements; 1916 intElements.reserve(storage.size()); 1917 for (const auto &signAndToken : storage) { 1918 bool isNegative = signAndToken.first; 1919 const Token &token = signAndToken.second; 1920 1921 // Check to see if floating point values were parsed. 1922 if (token.is(Token::floatliteral)) { 1923 p.emitError() << "expected integer elements, but parsed floating-point"; 1924 return nullptr; 1925 } 1926 1927 assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) && 1928 "unexpected token type"); 1929 if (token.isAny(Token::kw_true, Token::kw_false)) { 1930 if (!eltTy.isInteger(1)) 1931 p.emitError() << "expected i1 type for 'true' or 'false' values"; 1932 APInt apInt(eltTy.getWidth(), token.is(Token::kw_true), 1933 /*isSigned=*/false); 1934 intElements.push_back(apInt); 1935 continue; 1936 } 1937 1938 // Create APInt values for each element with the correct bitwidth. 1939 auto val = token.getUInt64IntegerValue(); 1940 if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0 1941 : (int64_t)val.getValue() < 0)) { 1942 p.emitError(token.getLoc(), 1943 "integer constant out of range for attribute"); 1944 return nullptr; 1945 } 1946 APInt apInt(eltTy.getWidth(), val.getValue(), isNegative); 1947 if (apInt != val.getValue()) 1948 return (p.emitError("integer constant out of range for type"), nullptr); 1949 intElements.push_back(isNegative ? -apInt : apInt); 1950 } 1951 1952 return DenseElementsAttr::get(type, intElements); 1953 } 1954 1955 /// Build a Dense Float attribute for the given type. 1956 DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc, 1957 ShapedType type, 1958 FloatType eltTy) { 1959 std::vector<Attribute> floatValues; 1960 floatValues.reserve(storage.size()); 1961 for (const auto &signAndToken : storage) { 1962 bool isNegative = signAndToken.first; 1963 const Token &token = signAndToken.second; 1964 1965 // Handle hexadecimal float literals. 1966 if (token.is(Token::integer) && token.getSpelling().startswith("0x")) { 1967 if (isNegative) { 1968 p.emitError(token.getLoc()) 1969 << "hexadecimal float literal should not have a leading minus"; 1970 return nullptr; 1971 } 1972 auto val = token.getUInt64IntegerValue(); 1973 if (!val.hasValue()) { 1974 p.emitError("hexadecimal float constant out of range for attribute"); 1975 return nullptr; 1976 } 1977 FloatAttr attr = buildHexadecimalFloatLiteral(&p, eltTy, *val); 1978 if (!attr) 1979 return nullptr; 1980 floatValues.push_back(attr); 1981 continue; 1982 } 1983 1984 // Check to see if any decimal integers or booleans were parsed. 1985 if (!token.is(Token::floatliteral)) { 1986 p.emitError() << "expected floating-point elements, but parsed integer"; 1987 return nullptr; 1988 } 1989 1990 // Build the float values from tokens. 1991 auto val = token.getFloatingPointValue(); 1992 if (!val.hasValue()) { 1993 p.emitError("floating point value too large for attribute"); 1994 return nullptr; 1995 } 1996 floatValues.push_back(FloatAttr::get(eltTy, isNegative ? -*val : *val)); 1997 } 1998 1999 return DenseElementsAttr::get(type, floatValues); 2000 } 2001 2002 ParseResult TensorLiteralParser::parseElement() { 2003 switch (p.getToken().getKind()) { 2004 // Parse a boolean element. 2005 case Token::kw_true: 2006 case Token::kw_false: 2007 case Token::floatliteral: 2008 case Token::integer: 2009 storage.emplace_back(/*isNegative=*/false, p.getToken()); 2010 p.consumeToken(); 2011 break; 2012 2013 // Parse a signed integer or a negative floating-point element. 2014 case Token::minus: 2015 p.consumeToken(Token::minus); 2016 if (!p.getToken().isAny(Token::floatliteral, Token::integer)) 2017 return p.emitError("expected integer or floating point literal"); 2018 storage.emplace_back(/*isNegative=*/true, p.getToken()); 2019 p.consumeToken(); 2020 break; 2021 2022 default: 2023 return p.emitError("expected element literal of primitive type"); 2024 } 2025 2026 return success(); 2027 } 2028 2029 /// Parse a list of either lists or elements, returning the dimensions of the 2030 /// parsed sub-tensors in dims. For example: 2031 /// parseList([1, 2, 3]) -> Success, [3] 2032 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 2033 /// parseList([[1, 2], 3]) -> Failure 2034 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 2035 ParseResult 2036 TensorLiteralParser::parseList(llvm::SmallVectorImpl<int64_t> &dims) { 2037 p.consumeToken(Token::l_square); 2038 2039 auto checkDims = 2040 [&](const llvm::SmallVectorImpl<int64_t> &prevDims, 2041 const llvm::SmallVectorImpl<int64_t> &newDims) -> ParseResult { 2042 if (prevDims == newDims) 2043 return success(); 2044 return p.emitError("tensor literal is invalid; ranks are not consistent " 2045 "between elements"); 2046 }; 2047 2048 bool first = true; 2049 llvm::SmallVector<int64_t, 4> newDims; 2050 unsigned size = 0; 2051 auto parseCommaSeparatedList = [&]() -> ParseResult { 2052 llvm::SmallVector<int64_t, 4> thisDims; 2053 if (p.getToken().getKind() == Token::l_square) { 2054 if (parseList(thisDims)) 2055 return failure(); 2056 } else if (parseElement()) { 2057 return failure(); 2058 } 2059 ++size; 2060 if (!first) 2061 return checkDims(newDims, thisDims); 2062 newDims = thisDims; 2063 first = false; 2064 return success(); 2065 }; 2066 if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) 2067 return failure(); 2068 2069 // Return the sublists' dimensions with 'size' prepended. 2070 dims.clear(); 2071 dims.push_back(size); 2072 dims.append(newDims.begin(), newDims.end()); 2073 return success(); 2074 } 2075 2076 /// Parse a dense elements attribute. 2077 Attribute Parser::parseDenseElementsAttr() { 2078 consumeToken(Token::kw_dense); 2079 if (parseToken(Token::less, "expected '<' after 'dense'")) 2080 return nullptr; 2081 2082 // Parse the literal data. 2083 TensorLiteralParser literalParser(*this); 2084 if (literalParser.parse()) 2085 return nullptr; 2086 2087 if (parseToken(Token::greater, "expected '>'") || 2088 parseToken(Token::colon, "expected ':'")) 2089 return nullptr; 2090 2091 auto typeLoc = getToken().getLoc(); 2092 auto type = parseElementsLiteralType(); 2093 if (!type) 2094 return nullptr; 2095 return literalParser.getAttr(typeLoc, type); 2096 } 2097 2098 /// Shaped type for elements attribute. 2099 /// 2100 /// elements-literal-type ::= vector-type | ranked-tensor-type 2101 /// 2102 /// This method also checks the type has static shape. 2103 ShapedType Parser::parseElementsLiteralType() { 2104 auto type = parseType(); 2105 if (!type) 2106 return nullptr; 2107 2108 if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) { 2109 emitError("elements literal must be a ranked tensor or vector type"); 2110 return nullptr; 2111 } 2112 2113 auto sType = type.cast<ShapedType>(); 2114 if (!sType.hasStaticShape()) 2115 return (emitError("elements literal type must have static shape"), nullptr); 2116 2117 return sType; 2118 } 2119 2120 /// Parse a sparse elements attribute. 2121 Attribute Parser::parseSparseElementsAttr() { 2122 consumeToken(Token::kw_sparse); 2123 if (parseToken(Token::less, "Expected '<' after 'sparse'")) 2124 return nullptr; 2125 2126 /// Parse indices 2127 auto indicesLoc = getToken().getLoc(); 2128 TensorLiteralParser indiceParser(*this); 2129 if (indiceParser.parse()) 2130 return nullptr; 2131 2132 if (parseToken(Token::comma, "expected ','")) 2133 return nullptr; 2134 2135 /// Parse values. 2136 auto valuesLoc = getToken().getLoc(); 2137 TensorLiteralParser valuesParser(*this); 2138 if (valuesParser.parse()) 2139 return nullptr; 2140 2141 if (parseToken(Token::greater, "expected '>'") || 2142 parseToken(Token::colon, "expected ':'")) 2143 return nullptr; 2144 2145 auto type = parseElementsLiteralType(); 2146 if (!type) 2147 return nullptr; 2148 2149 // If the indices are a splat, i.e. the literal parser parsed an element and 2150 // not a list, we set the shape explicitly. The indices are represented by a 2151 // 2-dimensional shape where the second dimension is the rank of the type. 2152 // Given that the parsed indices is a splat, we know that we only have one 2153 // indice and thus one for the first dimension. 2154 auto indiceEltType = builder.getIntegerType(64); 2155 ShapedType indicesType; 2156 if (indiceParser.getShape().empty()) { 2157 indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType); 2158 } else { 2159 // Otherwise, set the shape to the one parsed by the literal parser. 2160 indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType); 2161 } 2162 auto indices = indiceParser.getAttr(indicesLoc, indicesType); 2163 2164 // If the values are a splat, set the shape explicitly based on the number of 2165 // indices. The number of indices is encoded in the first dimension of the 2166 // indice shape type. 2167 auto valuesEltType = type.getElementType(); 2168 ShapedType valuesType = 2169 valuesParser.getShape().empty() 2170 ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType) 2171 : RankedTensorType::get(valuesParser.getShape(), valuesEltType); 2172 auto values = valuesParser.getAttr(valuesLoc, valuesType); 2173 2174 /// Sanity check. 2175 if (valuesType.getRank() != 1) 2176 return (emitError("expected 1-d tensor for values"), nullptr); 2177 2178 auto sameShape = (indicesType.getRank() == 1) || 2179 (type.getRank() == indicesType.getDimSize(1)); 2180 auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); 2181 if (!sameShape || !sameElementNum) { 2182 emitError() << "expected shape ([" << type.getShape() 2183 << "]); inferred shape of indices literal ([" 2184 << indicesType.getShape() 2185 << "]); inferred shape of values literal ([" 2186 << valuesType.getShape() << "])"; 2187 return nullptr; 2188 } 2189 2190 // Build the sparse elements attribute by the indices and values. 2191 return SparseElementsAttr::get(type, indices, values); 2192 } 2193 2194 //===----------------------------------------------------------------------===// 2195 // Location parsing. 2196 //===----------------------------------------------------------------------===// 2197 2198 /// Parse a location. 2199 /// 2200 /// location ::= `loc` inline-location 2201 /// inline-location ::= '(' location-inst ')' 2202 /// 2203 ParseResult Parser::parseLocation(LocationAttr &loc) { 2204 // Check for 'loc' identifier. 2205 if (parseToken(Token::kw_loc, "expected 'loc' keyword")) 2206 return emitError(); 2207 2208 // Parse the inline-location. 2209 if (parseToken(Token::l_paren, "expected '(' in inline location") || 2210 parseLocationInstance(loc) || 2211 parseToken(Token::r_paren, "expected ')' in inline location")) 2212 return failure(); 2213 return success(); 2214 } 2215 2216 /// Specific location instances. 2217 /// 2218 /// location-inst ::= filelinecol-location | 2219 /// name-location | 2220 /// callsite-location | 2221 /// fused-location | 2222 /// unknown-location 2223 /// filelinecol-location ::= string-literal ':' integer-literal 2224 /// ':' integer-literal 2225 /// name-location ::= string-literal 2226 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' 2227 /// fused-location ::= fused ('<' attribute-value '>')? 2228 /// '[' location-inst (location-inst ',')* ']' 2229 /// unknown-location ::= 'unknown' 2230 /// 2231 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) { 2232 consumeToken(Token::bare_identifier); 2233 2234 // Parse the '('. 2235 if (parseToken(Token::l_paren, "expected '(' in callsite location")) 2236 return failure(); 2237 2238 // Parse the callee location. 2239 LocationAttr calleeLoc; 2240 if (parseLocationInstance(calleeLoc)) 2241 return failure(); 2242 2243 // Parse the 'at'. 2244 if (getToken().isNot(Token::bare_identifier) || 2245 getToken().getSpelling() != "at") 2246 return emitError("expected 'at' in callsite location"); 2247 consumeToken(Token::bare_identifier); 2248 2249 // Parse the caller location. 2250 LocationAttr callerLoc; 2251 if (parseLocationInstance(callerLoc)) 2252 return failure(); 2253 2254 // Parse the ')'. 2255 if (parseToken(Token::r_paren, "expected ')' in callsite location")) 2256 return failure(); 2257 2258 // Return the callsite location. 2259 loc = CallSiteLoc::get(calleeLoc, callerLoc); 2260 return success(); 2261 } 2262 2263 ParseResult Parser::parseFusedLocation(LocationAttr &loc) { 2264 consumeToken(Token::bare_identifier); 2265 2266 // Try to parse the optional metadata. 2267 Attribute metadata; 2268 if (consumeIf(Token::less)) { 2269 metadata = parseAttribute(); 2270 if (!metadata) 2271 return emitError("expected valid attribute metadata"); 2272 // Parse the '>' token. 2273 if (parseToken(Token::greater, 2274 "expected '>' after fused location metadata")) 2275 return failure(); 2276 } 2277 2278 llvm::SmallVector<Location, 4> locations; 2279 auto parseElt = [&] { 2280 LocationAttr newLoc; 2281 if (parseLocationInstance(newLoc)) 2282 return failure(); 2283 locations.push_back(newLoc); 2284 return success(); 2285 }; 2286 2287 if (parseToken(Token::l_square, "expected '[' in fused location") || 2288 parseCommaSeparatedList(parseElt) || 2289 parseToken(Token::r_square, "expected ']' in fused location")) 2290 return failure(); 2291 2292 // Return the fused location. 2293 loc = FusedLoc::get(locations, metadata, getContext()); 2294 return success(); 2295 } 2296 2297 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) { 2298 auto *ctx = getContext(); 2299 auto str = getToken().getStringValue(); 2300 consumeToken(Token::string); 2301 2302 // If the next token is ':' this is a filelinecol location. 2303 if (consumeIf(Token::colon)) { 2304 // Parse the line number. 2305 if (getToken().isNot(Token::integer)) 2306 return emitError("expected integer line number in FileLineColLoc"); 2307 auto line = getToken().getUnsignedIntegerValue(); 2308 if (!line.hasValue()) 2309 return emitError("expected integer line number in FileLineColLoc"); 2310 consumeToken(Token::integer); 2311 2312 // Parse the ':'. 2313 if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) 2314 return failure(); 2315 2316 // Parse the column number. 2317 if (getToken().isNot(Token::integer)) 2318 return emitError("expected integer column number in FileLineColLoc"); 2319 auto column = getToken().getUnsignedIntegerValue(); 2320 if (!column.hasValue()) 2321 return emitError("expected integer column number in FileLineColLoc"); 2322 consumeToken(Token::integer); 2323 2324 loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx); 2325 return success(); 2326 } 2327 2328 // Otherwise, this is a NameLoc. 2329 2330 // Check for a child location. 2331 if (consumeIf(Token::l_paren)) { 2332 auto childSourceLoc = getToken().getLoc(); 2333 2334 // Parse the child location. 2335 LocationAttr childLoc; 2336 if (parseLocationInstance(childLoc)) 2337 return failure(); 2338 2339 // The child must not be another NameLoc. 2340 if (childLoc.isa<NameLoc>()) 2341 return emitError(childSourceLoc, 2342 "child of NameLoc cannot be another NameLoc"); 2343 loc = NameLoc::get(Identifier::get(str, ctx), childLoc); 2344 2345 // Parse the closing ')'. 2346 if (parseToken(Token::r_paren, 2347 "expected ')' after child location of NameLoc")) 2348 return failure(); 2349 } else { 2350 loc = NameLoc::get(Identifier::get(str, ctx), ctx); 2351 } 2352 2353 return success(); 2354 } 2355 2356 ParseResult Parser::parseLocationInstance(LocationAttr &loc) { 2357 // Handle either name or filelinecol locations. 2358 if (getToken().is(Token::string)) 2359 return parseNameOrFileLineColLocation(loc); 2360 2361 // Bare tokens required for other cases. 2362 if (!getToken().is(Token::bare_identifier)) 2363 return emitError("expected location instance"); 2364 2365 // Check for the 'callsite' signifying a callsite location. 2366 if (getToken().getSpelling() == "callsite") 2367 return parseCallSiteLocation(loc); 2368 2369 // If the token is 'fused', then this is a fused location. 2370 if (getToken().getSpelling() == "fused") 2371 return parseFusedLocation(loc); 2372 2373 // Check for a 'unknown' for an unknown location. 2374 if (getToken().getSpelling() == "unknown") { 2375 consumeToken(Token::bare_identifier); 2376 loc = UnknownLoc::get(getContext()); 2377 return success(); 2378 } 2379 2380 return emitError("expected location instance"); 2381 } 2382 2383 //===----------------------------------------------------------------------===// 2384 // Affine parsing. 2385 //===----------------------------------------------------------------------===// 2386 2387 /// Lower precedence ops (all at the same precedence level). LNoOp is false in 2388 /// the boolean sense. 2389 enum AffineLowPrecOp { 2390 /// Null value. 2391 LNoOp, 2392 Add, 2393 Sub 2394 }; 2395 2396 /// Higher precedence ops - all at the same precedence level. HNoOp is false 2397 /// in the boolean sense. 2398 enum AffineHighPrecOp { 2399 /// Null value. 2400 HNoOp, 2401 Mul, 2402 FloorDiv, 2403 CeilDiv, 2404 Mod 2405 }; 2406 2407 namespace { 2408 /// This is a specialized parser for affine structures (affine maps, affine 2409 /// expressions, and integer sets), maintaining the state transient to their 2410 /// bodies. 2411 class AffineParser : public Parser { 2412 public: 2413 AffineParser(ParserState &state, bool allowParsingSSAIds = false, 2414 llvm::function_ref<ParseResult(bool)> parseElement = nullptr) 2415 : Parser(state), allowParsingSSAIds(allowParsingSSAIds), 2416 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {} 2417 2418 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); 2419 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); 2420 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); 2421 ParseResult parseAffineMapOfSSAIds(AffineMap &map); 2422 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds, 2423 unsigned &numDims); 2424 2425 private: 2426 // Binary affine op parsing. 2427 AffineLowPrecOp consumeIfLowPrecOp(); 2428 AffineHighPrecOp consumeIfHighPrecOp(); 2429 2430 // Identifier lists for polyhedral structures. 2431 ParseResult parseDimIdList(unsigned &numDims); 2432 ParseResult parseSymbolIdList(unsigned &numSymbols); 2433 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, 2434 unsigned &numSymbols); 2435 ParseResult parseIdentifierDefinition(AffineExpr idExpr); 2436 2437 AffineExpr parseAffineExpr(); 2438 AffineExpr parseParentheticalExpr(); 2439 AffineExpr parseNegateExpression(AffineExpr lhs); 2440 AffineExpr parseIntegerExpr(); 2441 AffineExpr parseBareIdExpr(); 2442 AffineExpr parseSSAIdExpr(bool isSymbol); 2443 AffineExpr parseSymbolSSAIdExpr(); 2444 2445 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, 2446 AffineExpr rhs, SMLoc opLoc); 2447 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, 2448 AffineExpr rhs); 2449 AffineExpr parseAffineOperandExpr(AffineExpr lhs); 2450 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); 2451 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, 2452 SMLoc llhsOpLoc); 2453 AffineExpr parseAffineConstraint(bool *isEq); 2454 2455 private: 2456 bool allowParsingSSAIds; 2457 llvm::function_ref<ParseResult(bool)> parseElement; 2458 unsigned numDimOperands; 2459 unsigned numSymbolOperands; 2460 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols; 2461 }; 2462 } // end anonymous namespace 2463 2464 /// Create an affine binary high precedence op expression (mul's, div's, mod). 2465 /// opLoc is the location of the op token to be used to report errors 2466 /// for non-conforming expressions. 2467 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, 2468 AffineExpr lhs, AffineExpr rhs, 2469 SMLoc opLoc) { 2470 // TODO: make the error location info accurate. 2471 switch (op) { 2472 case Mul: 2473 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { 2474 emitError(opLoc, "non-affine expression: at least one of the multiply " 2475 "operands has to be either a constant or symbolic"); 2476 return nullptr; 2477 } 2478 return lhs * rhs; 2479 case FloorDiv: 2480 if (!rhs.isSymbolicOrConstant()) { 2481 emitError(opLoc, "non-affine expression: right operand of floordiv " 2482 "has to be either a constant or symbolic"); 2483 return nullptr; 2484 } 2485 return lhs.floorDiv(rhs); 2486 case CeilDiv: 2487 if (!rhs.isSymbolicOrConstant()) { 2488 emitError(opLoc, "non-affine expression: right operand of ceildiv " 2489 "has to be either a constant or symbolic"); 2490 return nullptr; 2491 } 2492 return lhs.ceilDiv(rhs); 2493 case Mod: 2494 if (!rhs.isSymbolicOrConstant()) { 2495 emitError(opLoc, "non-affine expression: right operand of mod " 2496 "has to be either a constant or symbolic"); 2497 return nullptr; 2498 } 2499 return lhs % rhs; 2500 case HNoOp: 2501 llvm_unreachable("can't create affine expression for null high prec op"); 2502 return nullptr; 2503 } 2504 llvm_unreachable("Unknown AffineHighPrecOp"); 2505 } 2506 2507 /// Create an affine binary low precedence op expression (add, sub). 2508 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, 2509 AffineExpr lhs, AffineExpr rhs) { 2510 switch (op) { 2511 case AffineLowPrecOp::Add: 2512 return lhs + rhs; 2513 case AffineLowPrecOp::Sub: 2514 return lhs - rhs; 2515 case AffineLowPrecOp::LNoOp: 2516 llvm_unreachable("can't create affine expression for null low prec op"); 2517 return nullptr; 2518 } 2519 llvm_unreachable("Unknown AffineLowPrecOp"); 2520 } 2521 2522 /// Consume this token if it is a lower precedence affine op (there are only 2523 /// two precedence levels). 2524 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { 2525 switch (getToken().getKind()) { 2526 case Token::plus: 2527 consumeToken(Token::plus); 2528 return AffineLowPrecOp::Add; 2529 case Token::minus: 2530 consumeToken(Token::minus); 2531 return AffineLowPrecOp::Sub; 2532 default: 2533 return AffineLowPrecOp::LNoOp; 2534 } 2535 } 2536 2537 /// Consume this token if it is a higher precedence affine op (there are only 2538 /// two precedence levels) 2539 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { 2540 switch (getToken().getKind()) { 2541 case Token::star: 2542 consumeToken(Token::star); 2543 return Mul; 2544 case Token::kw_floordiv: 2545 consumeToken(Token::kw_floordiv); 2546 return FloorDiv; 2547 case Token::kw_ceildiv: 2548 consumeToken(Token::kw_ceildiv); 2549 return CeilDiv; 2550 case Token::kw_mod: 2551 consumeToken(Token::kw_mod); 2552 return Mod; 2553 default: 2554 return HNoOp; 2555 } 2556 } 2557 2558 /// Parse a high precedence op expression list: mul, div, and mod are high 2559 /// precedence binary ops, i.e., parse a 2560 /// expr_1 op_1 expr_2 op_2 ... expr_n 2561 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). 2562 /// All affine binary ops are left associative. 2563 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is 2564 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is 2565 /// null. llhsOpLoc is the location of the llhsOp token that will be used to 2566 /// report an error for non-conforming expressions. 2567 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, 2568 AffineHighPrecOp llhsOp, 2569 SMLoc llhsOpLoc) { 2570 AffineExpr lhs = parseAffineOperandExpr(llhs); 2571 if (!lhs) 2572 return nullptr; 2573 2574 // Found an LHS. Parse the remaining expression. 2575 auto opLoc = getToken().getLoc(); 2576 if (AffineHighPrecOp op = consumeIfHighPrecOp()) { 2577 if (llhs) { 2578 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); 2579 if (!expr) 2580 return nullptr; 2581 return parseAffineHighPrecOpExpr(expr, op, opLoc); 2582 } 2583 // No LLHS, get RHS 2584 return parseAffineHighPrecOpExpr(lhs, op, opLoc); 2585 } 2586 2587 // This is the last operand in this expression. 2588 if (llhs) 2589 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); 2590 2591 // No llhs, 'lhs' itself is the expression. 2592 return lhs; 2593 } 2594 2595 /// Parse an affine expression inside parentheses. 2596 /// 2597 /// affine-expr ::= `(` affine-expr `)` 2598 AffineExpr AffineParser::parseParentheticalExpr() { 2599 if (parseToken(Token::l_paren, "expected '('")) 2600 return nullptr; 2601 if (getToken().is(Token::r_paren)) 2602 return (emitError("no expression inside parentheses"), nullptr); 2603 2604 auto expr = parseAffineExpr(); 2605 if (!expr) 2606 return nullptr; 2607 if (parseToken(Token::r_paren, "expected ')'")) 2608 return nullptr; 2609 2610 return expr; 2611 } 2612 2613 /// Parse the negation expression. 2614 /// 2615 /// affine-expr ::= `-` affine-expr 2616 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { 2617 if (parseToken(Token::minus, "expected '-'")) 2618 return nullptr; 2619 2620 AffineExpr operand = parseAffineOperandExpr(lhs); 2621 // Since negation has the highest precedence of all ops (including high 2622 // precedence ops) but lower than parentheses, we are only going to use 2623 // parseAffineOperandExpr instead of parseAffineExpr here. 2624 if (!operand) 2625 // Extra error message although parseAffineOperandExpr would have 2626 // complained. Leads to a better diagnostic. 2627 return (emitError("missing operand of negation"), nullptr); 2628 return (-1) * operand; 2629 } 2630 2631 /// Parse a bare id that may appear in an affine expression. 2632 /// 2633 /// affine-expr ::= bare-id 2634 AffineExpr AffineParser::parseBareIdExpr() { 2635 if (getToken().isNot(Token::bare_identifier)) 2636 return (emitError("expected bare identifier"), nullptr); 2637 2638 StringRef sRef = getTokenSpelling(); 2639 for (auto entry : dimsAndSymbols) { 2640 if (entry.first == sRef) { 2641 consumeToken(Token::bare_identifier); 2642 return entry.second; 2643 } 2644 } 2645 2646 return (emitError("use of undeclared identifier"), nullptr); 2647 } 2648 2649 /// Parse an SSA id which may appear in an affine expression. 2650 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) { 2651 if (!allowParsingSSAIds) 2652 return (emitError("unexpected ssa identifier"), nullptr); 2653 if (getToken().isNot(Token::percent_identifier)) 2654 return (emitError("expected ssa identifier"), nullptr); 2655 auto name = getTokenSpelling(); 2656 // Check if we already parsed this SSA id. 2657 for (auto entry : dimsAndSymbols) { 2658 if (entry.first == name) { 2659 consumeToken(Token::percent_identifier); 2660 return entry.second; 2661 } 2662 } 2663 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it. 2664 if (parseElement(isSymbol)) 2665 return (emitError("failed to parse ssa identifier"), nullptr); 2666 auto idExpr = isSymbol 2667 ? getAffineSymbolExpr(numSymbolOperands++, getContext()) 2668 : getAffineDimExpr(numDimOperands++, getContext()); 2669 dimsAndSymbols.push_back({name, idExpr}); 2670 return idExpr; 2671 } 2672 2673 AffineExpr AffineParser::parseSymbolSSAIdExpr() { 2674 if (parseToken(Token::kw_symbol, "expected symbol keyword") || 2675 parseToken(Token::l_paren, "expected '(' at start of SSA symbol")) 2676 return nullptr; 2677 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true); 2678 if (!symbolExpr) 2679 return nullptr; 2680 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol")) 2681 return nullptr; 2682 return symbolExpr; 2683 } 2684 2685 /// Parse a positive integral constant appearing in an affine expression. 2686 /// 2687 /// affine-expr ::= integer-literal 2688 AffineExpr AffineParser::parseIntegerExpr() { 2689 auto val = getToken().getUInt64IntegerValue(); 2690 if (!val.hasValue() || (int64_t)val.getValue() < 0) 2691 return (emitError("constant too large for index"), nullptr); 2692 2693 consumeToken(Token::integer); 2694 return builder.getAffineConstantExpr((int64_t)val.getValue()); 2695 } 2696 2697 /// Parses an expression that can be a valid operand of an affine expression. 2698 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary 2699 /// operator, the rhs of which is being parsed. This is used to determine 2700 /// whether an error should be emitted for a missing right operand. 2701 // Eg: for an expression without parentheses (like i + j + k + l), each 2702 // of the four identifiers is an operand. For i + j*k + l, j*k is not an 2703 // operand expression, it's an op expression and will be parsed via 2704 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and 2705 // -l are valid operands that will be parsed by this function. 2706 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { 2707 switch (getToken().getKind()) { 2708 case Token::bare_identifier: 2709 return parseBareIdExpr(); 2710 case Token::kw_symbol: 2711 return parseSymbolSSAIdExpr(); 2712 case Token::percent_identifier: 2713 return parseSSAIdExpr(/*isSymbol=*/false); 2714 case Token::integer: 2715 return parseIntegerExpr(); 2716 case Token::l_paren: 2717 return parseParentheticalExpr(); 2718 case Token::minus: 2719 return parseNegateExpression(lhs); 2720 case Token::kw_ceildiv: 2721 case Token::kw_floordiv: 2722 case Token::kw_mod: 2723 case Token::plus: 2724 case Token::star: 2725 if (lhs) 2726 emitError("missing right operand of binary operator"); 2727 else 2728 emitError("missing left operand of binary operator"); 2729 return nullptr; 2730 default: 2731 if (lhs) 2732 emitError("missing right operand of binary operator"); 2733 else 2734 emitError("expected affine expression"); 2735 return nullptr; 2736 } 2737 } 2738 2739 /// Parse affine expressions that are bare-id's, integer constants, 2740 /// parenthetical affine expressions, and affine op expressions that are a 2741 /// composition of those. 2742 /// 2743 /// All binary op's associate from left to right. 2744 /// 2745 /// {add, sub} have lower precedence than {mul, div, and mod}. 2746 /// 2747 /// Add, sub'are themselves at the same precedence level. Mul, floordiv, 2748 /// ceildiv, and mod are at the same higher precedence level. Negation has 2749 /// higher precedence than any binary op. 2750 /// 2751 /// llhs: the affine expression appearing on the left of the one being parsed. 2752 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, 2753 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned 2754 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left 2755 /// associativity. 2756 /// 2757 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function 2758 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where 2759 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). 2760 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, 2761 AffineLowPrecOp llhsOp) { 2762 AffineExpr lhs; 2763 if (!(lhs = parseAffineOperandExpr(llhs))) 2764 return nullptr; 2765 2766 // Found an LHS. Deal with the ops. 2767 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { 2768 if (llhs) { 2769 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2770 return parseAffineLowPrecOpExpr(sum, lOp); 2771 } 2772 // No LLHS, get RHS and form the expression. 2773 return parseAffineLowPrecOpExpr(lhs, lOp); 2774 } 2775 auto opLoc = getToken().getLoc(); 2776 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { 2777 // We have a higher precedence op here. Get the rhs operand for the llhs 2778 // through parseAffineHighPrecOpExpr. 2779 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); 2780 if (!highRes) 2781 return nullptr; 2782 2783 // If llhs is null, the product forms the first operand of the yet to be 2784 // found expression. If non-null, the op to associate with llhs is llhsOp. 2785 AffineExpr expr = 2786 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; 2787 2788 // Recurse for subsequent low prec op's after the affine high prec op 2789 // expression. 2790 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) 2791 return parseAffineLowPrecOpExpr(expr, nextOp); 2792 return expr; 2793 } 2794 // Last operand in the expression list. 2795 if (llhs) 2796 return getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2797 // No llhs, 'lhs' itself is the expression. 2798 return lhs; 2799 } 2800 2801 /// Parse an affine expression. 2802 /// affine-expr ::= `(` affine-expr `)` 2803 /// | `-` affine-expr 2804 /// | affine-expr `+` affine-expr 2805 /// | affine-expr `-` affine-expr 2806 /// | affine-expr `*` affine-expr 2807 /// | affine-expr `floordiv` affine-expr 2808 /// | affine-expr `ceildiv` affine-expr 2809 /// | affine-expr `mod` affine-expr 2810 /// | bare-id 2811 /// | integer-literal 2812 /// 2813 /// Additional conditions are checked depending on the production. For eg., 2814 /// one of the operands for `*` has to be either constant/symbolic; the second 2815 /// operand for floordiv, ceildiv, and mod has to be a positive integer. 2816 AffineExpr AffineParser::parseAffineExpr() { 2817 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); 2818 } 2819 2820 /// Parse a dim or symbol from the lists appearing before the actual 2821 /// expressions of the affine map. Update our state to store the 2822 /// dimensional/symbolic identifier. 2823 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { 2824 if (getToken().isNot(Token::bare_identifier)) 2825 return emitError("expected bare identifier"); 2826 2827 auto name = getTokenSpelling(); 2828 for (auto entry : dimsAndSymbols) { 2829 if (entry.first == name) 2830 return emitError("redefinition of identifier '" + name + "'"); 2831 } 2832 consumeToken(Token::bare_identifier); 2833 2834 dimsAndSymbols.push_back({name, idExpr}); 2835 return success(); 2836 } 2837 2838 /// Parse the list of dimensional identifiers to an affine map. 2839 ParseResult AffineParser::parseDimIdList(unsigned &numDims) { 2840 if (parseToken(Token::l_paren, 2841 "expected '(' at start of dimensional identifiers list")) { 2842 return failure(); 2843 } 2844 2845 auto parseElt = [&]() -> ParseResult { 2846 auto dimension = getAffineDimExpr(numDims++, getContext()); 2847 return parseIdentifierDefinition(dimension); 2848 }; 2849 return parseCommaSeparatedListUntil(Token::r_paren, parseElt); 2850 } 2851 2852 /// Parse the list of symbolic identifiers to an affine map. 2853 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { 2854 consumeToken(Token::l_square); 2855 auto parseElt = [&]() -> ParseResult { 2856 auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); 2857 return parseIdentifierDefinition(symbol); 2858 }; 2859 return parseCommaSeparatedListUntil(Token::r_square, parseElt); 2860 } 2861 2862 /// Parse the list of symbolic identifiers to an affine map. 2863 ParseResult 2864 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, 2865 unsigned &numSymbols) { 2866 if (parseDimIdList(numDims)) { 2867 return failure(); 2868 } 2869 if (!getToken().is(Token::l_square)) { 2870 numSymbols = 0; 2871 return success(); 2872 } 2873 return parseSymbolIdList(numSymbols); 2874 } 2875 2876 /// Parses an ambiguous affine map or integer set definition inline. 2877 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, 2878 IntegerSet &set) { 2879 unsigned numDims = 0, numSymbols = 0; 2880 2881 // List of dimensional and optional symbol identifiers. 2882 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { 2883 return failure(); 2884 } 2885 2886 // This is needed for parsing attributes as we wouldn't know whether we would 2887 // be parsing an integer set attribute or an affine map attribute. 2888 bool isArrow = getToken().is(Token::arrow); 2889 bool isColon = getToken().is(Token::colon); 2890 if (!isArrow && !isColon) { 2891 return emitError("expected '->' or ':'"); 2892 } else if (isArrow) { 2893 parseToken(Token::arrow, "expected '->' or '['"); 2894 map = parseAffineMapRange(numDims, numSymbols); 2895 return map ? success() : failure(); 2896 } else if (parseToken(Token::colon, "expected ':' or '['")) { 2897 return failure(); 2898 } 2899 2900 if ((set = parseIntegerSetConstraints(numDims, numSymbols))) 2901 return success(); 2902 2903 return failure(); 2904 } 2905 2906 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 2907 ParseResult AffineParser::parseAffineMapOfSSAIds(AffineMap &map) { 2908 if (parseToken(Token::l_square, "expected '['")) 2909 return failure(); 2910 2911 SmallVector<AffineExpr, 4> exprs; 2912 auto parseElt = [&]() -> ParseResult { 2913 auto elt = parseAffineExpr(); 2914 exprs.push_back(elt); 2915 return elt ? success() : failure(); 2916 }; 2917 2918 // Parse a multi-dimensional affine expression (a comma-separated list of 2919 // 1-d affine expressions); the list cannot be empty. Grammar: 2920 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 2921 if (parseCommaSeparatedListUntil(Token::r_square, parseElt, 2922 /*allowEmptyList=*/true)) 2923 return failure(); 2924 // Parsed a valid affine map. 2925 if (exprs.empty()) 2926 map = AffineMap::get(getContext()); 2927 else 2928 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 2929 exprs); 2930 return success(); 2931 } 2932 2933 /// Parse the range and sizes affine map definition inline. 2934 /// 2935 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr 2936 /// 2937 /// multi-dim-affine-expr ::= `(` `)` 2938 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)` 2939 AffineMap AffineParser::parseAffineMapRange(unsigned numDims, 2940 unsigned numSymbols) { 2941 parseToken(Token::l_paren, "expected '(' at start of affine map range"); 2942 2943 SmallVector<AffineExpr, 4> exprs; 2944 auto parseElt = [&]() -> ParseResult { 2945 auto elt = parseAffineExpr(); 2946 ParseResult res = elt ? success() : failure(); 2947 exprs.push_back(elt); 2948 return res; 2949 }; 2950 2951 // Parse a multi-dimensional affine expression (a comma-separated list of 2952 // 1-d affine expressions); the list cannot be empty. Grammar: 2953 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 2954 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 2955 return AffineMap(); 2956 2957 if (exprs.empty()) 2958 return AffineMap::get(getContext()); 2959 2960 // Parsed a valid affine map. 2961 return AffineMap::get(numDims, numSymbols, exprs); 2962 } 2963 2964 /// Parse an affine constraint. 2965 /// affine-constraint ::= affine-expr `>=` `0` 2966 /// | affine-expr `==` `0` 2967 /// 2968 /// isEq is set to true if the parsed constraint is an equality, false if it 2969 /// is an inequality (greater than or equal). 2970 /// 2971 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { 2972 AffineExpr expr = parseAffineExpr(); 2973 if (!expr) 2974 return nullptr; 2975 2976 if (consumeIf(Token::greater) && consumeIf(Token::equal) && 2977 getToken().is(Token::integer)) { 2978 auto dim = getToken().getUnsignedIntegerValue(); 2979 if (dim.hasValue() && dim.getValue() == 0) { 2980 consumeToken(Token::integer); 2981 *isEq = false; 2982 return expr; 2983 } 2984 return (emitError("expected '0' after '>='"), nullptr); 2985 } 2986 2987 if (consumeIf(Token::equal) && consumeIf(Token::equal) && 2988 getToken().is(Token::integer)) { 2989 auto dim = getToken().getUnsignedIntegerValue(); 2990 if (dim.hasValue() && dim.getValue() == 0) { 2991 consumeToken(Token::integer); 2992 *isEq = true; 2993 return expr; 2994 } 2995 return (emitError("expected '0' after '=='"), nullptr); 2996 } 2997 2998 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), 2999 nullptr); 3000 } 3001 3002 /// Parse the constraints that are part of an integer set definition. 3003 /// integer-set-inline 3004 /// ::= dim-and-symbol-id-lists `:` 3005 /// '(' affine-constraint-conjunction? ')' 3006 /// affine-constraint-conjunction ::= affine-constraint (`,` 3007 /// affine-constraint)* 3008 /// 3009 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, 3010 unsigned numSymbols) { 3011 if (parseToken(Token::l_paren, 3012 "expected '(' at start of integer set constraint list")) 3013 return IntegerSet(); 3014 3015 SmallVector<AffineExpr, 4> constraints; 3016 SmallVector<bool, 4> isEqs; 3017 auto parseElt = [&]() -> ParseResult { 3018 bool isEq; 3019 auto elt = parseAffineConstraint(&isEq); 3020 ParseResult res = elt ? success() : failure(); 3021 if (elt) { 3022 constraints.push_back(elt); 3023 isEqs.push_back(isEq); 3024 } 3025 return res; 3026 }; 3027 3028 // Parse a list of affine constraints (comma-separated). 3029 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3030 return IntegerSet(); 3031 3032 // If no constraints were parsed, then treat this as a degenerate 'true' case. 3033 if (constraints.empty()) { 3034 /* 0 == 0 */ 3035 auto zero = getAffineConstantExpr(0, getContext()); 3036 return IntegerSet::get(numDims, numSymbols, zero, true); 3037 } 3038 3039 // Parsed a valid integer set. 3040 return IntegerSet::get(numDims, numSymbols, constraints, isEqs); 3041 } 3042 3043 /// Parse an ambiguous reference to either and affine map or an integer set. 3044 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, 3045 IntegerSet &set) { 3046 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); 3047 } 3048 3049 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to 3050 /// parse SSA value uses encountered while parsing affine expressions. 3051 ParseResult Parser::parseAffineMapOfSSAIds( 3052 AffineMap &map, llvm::function_ref<ParseResult(bool)> parseElement) { 3053 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement) 3054 .parseAffineMapOfSSAIds(map); 3055 } 3056 3057 //===----------------------------------------------------------------------===// 3058 // OperationParser 3059 //===----------------------------------------------------------------------===// 3060 3061 namespace { 3062 /// This class provides support for parsing operations and regions of 3063 /// operations. 3064 class OperationParser : public Parser { 3065 public: 3066 OperationParser(ParserState &state, ModuleOp moduleOp) 3067 : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) { 3068 } 3069 3070 ~OperationParser(); 3071 3072 /// After parsing is finished, this function must be called to see if there 3073 /// are any remaining issues. 3074 ParseResult finalize(); 3075 3076 //===--------------------------------------------------------------------===// 3077 // SSA Value Handling 3078 //===--------------------------------------------------------------------===// 3079 3080 /// This represents a use of an SSA value in the program. The first two 3081 /// entries in the tuple are the name and result number of a reference. The 3082 /// third is the location of the reference, which is used in case this ends 3083 /// up being a use of an undefined value. 3084 struct SSAUseInfo { 3085 StringRef name; // Value name, e.g. %42 or %abc 3086 unsigned number; // Number, specified with #12 3087 SMLoc loc; // Location of first definition or use. 3088 }; 3089 3090 /// Push a new SSA name scope to the parser. 3091 void pushSSANameScope(bool isIsolated); 3092 3093 /// Pop the last SSA name scope from the parser. 3094 ParseResult popSSANameScope(); 3095 3096 /// Register a definition of a value with the symbol table. 3097 ParseResult addDefinition(SSAUseInfo useInfo, Value *value); 3098 3099 /// Parse an optional list of SSA uses into 'results'. 3100 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 3101 3102 /// Parse a single SSA use into 'result'. 3103 ParseResult parseSSAUse(SSAUseInfo &result); 3104 3105 /// Given a reference to an SSA value and its type, return a reference. This 3106 /// returns null on failure. 3107 Value *resolveSSAUse(SSAUseInfo useInfo, Type type); 3108 3109 ParseResult parseSSADefOrUseAndType( 3110 const std::function<ParseResult(SSAUseInfo, Type)> &action); 3111 3112 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value *> &results); 3113 3114 /// Return the location of the value identified by its name and number if it 3115 /// has been already reference. 3116 llvm::Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 3117 auto &values = isolatedNameScopes.back().values; 3118 if (!values.count(name) || number >= values[name].size()) 3119 return {}; 3120 if (values[name][number].first) 3121 return values[name][number].second; 3122 return {}; 3123 } 3124 3125 //===--------------------------------------------------------------------===// 3126 // Operation Parsing 3127 //===--------------------------------------------------------------------===// 3128 3129 /// Parse an operation instance. 3130 ParseResult parseOperation(); 3131 3132 /// Parse a single operation successor and its operand list. 3133 ParseResult parseSuccessorAndUseList(Block *&dest, 3134 SmallVectorImpl<Value *> &operands); 3135 3136 /// Parse a comma-separated list of operation successors in brackets. 3137 ParseResult 3138 parseSuccessors(SmallVectorImpl<Block *> &destinations, 3139 SmallVectorImpl<SmallVector<Value *, 4>> &operands); 3140 3141 /// Parse an operation instance that is in the generic form. 3142 Operation *parseGenericOperation(); 3143 3144 /// Parse an operation instance that is in the generic form and insert it at 3145 /// the provided insertion point. 3146 Operation *parseGenericOperation(Block *insertBlock, 3147 Block::iterator insertPt); 3148 3149 /// Parse an operation instance that is in the op-defined custom form. 3150 Operation *parseCustomOperation(); 3151 3152 //===--------------------------------------------------------------------===// 3153 // Region Parsing 3154 //===--------------------------------------------------------------------===// 3155 3156 /// Parse a region into 'region' with the provided entry block arguments. 3157 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 3158 /// isolated from those above. 3159 ParseResult parseRegion(Region ®ion, 3160 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 3161 bool isIsolatedNameScope = false); 3162 3163 /// Parse a region body into 'region'. 3164 ParseResult parseRegionBody(Region ®ion); 3165 3166 //===--------------------------------------------------------------------===// 3167 // Block Parsing 3168 //===--------------------------------------------------------------------===// 3169 3170 /// Parse a new block into 'block'. 3171 ParseResult parseBlock(Block *&block); 3172 3173 /// Parse a list of operations into 'block'. 3174 ParseResult parseBlockBody(Block *block); 3175 3176 /// Parse a (possibly empty) list of block arguments. 3177 ParseResult 3178 parseOptionalBlockArgList(SmallVectorImpl<BlockArgument *> &results, 3179 Block *owner); 3180 3181 /// Get the block with the specified name, creating it if it doesn't 3182 /// already exist. The location specified is the point of use, which allows 3183 /// us to diagnose references to blocks that are not defined precisely. 3184 Block *getBlockNamed(StringRef name, SMLoc loc); 3185 3186 /// Define the block with the specified name. Returns the Block* or nullptr in 3187 /// the case of redefinition. 3188 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 3189 3190 private: 3191 /// Returns the info for a block at the current scope for the given name. 3192 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 3193 return blocksByName.back()[name]; 3194 } 3195 3196 /// Insert a new forward reference to the given block. 3197 void insertForwardRef(Block *block, SMLoc loc) { 3198 forwardRef.back().try_emplace(block, loc); 3199 } 3200 3201 /// Erase any forward reference to the given block. 3202 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 3203 3204 /// Record that a definition was added at the current scope. 3205 void recordDefinition(StringRef def); 3206 3207 /// Get the value entry for the given SSA name. 3208 SmallVectorImpl<std::pair<Value *, SMLoc>> &getSSAValueEntry(StringRef name); 3209 3210 /// Create a forward reference placeholder value with the given location and 3211 /// result type. 3212 Value *createForwardRefPlaceholder(SMLoc loc, Type type); 3213 3214 /// Return true if this is a forward reference. 3215 bool isForwardRefPlaceholder(Value *value) { 3216 return forwardRefPlaceholders.count(value); 3217 } 3218 3219 /// This struct represents an isolated SSA name scope. This scope may contain 3220 /// other nested non-isolated scopes. These scopes are used for operations 3221 /// that are known to be isolated to allow for reusing names within their 3222 /// regions, even if those names are used above. 3223 struct IsolatedSSANameScope { 3224 /// Record that a definition was added at the current scope. 3225 void recordDefinition(StringRef def) { 3226 definitionsPerScope.back().insert(def); 3227 } 3228 3229 /// Push a nested name scope. 3230 void pushSSANameScope() { definitionsPerScope.push_back({}); } 3231 3232 /// Pop a nested name scope. 3233 void popSSANameScope() { 3234 for (auto &def : definitionsPerScope.pop_back_val()) 3235 values.erase(def.getKey()); 3236 } 3237 3238 /// This keeps track of all of the SSA values we are tracking for each name 3239 /// scope, indexed by their name. This has one entry per result number. 3240 llvm::StringMap<SmallVector<std::pair<Value *, SMLoc>, 1>> values; 3241 3242 /// This keeps track of all of the values defined by a specific name scope. 3243 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 3244 }; 3245 3246 /// A list of isolated name scopes. 3247 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 3248 3249 /// This keeps track of the block names as well as the location of the first 3250 /// reference for each nested name scope. This is used to diagnose invalid 3251 /// block references and memorize them. 3252 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 3253 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 3254 3255 /// These are all of the placeholders we've made along with the location of 3256 /// their first reference, to allow checking for use of undefined values. 3257 DenseMap<Value *, SMLoc> forwardRefPlaceholders; 3258 3259 /// The builder used when creating parsed operation instances. 3260 OpBuilder opBuilder; 3261 3262 /// The top level module operation. 3263 ModuleOp moduleOp; 3264 }; 3265 } // end anonymous namespace 3266 3267 OperationParser::~OperationParser() { 3268 for (auto &fwd : forwardRefPlaceholders) { 3269 // Drop all uses of undefined forward declared reference and destroy 3270 // defining operation. 3271 fwd.first->dropAllUses(); 3272 fwd.first->getDefiningOp()->destroy(); 3273 } 3274 } 3275 3276 /// After parsing is finished, this function must be called to see if there are 3277 /// any remaining issues. 3278 ParseResult OperationParser::finalize() { 3279 // Check for any forward references that are left. If we find any, error 3280 // out. 3281 if (!forwardRefPlaceholders.empty()) { 3282 SmallVector<std::pair<const char *, Value *>, 4> errors; 3283 // Iteration over the map isn't deterministic, so sort by source location. 3284 for (auto entry : forwardRefPlaceholders) 3285 errors.push_back({entry.second.getPointer(), entry.first}); 3286 llvm::array_pod_sort(errors.begin(), errors.end()); 3287 3288 for (auto entry : errors) { 3289 auto loc = SMLoc::getFromPointer(entry.first); 3290 emitError(loc, "use of undeclared SSA value name"); 3291 } 3292 return failure(); 3293 } 3294 3295 return success(); 3296 } 3297 3298 //===----------------------------------------------------------------------===// 3299 // SSA Value Handling 3300 //===----------------------------------------------------------------------===// 3301 3302 void OperationParser::pushSSANameScope(bool isIsolated) { 3303 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 3304 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 3305 3306 // Push back a new name definition scope. 3307 if (isIsolated) 3308 isolatedNameScopes.push_back({}); 3309 isolatedNameScopes.back().pushSSANameScope(); 3310 } 3311 3312 ParseResult OperationParser::popSSANameScope() { 3313 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 3314 3315 // Verify that all referenced blocks were defined. 3316 if (!forwardRefInCurrentScope.empty()) { 3317 SmallVector<std::pair<const char *, Block *>, 4> errors; 3318 // Iteration over the map isn't deterministic, so sort by source location. 3319 for (auto entry : forwardRefInCurrentScope) { 3320 errors.push_back({entry.second.getPointer(), entry.first}); 3321 // Add this block to the top-level region to allow for automatic cleanup. 3322 moduleOp.getOperation()->getRegion(0).push_back(entry.first); 3323 } 3324 llvm::array_pod_sort(errors.begin(), errors.end()); 3325 3326 for (auto entry : errors) { 3327 auto loc = SMLoc::getFromPointer(entry.first); 3328 emitError(loc, "reference to an undefined block"); 3329 } 3330 return failure(); 3331 } 3332 3333 // Pop the next nested namescope. If there is only one internal namescope, 3334 // just pop the isolated scope. 3335 auto ¤tNameScope = isolatedNameScopes.back(); 3336 if (currentNameScope.definitionsPerScope.size() == 1) 3337 isolatedNameScopes.pop_back(); 3338 else 3339 currentNameScope.popSSANameScope(); 3340 3341 blocksByName.pop_back(); 3342 return success(); 3343 } 3344 3345 /// Register a definition of a value with the symbol table. 3346 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value *value) { 3347 auto &entries = getSSAValueEntry(useInfo.name); 3348 3349 // Make sure there is a slot for this value. 3350 if (entries.size() <= useInfo.number) 3351 entries.resize(useInfo.number + 1); 3352 3353 // If we already have an entry for this, check to see if it was a definition 3354 // or a forward reference. 3355 if (auto *existing = entries[useInfo.number].first) { 3356 if (!isForwardRefPlaceholder(existing)) { 3357 return emitError(useInfo.loc) 3358 .append("redefinition of SSA value '", useInfo.name, "'") 3359 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3360 .append("previously defined here"); 3361 } 3362 3363 // If it was a forward reference, update everything that used it to use 3364 // the actual definition instead, delete the forward ref, and remove it 3365 // from our set of forward references we track. 3366 existing->replaceAllUsesWith(value); 3367 existing->getDefiningOp()->destroy(); 3368 forwardRefPlaceholders.erase(existing); 3369 } 3370 3371 /// Record this definition for the current scope. 3372 entries[useInfo.number] = {value, useInfo.loc}; 3373 recordDefinition(useInfo.name); 3374 return success(); 3375 } 3376 3377 /// Parse a (possibly empty) list of SSA operands. 3378 /// 3379 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 3380 /// ssa-use-list-opt ::= ssa-use-list? 3381 /// 3382 ParseResult 3383 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 3384 if (getToken().isNot(Token::percent_identifier)) 3385 return success(); 3386 return parseCommaSeparatedList([&]() -> ParseResult { 3387 SSAUseInfo result; 3388 if (parseSSAUse(result)) 3389 return failure(); 3390 results.push_back(result); 3391 return success(); 3392 }); 3393 } 3394 3395 /// Parse a SSA operand for an operation. 3396 /// 3397 /// ssa-use ::= ssa-id 3398 /// 3399 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 3400 result.name = getTokenSpelling(); 3401 result.number = 0; 3402 result.loc = getToken().getLoc(); 3403 if (parseToken(Token::percent_identifier, "expected SSA operand")) 3404 return failure(); 3405 3406 // If we have an attribute ID, it is a result number. 3407 if (getToken().is(Token::hash_identifier)) { 3408 if (auto value = getToken().getHashIdentifierNumber()) 3409 result.number = value.getValue(); 3410 else 3411 return emitError("invalid SSA value result number"); 3412 consumeToken(Token::hash_identifier); 3413 } 3414 3415 return success(); 3416 } 3417 3418 /// Given an unbound reference to an SSA value and its type, return the value 3419 /// it specifies. This returns null on failure. 3420 Value *OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 3421 auto &entries = getSSAValueEntry(useInfo.name); 3422 3423 // If we have already seen a value of this name, return it. 3424 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 3425 auto *result = entries[useInfo.number].first; 3426 // Check that the type matches the other uses. 3427 if (result->getType() == type) 3428 return result; 3429 3430 emitError(useInfo.loc, "use of value '") 3431 .append(useInfo.name, 3432 "' expects different type than prior uses: ", type, " vs ", 3433 result->getType()) 3434 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3435 .append("prior use here"); 3436 return nullptr; 3437 } 3438 3439 // Make sure we have enough slots for this. 3440 if (entries.size() <= useInfo.number) 3441 entries.resize(useInfo.number + 1); 3442 3443 // If the value has already been defined and this is an overly large result 3444 // number, diagnose that. 3445 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 3446 return (emitError(useInfo.loc, "reference to invalid result number"), 3447 nullptr); 3448 3449 // Otherwise, this is a forward reference. Create a placeholder and remember 3450 // that we did so. 3451 auto *result = createForwardRefPlaceholder(useInfo.loc, type); 3452 entries[useInfo.number].first = result; 3453 entries[useInfo.number].second = useInfo.loc; 3454 return result; 3455 } 3456 3457 /// Parse an SSA use with an associated type. 3458 /// 3459 /// ssa-use-and-type ::= ssa-use `:` type 3460 ParseResult OperationParser::parseSSADefOrUseAndType( 3461 const std::function<ParseResult(SSAUseInfo, Type)> &action) { 3462 SSAUseInfo useInfo; 3463 if (parseSSAUse(useInfo) || 3464 parseToken(Token::colon, "expected ':' and type for SSA operand")) 3465 return failure(); 3466 3467 auto type = parseType(); 3468 if (!type) 3469 return failure(); 3470 3471 return action(useInfo, type); 3472 } 3473 3474 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 3475 /// followed by a type list. 3476 /// 3477 /// ssa-use-and-type-list 3478 /// ::= ssa-use-list ':' type-list-no-parens 3479 /// 3480 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 3481 SmallVectorImpl<Value *> &results) { 3482 SmallVector<SSAUseInfo, 4> valueIDs; 3483 if (parseOptionalSSAUseList(valueIDs)) 3484 return failure(); 3485 3486 // If there were no operands, then there is no colon or type lists. 3487 if (valueIDs.empty()) 3488 return success(); 3489 3490 SmallVector<Type, 4> types; 3491 if (parseToken(Token::colon, "expected ':' in operand list") || 3492 parseTypeListNoParens(types)) 3493 return failure(); 3494 3495 if (valueIDs.size() != types.size()) 3496 return emitError("expected ") 3497 << valueIDs.size() << " types to match operand list"; 3498 3499 results.reserve(valueIDs.size()); 3500 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 3501 if (auto *value = resolveSSAUse(valueIDs[i], types[i])) 3502 results.push_back(value); 3503 else 3504 return failure(); 3505 } 3506 3507 return success(); 3508 } 3509 3510 /// Record that a definition was added at the current scope. 3511 void OperationParser::recordDefinition(StringRef def) { 3512 isolatedNameScopes.back().recordDefinition(def); 3513 } 3514 3515 /// Get the value entry for the given SSA name. 3516 SmallVectorImpl<std::pair<Value *, SMLoc>> & 3517 OperationParser::getSSAValueEntry(StringRef name) { 3518 return isolatedNameScopes.back().values[name]; 3519 } 3520 3521 /// Create and remember a new placeholder for a forward reference. 3522 Value *OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 3523 // Forward references are always created as operations, because we just need 3524 // something with a def/use chain. 3525 // 3526 // We create these placeholders as having an empty name, which we know 3527 // cannot be created through normal user input, allowing us to distinguish 3528 // them. 3529 auto name = OperationName("placeholder", getContext()); 3530 auto *op = Operation::create( 3531 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 3532 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0, 3533 /*resizableOperandList=*/false); 3534 forwardRefPlaceholders[op->getResult(0)] = loc; 3535 return op->getResult(0); 3536 } 3537 3538 //===----------------------------------------------------------------------===// 3539 // Operation Parsing 3540 //===----------------------------------------------------------------------===// 3541 3542 /// Parse an operation. 3543 /// 3544 /// operation ::= op-result-list? 3545 /// (generic-operation | custom-operation) 3546 /// trailing-location? 3547 /// generic-operation ::= string-literal '(' ssa-use-list? ')' attribute-dict? 3548 /// `:` function-type 3549 /// custom-operation ::= bare-id custom-operation-format 3550 /// op-result-list ::= op-result (`,` op-result)* `=` 3551 /// op-result ::= ssa-id (`:` integer-literal) 3552 /// 3553 ParseResult OperationParser::parseOperation() { 3554 auto loc = getToken().getLoc(); 3555 SmallVector<std::tuple<StringRef, unsigned, SMLoc>, 1> resultIDs; 3556 size_t numExpectedResults = 0; 3557 if (getToken().is(Token::percent_identifier)) { 3558 // Parse the group of result ids. 3559 auto parseNextResult = [&]() -> ParseResult { 3560 // Parse the next result id. 3561 if (!getToken().is(Token::percent_identifier)) 3562 return emitError("expected valid ssa identifier"); 3563 3564 Token nameTok = getToken(); 3565 consumeToken(Token::percent_identifier); 3566 3567 // If the next token is a ':', we parse the expected result count. 3568 size_t expectedSubResults = 1; 3569 if (consumeIf(Token::colon)) { 3570 // Check that the next token is an integer. 3571 if (!getToken().is(Token::integer)) 3572 return emitError("expected integer number of results"); 3573 3574 // Check that number of results is > 0. 3575 auto val = getToken().getUInt64IntegerValue(); 3576 if (!val.hasValue() || val.getValue() < 1) 3577 return emitError("expected named operation to have atleast 1 result"); 3578 consumeToken(Token::integer); 3579 expectedSubResults = *val; 3580 } 3581 3582 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 3583 nameTok.getLoc()); 3584 numExpectedResults += expectedSubResults; 3585 return success(); 3586 }; 3587 if (parseCommaSeparatedList(parseNextResult)) 3588 return failure(); 3589 3590 if (parseToken(Token::equal, "expected '=' after SSA name")) 3591 return failure(); 3592 } 3593 3594 Operation *op; 3595 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 3596 op = parseCustomOperation(); 3597 else if (getToken().is(Token::string)) 3598 op = parseGenericOperation(); 3599 else 3600 return emitError("expected operation name in quotes"); 3601 3602 // If parsing of the basic operation failed, then this whole thing fails. 3603 if (!op) 3604 return failure(); 3605 3606 // If the operation had a name, register it. 3607 if (!resultIDs.empty()) { 3608 if (op->getNumResults() == 0) 3609 return emitError(loc, "cannot name an operation with no results"); 3610 if (numExpectedResults != op->getNumResults()) 3611 return emitError(loc, "operation defines ") 3612 << op->getNumResults() << " results but was provided " 3613 << numExpectedResults << " to bind"; 3614 3615 // Add definitions for each of the result groups. 3616 unsigned opResI = 0; 3617 for (std::tuple<StringRef, unsigned, SMLoc> &resIt : resultIDs) { 3618 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 3619 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 3620 op->getResult(opResI++))) 3621 return failure(); 3622 } 3623 } 3624 } 3625 3626 return success(); 3627 } 3628 3629 /// Parse a single operation successor and its operand list. 3630 /// 3631 /// successor ::= block-id branch-use-list? 3632 /// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)` 3633 /// 3634 ParseResult 3635 OperationParser::parseSuccessorAndUseList(Block *&dest, 3636 SmallVectorImpl<Value *> &operands) { 3637 // Verify branch is identifier and get the matching block. 3638 if (!getToken().is(Token::caret_identifier)) 3639 return emitError("expected block name"); 3640 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 3641 consumeToken(); 3642 3643 // Handle optional arguments. 3644 if (consumeIf(Token::l_paren) && 3645 (parseOptionalSSAUseAndTypeList(operands) || 3646 parseToken(Token::r_paren, "expected ')' to close argument list"))) { 3647 return failure(); 3648 } 3649 3650 return success(); 3651 } 3652 3653 /// Parse a comma-separated list of operation successors in brackets. 3654 /// 3655 /// successor-list ::= `[` successor (`,` successor )* `]` 3656 /// 3657 ParseResult OperationParser::parseSuccessors( 3658 SmallVectorImpl<Block *> &destinations, 3659 SmallVectorImpl<SmallVector<Value *, 4>> &operands) { 3660 if (parseToken(Token::l_square, "expected '['")) 3661 return failure(); 3662 3663 auto parseElt = [this, &destinations, &operands]() { 3664 Block *dest; 3665 SmallVector<Value *, 4> destOperands; 3666 auto res = parseSuccessorAndUseList(dest, destOperands); 3667 destinations.push_back(dest); 3668 operands.push_back(destOperands); 3669 return res; 3670 }; 3671 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 3672 /*allowEmptyList=*/false); 3673 } 3674 3675 namespace { 3676 // RAII-style guard for cleaning up the regions in the operation state before 3677 // deleting them. Within the parser, regions may get deleted if parsing failed, 3678 // and other errors may be present, in particular undominated uses. This makes 3679 // sure such uses are deleted. 3680 struct CleanupOpStateRegions { 3681 ~CleanupOpStateRegions() { 3682 SmallVector<Region *, 4> regionsToClean; 3683 regionsToClean.reserve(state.regions.size()); 3684 for (auto ®ion : state.regions) 3685 if (region) 3686 for (auto &block : *region) 3687 block.dropAllDefinedValueUses(); 3688 } 3689 OperationState &state; 3690 }; 3691 } // namespace 3692 3693 Operation *OperationParser::parseGenericOperation() { 3694 // Get location information for the operation. 3695 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 3696 3697 auto name = getToken().getStringValue(); 3698 if (name.empty()) 3699 return (emitError("empty operation name is invalid"), nullptr); 3700 if (name.find('\0') != StringRef::npos) 3701 return (emitError("null character not allowed in operation name"), nullptr); 3702 3703 consumeToken(Token::string); 3704 3705 OperationState result(srcLocation, name); 3706 3707 // Generic operations have a resizable operation list. 3708 result.setOperandListToResizable(); 3709 3710 // Parse the operand list. 3711 SmallVector<SSAUseInfo, 8> operandInfos; 3712 3713 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 3714 parseOptionalSSAUseList(operandInfos) || 3715 parseToken(Token::r_paren, "expected ')' to end operand list")) { 3716 return nullptr; 3717 } 3718 3719 // Parse the successor list but don't add successors to the result yet to 3720 // avoid messing up with the argument order. 3721 SmallVector<Block *, 2> successors; 3722 SmallVector<SmallVector<Value *, 4>, 2> successorOperands; 3723 if (getToken().is(Token::l_square)) { 3724 // Check if the operation is a known terminator. 3725 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 3726 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) 3727 return emitError("successors in non-terminator"), nullptr; 3728 if (parseSuccessors(successors, successorOperands)) 3729 return nullptr; 3730 } 3731 3732 // Parse the region list. 3733 CleanupOpStateRegions guard{result}; 3734 if (consumeIf(Token::l_paren)) { 3735 do { 3736 // Create temporary regions with the top level region as parent. 3737 result.regions.emplace_back(new Region(moduleOp)); 3738 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 3739 return nullptr; 3740 } while (consumeIf(Token::comma)); 3741 if (parseToken(Token::r_paren, "expected ')' to end region list")) 3742 return nullptr; 3743 } 3744 3745 if (getToken().is(Token::l_brace)) { 3746 if (parseAttributeDict(result.attributes)) 3747 return nullptr; 3748 } 3749 3750 if (parseToken(Token::colon, "expected ':' followed by operation type")) 3751 return nullptr; 3752 3753 auto typeLoc = getToken().getLoc(); 3754 auto type = parseType(); 3755 if (!type) 3756 return nullptr; 3757 auto fnType = type.dyn_cast<FunctionType>(); 3758 if (!fnType) 3759 return (emitError(typeLoc, "expected function type"), nullptr); 3760 3761 result.addTypes(fnType.getResults()); 3762 3763 // Check that we have the right number of types for the operands. 3764 auto operandTypes = fnType.getInputs(); 3765 if (operandTypes.size() != operandInfos.size()) { 3766 auto plural = "s"[operandInfos.size() == 1]; 3767 return (emitError(typeLoc, "expected ") 3768 << operandInfos.size() << " operand type" << plural 3769 << " but had " << operandTypes.size(), 3770 nullptr); 3771 } 3772 3773 // Resolve all of the operands. 3774 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 3775 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 3776 if (!result.operands.back()) 3777 return nullptr; 3778 } 3779 3780 // Add the successors, and their operands after the proper operands. 3781 for (const auto &succ : llvm::zip(successors, successorOperands)) { 3782 Block *successor = std::get<0>(succ); 3783 const SmallVector<Value *, 4> &operands = std::get<1>(succ); 3784 result.addSuccessor(successor, operands); 3785 } 3786 3787 // Parse a location if one is present. 3788 if (parseOptionalTrailingLocation(result.location)) 3789 return nullptr; 3790 3791 return opBuilder.createOperation(result); 3792 } 3793 3794 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 3795 Block::iterator insertPt) { 3796 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 3797 opBuilder.setInsertionPoint(insertBlock, insertPt); 3798 return parseGenericOperation(); 3799 } 3800 3801 namespace { 3802 class CustomOpAsmParser : public OpAsmParser { 3803 public: 3804 CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition, 3805 OperationParser &parser) 3806 : nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {} 3807 3808 /// Parse an instance of the operation described by 'opDefinition' into the 3809 /// provided operation state. 3810 ParseResult parseOperation(OperationState &opState) { 3811 if (opDefinition->parseAssembly(*this, opState)) 3812 return failure(); 3813 return success(); 3814 } 3815 3816 Operation *parseGenericOperation(Block *insertBlock, 3817 Block::iterator insertPt) final { 3818 return parser.parseGenericOperation(insertBlock, insertPt); 3819 } 3820 3821 //===--------------------------------------------------------------------===// 3822 // Utilities 3823 //===--------------------------------------------------------------------===// 3824 3825 /// Return if any errors were emitted during parsing. 3826 bool didEmitError() const { return emittedError; } 3827 3828 /// Emit a diagnostic at the specified location and return failure. 3829 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 3830 emittedError = true; 3831 return parser.emitError(loc, "custom op '" + opDefinition->name + "' " + 3832 message); 3833 } 3834 3835 llvm::SMLoc getCurrentLocation() override { 3836 return parser.getToken().getLoc(); 3837 } 3838 3839 Builder &getBuilder() const override { return parser.builder; } 3840 3841 llvm::SMLoc getNameLoc() const override { return nameLoc; } 3842 3843 //===--------------------------------------------------------------------===// 3844 // Token Parsing 3845 //===--------------------------------------------------------------------===// 3846 3847 /// Parse a `->` token. 3848 ParseResult parseArrow() override { 3849 return parser.parseToken(Token::arrow, "expected '->'"); 3850 } 3851 3852 /// Parses a `->` if present. 3853 ParseResult parseOptionalArrow() override { 3854 return success(parser.consumeIf(Token::arrow)); 3855 } 3856 3857 /// Parse a `:` token. 3858 ParseResult parseColon() override { 3859 return parser.parseToken(Token::colon, "expected ':'"); 3860 } 3861 3862 /// Parse a `:` token if present. 3863 ParseResult parseOptionalColon() override { 3864 return success(parser.consumeIf(Token::colon)); 3865 } 3866 3867 /// Parse a `,` token. 3868 ParseResult parseComma() override { 3869 return parser.parseToken(Token::comma, "expected ','"); 3870 } 3871 3872 /// Parse a `,` token if present. 3873 ParseResult parseOptionalComma() override { 3874 return success(parser.consumeIf(Token::comma)); 3875 } 3876 3877 /// Parses a `...` if present. 3878 ParseResult parseOptionalEllipsis() override { 3879 return success(parser.consumeIf(Token::ellipsis)); 3880 } 3881 3882 /// Parse a `=` token. 3883 ParseResult parseEqual() override { 3884 return parser.parseToken(Token::equal, "expected '='"); 3885 } 3886 3887 /// Parse a `(` token. 3888 ParseResult parseLParen() override { 3889 return parser.parseToken(Token::l_paren, "expected '('"); 3890 } 3891 3892 /// Parses a '(' if present. 3893 ParseResult parseOptionalLParen() override { 3894 return success(parser.consumeIf(Token::l_paren)); 3895 } 3896 3897 /// Parse a `)` token. 3898 ParseResult parseRParen() override { 3899 return parser.parseToken(Token::r_paren, "expected ')'"); 3900 } 3901 3902 /// Parses a ')' if present. 3903 ParseResult parseOptionalRParen() override { 3904 return success(parser.consumeIf(Token::r_paren)); 3905 } 3906 3907 /// Parse a `[` token. 3908 ParseResult parseLSquare() override { 3909 return parser.parseToken(Token::l_square, "expected '['"); 3910 } 3911 3912 /// Parses a '[' if present. 3913 ParseResult parseOptionalLSquare() override { 3914 return success(parser.consumeIf(Token::l_square)); 3915 } 3916 3917 /// Parse a `]` token. 3918 ParseResult parseRSquare() override { 3919 return parser.parseToken(Token::r_square, "expected ']'"); 3920 } 3921 3922 /// Parses a ']' if present. 3923 ParseResult parseOptionalRSquare() override { 3924 return success(parser.consumeIf(Token::r_square)); 3925 } 3926 3927 //===--------------------------------------------------------------------===// 3928 // Attribute Parsing 3929 //===--------------------------------------------------------------------===// 3930 3931 /// Parse an arbitrary attribute of a given type and return it in result. This 3932 /// also adds the attribute to the specified attribute list with the specified 3933 /// name. 3934 ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName, 3935 SmallVectorImpl<NamedAttribute> &attrs) override { 3936 result = parser.parseAttribute(type); 3937 if (!result) 3938 return failure(); 3939 3940 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 3941 return success(); 3942 } 3943 3944 /// Parse a named dictionary into 'result' if it is present. 3945 ParseResult 3946 parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override { 3947 if (parser.getToken().isNot(Token::l_brace)) 3948 return success(); 3949 return parser.parseAttributeDict(result); 3950 } 3951 3952 /// Parse a named dictionary into 'result' if the `attributes` keyword is 3953 /// present. 3954 ParseResult parseOptionalAttrDictWithKeyword( 3955 SmallVectorImpl<NamedAttribute> &result) override { 3956 if (failed(parseOptionalKeyword("attributes"))) 3957 return success(); 3958 return parser.parseAttributeDict(result); 3959 } 3960 3961 //===--------------------------------------------------------------------===// 3962 // Identifier Parsing 3963 //===--------------------------------------------------------------------===// 3964 3965 /// Returns if the current token corresponds to a keyword. 3966 bool isCurrentTokenAKeyword() const { 3967 return parser.getToken().is(Token::bare_identifier) || 3968 parser.getToken().isKeyword(); 3969 } 3970 3971 /// Parse the given keyword if present. 3972 ParseResult parseOptionalKeyword(StringRef keyword) override { 3973 // Check that the current token has the same spelling. 3974 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 3975 return failure(); 3976 parser.consumeToken(); 3977 return success(); 3978 } 3979 3980 /// Parse a keyword, if present, into 'keyword'. 3981 ParseResult parseOptionalKeyword(StringRef *keyword) override { 3982 // Check that the current token is a keyword. 3983 if (!isCurrentTokenAKeyword()) 3984 return failure(); 3985 3986 *keyword = parser.getTokenSpelling(); 3987 parser.consumeToken(); 3988 return success(); 3989 } 3990 3991 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 3992 /// string attribute named 'attrName'. 3993 ParseResult 3994 parseOptionalSymbolName(StringAttr &result, StringRef attrName, 3995 SmallVectorImpl<NamedAttribute> &attrs) override { 3996 Token atToken = parser.getToken(); 3997 if (atToken.isNot(Token::at_identifier)) 3998 return failure(); 3999 4000 result = getBuilder().getStringAttr(extractSymbolReference(atToken)); 4001 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 4002 parser.consumeToken(); 4003 return success(); 4004 } 4005 4006 //===--------------------------------------------------------------------===// 4007 // Operand Parsing 4008 //===--------------------------------------------------------------------===// 4009 4010 /// Parse a single operand. 4011 ParseResult parseOperand(OperandType &result) override { 4012 OperationParser::SSAUseInfo useInfo; 4013 if (parser.parseSSAUse(useInfo)) 4014 return failure(); 4015 4016 result = {useInfo.loc, useInfo.name, useInfo.number}; 4017 return success(); 4018 } 4019 4020 /// Parse zero or more SSA comma-separated operand references with a specified 4021 /// surrounding delimiter, and an optional required operand count. 4022 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 4023 int requiredOperandCount = -1, 4024 Delimiter delimiter = Delimiter::None) override { 4025 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 4026 requiredOperandCount, delimiter); 4027 } 4028 4029 /// Parse zero or more SSA comma-separated operand or region arguments with 4030 /// optional surrounding delimiter and required operand count. 4031 ParseResult 4032 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 4033 bool isOperandList, int requiredOperandCount = -1, 4034 Delimiter delimiter = Delimiter::None) { 4035 auto startLoc = parser.getToken().getLoc(); 4036 4037 // Handle delimiters. 4038 switch (delimiter) { 4039 case Delimiter::None: 4040 // Don't check for the absence of a delimiter if the number of operands 4041 // is unknown (and hence the operand list could be empty). 4042 if (requiredOperandCount == -1) 4043 break; 4044 // Token already matches an identifier and so can't be a delimiter. 4045 if (parser.getToken().is(Token::percent_identifier)) 4046 break; 4047 // Test against known delimiters. 4048 if (parser.getToken().is(Token::l_paren) || 4049 parser.getToken().is(Token::l_square)) 4050 return emitError(startLoc, "unexpected delimiter"); 4051 return emitError(startLoc, "invalid operand"); 4052 case Delimiter::OptionalParen: 4053 if (parser.getToken().isNot(Token::l_paren)) 4054 return success(); 4055 LLVM_FALLTHROUGH; 4056 case Delimiter::Paren: 4057 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 4058 return failure(); 4059 break; 4060 case Delimiter::OptionalSquare: 4061 if (parser.getToken().isNot(Token::l_square)) 4062 return success(); 4063 LLVM_FALLTHROUGH; 4064 case Delimiter::Square: 4065 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 4066 return failure(); 4067 break; 4068 } 4069 4070 // Check for zero operands. 4071 if (parser.getToken().is(Token::percent_identifier)) { 4072 do { 4073 OperandType operandOrArg; 4074 if (isOperandList ? parseOperand(operandOrArg) 4075 : parseRegionArgument(operandOrArg)) 4076 return failure(); 4077 result.push_back(operandOrArg); 4078 } while (parser.consumeIf(Token::comma)); 4079 } 4080 4081 // Handle delimiters. If we reach here, the optional delimiters were 4082 // present, so we need to parse their closing one. 4083 switch (delimiter) { 4084 case Delimiter::None: 4085 break; 4086 case Delimiter::OptionalParen: 4087 case Delimiter::Paren: 4088 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 4089 return failure(); 4090 break; 4091 case Delimiter::OptionalSquare: 4092 case Delimiter::Square: 4093 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 4094 return failure(); 4095 break; 4096 } 4097 4098 if (requiredOperandCount != -1 && 4099 result.size() != static_cast<size_t>(requiredOperandCount)) 4100 return emitError(startLoc, "expected ") 4101 << requiredOperandCount << " operands"; 4102 return success(); 4103 } 4104 4105 /// Parse zero or more trailing SSA comma-separated trailing operand 4106 /// references with a specified surrounding delimiter, and an optional 4107 /// required operand count. A leading comma is expected before the operands. 4108 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 4109 int requiredOperandCount, 4110 Delimiter delimiter) override { 4111 if (parser.getToken().is(Token::comma)) { 4112 parseComma(); 4113 return parseOperandList(result, requiredOperandCount, delimiter); 4114 } 4115 if (requiredOperandCount != -1) 4116 return emitError(parser.getToken().getLoc(), "expected ") 4117 << requiredOperandCount << " operands"; 4118 return success(); 4119 } 4120 4121 /// Resolve an operand to an SSA value, emitting an error on failure. 4122 ParseResult resolveOperand(const OperandType &operand, Type type, 4123 SmallVectorImpl<Value *> &result) override { 4124 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4125 operand.location}; 4126 if (auto *value = parser.resolveSSAUse(operandInfo, type)) { 4127 result.push_back(value); 4128 return success(); 4129 } 4130 return failure(); 4131 } 4132 4133 /// Parse an AffineMap of SSA ids. 4134 ParseResult 4135 parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 4136 Attribute &mapAttr, StringRef attrName, 4137 SmallVectorImpl<NamedAttribute> &attrs) override { 4138 SmallVector<OperandType, 2> dimOperands; 4139 SmallVector<OperandType, 1> symOperands; 4140 4141 auto parseElement = [&](bool isSymbol) -> ParseResult { 4142 OperandType operand; 4143 if (parseOperand(operand)) 4144 return failure(); 4145 if (isSymbol) 4146 symOperands.push_back(operand); 4147 else 4148 dimOperands.push_back(operand); 4149 return success(); 4150 }; 4151 4152 AffineMap map; 4153 if (parser.parseAffineMapOfSSAIds(map, parseElement)) 4154 return failure(); 4155 // Add AffineMap attribute. 4156 if (map) { 4157 mapAttr = AffineMapAttr::get(map); 4158 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 4159 } 4160 4161 // Add dim operands before symbol operands in 'operands'. 4162 operands.assign(dimOperands.begin(), dimOperands.end()); 4163 operands.append(symOperands.begin(), symOperands.end()); 4164 return success(); 4165 } 4166 4167 //===--------------------------------------------------------------------===// 4168 // Region Parsing 4169 //===--------------------------------------------------------------------===// 4170 4171 /// Parse a region that takes `arguments` of `argTypes` types. This 4172 /// effectively defines the SSA values of `arguments` and assigns their type. 4173 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 4174 ArrayRef<Type> argTypes, 4175 bool enableNameShadowing) override { 4176 assert(arguments.size() == argTypes.size() && 4177 "mismatching number of arguments and types"); 4178 4179 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 4180 regionArguments; 4181 for (const auto &pair : llvm::zip(arguments, argTypes)) { 4182 const OperandType &operand = std::get<0>(pair); 4183 Type type = std::get<1>(pair); 4184 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4185 operand.location}; 4186 regionArguments.emplace_back(operandInfo, type); 4187 } 4188 4189 // Try to parse the region. 4190 assert((!enableNameShadowing || 4191 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) && 4192 "name shadowing is only allowed on isolated regions"); 4193 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 4194 return failure(); 4195 return success(); 4196 } 4197 4198 /// Parses a region if present. 4199 ParseResult parseOptionalRegion(Region ®ion, 4200 ArrayRef<OperandType> arguments, 4201 ArrayRef<Type> argTypes, 4202 bool enableNameShadowing) override { 4203 if (parser.getToken().isNot(Token::l_brace)) 4204 return success(); 4205 return parseRegion(region, arguments, argTypes, enableNameShadowing); 4206 } 4207 4208 /// Parse a region argument. The type of the argument will be resolved later 4209 /// by a call to `parseRegion`. 4210 ParseResult parseRegionArgument(OperandType &argument) override { 4211 return parseOperand(argument); 4212 } 4213 4214 /// Parse a region argument if present. 4215 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 4216 if (parser.getToken().isNot(Token::percent_identifier)) 4217 return success(); 4218 return parseRegionArgument(argument); 4219 } 4220 4221 ParseResult 4222 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 4223 int requiredOperandCount = -1, 4224 Delimiter delimiter = Delimiter::None) override { 4225 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 4226 requiredOperandCount, delimiter); 4227 } 4228 4229 //===--------------------------------------------------------------------===// 4230 // Successor Parsing 4231 //===--------------------------------------------------------------------===// 4232 4233 /// Parse a single operation successor and its operand list. 4234 ParseResult 4235 parseSuccessorAndUseList(Block *&dest, 4236 SmallVectorImpl<Value *> &operands) override { 4237 return parser.parseSuccessorAndUseList(dest, operands); 4238 } 4239 4240 //===--------------------------------------------------------------------===// 4241 // Type Parsing 4242 //===--------------------------------------------------------------------===// 4243 4244 /// Parse a type. 4245 ParseResult parseType(Type &result) override { 4246 return failure(!(result = parser.parseType())); 4247 } 4248 4249 /// Parse an optional arrow followed by a type list. 4250 ParseResult 4251 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 4252 if (!parser.consumeIf(Token::arrow)) 4253 return success(); 4254 return parser.parseFunctionResultTypes(result); 4255 } 4256 4257 /// Parse a colon followed by a type. 4258 ParseResult parseColonType(Type &result) override { 4259 return failure(parser.parseToken(Token::colon, "expected ':'") || 4260 !(result = parser.parseType())); 4261 } 4262 4263 /// Parse a colon followed by a type list, which must have at least one type. 4264 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 4265 if (parser.parseToken(Token::colon, "expected ':'")) 4266 return failure(); 4267 return parser.parseTypeListNoParens(result); 4268 } 4269 4270 /// Parse an optional colon followed by a type list, which if present must 4271 /// have at least one type. 4272 ParseResult 4273 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 4274 if (!parser.consumeIf(Token::colon)) 4275 return success(); 4276 return parser.parseTypeListNoParens(result); 4277 } 4278 4279 private: 4280 /// The source location of the operation name. 4281 SMLoc nameLoc; 4282 4283 /// The abstract information of the operation. 4284 const AbstractOperation *opDefinition; 4285 4286 /// The main operation parser. 4287 OperationParser &parser; 4288 4289 /// A flag that indicates if any errors were emitted during parsing. 4290 bool emittedError = false; 4291 }; 4292 } // end anonymous namespace. 4293 4294 Operation *OperationParser::parseCustomOperation() { 4295 auto opLoc = getToken().getLoc(); 4296 auto opName = getTokenSpelling(); 4297 4298 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 4299 if (!opDefinition && !opName.contains('.')) { 4300 // If the operation name has no namespace prefix we treat it as a standard 4301 // operation and prefix it with "std". 4302 // TODO: Would it be better to just build a mapping of the registered 4303 // operations in the standard dialect? 4304 opDefinition = 4305 AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); 4306 } 4307 4308 if (!opDefinition) { 4309 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 4310 return nullptr; 4311 } 4312 4313 consumeToken(); 4314 4315 // If the custom op parser crashes, produce some indication to help 4316 // debugging. 4317 std::string opNameStr = opName.str(); 4318 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 4319 opNameStr.c_str()); 4320 4321 // Get location information for the operation. 4322 auto srcLocation = getEncodedSourceLocation(opLoc); 4323 4324 // Have the op implementation take a crack and parsing this. 4325 OperationState opState(srcLocation, opDefinition->name); 4326 CleanupOpStateRegions guard{opState}; 4327 CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this); 4328 if (opAsmParser.parseOperation(opState)) 4329 return nullptr; 4330 4331 // If it emitted an error, we failed. 4332 if (opAsmParser.didEmitError()) 4333 return nullptr; 4334 4335 // Parse a location if one is present. 4336 if (parseOptionalTrailingLocation(opState.location)) 4337 return nullptr; 4338 4339 // Otherwise, we succeeded. Use the state it parsed as our op information. 4340 return opBuilder.createOperation(opState); 4341 } 4342 4343 //===----------------------------------------------------------------------===// 4344 // Region Parsing 4345 //===----------------------------------------------------------------------===// 4346 4347 /// Region. 4348 /// 4349 /// region ::= '{' region-body 4350 /// 4351 ParseResult OperationParser::parseRegion( 4352 Region ®ion, 4353 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 4354 bool isIsolatedNameScope) { 4355 // Parse the '{'. 4356 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 4357 return failure(); 4358 4359 // Check for an empty region. 4360 if (entryArguments.empty() && consumeIf(Token::r_brace)) 4361 return success(); 4362 auto currentPt = opBuilder.saveInsertionPoint(); 4363 4364 // Push a new named value scope. 4365 pushSSANameScope(isIsolatedNameScope); 4366 4367 // Parse the first block directly to allow for it to be unnamed. 4368 Block *block = new Block(); 4369 4370 // Add arguments to the entry block. 4371 if (!entryArguments.empty()) { 4372 for (auto &placeholderArgPair : entryArguments) { 4373 auto &argInfo = placeholderArgPair.first; 4374 // Ensure that the argument was not already defined. 4375 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 4376 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 4377 "' is already in use") 4378 .attachNote(getEncodedSourceLocation(*defLoc)) 4379 << "previously referenced here"; 4380 } 4381 if (addDefinition(placeholderArgPair.first, 4382 block->addArgument(placeholderArgPair.second))) { 4383 delete block; 4384 return failure(); 4385 } 4386 } 4387 4388 // If we had named arguments, then don't allow a block name. 4389 if (getToken().is(Token::caret_identifier)) 4390 return emitError("invalid block name in region with named arguments"); 4391 } 4392 4393 if (parseBlock(block)) { 4394 delete block; 4395 return failure(); 4396 } 4397 4398 // Verify that no other arguments were parsed. 4399 if (!entryArguments.empty() && 4400 block->getNumArguments() > entryArguments.size()) { 4401 delete block; 4402 return emitError("entry block arguments were already defined"); 4403 } 4404 4405 // Parse the rest of the region. 4406 region.push_back(block); 4407 if (parseRegionBody(region)) 4408 return failure(); 4409 4410 // Pop the SSA value scope for this region. 4411 if (popSSANameScope()) 4412 return failure(); 4413 4414 // Reset the original insertion point. 4415 opBuilder.restoreInsertionPoint(currentPt); 4416 return success(); 4417 } 4418 4419 /// Region. 4420 /// 4421 /// region-body ::= block* '}' 4422 /// 4423 ParseResult OperationParser::parseRegionBody(Region ®ion) { 4424 // Parse the list of blocks. 4425 while (!consumeIf(Token::r_brace)) { 4426 Block *newBlock = nullptr; 4427 if (parseBlock(newBlock)) 4428 return failure(); 4429 region.push_back(newBlock); 4430 } 4431 return success(); 4432 } 4433 4434 //===----------------------------------------------------------------------===// 4435 // Block Parsing 4436 //===----------------------------------------------------------------------===// 4437 4438 /// Block declaration. 4439 /// 4440 /// block ::= block-label? operation* 4441 /// block-label ::= block-id block-arg-list? `:` 4442 /// block-id ::= caret-id 4443 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 4444 /// 4445 ParseResult OperationParser::parseBlock(Block *&block) { 4446 // The first block of a region may already exist, if it does the caret 4447 // identifier is optional. 4448 if (block && getToken().isNot(Token::caret_identifier)) 4449 return parseBlockBody(block); 4450 4451 SMLoc nameLoc = getToken().getLoc(); 4452 auto name = getTokenSpelling(); 4453 if (parseToken(Token::caret_identifier, "expected block name")) 4454 return failure(); 4455 4456 block = defineBlockNamed(name, nameLoc, block); 4457 4458 // Fail if the block was already defined. 4459 if (!block) 4460 return emitError(nameLoc, "redefinition of block '") << name << "'"; 4461 4462 // If an argument list is present, parse it. 4463 if (consumeIf(Token::l_paren)) { 4464 SmallVector<BlockArgument *, 8> bbArgs; 4465 if (parseOptionalBlockArgList(bbArgs, block) || 4466 parseToken(Token::r_paren, "expected ')' to end argument list")) 4467 return failure(); 4468 } 4469 4470 if (parseToken(Token::colon, "expected ':' after block name")) 4471 return failure(); 4472 4473 return parseBlockBody(block); 4474 } 4475 4476 ParseResult OperationParser::parseBlockBody(Block *block) { 4477 // Set the insertion point to the end of the block to parse. 4478 opBuilder.setInsertionPointToEnd(block); 4479 4480 // Parse the list of operations that make up the body of the block. 4481 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 4482 if (parseOperation()) 4483 return failure(); 4484 4485 return success(); 4486 } 4487 4488 /// Get the block with the specified name, creating it if it doesn't already 4489 /// exist. The location specified is the point of use, which allows 4490 /// us to diagnose references to blocks that are not defined precisely. 4491 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 4492 auto &blockAndLoc = getBlockInfoByName(name); 4493 if (!blockAndLoc.first) { 4494 blockAndLoc = {new Block(), loc}; 4495 insertForwardRef(blockAndLoc.first, loc); 4496 } 4497 4498 return blockAndLoc.first; 4499 } 4500 4501 /// Define the block with the specified name. Returns the Block* or nullptr in 4502 /// the case of redefinition. 4503 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 4504 Block *existing) { 4505 auto &blockAndLoc = getBlockInfoByName(name); 4506 if (!blockAndLoc.first) { 4507 // If the caller provided a block, use it. Otherwise create a new one. 4508 if (!existing) 4509 existing = new Block(); 4510 blockAndLoc.first = existing; 4511 blockAndLoc.second = loc; 4512 return blockAndLoc.first; 4513 } 4514 4515 // Forward declarations are removed once defined, so if we are defining a 4516 // existing block and it is not a forward declaration, then it is a 4517 // redeclaration. 4518 if (!eraseForwardRef(blockAndLoc.first)) 4519 return nullptr; 4520 return blockAndLoc.first; 4521 } 4522 4523 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 4524 /// 4525 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 4526 /// 4527 ParseResult OperationParser::parseOptionalBlockArgList( 4528 SmallVectorImpl<BlockArgument *> &results, Block *owner) { 4529 if (getToken().is(Token::r_brace)) 4530 return success(); 4531 4532 // If the block already has arguments, then we're handling the entry block. 4533 // Parse and register the names for the arguments, but do not add them. 4534 bool definingExistingArgs = owner->getNumArguments() != 0; 4535 unsigned nextArgument = 0; 4536 4537 return parseCommaSeparatedList([&]() -> ParseResult { 4538 return parseSSADefOrUseAndType( 4539 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 4540 // If this block did not have existing arguments, define a new one. 4541 if (!definingExistingArgs) 4542 return addDefinition(useInfo, owner->addArgument(type)); 4543 4544 // Otherwise, ensure that this argument has already been created. 4545 if (nextArgument >= owner->getNumArguments()) 4546 return emitError("too many arguments specified in argument list"); 4547 4548 // Finally, make sure the existing argument has the correct type. 4549 auto *arg = owner->getArgument(nextArgument++); 4550 if (arg->getType() != type) 4551 return emitError("argument and block argument type mismatch"); 4552 return addDefinition(useInfo, arg); 4553 }); 4554 }); 4555 } 4556 4557 //===----------------------------------------------------------------------===// 4558 // Top-level entity parsing. 4559 //===----------------------------------------------------------------------===// 4560 4561 namespace { 4562 /// This parser handles entities that are only valid at the top level of the 4563 /// file. 4564 class ModuleParser : public Parser { 4565 public: 4566 explicit ModuleParser(ParserState &state) : Parser(state) {} 4567 4568 ParseResult parseModule(ModuleOp module); 4569 4570 private: 4571 /// Parse an attribute alias declaration. 4572 ParseResult parseAttributeAliasDef(); 4573 4574 /// Parse an attribute alias declaration. 4575 ParseResult parseTypeAliasDef(); 4576 }; 4577 } // end anonymous namespace 4578 4579 /// Parses an attribute alias declaration. 4580 /// 4581 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 4582 /// 4583 ParseResult ModuleParser::parseAttributeAliasDef() { 4584 assert(getToken().is(Token::hash_identifier)); 4585 StringRef aliasName = getTokenSpelling().drop_front(); 4586 4587 // Check for redefinitions. 4588 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 4589 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 4590 4591 // Make sure this isn't invading the dialect attribute namespace. 4592 if (aliasName.contains('.')) 4593 return emitError("attribute names with a '.' are reserved for " 4594 "dialect-defined names"); 4595 4596 consumeToken(Token::hash_identifier); 4597 4598 // Parse the '='. 4599 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 4600 return failure(); 4601 4602 // Parse the attribute value. 4603 Attribute attr = parseAttribute(); 4604 if (!attr) 4605 return failure(); 4606 4607 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 4608 return success(); 4609 } 4610 4611 /// Parse a type alias declaration. 4612 /// 4613 /// type-alias-def ::= '!' alias-name `=` 'type' type 4614 /// 4615 ParseResult ModuleParser::parseTypeAliasDef() { 4616 assert(getToken().is(Token::exclamation_identifier)); 4617 StringRef aliasName = getTokenSpelling().drop_front(); 4618 4619 // Check for redefinitions. 4620 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 4621 return emitError("redefinition of type alias id '" + aliasName + "'"); 4622 4623 // Make sure this isn't invading the dialect type namespace. 4624 if (aliasName.contains('.')) 4625 return emitError("type names with a '.' are reserved for " 4626 "dialect-defined names"); 4627 4628 consumeToken(Token::exclamation_identifier); 4629 4630 // Parse the '=' and 'type'. 4631 if (parseToken(Token::equal, "expected '=' in type alias definition") || 4632 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 4633 return failure(); 4634 4635 // Parse the type. 4636 Type aliasedType = parseType(); 4637 if (!aliasedType) 4638 return failure(); 4639 4640 // Register this alias with the parser state. 4641 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 4642 return success(); 4643 } 4644 4645 /// This is the top-level module parser. 4646 ParseResult ModuleParser::parseModule(ModuleOp module) { 4647 OperationParser opParser(getState(), module); 4648 4649 // Module itself is a name scope. 4650 opParser.pushSSANameScope(/*isIsolated=*/true); 4651 4652 while (true) { 4653 switch (getToken().getKind()) { 4654 default: 4655 // Parse a top-level operation. 4656 if (opParser.parseOperation()) 4657 return failure(); 4658 break; 4659 4660 // If we got to the end of the file, then we're done. 4661 case Token::eof: { 4662 if (opParser.finalize()) 4663 return failure(); 4664 4665 // Handle the case where the top level module was explicitly defined. 4666 auto &bodyBlocks = module.getBodyRegion().getBlocks(); 4667 auto &operations = bodyBlocks.front().getOperations(); 4668 assert(!operations.empty() && "expected a valid module terminator"); 4669 4670 // Check that the first operation is a module, and it is the only 4671 // non-terminator operation. 4672 ModuleOp nested = dyn_cast<ModuleOp>(operations.front()); 4673 if (nested && std::next(operations.begin(), 2) == operations.end()) { 4674 // Merge the data of the nested module operation into 'module'. 4675 module.setLoc(nested.getLoc()); 4676 module.setAttrs(nested.getOperation()->getAttrList()); 4677 bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks()); 4678 4679 // Erase the original module body. 4680 bodyBlocks.pop_front(); 4681 } 4682 4683 return opParser.popSSANameScope(); 4684 } 4685 4686 // If we got an error token, then the lexer already emitted an error, just 4687 // stop. Someday we could introduce error recovery if there was demand 4688 // for it. 4689 case Token::error: 4690 return failure(); 4691 4692 // Parse an attribute alias. 4693 case Token::hash_identifier: 4694 if (parseAttributeAliasDef()) 4695 return failure(); 4696 break; 4697 4698 // Parse a type alias. 4699 case Token::exclamation_identifier: 4700 if (parseTypeAliasDef()) 4701 return failure(); 4702 break; 4703 } 4704 } 4705 } 4706 4707 //===----------------------------------------------------------------------===// 4708 4709 /// This parses the file specified by the indicated SourceMgr and returns an 4710 /// MLIR module if it was valid. If not, it emits diagnostics and returns 4711 /// null. 4712 OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 4713 MLIRContext *context) { 4714 auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 4715 4716 // This is the result module we are parsing into. 4717 OwningModuleRef module(ModuleOp::create(FileLineColLoc::get( 4718 sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context))); 4719 4720 SymbolState aliasState; 4721 ParserState state(sourceMgr, context, aliasState); 4722 if (ModuleParser(state).parseModule(*module)) 4723 return nullptr; 4724 4725 // Make sure the parse module has no other structural problems detected by 4726 // the verifier. 4727 if (failed(verify(*module))) 4728 return nullptr; 4729 4730 return module; 4731 } 4732 4733 /// This parses the file specified by the indicated filename and returns an 4734 /// MLIR module if it was valid. If not, the error message is emitted through 4735 /// the error handler registered in the context, and a null pointer is returned. 4736 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4737 MLIRContext *context) { 4738 llvm::SourceMgr sourceMgr; 4739 return parseSourceFile(filename, sourceMgr, context); 4740 } 4741 4742 /// This parses the file specified by the indicated filename using the provided 4743 /// SourceMgr and returns an MLIR module if it was valid. If not, the error 4744 /// message is emitted through the error handler registered in the context, and 4745 /// a null pointer is returned. 4746 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4747 llvm::SourceMgr &sourceMgr, 4748 MLIRContext *context) { 4749 if (sourceMgr.getNumBuffers() != 0) { 4750 // TODO(b/136086478): Extend to support multiple buffers. 4751 emitError(mlir::UnknownLoc::get(context), 4752 "only main buffer parsed at the moment"); 4753 return nullptr; 4754 } 4755 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 4756 if (std::error_code error = file_or_err.getError()) { 4757 emitError(mlir::UnknownLoc::get(context), 4758 "could not open input file " + filename); 4759 return nullptr; 4760 } 4761 4762 // Load the MLIR module. 4763 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 4764 return parseSourceFile(sourceMgr, context); 4765 } 4766 4767 /// This parses the program string to a MLIR module if it was valid. If not, 4768 /// it emits diagnostics and returns null. 4769 OwningModuleRef mlir::parseSourceString(StringRef moduleStr, 4770 MLIRContext *context) { 4771 auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); 4772 if (!memBuffer) 4773 return nullptr; 4774 4775 SourceMgr sourceMgr; 4776 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 4777 return parseSourceFile(sourceMgr, context); 4778 } 4779 4780 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 4781 /// parsing failed, nullptr is returned. The number of bytes read from the input 4782 /// string is returned in 'numRead'. 4783 template <typename T, typename ParserFn> 4784 static T parseSymbol(llvm::StringRef inputStr, MLIRContext *context, 4785 size_t &numRead, ParserFn &&parserFn) { 4786 SymbolState aliasState; 4787 return parseSymbol<T>( 4788 inputStr, context, aliasState, 4789 [&](Parser &parser) { 4790 SourceMgrDiagnosticHandler handler( 4791 const_cast<llvm::SourceMgr &>(parser.getSourceMgr()), 4792 parser.getContext()); 4793 return parserFn(parser); 4794 }, 4795 &numRead); 4796 } 4797 4798 Attribute mlir::parseAttribute(llvm::StringRef attrStr, MLIRContext *context) { 4799 size_t numRead = 0; 4800 return parseAttribute(attrStr, context, numRead); 4801 } 4802 Attribute mlir::parseAttribute(llvm::StringRef attrStr, Type type) { 4803 size_t numRead = 0; 4804 return parseAttribute(attrStr, type, numRead); 4805 } 4806 4807 Attribute mlir::parseAttribute(llvm::StringRef attrStr, MLIRContext *context, 4808 size_t &numRead) { 4809 return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) { 4810 return parser.parseAttribute(); 4811 }); 4812 } 4813 Attribute mlir::parseAttribute(llvm::StringRef attrStr, Type type, 4814 size_t &numRead) { 4815 return parseSymbol<Attribute>( 4816 attrStr, type.getContext(), numRead, 4817 [type](Parser &parser) { return parser.parseAttribute(type); }); 4818 } 4819 4820 Type mlir::parseType(llvm::StringRef typeStr, MLIRContext *context) { 4821 size_t numRead = 0; 4822 return parseType(typeStr, context, numRead); 4823 } 4824 4825 Type mlir::parseType(llvm::StringRef typeStr, MLIRContext *context, 4826 size_t &numRead) { 4827 return parseSymbol<Type>(typeStr, context, numRead, 4828 [](Parser &parser) { return parser.parseType(); }); 4829 } 4830