1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Parser.h" 14 #include "Lexer.h" 15 #include "mlir/Analysis/Verifier.h" 16 #include "mlir/IR/AffineExpr.h" 17 #include "mlir/IR/AffineMap.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/Dialect.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/IntegerSet.h" 23 #include "mlir/IR/Location.h" 24 #include "mlir/IR/MLIRContext.h" 25 #include "mlir/IR/Module.h" 26 #include "mlir/IR/OpImplementation.h" 27 #include "mlir/IR/StandardTypes.h" 28 #include "mlir/Support/STLExtras.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/ADT/bit.h" 33 #include "llvm/Support/PrettyStackTrace.h" 34 #include "llvm/Support/SMLoc.h" 35 #include "llvm/Support/SourceMgr.h" 36 #include <algorithm> 37 using namespace mlir; 38 using llvm::MemoryBuffer; 39 using llvm::SMLoc; 40 using llvm::SourceMgr; 41 42 namespace { 43 class Parser; 44 45 //===----------------------------------------------------------------------===// 46 // SymbolState 47 //===----------------------------------------------------------------------===// 48 49 /// This class contains record of any parsed top-level symbols. 50 struct SymbolState { 51 // A map from attribute alias identifier to Attribute. 52 llvm::StringMap<Attribute> attributeAliasDefinitions; 53 54 // A map from type alias identifier to Type. 55 llvm::StringMap<Type> typeAliasDefinitions; 56 57 /// A set of locations into the main parser memory buffer for each of the 58 /// active nested parsers. Given that some nested parsers, i.e. custom dialect 59 /// parsers, operate on a temporary memory buffer, this provides an anchor 60 /// point for emitting diagnostics. 61 SmallVector<llvm::SMLoc, 1> nestedParserLocs; 62 63 /// The top-level lexer that contains the original memory buffer provided by 64 /// the user. This is used by nested parsers to get a properly encoded source 65 /// location. 66 Lexer *topLevelLexer = nullptr; 67 }; 68 69 //===----------------------------------------------------------------------===// 70 // ParserState 71 //===----------------------------------------------------------------------===// 72 73 /// This class refers to all of the state maintained globally by the parser, 74 /// such as the current lexer position etc. 75 struct ParserState { 76 ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx, 77 SymbolState &symbols) 78 : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()), 79 symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) { 80 // Set the top level lexer for the symbol state if one doesn't exist. 81 if (!symbols.topLevelLexer) 82 symbols.topLevelLexer = &lex; 83 } 84 ~ParserState() { 85 // Reset the top level lexer if it refers the lexer in our state. 86 if (symbols.topLevelLexer == &lex) 87 symbols.topLevelLexer = nullptr; 88 } 89 ParserState(const ParserState &) = delete; 90 void operator=(const ParserState &) = delete; 91 92 /// The context we're parsing into. 93 MLIRContext *const context; 94 95 /// The lexer for the source file we're parsing. 96 Lexer lex; 97 98 /// This is the next token that hasn't been consumed yet. 99 Token curToken; 100 101 /// The current state for symbol parsing. 102 SymbolState &symbols; 103 104 /// The depth of this parser in the nested parsing stack. 105 size_t parserDepth; 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // Parser 110 //===----------------------------------------------------------------------===// 111 112 /// This class implement support for parsing global entities like types and 113 /// shared entities like SSA names. It is intended to be subclassed by 114 /// specialized subparsers that include state, e.g. when a local symbol table. 115 class Parser { 116 public: 117 Builder builder; 118 119 Parser(ParserState &state) : builder(state.context), state(state) {} 120 121 // Helper methods to get stuff from the parser-global state. 122 ParserState &getState() const { return state; } 123 MLIRContext *getContext() const { return state.context; } 124 const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } 125 126 /// Parse a comma-separated list of elements up until the specified end token. 127 ParseResult 128 parseCommaSeparatedListUntil(Token::Kind rightToken, 129 const std::function<ParseResult()> &parseElement, 130 bool allowEmptyList = true); 131 132 /// Parse a comma separated list of elements that must have at least one entry 133 /// in it. 134 ParseResult 135 parseCommaSeparatedList(const std::function<ParseResult()> &parseElement); 136 137 ParseResult parsePrettyDialectSymbolName(StringRef &prettyName); 138 139 // We have two forms of parsing methods - those that return a non-null 140 // pointer on success, and those that return a ParseResult to indicate whether 141 // they returned a failure. The second class fills in by-reference arguments 142 // as the results of their action. 143 144 //===--------------------------------------------------------------------===// 145 // Error Handling 146 //===--------------------------------------------------------------------===// 147 148 /// Emit an error and return failure. 149 InFlightDiagnostic emitError(const Twine &message = {}) { 150 return emitError(state.curToken.getLoc(), message); 151 } 152 InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {}); 153 154 /// Encode the specified source location information into an attribute for 155 /// attachment to the IR. 156 Location getEncodedSourceLocation(llvm::SMLoc loc) { 157 // If there are no active nested parsers, we can get the encoded source 158 // location directly. 159 if (state.parserDepth == 0) 160 return state.lex.getEncodedSourceLocation(loc); 161 // Otherwise, we need to re-encode it to point to the top level buffer. 162 return state.symbols.topLevelLexer->getEncodedSourceLocation( 163 remapLocationToTopLevelBuffer(loc)); 164 } 165 166 /// Remaps the given SMLoc to the top level lexer of the parser. This is used 167 /// to adjust locations of potentially nested parsers to ensure that they can 168 /// be emitted properly as diagnostics. 169 llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) { 170 // If there are no active nested parsers, we can return location directly. 171 SymbolState &symbols = state.symbols; 172 if (state.parserDepth == 0) 173 return loc; 174 assert(symbols.topLevelLexer && "expected valid top-level lexer"); 175 176 // Otherwise, we need to remap the location to the main parser. This is 177 // simply offseting the location onto the location of the last nested 178 // parser. 179 size_t offset = loc.getPointer() - state.lex.getBufferBegin(); 180 auto *rawLoc = 181 symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset; 182 return llvm::SMLoc::getFromPointer(rawLoc); 183 } 184 185 //===--------------------------------------------------------------------===// 186 // Token Parsing 187 //===--------------------------------------------------------------------===// 188 189 /// Return the current token the parser is inspecting. 190 const Token &getToken() const { return state.curToken; } 191 StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } 192 193 /// If the current token has the specified kind, consume it and return true. 194 /// If not, return false. 195 bool consumeIf(Token::Kind kind) { 196 if (state.curToken.isNot(kind)) 197 return false; 198 consumeToken(kind); 199 return true; 200 } 201 202 /// Advance the current lexer onto the next token. 203 void consumeToken() { 204 assert(state.curToken.isNot(Token::eof, Token::error) && 205 "shouldn't advance past EOF or errors"); 206 state.curToken = state.lex.lexToken(); 207 } 208 209 /// Advance the current lexer onto the next token, asserting what the expected 210 /// current token is. This is preferred to the above method because it leads 211 /// to more self-documenting code with better checking. 212 void consumeToken(Token::Kind kind) { 213 assert(state.curToken.is(kind) && "consumed an unexpected token"); 214 consumeToken(); 215 } 216 217 /// Consume the specified token if present and return success. On failure, 218 /// output a diagnostic and return failure. 219 ParseResult parseToken(Token::Kind expectedToken, const Twine &message); 220 221 //===--------------------------------------------------------------------===// 222 // Type Parsing 223 //===--------------------------------------------------------------------===// 224 225 ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements); 226 ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements); 227 ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements); 228 229 /// Parse an arbitrary type. 230 Type parseType(); 231 232 /// Parse a complex type. 233 Type parseComplexType(); 234 235 /// Parse an extended type. 236 Type parseExtendedType(); 237 238 /// Parse a function type. 239 Type parseFunctionType(); 240 241 /// Parse a memref type. 242 Type parseMemRefType(); 243 244 /// Parse a non function type. 245 Type parseNonFunctionType(); 246 247 /// Parse a tensor type. 248 Type parseTensorType(); 249 250 /// Parse a tuple type. 251 Type parseTupleType(); 252 253 /// Parse a vector type. 254 VectorType parseVectorType(); 255 ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 256 bool allowDynamic = true); 257 ParseResult parseXInDimensionList(); 258 259 /// Parse strided layout specification. 260 ParseResult parseStridedLayout(int64_t &offset, 261 SmallVectorImpl<int64_t> &strides); 262 263 // Parse a brace-delimiter list of comma-separated integers with `?` as an 264 // unknown marker. 265 ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions); 266 267 //===--------------------------------------------------------------------===// 268 // Attribute Parsing 269 //===--------------------------------------------------------------------===// 270 271 /// Parse an arbitrary attribute with an optional type. 272 Attribute parseAttribute(Type type = {}); 273 274 /// Parse an attribute dictionary. 275 ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes); 276 277 /// Parse an extended attribute. 278 Attribute parseExtendedAttr(Type type); 279 280 /// Parse a float attribute. 281 Attribute parseFloatAttr(Type type, bool isNegative); 282 283 /// Parse a decimal or a hexadecimal literal, which can be either an integer 284 /// or a float attribute. 285 Attribute parseDecOrHexAttr(Type type, bool isNegative); 286 287 /// Parse an opaque elements attribute. 288 Attribute parseOpaqueElementsAttr(Type attrType); 289 290 /// Parse a dense elements attribute. 291 Attribute parseDenseElementsAttr(Type attrType); 292 ShapedType parseElementsLiteralType(Type type); 293 294 /// Parse a sparse elements attribute. 295 Attribute parseSparseElementsAttr(Type attrType); 296 297 //===--------------------------------------------------------------------===// 298 // Location Parsing 299 //===--------------------------------------------------------------------===// 300 301 /// Parse an inline location. 302 ParseResult parseLocation(LocationAttr &loc); 303 304 /// Parse a raw location instance. 305 ParseResult parseLocationInstance(LocationAttr &loc); 306 307 /// Parse a callsite location instance. 308 ParseResult parseCallSiteLocation(LocationAttr &loc); 309 310 /// Parse a fused location instance. 311 ParseResult parseFusedLocation(LocationAttr &loc); 312 313 /// Parse a name or FileLineCol location instance. 314 ParseResult parseNameOrFileLineColLocation(LocationAttr &loc); 315 316 /// Parse an optional trailing location. 317 /// 318 /// trailing-location ::= (`loc` `(` location `)`)? 319 /// 320 ParseResult parseOptionalTrailingLocation(Location &loc) { 321 // If there is a 'loc' we parse a trailing location. 322 if (!getToken().is(Token::kw_loc)) 323 return success(); 324 325 // Parse the location. 326 LocationAttr directLoc; 327 if (parseLocation(directLoc)) 328 return failure(); 329 loc = directLoc; 330 return success(); 331 } 332 333 //===--------------------------------------------------------------------===// 334 // Affine Parsing 335 //===--------------------------------------------------------------------===// 336 337 /// Parse a reference to either an affine map, or an integer set. 338 ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, 339 IntegerSet &set); 340 ParseResult parseAffineMapReference(AffineMap &map); 341 ParseResult parseIntegerSetReference(IntegerSet &set); 342 343 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 344 ParseResult 345 parseAffineMapOfSSAIds(AffineMap &map, 346 function_ref<ParseResult(bool)> parseElement, 347 OpAsmParser::Delimiter delimiter); 348 349 private: 350 /// The Parser is subclassed and reinstantiated. Do not add additional 351 /// non-trivial state here, add it to the ParserState class. 352 ParserState &state; 353 }; 354 } // end anonymous namespace 355 356 //===----------------------------------------------------------------------===// 357 // Helper methods. 358 //===----------------------------------------------------------------------===// 359 360 /// Parse a comma separated list of elements that must have at least one entry 361 /// in it. 362 ParseResult Parser::parseCommaSeparatedList( 363 const std::function<ParseResult()> &parseElement) { 364 // Non-empty case starts with an element. 365 if (parseElement()) 366 return failure(); 367 368 // Otherwise we have a list of comma separated elements. 369 while (consumeIf(Token::comma)) { 370 if (parseElement()) 371 return failure(); 372 } 373 return success(); 374 } 375 376 /// Parse a comma-separated list of elements, terminated with an arbitrary 377 /// token. This allows empty lists if allowEmptyList is true. 378 /// 379 /// abstract-list ::= rightToken // if allowEmptyList == true 380 /// abstract-list ::= element (',' element)* rightToken 381 /// 382 ParseResult Parser::parseCommaSeparatedListUntil( 383 Token::Kind rightToken, const std::function<ParseResult()> &parseElement, 384 bool allowEmptyList) { 385 // Handle the empty case. 386 if (getToken().is(rightToken)) { 387 if (!allowEmptyList) 388 return emitError("expected list element"); 389 consumeToken(rightToken); 390 return success(); 391 } 392 393 if (parseCommaSeparatedList(parseElement) || 394 parseToken(rightToken, "expected ',' or '" + 395 Token::getTokenSpelling(rightToken) + "'")) 396 return failure(); 397 398 return success(); 399 } 400 401 //===----------------------------------------------------------------------===// 402 // DialectAsmParser 403 //===----------------------------------------------------------------------===// 404 405 namespace { 406 /// This class provides the main implementation of the DialectAsmParser that 407 /// allows for dialects to parse attributes and types. This allows for dialect 408 /// hooking into the main MLIR parsing logic. 409 class CustomDialectAsmParser : public DialectAsmParser { 410 public: 411 CustomDialectAsmParser(StringRef fullSpec, Parser &parser) 412 : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()), 413 parser(parser) {} 414 ~CustomDialectAsmParser() override {} 415 416 /// Emit a diagnostic at the specified location and return failure. 417 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 418 return parser.emitError(loc, message); 419 } 420 421 /// Return a builder which provides useful access to MLIRContext, global 422 /// objects like types and attributes. 423 Builder &getBuilder() const override { return parser.builder; } 424 425 /// Get the location of the next token and store it into the argument. This 426 /// always succeeds. 427 llvm::SMLoc getCurrentLocation() override { 428 return parser.getToken().getLoc(); 429 } 430 431 /// Return the location of the original name token. 432 llvm::SMLoc getNameLoc() const override { return nameLoc; } 433 434 /// Re-encode the given source location as an MLIR location and return it. 435 Location getEncodedSourceLoc(llvm::SMLoc loc) override { 436 return parser.getEncodedSourceLocation(loc); 437 } 438 439 /// Returns the full specification of the symbol being parsed. This allows 440 /// for using a separate parser if necessary. 441 StringRef getFullSymbolSpec() const override { return fullSpec; } 442 443 /// Parse a floating point value from the stream. 444 ParseResult parseFloat(double &result) override { 445 bool negative = parser.consumeIf(Token::minus); 446 Token curTok = parser.getToken(); 447 448 // Check for a floating point value. 449 if (curTok.is(Token::floatliteral)) { 450 auto val = curTok.getFloatingPointValue(); 451 if (!val.hasValue()) 452 return emitError(curTok.getLoc(), "floating point value too large"); 453 parser.consumeToken(Token::floatliteral); 454 result = negative ? -*val : *val; 455 return success(); 456 } 457 458 // TODO(riverriddle) support hex floating point values. 459 return emitError(getCurrentLocation(), "expected floating point literal"); 460 } 461 462 /// Parse an optional integer value from the stream. 463 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 464 Token curToken = parser.getToken(); 465 if (curToken.isNot(Token::integer, Token::minus)) 466 return llvm::None; 467 468 bool negative = parser.consumeIf(Token::minus); 469 Token curTok = parser.getToken(); 470 if (parser.parseToken(Token::integer, "expected integer value")) 471 return failure(); 472 473 auto val = curTok.getUInt64IntegerValue(); 474 if (!val) 475 return emitError(curTok.getLoc(), "integer value too large"); 476 result = negative ? -*val : *val; 477 return success(); 478 } 479 480 //===--------------------------------------------------------------------===// 481 // Token Parsing 482 //===--------------------------------------------------------------------===// 483 484 /// Parse a `->` token. 485 ParseResult parseArrow() override { 486 return parser.parseToken(Token::arrow, "expected '->'"); 487 } 488 489 /// Parses a `->` if present. 490 ParseResult parseOptionalArrow() override { 491 return success(parser.consumeIf(Token::arrow)); 492 } 493 494 /// Parse a '{' token. 495 ParseResult parseLBrace() override { 496 return parser.parseToken(Token::l_brace, "expected '{'"); 497 } 498 499 /// Parse a '{' token if present 500 ParseResult parseOptionalLBrace() override { 501 return success(parser.consumeIf(Token::l_brace)); 502 } 503 504 /// Parse a `}` token. 505 ParseResult parseRBrace() override { 506 return parser.parseToken(Token::r_brace, "expected '}'"); 507 } 508 509 /// Parse a `}` token if present 510 ParseResult parseOptionalRBrace() override { 511 return success(parser.consumeIf(Token::r_brace)); 512 } 513 514 /// Parse a `:` token. 515 ParseResult parseColon() override { 516 return parser.parseToken(Token::colon, "expected ':'"); 517 } 518 519 /// Parse a `:` token if present. 520 ParseResult parseOptionalColon() override { 521 return success(parser.consumeIf(Token::colon)); 522 } 523 524 /// Parse a `,` token. 525 ParseResult parseComma() override { 526 return parser.parseToken(Token::comma, "expected ','"); 527 } 528 529 /// Parse a `,` token if present. 530 ParseResult parseOptionalComma() override { 531 return success(parser.consumeIf(Token::comma)); 532 } 533 534 /// Parses a `...` if present. 535 ParseResult parseOptionalEllipsis() override { 536 return success(parser.consumeIf(Token::ellipsis)); 537 } 538 539 /// Parse a `=` token. 540 ParseResult parseEqual() override { 541 return parser.parseToken(Token::equal, "expected '='"); 542 } 543 544 /// Parse a '<' token. 545 ParseResult parseLess() override { 546 return parser.parseToken(Token::less, "expected '<'"); 547 } 548 549 /// Parse a `<` token if present. 550 ParseResult parseOptionalLess() override { 551 return success(parser.consumeIf(Token::less)); 552 } 553 554 /// Parse a '>' token. 555 ParseResult parseGreater() override { 556 return parser.parseToken(Token::greater, "expected '>'"); 557 } 558 559 /// Parse a `>` token if present. 560 ParseResult parseOptionalGreater() override { 561 return success(parser.consumeIf(Token::greater)); 562 } 563 564 /// Parse a `(` token. 565 ParseResult parseLParen() override { 566 return parser.parseToken(Token::l_paren, "expected '('"); 567 } 568 569 /// Parses a '(' if present. 570 ParseResult parseOptionalLParen() override { 571 return success(parser.consumeIf(Token::l_paren)); 572 } 573 574 /// Parse a `)` token. 575 ParseResult parseRParen() override { 576 return parser.parseToken(Token::r_paren, "expected ')'"); 577 } 578 579 /// Parses a ')' if present. 580 ParseResult parseOptionalRParen() override { 581 return success(parser.consumeIf(Token::r_paren)); 582 } 583 584 /// Parse a `[` token. 585 ParseResult parseLSquare() override { 586 return parser.parseToken(Token::l_square, "expected '['"); 587 } 588 589 /// Parses a '[' if present. 590 ParseResult parseOptionalLSquare() override { 591 return success(parser.consumeIf(Token::l_square)); 592 } 593 594 /// Parse a `]` token. 595 ParseResult parseRSquare() override { 596 return parser.parseToken(Token::r_square, "expected ']'"); 597 } 598 599 /// Parses a ']' if present. 600 ParseResult parseOptionalRSquare() override { 601 return success(parser.consumeIf(Token::r_square)); 602 } 603 604 /// Parses a '?' if present. 605 ParseResult parseOptionalQuestion() override { 606 return success(parser.consumeIf(Token::question)); 607 } 608 609 /// Parses a '*' if present. 610 ParseResult parseOptionalStar() override { 611 return success(parser.consumeIf(Token::star)); 612 } 613 614 /// Returns if the current token corresponds to a keyword. 615 bool isCurrentTokenAKeyword() const { 616 return parser.getToken().is(Token::bare_identifier) || 617 parser.getToken().isKeyword(); 618 } 619 620 /// Parse the given keyword if present. 621 ParseResult parseOptionalKeyword(StringRef keyword) override { 622 // Check that the current token has the same spelling. 623 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 624 return failure(); 625 parser.consumeToken(); 626 return success(); 627 } 628 629 /// Parse a keyword, if present, into 'keyword'. 630 ParseResult parseOptionalKeyword(StringRef *keyword) override { 631 // Check that the current token is a keyword. 632 if (!isCurrentTokenAKeyword()) 633 return failure(); 634 635 *keyword = parser.getTokenSpelling(); 636 parser.consumeToken(); 637 return success(); 638 } 639 640 //===--------------------------------------------------------------------===// 641 // Attribute Parsing 642 //===--------------------------------------------------------------------===// 643 644 /// Parse an arbitrary attribute and return it in result. 645 ParseResult parseAttribute(Attribute &result, Type type) override { 646 result = parser.parseAttribute(type); 647 return success(static_cast<bool>(result)); 648 } 649 650 /// Parse an affine map instance into 'map'. 651 ParseResult parseAffineMap(AffineMap &map) override { 652 return parser.parseAffineMapReference(map); 653 } 654 655 /// Parse an integer set instance into 'set'. 656 ParseResult printIntegerSet(IntegerSet &set) override { 657 return parser.parseIntegerSetReference(set); 658 } 659 660 //===--------------------------------------------------------------------===// 661 // Type Parsing 662 //===--------------------------------------------------------------------===// 663 664 ParseResult parseType(Type &result) override { 665 result = parser.parseType(); 666 return success(static_cast<bool>(result)); 667 } 668 669 ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions, 670 bool allowDynamic) override { 671 return parser.parseDimensionListRanked(dimensions, allowDynamic); 672 } 673 674 private: 675 /// The full symbol specification. 676 StringRef fullSpec; 677 678 /// The source location of the dialect symbol. 679 SMLoc nameLoc; 680 681 /// The main parser. 682 Parser &parser; 683 }; 684 } // namespace 685 686 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s, 687 /// and may be recursive. Return with the 'prettyName' StringRef encompassing 688 /// the entire pretty name. 689 /// 690 /// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>' 691 /// pretty-dialect-sym-contents ::= pretty-dialect-sym-body 692 /// | '(' pretty-dialect-sym-contents+ ')' 693 /// | '[' pretty-dialect-sym-contents+ ']' 694 /// | '{' pretty-dialect-sym-contents+ '}' 695 /// | '[^[<({>\])}\0]+' 696 /// 697 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) { 698 // Pretty symbol names are a relatively unstructured format that contains a 699 // series of properly nested punctuation, with anything else in the middle. 700 // Scan ahead to find it and consume it if successful, otherwise emit an 701 // error. 702 auto *curPtr = getTokenSpelling().data(); 703 704 SmallVector<char, 8> nestedPunctuation; 705 706 // Scan over the nested punctuation, bailing out on error and consuming until 707 // we find the end. We know that we're currently looking at the '<', so we 708 // can go until we find the matching '>' character. 709 assert(*curPtr == '<'); 710 do { 711 char c = *curPtr++; 712 switch (c) { 713 case '\0': 714 // This also handles the EOF case. 715 return emitError("unexpected nul or EOF in pretty dialect name"); 716 case '<': 717 case '[': 718 case '(': 719 case '{': 720 nestedPunctuation.push_back(c); 721 continue; 722 723 case '-': 724 // The sequence `->` is treated as special token. 725 if (*curPtr == '>') 726 ++curPtr; 727 continue; 728 729 case '>': 730 if (nestedPunctuation.pop_back_val() != '<') 731 return emitError("unbalanced '>' character in pretty dialect name"); 732 break; 733 case ']': 734 if (nestedPunctuation.pop_back_val() != '[') 735 return emitError("unbalanced ']' character in pretty dialect name"); 736 break; 737 case ')': 738 if (nestedPunctuation.pop_back_val() != '(') 739 return emitError("unbalanced ')' character in pretty dialect name"); 740 break; 741 case '}': 742 if (nestedPunctuation.pop_back_val() != '{') 743 return emitError("unbalanced '}' character in pretty dialect name"); 744 break; 745 746 default: 747 continue; 748 } 749 } while (!nestedPunctuation.empty()); 750 751 // Ok, we succeeded, remember where we stopped, reset the lexer to know it is 752 // consuming all this stuff, and return. 753 state.lex.resetPointer(curPtr); 754 755 unsigned length = curPtr - prettyName.begin(); 756 prettyName = StringRef(prettyName.begin(), length); 757 consumeToken(); 758 return success(); 759 } 760 761 /// Parse an extended dialect symbol. 762 template <typename Symbol, typename SymbolAliasMap, typename CreateFn> 763 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok, 764 SymbolAliasMap &aliases, 765 CreateFn &&createSymbol) { 766 // Parse the dialect namespace. 767 StringRef identifier = p.getTokenSpelling().drop_front(); 768 auto loc = p.getToken().getLoc(); 769 p.consumeToken(identifierTok); 770 771 // If there is no '<' token following this, and if the typename contains no 772 // dot, then we are parsing a symbol alias. 773 if (p.getToken().isNot(Token::less) && !identifier.contains('.')) { 774 // Check for an alias for this type. 775 auto aliasIt = aliases.find(identifier); 776 if (aliasIt == aliases.end()) 777 return (p.emitError("undefined symbol alias id '" + identifier + "'"), 778 nullptr); 779 return aliasIt->second; 780 } 781 782 // Otherwise, we are parsing a dialect-specific symbol. If the name contains 783 // a dot, then this is the "pretty" form. If not, it is the verbose form that 784 // looks like <"...">. 785 std::string symbolData; 786 auto dialectName = identifier; 787 788 // Handle the verbose form, where "identifier" is a simple dialect name. 789 if (!identifier.contains('.')) { 790 // Consume the '<'. 791 if (p.parseToken(Token::less, "expected '<' in dialect type")) 792 return nullptr; 793 794 // Parse the symbol specific data. 795 if (p.getToken().isNot(Token::string)) 796 return (p.emitError("expected string literal data in dialect symbol"), 797 nullptr); 798 symbolData = p.getToken().getStringValue(); 799 loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1); 800 p.consumeToken(Token::string); 801 802 // Consume the '>'. 803 if (p.parseToken(Token::greater, "expected '>' in dialect symbol")) 804 return nullptr; 805 } else { 806 // Ok, the dialect name is the part of the identifier before the dot, the 807 // part after the dot is the dialect's symbol, or the start thereof. 808 auto dotHalves = identifier.split('.'); 809 dialectName = dotHalves.first; 810 auto prettyName = dotHalves.second; 811 loc = llvm::SMLoc::getFromPointer(prettyName.data()); 812 813 // If the dialect's symbol is followed immediately by a <, then lex the body 814 // of it into prettyName. 815 if (p.getToken().is(Token::less) && 816 prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) { 817 if (p.parsePrettyDialectSymbolName(prettyName)) 818 return nullptr; 819 } 820 821 symbolData = prettyName.str(); 822 } 823 824 // Record the name location of the type remapped to the top level buffer. 825 llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc); 826 p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer); 827 828 // Call into the provided symbol construction function. 829 Symbol sym = createSymbol(dialectName, symbolData, loc); 830 831 // Pop the last parser location. 832 p.getState().symbols.nestedParserLocs.pop_back(); 833 return sym; 834 } 835 836 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 837 /// parsing failed, nullptr is returned. The number of bytes read from the input 838 /// string is returned in 'numRead'. 839 template <typename T, typename ParserFn> 840 static T parseSymbol(StringRef inputStr, MLIRContext *context, 841 SymbolState &symbolState, ParserFn &&parserFn, 842 size_t *numRead = nullptr) { 843 SourceMgr sourceMgr; 844 auto memBuffer = MemoryBuffer::getMemBuffer( 845 inputStr, /*BufferName=*/"<mlir_parser_buffer>", 846 /*RequiresNullTerminator=*/false); 847 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 848 ParserState state(sourceMgr, context, symbolState); 849 Parser parser(state); 850 851 Token startTok = parser.getToken(); 852 T symbol = parserFn(parser); 853 if (!symbol) 854 return T(); 855 856 // If 'numRead' is valid, then provide the number of bytes that were read. 857 Token endTok = parser.getToken(); 858 if (numRead) { 859 *numRead = static_cast<size_t>(endTok.getLoc().getPointer() - 860 startTok.getLoc().getPointer()); 861 862 // Otherwise, ensure that all of the tokens were parsed. 863 } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) { 864 parser.emitError(endTok.getLoc(), "encountered unexpected token"); 865 return T(); 866 } 867 return symbol; 868 } 869 870 //===----------------------------------------------------------------------===// 871 // Error Handling 872 //===----------------------------------------------------------------------===// 873 874 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 875 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 876 877 // If we hit a parse error in response to a lexer error, then the lexer 878 // already reported the error. 879 if (getToken().is(Token::error)) 880 diag.abandon(); 881 return diag; 882 } 883 884 //===----------------------------------------------------------------------===// 885 // Token Parsing 886 //===----------------------------------------------------------------------===// 887 888 /// Consume the specified token if present and return success. On failure, 889 /// output a diagnostic and return failure. 890 ParseResult Parser::parseToken(Token::Kind expectedToken, 891 const Twine &message) { 892 if (consumeIf(expectedToken)) 893 return success(); 894 return emitError(message); 895 } 896 897 //===----------------------------------------------------------------------===// 898 // Type Parsing 899 //===----------------------------------------------------------------------===// 900 901 /// Parse an arbitrary type. 902 /// 903 /// type ::= function-type 904 /// | non-function-type 905 /// 906 Type Parser::parseType() { 907 if (getToken().is(Token::l_paren)) 908 return parseFunctionType(); 909 return parseNonFunctionType(); 910 } 911 912 /// Parse a function result type. 913 /// 914 /// function-result-type ::= type-list-parens 915 /// | non-function-type 916 /// 917 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) { 918 if (getToken().is(Token::l_paren)) 919 return parseTypeListParens(elements); 920 921 Type t = parseNonFunctionType(); 922 if (!t) 923 return failure(); 924 elements.push_back(t); 925 return success(); 926 } 927 928 /// Parse a list of types without an enclosing parenthesis. The list must have 929 /// at least one member. 930 /// 931 /// type-list-no-parens ::= type (`,` type)* 932 /// 933 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) { 934 auto parseElt = [&]() -> ParseResult { 935 auto elt = parseType(); 936 elements.push_back(elt); 937 return elt ? success() : failure(); 938 }; 939 940 return parseCommaSeparatedList(parseElt); 941 } 942 943 /// Parse a parenthesized list of types. 944 /// 945 /// type-list-parens ::= `(` `)` 946 /// | `(` type-list-no-parens `)` 947 /// 948 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) { 949 if (parseToken(Token::l_paren, "expected '('")) 950 return failure(); 951 952 // Handle empty lists. 953 if (getToken().is(Token::r_paren)) 954 return consumeToken(), success(); 955 956 if (parseTypeListNoParens(elements) || 957 parseToken(Token::r_paren, "expected ')'")) 958 return failure(); 959 return success(); 960 } 961 962 /// Parse a complex type. 963 /// 964 /// complex-type ::= `complex` `<` type `>` 965 /// 966 Type Parser::parseComplexType() { 967 consumeToken(Token::kw_complex); 968 969 // Parse the '<'. 970 if (parseToken(Token::less, "expected '<' in complex type")) 971 return nullptr; 972 973 llvm::SMLoc elementTypeLoc = getToken().getLoc(); 974 auto elementType = parseType(); 975 if (!elementType || 976 parseToken(Token::greater, "expected '>' in complex type")) 977 return nullptr; 978 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) 979 return emitError(elementTypeLoc, "invalid element type for complex"), 980 nullptr; 981 982 return ComplexType::get(elementType); 983 } 984 985 /// Parse an extended type. 986 /// 987 /// extended-type ::= (dialect-type | type-alias) 988 /// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>` 989 /// dialect-type ::= `!` alias-name pretty-dialect-attribute-body? 990 /// type-alias ::= `!` alias-name 991 /// 992 Type Parser::parseExtendedType() { 993 return parseExtendedSymbol<Type>( 994 *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions, 995 [&](StringRef dialectName, StringRef symbolData, 996 llvm::SMLoc loc) -> Type { 997 // If we found a registered dialect, then ask it to parse the type. 998 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 999 return parseSymbol<Type>( 1000 symbolData, state.context, state.symbols, [&](Parser &parser) { 1001 CustomDialectAsmParser customParser(symbolData, parser); 1002 return dialect->parseType(customParser); 1003 }); 1004 } 1005 1006 // Otherwise, form a new opaque type. 1007 return OpaqueType::getChecked( 1008 Identifier::get(dialectName, state.context), symbolData, 1009 state.context, getEncodedSourceLocation(loc)); 1010 }); 1011 } 1012 1013 /// Parse a function type. 1014 /// 1015 /// function-type ::= type-list-parens `->` function-result-type 1016 /// 1017 Type Parser::parseFunctionType() { 1018 assert(getToken().is(Token::l_paren)); 1019 1020 SmallVector<Type, 4> arguments, results; 1021 if (parseTypeListParens(arguments) || 1022 parseToken(Token::arrow, "expected '->' in function type") || 1023 parseFunctionResultTypes(results)) 1024 return nullptr; 1025 1026 return builder.getFunctionType(arguments, results); 1027 } 1028 1029 /// Parse the offset and strides from a strided layout specification. 1030 /// 1031 /// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list 1032 /// 1033 ParseResult Parser::parseStridedLayout(int64_t &offset, 1034 SmallVectorImpl<int64_t> &strides) { 1035 // Parse offset. 1036 consumeToken(Token::kw_offset); 1037 if (!consumeIf(Token::colon)) 1038 return emitError("expected colon after `offset` keyword"); 1039 auto maybeOffset = getToken().getUnsignedIntegerValue(); 1040 bool question = getToken().is(Token::question); 1041 if (!maybeOffset && !question) 1042 return emitError("invalid offset"); 1043 offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue()) 1044 : MemRefType::getDynamicStrideOrOffset(); 1045 consumeToken(); 1046 1047 if (!consumeIf(Token::comma)) 1048 return emitError("expected comma after offset value"); 1049 1050 // Parse stride list. 1051 if (!consumeIf(Token::kw_strides)) 1052 return emitError("expected `strides` keyword after offset specification"); 1053 if (!consumeIf(Token::colon)) 1054 return emitError("expected colon after `strides` keyword"); 1055 if (failed(parseStrideList(strides))) 1056 return emitError("invalid braces-enclosed stride list"); 1057 if (llvm::any_of(strides, [](int64_t st) { return st == 0; })) 1058 return emitError("invalid memref stride"); 1059 1060 return success(); 1061 } 1062 1063 /// Parse a memref type. 1064 /// 1065 /// memref-type ::= ranked-memref-type | unranked-memref-type 1066 /// 1067 /// ranked-memref-type ::= `memref` `<` dimension-list-ranked type 1068 /// (`,` semi-affine-map-composition)? (`,` 1069 /// memory-space)? `>` 1070 /// 1071 /// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>` 1072 /// 1073 /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map 1074 /// memory-space ::= integer-literal /* | TODO: address-space-id */ 1075 /// 1076 Type Parser::parseMemRefType() { 1077 consumeToken(Token::kw_memref); 1078 1079 if (parseToken(Token::less, "expected '<' in memref type")) 1080 return nullptr; 1081 1082 bool isUnranked; 1083 SmallVector<int64_t, 4> dimensions; 1084 1085 if (consumeIf(Token::star)) { 1086 // This is an unranked memref type. 1087 isUnranked = true; 1088 if (parseXInDimensionList()) 1089 return nullptr; 1090 1091 } else { 1092 isUnranked = false; 1093 if (parseDimensionListRanked(dimensions)) 1094 return nullptr; 1095 } 1096 1097 // Parse the element type. 1098 auto typeLoc = getToken().getLoc(); 1099 auto elementType = parseType(); 1100 if (!elementType) 1101 return nullptr; 1102 1103 // Check that memref is formed from allowed types. 1104 if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>() && 1105 !elementType.isa<ComplexType>()) 1106 return emitError(typeLoc, "invalid memref element type"), nullptr; 1107 1108 // Parse semi-affine-map-composition. 1109 SmallVector<AffineMap, 2> affineMapComposition; 1110 Optional<unsigned> memorySpace; 1111 unsigned numDims = dimensions.size(); 1112 1113 auto parseElt = [&]() -> ParseResult { 1114 // Check for the memory space. 1115 if (getToken().is(Token::integer)) { 1116 if (memorySpace) 1117 return emitError("multiple memory spaces specified in memref type"); 1118 memorySpace = getToken().getUnsignedIntegerValue(); 1119 if (!memorySpace.hasValue()) 1120 return emitError("invalid memory space in memref type"); 1121 consumeToken(Token::integer); 1122 return success(); 1123 } 1124 if (isUnranked) 1125 return emitError("cannot have affine map for unranked memref type"); 1126 if (memorySpace) 1127 return emitError("expected memory space to be last in memref type"); 1128 1129 AffineMap map; 1130 llvm::SMLoc mapLoc = getToken().getLoc(); 1131 if (getToken().is(Token::kw_offset)) { 1132 int64_t offset; 1133 SmallVector<int64_t, 4> strides; 1134 if (failed(parseStridedLayout(offset, strides))) 1135 return failure(); 1136 // Construct strided affine map. 1137 map = makeStridedLinearLayoutMap(strides, offset, state.context); 1138 } else { 1139 // Parse an affine map attribute. 1140 auto affineMap = parseAttribute(); 1141 if (!affineMap) 1142 return failure(); 1143 auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>(); 1144 if (!affineMapAttr) 1145 return emitError("expected affine map in memref type"); 1146 map = affineMapAttr.getValue(); 1147 } 1148 1149 if (map.getNumDims() != numDims) { 1150 size_t i = affineMapComposition.size(); 1151 return emitError(mapLoc, "memref affine map dimension mismatch between ") 1152 << (i == 0 ? Twine("memref rank") : "affine map " + Twine(i)) 1153 << " and affine map" << i + 1 << ": " << numDims 1154 << " != " << map.getNumDims(); 1155 } 1156 numDims = map.getNumResults(); 1157 affineMapComposition.push_back(map); 1158 return success(); 1159 }; 1160 1161 // Parse a list of mappings and address space if present. 1162 if (!consumeIf(Token::greater)) { 1163 // Parse comma separated list of affine maps, followed by memory space. 1164 if (parseToken(Token::comma, "expected ',' or '>' in memref type") || 1165 parseCommaSeparatedListUntil(Token::greater, parseElt, 1166 /*allowEmptyList=*/false)) { 1167 return nullptr; 1168 } 1169 } 1170 1171 if (isUnranked) 1172 return UnrankedMemRefType::get(elementType, memorySpace.getValueOr(0)); 1173 1174 return MemRefType::get(dimensions, elementType, affineMapComposition, 1175 memorySpace.getValueOr(0)); 1176 } 1177 1178 /// Parse any type except the function type. 1179 /// 1180 /// non-function-type ::= integer-type 1181 /// | index-type 1182 /// | float-type 1183 /// | extended-type 1184 /// | vector-type 1185 /// | tensor-type 1186 /// | memref-type 1187 /// | complex-type 1188 /// | tuple-type 1189 /// | none-type 1190 /// 1191 /// index-type ::= `index` 1192 /// float-type ::= `f16` | `bf16` | `f32` | `f64` 1193 /// none-type ::= `none` 1194 /// 1195 Type Parser::parseNonFunctionType() { 1196 switch (getToken().getKind()) { 1197 default: 1198 return (emitError("expected non-function type"), nullptr); 1199 case Token::kw_memref: 1200 return parseMemRefType(); 1201 case Token::kw_tensor: 1202 return parseTensorType(); 1203 case Token::kw_complex: 1204 return parseComplexType(); 1205 case Token::kw_tuple: 1206 return parseTupleType(); 1207 case Token::kw_vector: 1208 return parseVectorType(); 1209 // integer-type 1210 case Token::inttype: { 1211 auto width = getToken().getIntTypeBitwidth(); 1212 if (!width.hasValue()) 1213 return (emitError("invalid integer width"), nullptr); 1214 if (width.getValue() > IntegerType::kMaxWidth) { 1215 emitError(getToken().getLoc(), "integer bitwidth is limited to ") 1216 << IntegerType::kMaxWidth << " bits"; 1217 return nullptr; 1218 } 1219 1220 consumeToken(Token::inttype); 1221 return IntegerType::get(width.getValue(), builder.getContext()); 1222 } 1223 1224 // float-type 1225 case Token::kw_bf16: 1226 consumeToken(Token::kw_bf16); 1227 return builder.getBF16Type(); 1228 case Token::kw_f16: 1229 consumeToken(Token::kw_f16); 1230 return builder.getF16Type(); 1231 case Token::kw_f32: 1232 consumeToken(Token::kw_f32); 1233 return builder.getF32Type(); 1234 case Token::kw_f64: 1235 consumeToken(Token::kw_f64); 1236 return builder.getF64Type(); 1237 1238 // index-type 1239 case Token::kw_index: 1240 consumeToken(Token::kw_index); 1241 return builder.getIndexType(); 1242 1243 // none-type 1244 case Token::kw_none: 1245 consumeToken(Token::kw_none); 1246 return builder.getNoneType(); 1247 1248 // extended type 1249 case Token::exclamation_identifier: 1250 return parseExtendedType(); 1251 } 1252 } 1253 1254 /// Parse a tensor type. 1255 /// 1256 /// tensor-type ::= `tensor` `<` dimension-list type `>` 1257 /// dimension-list ::= dimension-list-ranked | `*x` 1258 /// 1259 Type Parser::parseTensorType() { 1260 consumeToken(Token::kw_tensor); 1261 1262 if (parseToken(Token::less, "expected '<' in tensor type")) 1263 return nullptr; 1264 1265 bool isUnranked; 1266 SmallVector<int64_t, 4> dimensions; 1267 1268 if (consumeIf(Token::star)) { 1269 // This is an unranked tensor type. 1270 isUnranked = true; 1271 1272 if (parseXInDimensionList()) 1273 return nullptr; 1274 1275 } else { 1276 isUnranked = false; 1277 if (parseDimensionListRanked(dimensions)) 1278 return nullptr; 1279 } 1280 1281 // Parse the element type. 1282 auto elementTypeLoc = getToken().getLoc(); 1283 auto elementType = parseType(); 1284 if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) 1285 return nullptr; 1286 if (!TensorType::isValidElementType(elementType)) 1287 return emitError(elementTypeLoc, "invalid tensor element type"), nullptr; 1288 1289 if (isUnranked) 1290 return UnrankedTensorType::get(elementType); 1291 return RankedTensorType::get(dimensions, elementType); 1292 } 1293 1294 /// Parse a tuple type. 1295 /// 1296 /// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>` 1297 /// 1298 Type Parser::parseTupleType() { 1299 consumeToken(Token::kw_tuple); 1300 1301 // Parse the '<'. 1302 if (parseToken(Token::less, "expected '<' in tuple type")) 1303 return nullptr; 1304 1305 // Check for an empty tuple by directly parsing '>'. 1306 if (consumeIf(Token::greater)) 1307 return TupleType::get(getContext()); 1308 1309 // Parse the element types and the '>'. 1310 SmallVector<Type, 4> types; 1311 if (parseTypeListNoParens(types) || 1312 parseToken(Token::greater, "expected '>' in tuple type")) 1313 return nullptr; 1314 1315 return TupleType::get(types, getContext()); 1316 } 1317 1318 /// Parse a vector type. 1319 /// 1320 /// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>` 1321 /// non-empty-static-dimension-list ::= decimal-literal `x` 1322 /// static-dimension-list 1323 /// static-dimension-list ::= (decimal-literal `x`)* 1324 /// 1325 VectorType Parser::parseVectorType() { 1326 consumeToken(Token::kw_vector); 1327 1328 if (parseToken(Token::less, "expected '<' in vector type")) 1329 return nullptr; 1330 1331 SmallVector<int64_t, 4> dimensions; 1332 if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) 1333 return nullptr; 1334 if (dimensions.empty()) 1335 return (emitError("expected dimension size in vector type"), nullptr); 1336 if (any_of(dimensions, [](int64_t i) { return i <= 0; })) 1337 return emitError(getToken().getLoc(), 1338 "vector types must have positive constant sizes"), 1339 nullptr; 1340 1341 // Parse the element type. 1342 auto typeLoc = getToken().getLoc(); 1343 auto elementType = parseType(); 1344 if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) 1345 return nullptr; 1346 if (!VectorType::isValidElementType(elementType)) 1347 return emitError(typeLoc, "vector elements must be int or float type"), 1348 nullptr; 1349 1350 return VectorType::get(dimensions, elementType); 1351 } 1352 1353 /// Parse a dimension list of a tensor or memref type. This populates the 1354 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and 1355 /// errors out on `?` otherwise. 1356 /// 1357 /// dimension-list-ranked ::= (dimension `x`)* 1358 /// dimension ::= `?` | decimal-literal 1359 /// 1360 /// When `allowDynamic` is not set, this is used to parse: 1361 /// 1362 /// static-dimension-list ::= (decimal-literal `x`)* 1363 ParseResult 1364 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 1365 bool allowDynamic) { 1366 while (getToken().isAny(Token::integer, Token::question)) { 1367 if (consumeIf(Token::question)) { 1368 if (!allowDynamic) 1369 return emitError("expected static shape"); 1370 dimensions.push_back(-1); 1371 } else { 1372 // Hexadecimal integer literals (starting with `0x`) are not allowed in 1373 // aggregate type declarations. Therefore, `0xf32` should be processed as 1374 // a sequence of separate elements `0`, `x`, `f32`. 1375 if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { 1376 // We can get here only if the token is an integer literal. Hexadecimal 1377 // integer literals can only start with `0x` (`1x` wouldn't lex as a 1378 // literal, just `1` would, at which point we don't get into this 1379 // branch). 1380 assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); 1381 dimensions.push_back(0); 1382 state.lex.resetPointer(getTokenSpelling().data() + 1); 1383 consumeToken(); 1384 } else { 1385 // Make sure this integer value is in bound and valid. 1386 auto dimension = getToken().getUnsignedIntegerValue(); 1387 if (!dimension.hasValue()) 1388 return emitError("invalid dimension"); 1389 dimensions.push_back((int64_t)dimension.getValue()); 1390 consumeToken(Token::integer); 1391 } 1392 } 1393 1394 // Make sure we have an 'x' or something like 'xbf32'. 1395 if (parseXInDimensionList()) 1396 return failure(); 1397 } 1398 1399 return success(); 1400 } 1401 1402 /// Parse an 'x' token in a dimension list, handling the case where the x is 1403 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next 1404 /// token. 1405 ParseResult Parser::parseXInDimensionList() { 1406 if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') 1407 return emitError("expected 'x' in dimension list"); 1408 1409 // If we had a prefix of 'x', lex the next token immediately after the 'x'. 1410 if (getTokenSpelling().size() != 1) 1411 state.lex.resetPointer(getTokenSpelling().data() + 1); 1412 1413 // Consume the 'x'. 1414 consumeToken(Token::bare_identifier); 1415 1416 return success(); 1417 } 1418 1419 // Parse a comma-separated list of dimensions, possibly empty: 1420 // stride-list ::= `[` (dimension (`,` dimension)*)? `]` 1421 ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) { 1422 if (!consumeIf(Token::l_square)) 1423 return failure(); 1424 // Empty list early exit. 1425 if (consumeIf(Token::r_square)) 1426 return success(); 1427 while (true) { 1428 if (consumeIf(Token::question)) { 1429 dimensions.push_back(MemRefType::getDynamicStrideOrOffset()); 1430 } else { 1431 // This must be an integer value. 1432 int64_t val; 1433 if (getToken().getSpelling().getAsInteger(10, val)) 1434 return emitError("invalid integer value: ") << getToken().getSpelling(); 1435 // Make sure it is not the one value for `?`. 1436 if (ShapedType::isDynamic(val)) 1437 return emitError("invalid integer value: ") 1438 << getToken().getSpelling() 1439 << ", use `?` to specify a dynamic dimension"; 1440 dimensions.push_back(val); 1441 consumeToken(Token::integer); 1442 } 1443 if (!consumeIf(Token::comma)) 1444 break; 1445 } 1446 if (!consumeIf(Token::r_square)) 1447 return failure(); 1448 return success(); 1449 } 1450 1451 //===----------------------------------------------------------------------===// 1452 // Attribute parsing. 1453 //===----------------------------------------------------------------------===// 1454 1455 /// Return the symbol reference referred to by the given token, that is known to 1456 /// be an @-identifier. 1457 static std::string extractSymbolReference(Token tok) { 1458 assert(tok.is(Token::at_identifier) && "expected valid @-identifier"); 1459 StringRef nameStr = tok.getSpelling().drop_front(); 1460 1461 // Check to see if the reference is a string literal, or a bare identifier. 1462 if (nameStr.front() == '"') 1463 return tok.getStringValue(); 1464 return std::string(nameStr); 1465 } 1466 1467 /// Parse an arbitrary attribute. 1468 /// 1469 /// attribute-value ::= `unit` 1470 /// | bool-literal 1471 /// | integer-literal (`:` (index-type | integer-type))? 1472 /// | float-literal (`:` float-type)? 1473 /// | string-literal (`:` type)? 1474 /// | type 1475 /// | `[` (attribute-value (`,` attribute-value)*)? `]` 1476 /// | `{` (attribute-entry (`,` attribute-entry)*)? `}` 1477 /// | symbol-ref-id (`::` symbol-ref-id)* 1478 /// | `dense` `<` attribute-value `>` `:` 1479 /// (tensor-type | vector-type) 1480 /// | `sparse` `<` attribute-value `,` attribute-value `>` 1481 /// `:` (tensor-type | vector-type) 1482 /// | `opaque` `<` dialect-namespace `,` hex-string-literal 1483 /// `>` `:` (tensor-type | vector-type) 1484 /// | extended-attribute 1485 /// 1486 Attribute Parser::parseAttribute(Type type) { 1487 switch (getToken().getKind()) { 1488 // Parse an AffineMap or IntegerSet attribute. 1489 case Token::kw_affine_map: { 1490 consumeToken(Token::kw_affine_map); 1491 1492 AffineMap map; 1493 if (parseToken(Token::less, "expected '<' in affine map") || 1494 parseAffineMapReference(map) || 1495 parseToken(Token::greater, "expected '>' in affine map")) 1496 return Attribute(); 1497 return AffineMapAttr::get(map); 1498 } 1499 case Token::kw_affine_set: { 1500 consumeToken(Token::kw_affine_set); 1501 1502 IntegerSet set; 1503 if (parseToken(Token::less, "expected '<' in integer set") || 1504 parseIntegerSetReference(set) || 1505 parseToken(Token::greater, "expected '>' in integer set")) 1506 return Attribute(); 1507 return IntegerSetAttr::get(set); 1508 } 1509 1510 // Parse an array attribute. 1511 case Token::l_square: { 1512 consumeToken(Token::l_square); 1513 1514 SmallVector<Attribute, 4> elements; 1515 auto parseElt = [&]() -> ParseResult { 1516 elements.push_back(parseAttribute()); 1517 return elements.back() ? success() : failure(); 1518 }; 1519 1520 if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) 1521 return nullptr; 1522 return builder.getArrayAttr(elements); 1523 } 1524 1525 // Parse a boolean attribute. 1526 case Token::kw_false: 1527 consumeToken(Token::kw_false); 1528 return builder.getBoolAttr(false); 1529 case Token::kw_true: 1530 consumeToken(Token::kw_true); 1531 return builder.getBoolAttr(true); 1532 1533 // Parse a dense elements attribute. 1534 case Token::kw_dense: 1535 return parseDenseElementsAttr(type); 1536 1537 // Parse a dictionary attribute. 1538 case Token::l_brace: { 1539 SmallVector<NamedAttribute, 4> elements; 1540 if (parseAttributeDict(elements)) 1541 return nullptr; 1542 return builder.getDictionaryAttr(elements); 1543 } 1544 1545 // Parse an extended attribute, i.e. alias or dialect attribute. 1546 case Token::hash_identifier: 1547 return parseExtendedAttr(type); 1548 1549 // Parse floating point and integer attributes. 1550 case Token::floatliteral: 1551 return parseFloatAttr(type, /*isNegative=*/false); 1552 case Token::integer: 1553 return parseDecOrHexAttr(type, /*isNegative=*/false); 1554 case Token::minus: { 1555 consumeToken(Token::minus); 1556 if (getToken().is(Token::integer)) 1557 return parseDecOrHexAttr(type, /*isNegative=*/true); 1558 if (getToken().is(Token::floatliteral)) 1559 return parseFloatAttr(type, /*isNegative=*/true); 1560 1561 return (emitError("expected constant integer or floating point value"), 1562 nullptr); 1563 } 1564 1565 // Parse a location attribute. 1566 case Token::kw_loc: { 1567 LocationAttr attr; 1568 return failed(parseLocation(attr)) ? Attribute() : attr; 1569 } 1570 1571 // Parse an opaque elements attribute. 1572 case Token::kw_opaque: 1573 return parseOpaqueElementsAttr(type); 1574 1575 // Parse a sparse elements attribute. 1576 case Token::kw_sparse: 1577 return parseSparseElementsAttr(type); 1578 1579 // Parse a string attribute. 1580 case Token::string: { 1581 auto val = getToken().getStringValue(); 1582 consumeToken(Token::string); 1583 // Parse the optional trailing colon type if one wasn't explicitly provided. 1584 if (!type && consumeIf(Token::colon) && !(type = parseType())) 1585 return Attribute(); 1586 1587 return type ? StringAttr::get(val, type) 1588 : StringAttr::get(val, getContext()); 1589 } 1590 1591 // Parse a symbol reference attribute. 1592 case Token::at_identifier: { 1593 std::string nameStr = extractSymbolReference(getToken()); 1594 consumeToken(Token::at_identifier); 1595 1596 // Parse any nested references. 1597 std::vector<FlatSymbolRefAttr> nestedRefs; 1598 while (getToken().is(Token::colon)) { 1599 // Check for the '::' prefix. 1600 const char *curPointer = getToken().getLoc().getPointer(); 1601 consumeToken(Token::colon); 1602 if (!consumeIf(Token::colon)) { 1603 state.lex.resetPointer(curPointer); 1604 consumeToken(); 1605 break; 1606 } 1607 // Parse the reference itself. 1608 auto curLoc = getToken().getLoc(); 1609 if (getToken().isNot(Token::at_identifier)) { 1610 emitError(curLoc, "expected nested symbol reference identifier"); 1611 return Attribute(); 1612 } 1613 1614 std::string nameStr = extractSymbolReference(getToken()); 1615 consumeToken(Token::at_identifier); 1616 nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext())); 1617 } 1618 1619 return builder.getSymbolRefAttr(nameStr, nestedRefs); 1620 } 1621 1622 // Parse a 'unit' attribute. 1623 case Token::kw_unit: 1624 consumeToken(Token::kw_unit); 1625 return builder.getUnitAttr(); 1626 1627 default: 1628 // Parse a type attribute. 1629 if (Type type = parseType()) 1630 return TypeAttr::get(type); 1631 return nullptr; 1632 } 1633 } 1634 1635 /// Attribute dictionary. 1636 /// 1637 /// attribute-dict ::= `{` `}` 1638 /// | `{` attribute-entry (`,` attribute-entry)* `}` 1639 /// attribute-entry ::= bare-id `=` attribute-value 1640 /// 1641 ParseResult 1642 Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) { 1643 if (parseToken(Token::l_brace, "expected '{' in attribute dictionary")) 1644 return failure(); 1645 1646 auto parseElt = [&]() -> ParseResult { 1647 // We allow keywords as attribute names. 1648 if (getToken().isNot(Token::bare_identifier, Token::inttype) && 1649 !getToken().isKeyword()) 1650 return emitError("expected attribute name"); 1651 Identifier nameId = builder.getIdentifier(getTokenSpelling()); 1652 consumeToken(); 1653 1654 // Try to parse the '=' for the attribute value. 1655 if (!consumeIf(Token::equal)) { 1656 // If there is no '=', we treat this as a unit attribute. 1657 attributes.push_back({nameId, builder.getUnitAttr()}); 1658 return success(); 1659 } 1660 1661 auto attr = parseAttribute(); 1662 if (!attr) 1663 return failure(); 1664 1665 attributes.push_back({nameId, attr}); 1666 return success(); 1667 }; 1668 1669 if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) 1670 return failure(); 1671 1672 return success(); 1673 } 1674 1675 /// Parse an extended attribute. 1676 /// 1677 /// extended-attribute ::= (dialect-attribute | attribute-alias) 1678 /// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>` 1679 /// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body? 1680 /// attribute-alias ::= `#` alias-name 1681 /// 1682 Attribute Parser::parseExtendedAttr(Type type) { 1683 Attribute attr = parseExtendedSymbol<Attribute>( 1684 *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions, 1685 [&](StringRef dialectName, StringRef symbolData, 1686 llvm::SMLoc loc) -> Attribute { 1687 // Parse an optional trailing colon type. 1688 Type attrType = type; 1689 if (consumeIf(Token::colon) && !(attrType = parseType())) 1690 return Attribute(); 1691 1692 // If we found a registered dialect, then ask it to parse the attribute. 1693 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1694 return parseSymbol<Attribute>( 1695 symbolData, state.context, state.symbols, [&](Parser &parser) { 1696 CustomDialectAsmParser customParser(symbolData, parser); 1697 return dialect->parseAttribute(customParser, attrType); 1698 }); 1699 } 1700 1701 // Otherwise, form a new opaque attribute. 1702 return OpaqueAttr::getChecked( 1703 Identifier::get(dialectName, state.context), symbolData, 1704 attrType ? attrType : NoneType::get(state.context), 1705 getEncodedSourceLocation(loc)); 1706 }); 1707 1708 // Ensure that the attribute has the same type as requested. 1709 if (attr && type && attr.getType() != type) { 1710 emitError("attribute type different than expected: expected ") 1711 << type << ", but got " << attr.getType(); 1712 return nullptr; 1713 } 1714 return attr; 1715 } 1716 1717 /// Parse a float attribute. 1718 Attribute Parser::parseFloatAttr(Type type, bool isNegative) { 1719 auto val = getToken().getFloatingPointValue(); 1720 if (!val.hasValue()) 1721 return (emitError("floating point value too large for attribute"), nullptr); 1722 consumeToken(Token::floatliteral); 1723 if (!type) { 1724 // Default to F64 when no type is specified. 1725 if (!consumeIf(Token::colon)) 1726 type = builder.getF64Type(); 1727 else if (!(type = parseType())) 1728 return nullptr; 1729 } 1730 if (!type.isa<FloatType>()) 1731 return (emitError("floating point value not valid for specified type"), 1732 nullptr); 1733 return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue()); 1734 } 1735 1736 /// Construct a float attribute bitwise equivalent to the integer literal. 1737 static FloatAttr buildHexadecimalFloatLiteral(Parser *p, FloatType type, 1738 uint64_t value) { 1739 // FIXME: bfloat is currently stored as a double internally because it doesn't 1740 // have valid APFloat semantics. 1741 if (type.isF64() || type.isBF16()) { 1742 APFloat apFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value)); 1743 return p->builder.getFloatAttr(type, apFloat); 1744 } 1745 1746 APInt apInt(type.getWidth(), value); 1747 if (apInt != value) { 1748 p->emitError("hexadecimal float constant out of range for type"); 1749 return nullptr; 1750 } 1751 APFloat apFloat(type.getFloatSemantics(), apInt); 1752 return p->builder.getFloatAttr(type, apFloat); 1753 } 1754 1755 /// Parse a decimal or a hexadecimal literal, which can be either an integer 1756 /// or a float attribute. 1757 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) { 1758 auto val = getToken().getUInt64IntegerValue(); 1759 if (!val.hasValue()) 1760 return (emitError("integer constant out of range for attribute"), nullptr); 1761 1762 // Remember if the literal is hexadecimal. 1763 StringRef spelling = getToken().getSpelling(); 1764 auto loc = state.curToken.getLoc(); 1765 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1766 1767 consumeToken(Token::integer); 1768 if (!type) { 1769 // Default to i64 if not type is specified. 1770 if (!consumeIf(Token::colon)) 1771 type = builder.getIntegerType(64); 1772 else if (!(type = parseType())) 1773 return nullptr; 1774 } 1775 1776 if (auto floatType = type.dyn_cast<FloatType>()) { 1777 if (isNegative) 1778 return emitError( 1779 loc, 1780 "hexadecimal float literal should not have a leading minus"), 1781 nullptr; 1782 if (!isHex) { 1783 emitError(loc, "unexpected decimal integer literal for a float attribute") 1784 .attachNote() 1785 << "add a trailing dot to make the literal a float"; 1786 return nullptr; 1787 } 1788 1789 // Construct a float attribute bitwise equivalent to the integer literal. 1790 return buildHexadecimalFloatLiteral(this, floatType, *val); 1791 } 1792 1793 if (!type.isIntOrIndex()) 1794 return emitError(loc, "integer literal not valid for specified type"), 1795 nullptr; 1796 1797 // Parse the integer literal. 1798 int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); 1799 APInt apInt(width, *val, isNegative); 1800 if (apInt != *val) 1801 return emitError(loc, "integer constant out of range for attribute"), 1802 nullptr; 1803 1804 // Otherwise construct an integer attribute. 1805 if (isNegative ? (int64_t)-val.getValue() >= 0 : (int64_t)val.getValue() < 0) 1806 return emitError(loc, "integer constant out of range for attribute"), 1807 nullptr; 1808 1809 return builder.getIntegerAttr(type, isNegative ? -apInt : apInt); 1810 } 1811 1812 /// Parse an opaque elements attribute. 1813 Attribute Parser::parseOpaqueElementsAttr(Type attrType) { 1814 consumeToken(Token::kw_opaque); 1815 if (parseToken(Token::less, "expected '<' after 'opaque'")) 1816 return nullptr; 1817 1818 if (getToken().isNot(Token::string)) 1819 return (emitError("expected dialect namespace"), nullptr); 1820 1821 auto name = getToken().getStringValue(); 1822 auto *dialect = builder.getContext()->getRegisteredDialect(name); 1823 // TODO(shpeisman): Allow for having an unknown dialect on an opaque 1824 // attribute. Otherwise, it can't be roundtripped without having the dialect 1825 // registered. 1826 if (!dialect) 1827 return (emitError("no registered dialect with namespace '" + name + "'"), 1828 nullptr); 1829 1830 consumeToken(Token::string); 1831 if (parseToken(Token::comma, "expected ','")) 1832 return nullptr; 1833 1834 if (getToken().getKind() != Token::string) 1835 return (emitError("opaque string should start with '0x'"), nullptr); 1836 1837 auto val = getToken().getStringValue(); 1838 if (val.size() < 2 || val[0] != '0' || val[1] != 'x') 1839 return (emitError("opaque string should start with '0x'"), nullptr); 1840 1841 val = val.substr(2); 1842 if (!llvm::all_of(val, llvm::isHexDigit)) 1843 return (emitError("opaque string only contains hex digits"), nullptr); 1844 1845 consumeToken(Token::string); 1846 if (parseToken(Token::greater, "expected '>'")) 1847 return nullptr; 1848 1849 auto type = parseElementsLiteralType(attrType); 1850 if (!type) 1851 return nullptr; 1852 1853 return OpaqueElementsAttr::get(dialect, type, llvm::fromHex(val)); 1854 } 1855 1856 namespace { 1857 class TensorLiteralParser { 1858 public: 1859 TensorLiteralParser(Parser &p) : p(p) {} 1860 1861 ParseResult parse() { 1862 if (p.getToken().is(Token::l_square)) 1863 return parseList(shape); 1864 return parseElement(); 1865 } 1866 1867 /// Build a dense attribute instance with the parsed elements and the given 1868 /// shaped type. 1869 DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type); 1870 1871 ArrayRef<int64_t> getShape() const { return shape; } 1872 1873 private: 1874 enum class ElementKind { Boolean, Integer, Float }; 1875 1876 /// Return a string to represent the given element kind. 1877 const char *getElementKindStr(ElementKind kind) { 1878 switch (kind) { 1879 case ElementKind::Boolean: 1880 return "'boolean'"; 1881 case ElementKind::Integer: 1882 return "'integer'"; 1883 case ElementKind::Float: 1884 return "'float'"; 1885 } 1886 llvm_unreachable("unknown element kind"); 1887 } 1888 1889 /// Build a Dense Integer attribute for the given type. 1890 DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type, 1891 IntegerType eltTy); 1892 1893 /// Build a Dense Float attribute for the given type. 1894 DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type, 1895 FloatType eltTy); 1896 1897 /// Parse a single element, returning failure if it isn't a valid element 1898 /// literal. For example: 1899 /// parseElement(1) -> Success, 1 1900 /// parseElement([1]) -> Failure 1901 ParseResult parseElement(); 1902 1903 /// Parse a list of either lists or elements, returning the dimensions of the 1904 /// parsed sub-tensors in dims. For example: 1905 /// parseList([1, 2, 3]) -> Success, [3] 1906 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 1907 /// parseList([[1, 2], 3]) -> Failure 1908 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 1909 ParseResult parseList(SmallVectorImpl<int64_t> &dims); 1910 1911 Parser &p; 1912 1913 /// The shape inferred from the parsed elements. 1914 SmallVector<int64_t, 4> shape; 1915 1916 /// Storage used when parsing elements, this is a pair of <is_negated, token>. 1917 std::vector<std::pair<bool, Token>> storage; 1918 1919 /// A flag that indicates the type of elements that have been parsed. 1920 Optional<ElementKind> knownEltKind; 1921 }; 1922 } // namespace 1923 1924 /// Build a dense attribute instance with the parsed elements and the given 1925 /// shaped type. 1926 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc, 1927 ShapedType type) { 1928 // Check that the parsed storage size has the same number of elements to the 1929 // type, or is a known splat. 1930 if (!shape.empty() && getShape() != type.getShape()) { 1931 p.emitError(loc) << "inferred shape of elements literal ([" << getShape() 1932 << "]) does not match type ([" << type.getShape() << "])"; 1933 return nullptr; 1934 } 1935 1936 // If the type is an integer, build a set of APInt values from the storage 1937 // with the correct bitwidth. 1938 if (auto intTy = type.getElementType().dyn_cast<IntegerType>()) 1939 return getIntAttr(loc, type, intTy); 1940 1941 // Otherwise, this must be a floating point type. 1942 auto floatTy = type.getElementType().dyn_cast<FloatType>(); 1943 if (!floatTy) { 1944 p.emitError(loc) << "expected floating-point or integer element type, got " 1945 << type.getElementType(); 1946 return nullptr; 1947 } 1948 return getFloatAttr(loc, type, floatTy); 1949 } 1950 1951 /// Build a Dense Integer attribute for the given type. 1952 DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc, 1953 ShapedType type, 1954 IntegerType eltTy) { 1955 std::vector<APInt> intElements; 1956 intElements.reserve(storage.size()); 1957 for (const auto &signAndToken : storage) { 1958 bool isNegative = signAndToken.first; 1959 const Token &token = signAndToken.second; 1960 1961 // Check to see if floating point values were parsed. 1962 if (token.is(Token::floatliteral)) { 1963 p.emitError() << "expected integer elements, but parsed floating-point"; 1964 return nullptr; 1965 } 1966 1967 assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) && 1968 "unexpected token type"); 1969 if (token.isAny(Token::kw_true, Token::kw_false)) { 1970 if (!eltTy.isInteger(1)) 1971 p.emitError() << "expected i1 type for 'true' or 'false' values"; 1972 APInt apInt(eltTy.getWidth(), token.is(Token::kw_true), 1973 /*isSigned=*/false); 1974 intElements.push_back(apInt); 1975 continue; 1976 } 1977 1978 // Create APInt values for each element with the correct bitwidth. 1979 auto val = token.getUInt64IntegerValue(); 1980 if (!val.hasValue() || (isNegative ? (int64_t)-val.getValue() >= 0 1981 : (int64_t)val.getValue() < 0)) { 1982 p.emitError(token.getLoc(), 1983 "integer constant out of range for attribute"); 1984 return nullptr; 1985 } 1986 APInt apInt(eltTy.getWidth(), val.getValue(), isNegative); 1987 if (apInt != val.getValue()) 1988 return (p.emitError("integer constant out of range for type"), nullptr); 1989 intElements.push_back(isNegative ? -apInt : apInt); 1990 } 1991 1992 return DenseElementsAttr::get(type, intElements); 1993 } 1994 1995 /// Build a Dense Float attribute for the given type. 1996 DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc, 1997 ShapedType type, 1998 FloatType eltTy) { 1999 std::vector<Attribute> floatValues; 2000 floatValues.reserve(storage.size()); 2001 for (const auto &signAndToken : storage) { 2002 bool isNegative = signAndToken.first; 2003 const Token &token = signAndToken.second; 2004 2005 // Handle hexadecimal float literals. 2006 if (token.is(Token::integer) && token.getSpelling().startswith("0x")) { 2007 if (isNegative) { 2008 p.emitError(token.getLoc()) 2009 << "hexadecimal float literal should not have a leading minus"; 2010 return nullptr; 2011 } 2012 auto val = token.getUInt64IntegerValue(); 2013 if (!val.hasValue()) { 2014 p.emitError("hexadecimal float constant out of range for attribute"); 2015 return nullptr; 2016 } 2017 FloatAttr attr = buildHexadecimalFloatLiteral(&p, eltTy, *val); 2018 if (!attr) 2019 return nullptr; 2020 floatValues.push_back(attr); 2021 continue; 2022 } 2023 2024 // Check to see if any decimal integers or booleans were parsed. 2025 if (!token.is(Token::floatliteral)) { 2026 p.emitError() << "expected floating-point elements, but parsed integer"; 2027 return nullptr; 2028 } 2029 2030 // Build the float values from tokens. 2031 auto val = token.getFloatingPointValue(); 2032 if (!val.hasValue()) { 2033 p.emitError("floating point value too large for attribute"); 2034 return nullptr; 2035 } 2036 floatValues.push_back(FloatAttr::get(eltTy, isNegative ? -*val : *val)); 2037 } 2038 2039 return DenseElementsAttr::get(type, floatValues); 2040 } 2041 2042 ParseResult TensorLiteralParser::parseElement() { 2043 switch (p.getToken().getKind()) { 2044 // Parse a boolean element. 2045 case Token::kw_true: 2046 case Token::kw_false: 2047 case Token::floatliteral: 2048 case Token::integer: 2049 storage.emplace_back(/*isNegative=*/false, p.getToken()); 2050 p.consumeToken(); 2051 break; 2052 2053 // Parse a signed integer or a negative floating-point element. 2054 case Token::minus: 2055 p.consumeToken(Token::minus); 2056 if (!p.getToken().isAny(Token::floatliteral, Token::integer)) 2057 return p.emitError("expected integer or floating point literal"); 2058 storage.emplace_back(/*isNegative=*/true, p.getToken()); 2059 p.consumeToken(); 2060 break; 2061 2062 default: 2063 return p.emitError("expected element literal of primitive type"); 2064 } 2065 2066 return success(); 2067 } 2068 2069 /// Parse a list of either lists or elements, returning the dimensions of the 2070 /// parsed sub-tensors in dims. For example: 2071 /// parseList([1, 2, 3]) -> Success, [3] 2072 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 2073 /// parseList([[1, 2], 3]) -> Failure 2074 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 2075 ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) { 2076 p.consumeToken(Token::l_square); 2077 2078 auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims, 2079 const SmallVectorImpl<int64_t> &newDims) -> ParseResult { 2080 if (prevDims == newDims) 2081 return success(); 2082 return p.emitError("tensor literal is invalid; ranks are not consistent " 2083 "between elements"); 2084 }; 2085 2086 bool first = true; 2087 SmallVector<int64_t, 4> newDims; 2088 unsigned size = 0; 2089 auto parseCommaSeparatedList = [&]() -> ParseResult { 2090 SmallVector<int64_t, 4> thisDims; 2091 if (p.getToken().getKind() == Token::l_square) { 2092 if (parseList(thisDims)) 2093 return failure(); 2094 } else if (parseElement()) { 2095 return failure(); 2096 } 2097 ++size; 2098 if (!first) 2099 return checkDims(newDims, thisDims); 2100 newDims = thisDims; 2101 first = false; 2102 return success(); 2103 }; 2104 if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) 2105 return failure(); 2106 2107 // Return the sublists' dimensions with 'size' prepended. 2108 dims.clear(); 2109 dims.push_back(size); 2110 dims.append(newDims.begin(), newDims.end()); 2111 return success(); 2112 } 2113 2114 /// Parse a dense elements attribute. 2115 Attribute Parser::parseDenseElementsAttr(Type attrType) { 2116 consumeToken(Token::kw_dense); 2117 if (parseToken(Token::less, "expected '<' after 'dense'")) 2118 return nullptr; 2119 2120 // Parse the literal data. 2121 TensorLiteralParser literalParser(*this); 2122 if (literalParser.parse()) 2123 return nullptr; 2124 2125 if (parseToken(Token::greater, "expected '>'")) 2126 return nullptr; 2127 2128 auto typeLoc = getToken().getLoc(); 2129 auto type = parseElementsLiteralType(attrType); 2130 if (!type) 2131 return nullptr; 2132 return literalParser.getAttr(typeLoc, type); 2133 } 2134 2135 /// Shaped type for elements attribute. 2136 /// 2137 /// elements-literal-type ::= vector-type | ranked-tensor-type 2138 /// 2139 /// This method also checks the type has static shape. 2140 ShapedType Parser::parseElementsLiteralType(Type type) { 2141 // If the user didn't provide a type, parse the colon type for the literal. 2142 if (!type) { 2143 if (parseToken(Token::colon, "expected ':'")) 2144 return nullptr; 2145 if (!(type = parseType())) 2146 return nullptr; 2147 } 2148 2149 if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) { 2150 emitError("elements literal must be a ranked tensor or vector type"); 2151 return nullptr; 2152 } 2153 2154 auto sType = type.cast<ShapedType>(); 2155 if (!sType.hasStaticShape()) 2156 return (emitError("elements literal type must have static shape"), nullptr); 2157 2158 return sType; 2159 } 2160 2161 /// Parse a sparse elements attribute. 2162 Attribute Parser::parseSparseElementsAttr(Type attrType) { 2163 consumeToken(Token::kw_sparse); 2164 if (parseToken(Token::less, "Expected '<' after 'sparse'")) 2165 return nullptr; 2166 2167 /// Parse indices 2168 auto indicesLoc = getToken().getLoc(); 2169 TensorLiteralParser indiceParser(*this); 2170 if (indiceParser.parse()) 2171 return nullptr; 2172 2173 if (parseToken(Token::comma, "expected ','")) 2174 return nullptr; 2175 2176 /// Parse values. 2177 auto valuesLoc = getToken().getLoc(); 2178 TensorLiteralParser valuesParser(*this); 2179 if (valuesParser.parse()) 2180 return nullptr; 2181 2182 if (parseToken(Token::greater, "expected '>'")) 2183 return nullptr; 2184 2185 auto type = parseElementsLiteralType(attrType); 2186 if (!type) 2187 return nullptr; 2188 2189 // If the indices are a splat, i.e. the literal parser parsed an element and 2190 // not a list, we set the shape explicitly. The indices are represented by a 2191 // 2-dimensional shape where the second dimension is the rank of the type. 2192 // Given that the parsed indices is a splat, we know that we only have one 2193 // indice and thus one for the first dimension. 2194 auto indiceEltType = builder.getIntegerType(64); 2195 ShapedType indicesType; 2196 if (indiceParser.getShape().empty()) { 2197 indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType); 2198 } else { 2199 // Otherwise, set the shape to the one parsed by the literal parser. 2200 indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType); 2201 } 2202 auto indices = indiceParser.getAttr(indicesLoc, indicesType); 2203 2204 // If the values are a splat, set the shape explicitly based on the number of 2205 // indices. The number of indices is encoded in the first dimension of the 2206 // indice shape type. 2207 auto valuesEltType = type.getElementType(); 2208 ShapedType valuesType = 2209 valuesParser.getShape().empty() 2210 ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType) 2211 : RankedTensorType::get(valuesParser.getShape(), valuesEltType); 2212 auto values = valuesParser.getAttr(valuesLoc, valuesType); 2213 2214 /// Sanity check. 2215 if (valuesType.getRank() != 1) 2216 return (emitError("expected 1-d tensor for values"), nullptr); 2217 2218 auto sameShape = (indicesType.getRank() == 1) || 2219 (type.getRank() == indicesType.getDimSize(1)); 2220 auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); 2221 if (!sameShape || !sameElementNum) { 2222 emitError() << "expected shape ([" << type.getShape() 2223 << "]); inferred shape of indices literal ([" 2224 << indicesType.getShape() 2225 << "]); inferred shape of values literal ([" 2226 << valuesType.getShape() << "])"; 2227 return nullptr; 2228 } 2229 2230 // Build the sparse elements attribute by the indices and values. 2231 return SparseElementsAttr::get(type, indices, values); 2232 } 2233 2234 //===----------------------------------------------------------------------===// 2235 // Location parsing. 2236 //===----------------------------------------------------------------------===// 2237 2238 /// Parse a location. 2239 /// 2240 /// location ::= `loc` inline-location 2241 /// inline-location ::= '(' location-inst ')' 2242 /// 2243 ParseResult Parser::parseLocation(LocationAttr &loc) { 2244 // Check for 'loc' identifier. 2245 if (parseToken(Token::kw_loc, "expected 'loc' keyword")) 2246 return emitError(); 2247 2248 // Parse the inline-location. 2249 if (parseToken(Token::l_paren, "expected '(' in inline location") || 2250 parseLocationInstance(loc) || 2251 parseToken(Token::r_paren, "expected ')' in inline location")) 2252 return failure(); 2253 return success(); 2254 } 2255 2256 /// Specific location instances. 2257 /// 2258 /// location-inst ::= filelinecol-location | 2259 /// name-location | 2260 /// callsite-location | 2261 /// fused-location | 2262 /// unknown-location 2263 /// filelinecol-location ::= string-literal ':' integer-literal 2264 /// ':' integer-literal 2265 /// name-location ::= string-literal 2266 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' 2267 /// fused-location ::= fused ('<' attribute-value '>')? 2268 /// '[' location-inst (location-inst ',')* ']' 2269 /// unknown-location ::= 'unknown' 2270 /// 2271 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) { 2272 consumeToken(Token::bare_identifier); 2273 2274 // Parse the '('. 2275 if (parseToken(Token::l_paren, "expected '(' in callsite location")) 2276 return failure(); 2277 2278 // Parse the callee location. 2279 LocationAttr calleeLoc; 2280 if (parseLocationInstance(calleeLoc)) 2281 return failure(); 2282 2283 // Parse the 'at'. 2284 if (getToken().isNot(Token::bare_identifier) || 2285 getToken().getSpelling() != "at") 2286 return emitError("expected 'at' in callsite location"); 2287 consumeToken(Token::bare_identifier); 2288 2289 // Parse the caller location. 2290 LocationAttr callerLoc; 2291 if (parseLocationInstance(callerLoc)) 2292 return failure(); 2293 2294 // Parse the ')'. 2295 if (parseToken(Token::r_paren, "expected ')' in callsite location")) 2296 return failure(); 2297 2298 // Return the callsite location. 2299 loc = CallSiteLoc::get(calleeLoc, callerLoc); 2300 return success(); 2301 } 2302 2303 ParseResult Parser::parseFusedLocation(LocationAttr &loc) { 2304 consumeToken(Token::bare_identifier); 2305 2306 // Try to parse the optional metadata. 2307 Attribute metadata; 2308 if (consumeIf(Token::less)) { 2309 metadata = parseAttribute(); 2310 if (!metadata) 2311 return emitError("expected valid attribute metadata"); 2312 // Parse the '>' token. 2313 if (parseToken(Token::greater, 2314 "expected '>' after fused location metadata")) 2315 return failure(); 2316 } 2317 2318 SmallVector<Location, 4> locations; 2319 auto parseElt = [&] { 2320 LocationAttr newLoc; 2321 if (parseLocationInstance(newLoc)) 2322 return failure(); 2323 locations.push_back(newLoc); 2324 return success(); 2325 }; 2326 2327 if (parseToken(Token::l_square, "expected '[' in fused location") || 2328 parseCommaSeparatedList(parseElt) || 2329 parseToken(Token::r_square, "expected ']' in fused location")) 2330 return failure(); 2331 2332 // Return the fused location. 2333 loc = FusedLoc::get(locations, metadata, getContext()); 2334 return success(); 2335 } 2336 2337 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) { 2338 auto *ctx = getContext(); 2339 auto str = getToken().getStringValue(); 2340 consumeToken(Token::string); 2341 2342 // If the next token is ':' this is a filelinecol location. 2343 if (consumeIf(Token::colon)) { 2344 // Parse the line number. 2345 if (getToken().isNot(Token::integer)) 2346 return emitError("expected integer line number in FileLineColLoc"); 2347 auto line = getToken().getUnsignedIntegerValue(); 2348 if (!line.hasValue()) 2349 return emitError("expected integer line number in FileLineColLoc"); 2350 consumeToken(Token::integer); 2351 2352 // Parse the ':'. 2353 if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) 2354 return failure(); 2355 2356 // Parse the column number. 2357 if (getToken().isNot(Token::integer)) 2358 return emitError("expected integer column number in FileLineColLoc"); 2359 auto column = getToken().getUnsignedIntegerValue(); 2360 if (!column.hasValue()) 2361 return emitError("expected integer column number in FileLineColLoc"); 2362 consumeToken(Token::integer); 2363 2364 loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx); 2365 return success(); 2366 } 2367 2368 // Otherwise, this is a NameLoc. 2369 2370 // Check for a child location. 2371 if (consumeIf(Token::l_paren)) { 2372 auto childSourceLoc = getToken().getLoc(); 2373 2374 // Parse the child location. 2375 LocationAttr childLoc; 2376 if (parseLocationInstance(childLoc)) 2377 return failure(); 2378 2379 // The child must not be another NameLoc. 2380 if (childLoc.isa<NameLoc>()) 2381 return emitError(childSourceLoc, 2382 "child of NameLoc cannot be another NameLoc"); 2383 loc = NameLoc::get(Identifier::get(str, ctx), childLoc); 2384 2385 // Parse the closing ')'. 2386 if (parseToken(Token::r_paren, 2387 "expected ')' after child location of NameLoc")) 2388 return failure(); 2389 } else { 2390 loc = NameLoc::get(Identifier::get(str, ctx), ctx); 2391 } 2392 2393 return success(); 2394 } 2395 2396 ParseResult Parser::parseLocationInstance(LocationAttr &loc) { 2397 // Handle either name or filelinecol locations. 2398 if (getToken().is(Token::string)) 2399 return parseNameOrFileLineColLocation(loc); 2400 2401 // Bare tokens required for other cases. 2402 if (!getToken().is(Token::bare_identifier)) 2403 return emitError("expected location instance"); 2404 2405 // Check for the 'callsite' signifying a callsite location. 2406 if (getToken().getSpelling() == "callsite") 2407 return parseCallSiteLocation(loc); 2408 2409 // If the token is 'fused', then this is a fused location. 2410 if (getToken().getSpelling() == "fused") 2411 return parseFusedLocation(loc); 2412 2413 // Check for a 'unknown' for an unknown location. 2414 if (getToken().getSpelling() == "unknown") { 2415 consumeToken(Token::bare_identifier); 2416 loc = UnknownLoc::get(getContext()); 2417 return success(); 2418 } 2419 2420 return emitError("expected location instance"); 2421 } 2422 2423 //===----------------------------------------------------------------------===// 2424 // Affine parsing. 2425 //===----------------------------------------------------------------------===// 2426 2427 /// Lower precedence ops (all at the same precedence level). LNoOp is false in 2428 /// the boolean sense. 2429 enum AffineLowPrecOp { 2430 /// Null value. 2431 LNoOp, 2432 Add, 2433 Sub 2434 }; 2435 2436 /// Higher precedence ops - all at the same precedence level. HNoOp is false 2437 /// in the boolean sense. 2438 enum AffineHighPrecOp { 2439 /// Null value. 2440 HNoOp, 2441 Mul, 2442 FloorDiv, 2443 CeilDiv, 2444 Mod 2445 }; 2446 2447 namespace { 2448 /// This is a specialized parser for affine structures (affine maps, affine 2449 /// expressions, and integer sets), maintaining the state transient to their 2450 /// bodies. 2451 class AffineParser : public Parser { 2452 public: 2453 AffineParser(ParserState &state, bool allowParsingSSAIds = false, 2454 function_ref<ParseResult(bool)> parseElement = nullptr) 2455 : Parser(state), allowParsingSSAIds(allowParsingSSAIds), 2456 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {} 2457 2458 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); 2459 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); 2460 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); 2461 ParseResult parseAffineMapOfSSAIds(AffineMap &map, 2462 OpAsmParser::Delimiter delimiter); 2463 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds, 2464 unsigned &numDims); 2465 2466 private: 2467 // Binary affine op parsing. 2468 AffineLowPrecOp consumeIfLowPrecOp(); 2469 AffineHighPrecOp consumeIfHighPrecOp(); 2470 2471 // Identifier lists for polyhedral structures. 2472 ParseResult parseDimIdList(unsigned &numDims); 2473 ParseResult parseSymbolIdList(unsigned &numSymbols); 2474 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, 2475 unsigned &numSymbols); 2476 ParseResult parseIdentifierDefinition(AffineExpr idExpr); 2477 2478 AffineExpr parseAffineExpr(); 2479 AffineExpr parseParentheticalExpr(); 2480 AffineExpr parseNegateExpression(AffineExpr lhs); 2481 AffineExpr parseIntegerExpr(); 2482 AffineExpr parseBareIdExpr(); 2483 AffineExpr parseSSAIdExpr(bool isSymbol); 2484 AffineExpr parseSymbolSSAIdExpr(); 2485 2486 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, 2487 AffineExpr rhs, SMLoc opLoc); 2488 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, 2489 AffineExpr rhs); 2490 AffineExpr parseAffineOperandExpr(AffineExpr lhs); 2491 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); 2492 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, 2493 SMLoc llhsOpLoc); 2494 AffineExpr parseAffineConstraint(bool *isEq); 2495 2496 private: 2497 bool allowParsingSSAIds; 2498 function_ref<ParseResult(bool)> parseElement; 2499 unsigned numDimOperands; 2500 unsigned numSymbolOperands; 2501 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols; 2502 }; 2503 } // end anonymous namespace 2504 2505 /// Create an affine binary high precedence op expression (mul's, div's, mod). 2506 /// opLoc is the location of the op token to be used to report errors 2507 /// for non-conforming expressions. 2508 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, 2509 AffineExpr lhs, AffineExpr rhs, 2510 SMLoc opLoc) { 2511 // TODO: make the error location info accurate. 2512 switch (op) { 2513 case Mul: 2514 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { 2515 emitError(opLoc, "non-affine expression: at least one of the multiply " 2516 "operands has to be either a constant or symbolic"); 2517 return nullptr; 2518 } 2519 return lhs * rhs; 2520 case FloorDiv: 2521 if (!rhs.isSymbolicOrConstant()) { 2522 emitError(opLoc, "non-affine expression: right operand of floordiv " 2523 "has to be either a constant or symbolic"); 2524 return nullptr; 2525 } 2526 return lhs.floorDiv(rhs); 2527 case CeilDiv: 2528 if (!rhs.isSymbolicOrConstant()) { 2529 emitError(opLoc, "non-affine expression: right operand of ceildiv " 2530 "has to be either a constant or symbolic"); 2531 return nullptr; 2532 } 2533 return lhs.ceilDiv(rhs); 2534 case Mod: 2535 if (!rhs.isSymbolicOrConstant()) { 2536 emitError(opLoc, "non-affine expression: right operand of mod " 2537 "has to be either a constant or symbolic"); 2538 return nullptr; 2539 } 2540 return lhs % rhs; 2541 case HNoOp: 2542 llvm_unreachable("can't create affine expression for null high prec op"); 2543 return nullptr; 2544 } 2545 llvm_unreachable("Unknown AffineHighPrecOp"); 2546 } 2547 2548 /// Create an affine binary low precedence op expression (add, sub). 2549 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, 2550 AffineExpr lhs, AffineExpr rhs) { 2551 switch (op) { 2552 case AffineLowPrecOp::Add: 2553 return lhs + rhs; 2554 case AffineLowPrecOp::Sub: 2555 return lhs - rhs; 2556 case AffineLowPrecOp::LNoOp: 2557 llvm_unreachable("can't create affine expression for null low prec op"); 2558 return nullptr; 2559 } 2560 llvm_unreachable("Unknown AffineLowPrecOp"); 2561 } 2562 2563 /// Consume this token if it is a lower precedence affine op (there are only 2564 /// two precedence levels). 2565 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { 2566 switch (getToken().getKind()) { 2567 case Token::plus: 2568 consumeToken(Token::plus); 2569 return AffineLowPrecOp::Add; 2570 case Token::minus: 2571 consumeToken(Token::minus); 2572 return AffineLowPrecOp::Sub; 2573 default: 2574 return AffineLowPrecOp::LNoOp; 2575 } 2576 } 2577 2578 /// Consume this token if it is a higher precedence affine op (there are only 2579 /// two precedence levels) 2580 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { 2581 switch (getToken().getKind()) { 2582 case Token::star: 2583 consumeToken(Token::star); 2584 return Mul; 2585 case Token::kw_floordiv: 2586 consumeToken(Token::kw_floordiv); 2587 return FloorDiv; 2588 case Token::kw_ceildiv: 2589 consumeToken(Token::kw_ceildiv); 2590 return CeilDiv; 2591 case Token::kw_mod: 2592 consumeToken(Token::kw_mod); 2593 return Mod; 2594 default: 2595 return HNoOp; 2596 } 2597 } 2598 2599 /// Parse a high precedence op expression list: mul, div, and mod are high 2600 /// precedence binary ops, i.e., parse a 2601 /// expr_1 op_1 expr_2 op_2 ... expr_n 2602 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). 2603 /// All affine binary ops are left associative. 2604 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is 2605 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is 2606 /// null. llhsOpLoc is the location of the llhsOp token that will be used to 2607 /// report an error for non-conforming expressions. 2608 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, 2609 AffineHighPrecOp llhsOp, 2610 SMLoc llhsOpLoc) { 2611 AffineExpr lhs = parseAffineOperandExpr(llhs); 2612 if (!lhs) 2613 return nullptr; 2614 2615 // Found an LHS. Parse the remaining expression. 2616 auto opLoc = getToken().getLoc(); 2617 if (AffineHighPrecOp op = consumeIfHighPrecOp()) { 2618 if (llhs) { 2619 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); 2620 if (!expr) 2621 return nullptr; 2622 return parseAffineHighPrecOpExpr(expr, op, opLoc); 2623 } 2624 // No LLHS, get RHS 2625 return parseAffineHighPrecOpExpr(lhs, op, opLoc); 2626 } 2627 2628 // This is the last operand in this expression. 2629 if (llhs) 2630 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); 2631 2632 // No llhs, 'lhs' itself is the expression. 2633 return lhs; 2634 } 2635 2636 /// Parse an affine expression inside parentheses. 2637 /// 2638 /// affine-expr ::= `(` affine-expr `)` 2639 AffineExpr AffineParser::parseParentheticalExpr() { 2640 if (parseToken(Token::l_paren, "expected '('")) 2641 return nullptr; 2642 if (getToken().is(Token::r_paren)) 2643 return (emitError("no expression inside parentheses"), nullptr); 2644 2645 auto expr = parseAffineExpr(); 2646 if (!expr) 2647 return nullptr; 2648 if (parseToken(Token::r_paren, "expected ')'")) 2649 return nullptr; 2650 2651 return expr; 2652 } 2653 2654 /// Parse the negation expression. 2655 /// 2656 /// affine-expr ::= `-` affine-expr 2657 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { 2658 if (parseToken(Token::minus, "expected '-'")) 2659 return nullptr; 2660 2661 AffineExpr operand = parseAffineOperandExpr(lhs); 2662 // Since negation has the highest precedence of all ops (including high 2663 // precedence ops) but lower than parentheses, we are only going to use 2664 // parseAffineOperandExpr instead of parseAffineExpr here. 2665 if (!operand) 2666 // Extra error message although parseAffineOperandExpr would have 2667 // complained. Leads to a better diagnostic. 2668 return (emitError("missing operand of negation"), nullptr); 2669 return (-1) * operand; 2670 } 2671 2672 /// Parse a bare id that may appear in an affine expression. 2673 /// 2674 /// affine-expr ::= bare-id 2675 AffineExpr AffineParser::parseBareIdExpr() { 2676 if (getToken().isNot(Token::bare_identifier)) 2677 return (emitError("expected bare identifier"), nullptr); 2678 2679 StringRef sRef = getTokenSpelling(); 2680 for (auto entry : dimsAndSymbols) { 2681 if (entry.first == sRef) { 2682 consumeToken(Token::bare_identifier); 2683 return entry.second; 2684 } 2685 } 2686 2687 return (emitError("use of undeclared identifier"), nullptr); 2688 } 2689 2690 /// Parse an SSA id which may appear in an affine expression. 2691 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) { 2692 if (!allowParsingSSAIds) 2693 return (emitError("unexpected ssa identifier"), nullptr); 2694 if (getToken().isNot(Token::percent_identifier)) 2695 return (emitError("expected ssa identifier"), nullptr); 2696 auto name = getTokenSpelling(); 2697 // Check if we already parsed this SSA id. 2698 for (auto entry : dimsAndSymbols) { 2699 if (entry.first == name) { 2700 consumeToken(Token::percent_identifier); 2701 return entry.second; 2702 } 2703 } 2704 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it. 2705 if (parseElement(isSymbol)) 2706 return (emitError("failed to parse ssa identifier"), nullptr); 2707 auto idExpr = isSymbol 2708 ? getAffineSymbolExpr(numSymbolOperands++, getContext()) 2709 : getAffineDimExpr(numDimOperands++, getContext()); 2710 dimsAndSymbols.push_back({name, idExpr}); 2711 return idExpr; 2712 } 2713 2714 AffineExpr AffineParser::parseSymbolSSAIdExpr() { 2715 if (parseToken(Token::kw_symbol, "expected symbol keyword") || 2716 parseToken(Token::l_paren, "expected '(' at start of SSA symbol")) 2717 return nullptr; 2718 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true); 2719 if (!symbolExpr) 2720 return nullptr; 2721 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol")) 2722 return nullptr; 2723 return symbolExpr; 2724 } 2725 2726 /// Parse a positive integral constant appearing in an affine expression. 2727 /// 2728 /// affine-expr ::= integer-literal 2729 AffineExpr AffineParser::parseIntegerExpr() { 2730 auto val = getToken().getUInt64IntegerValue(); 2731 if (!val.hasValue() || (int64_t)val.getValue() < 0) 2732 return (emitError("constant too large for index"), nullptr); 2733 2734 consumeToken(Token::integer); 2735 return builder.getAffineConstantExpr((int64_t)val.getValue()); 2736 } 2737 2738 /// Parses an expression that can be a valid operand of an affine expression. 2739 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary 2740 /// operator, the rhs of which is being parsed. This is used to determine 2741 /// whether an error should be emitted for a missing right operand. 2742 // Eg: for an expression without parentheses (like i + j + k + l), each 2743 // of the four identifiers is an operand. For i + j*k + l, j*k is not an 2744 // operand expression, it's an op expression and will be parsed via 2745 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and 2746 // -l are valid operands that will be parsed by this function. 2747 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { 2748 switch (getToken().getKind()) { 2749 case Token::bare_identifier: 2750 return parseBareIdExpr(); 2751 case Token::kw_symbol: 2752 return parseSymbolSSAIdExpr(); 2753 case Token::percent_identifier: 2754 return parseSSAIdExpr(/*isSymbol=*/false); 2755 case Token::integer: 2756 return parseIntegerExpr(); 2757 case Token::l_paren: 2758 return parseParentheticalExpr(); 2759 case Token::minus: 2760 return parseNegateExpression(lhs); 2761 case Token::kw_ceildiv: 2762 case Token::kw_floordiv: 2763 case Token::kw_mod: 2764 case Token::plus: 2765 case Token::star: 2766 if (lhs) 2767 emitError("missing right operand of binary operator"); 2768 else 2769 emitError("missing left operand of binary operator"); 2770 return nullptr; 2771 default: 2772 if (lhs) 2773 emitError("missing right operand of binary operator"); 2774 else 2775 emitError("expected affine expression"); 2776 return nullptr; 2777 } 2778 } 2779 2780 /// Parse affine expressions that are bare-id's, integer constants, 2781 /// parenthetical affine expressions, and affine op expressions that are a 2782 /// composition of those. 2783 /// 2784 /// All binary op's associate from left to right. 2785 /// 2786 /// {add, sub} have lower precedence than {mul, div, and mod}. 2787 /// 2788 /// Add, sub'are themselves at the same precedence level. Mul, floordiv, 2789 /// ceildiv, and mod are at the same higher precedence level. Negation has 2790 /// higher precedence than any binary op. 2791 /// 2792 /// llhs: the affine expression appearing on the left of the one being parsed. 2793 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, 2794 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned 2795 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left 2796 /// associativity. 2797 /// 2798 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function 2799 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where 2800 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). 2801 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, 2802 AffineLowPrecOp llhsOp) { 2803 AffineExpr lhs; 2804 if (!(lhs = parseAffineOperandExpr(llhs))) 2805 return nullptr; 2806 2807 // Found an LHS. Deal with the ops. 2808 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { 2809 if (llhs) { 2810 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2811 return parseAffineLowPrecOpExpr(sum, lOp); 2812 } 2813 // No LLHS, get RHS and form the expression. 2814 return parseAffineLowPrecOpExpr(lhs, lOp); 2815 } 2816 auto opLoc = getToken().getLoc(); 2817 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { 2818 // We have a higher precedence op here. Get the rhs operand for the llhs 2819 // through parseAffineHighPrecOpExpr. 2820 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); 2821 if (!highRes) 2822 return nullptr; 2823 2824 // If llhs is null, the product forms the first operand of the yet to be 2825 // found expression. If non-null, the op to associate with llhs is llhsOp. 2826 AffineExpr expr = 2827 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; 2828 2829 // Recurse for subsequent low prec op's after the affine high prec op 2830 // expression. 2831 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) 2832 return parseAffineLowPrecOpExpr(expr, nextOp); 2833 return expr; 2834 } 2835 // Last operand in the expression list. 2836 if (llhs) 2837 return getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2838 // No llhs, 'lhs' itself is the expression. 2839 return lhs; 2840 } 2841 2842 /// Parse an affine expression. 2843 /// affine-expr ::= `(` affine-expr `)` 2844 /// | `-` affine-expr 2845 /// | affine-expr `+` affine-expr 2846 /// | affine-expr `-` affine-expr 2847 /// | affine-expr `*` affine-expr 2848 /// | affine-expr `floordiv` affine-expr 2849 /// | affine-expr `ceildiv` affine-expr 2850 /// | affine-expr `mod` affine-expr 2851 /// | bare-id 2852 /// | integer-literal 2853 /// 2854 /// Additional conditions are checked depending on the production. For eg., 2855 /// one of the operands for `*` has to be either constant/symbolic; the second 2856 /// operand for floordiv, ceildiv, and mod has to be a positive integer. 2857 AffineExpr AffineParser::parseAffineExpr() { 2858 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); 2859 } 2860 2861 /// Parse a dim or symbol from the lists appearing before the actual 2862 /// expressions of the affine map. Update our state to store the 2863 /// dimensional/symbolic identifier. 2864 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { 2865 if (getToken().isNot(Token::bare_identifier)) 2866 return emitError("expected bare identifier"); 2867 2868 auto name = getTokenSpelling(); 2869 for (auto entry : dimsAndSymbols) { 2870 if (entry.first == name) 2871 return emitError("redefinition of identifier '" + name + "'"); 2872 } 2873 consumeToken(Token::bare_identifier); 2874 2875 dimsAndSymbols.push_back({name, idExpr}); 2876 return success(); 2877 } 2878 2879 /// Parse the list of dimensional identifiers to an affine map. 2880 ParseResult AffineParser::parseDimIdList(unsigned &numDims) { 2881 if (parseToken(Token::l_paren, 2882 "expected '(' at start of dimensional identifiers list")) { 2883 return failure(); 2884 } 2885 2886 auto parseElt = [&]() -> ParseResult { 2887 auto dimension = getAffineDimExpr(numDims++, getContext()); 2888 return parseIdentifierDefinition(dimension); 2889 }; 2890 return parseCommaSeparatedListUntil(Token::r_paren, parseElt); 2891 } 2892 2893 /// Parse the list of symbolic identifiers to an affine map. 2894 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { 2895 consumeToken(Token::l_square); 2896 auto parseElt = [&]() -> ParseResult { 2897 auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); 2898 return parseIdentifierDefinition(symbol); 2899 }; 2900 return parseCommaSeparatedListUntil(Token::r_square, parseElt); 2901 } 2902 2903 /// Parse the list of symbolic identifiers to an affine map. 2904 ParseResult 2905 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, 2906 unsigned &numSymbols) { 2907 if (parseDimIdList(numDims)) { 2908 return failure(); 2909 } 2910 if (!getToken().is(Token::l_square)) { 2911 numSymbols = 0; 2912 return success(); 2913 } 2914 return parseSymbolIdList(numSymbols); 2915 } 2916 2917 /// Parses an ambiguous affine map or integer set definition inline. 2918 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, 2919 IntegerSet &set) { 2920 unsigned numDims = 0, numSymbols = 0; 2921 2922 // List of dimensional and optional symbol identifiers. 2923 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { 2924 return failure(); 2925 } 2926 2927 // This is needed for parsing attributes as we wouldn't know whether we would 2928 // be parsing an integer set attribute or an affine map attribute. 2929 bool isArrow = getToken().is(Token::arrow); 2930 bool isColon = getToken().is(Token::colon); 2931 if (!isArrow && !isColon) { 2932 return emitError("expected '->' or ':'"); 2933 } else if (isArrow) { 2934 parseToken(Token::arrow, "expected '->' or '['"); 2935 map = parseAffineMapRange(numDims, numSymbols); 2936 return map ? success() : failure(); 2937 } else if (parseToken(Token::colon, "expected ':' or '['")) { 2938 return failure(); 2939 } 2940 2941 if ((set = parseIntegerSetConstraints(numDims, numSymbols))) 2942 return success(); 2943 2944 return failure(); 2945 } 2946 2947 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 2948 ParseResult 2949 AffineParser::parseAffineMapOfSSAIds(AffineMap &map, 2950 OpAsmParser::Delimiter delimiter) { 2951 Token::Kind rightToken; 2952 switch (delimiter) { 2953 case OpAsmParser::Delimiter::Square: 2954 if (parseToken(Token::l_square, "expected '['")) 2955 return failure(); 2956 rightToken = Token::r_square; 2957 break; 2958 case OpAsmParser::Delimiter::Paren: 2959 if (parseToken(Token::l_paren, "expected '('")) 2960 return failure(); 2961 rightToken = Token::r_paren; 2962 break; 2963 default: 2964 return emitError("unexpected delimiter"); 2965 } 2966 2967 SmallVector<AffineExpr, 4> exprs; 2968 auto parseElt = [&]() -> ParseResult { 2969 auto elt = parseAffineExpr(); 2970 exprs.push_back(elt); 2971 return elt ? success() : failure(); 2972 }; 2973 2974 // Parse a multi-dimensional affine expression (a comma-separated list of 2975 // 1-d affine expressions); the list cannot be empty. Grammar: 2976 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 2977 if (parseCommaSeparatedListUntil(rightToken, parseElt, 2978 /*allowEmptyList=*/true)) 2979 return failure(); 2980 // Parsed a valid affine map. 2981 if (exprs.empty()) 2982 map = AffineMap::get(getContext()); 2983 else 2984 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 2985 exprs); 2986 return success(); 2987 } 2988 2989 /// Parse the range and sizes affine map definition inline. 2990 /// 2991 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr 2992 /// 2993 /// multi-dim-affine-expr ::= `(` `)` 2994 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)` 2995 AffineMap AffineParser::parseAffineMapRange(unsigned numDims, 2996 unsigned numSymbols) { 2997 parseToken(Token::l_paren, "expected '(' at start of affine map range"); 2998 2999 SmallVector<AffineExpr, 4> exprs; 3000 auto parseElt = [&]() -> ParseResult { 3001 auto elt = parseAffineExpr(); 3002 ParseResult res = elt ? success() : failure(); 3003 exprs.push_back(elt); 3004 return res; 3005 }; 3006 3007 // Parse a multi-dimensional affine expression (a comma-separated list of 3008 // 1-d affine expressions); the list cannot be empty. Grammar: 3009 // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) 3010 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3011 return AffineMap(); 3012 3013 if (exprs.empty()) 3014 return AffineMap::get(getContext()); 3015 3016 // Parsed a valid affine map. 3017 return AffineMap::get(numDims, numSymbols, exprs); 3018 } 3019 3020 /// Parse an affine constraint. 3021 /// affine-constraint ::= affine-expr `>=` `0` 3022 /// | affine-expr `==` `0` 3023 /// 3024 /// isEq is set to true if the parsed constraint is an equality, false if it 3025 /// is an inequality (greater than or equal). 3026 /// 3027 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { 3028 AffineExpr expr = parseAffineExpr(); 3029 if (!expr) 3030 return nullptr; 3031 3032 if (consumeIf(Token::greater) && consumeIf(Token::equal) && 3033 getToken().is(Token::integer)) { 3034 auto dim = getToken().getUnsignedIntegerValue(); 3035 if (dim.hasValue() && dim.getValue() == 0) { 3036 consumeToken(Token::integer); 3037 *isEq = false; 3038 return expr; 3039 } 3040 return (emitError("expected '0' after '>='"), nullptr); 3041 } 3042 3043 if (consumeIf(Token::equal) && consumeIf(Token::equal) && 3044 getToken().is(Token::integer)) { 3045 auto dim = getToken().getUnsignedIntegerValue(); 3046 if (dim.hasValue() && dim.getValue() == 0) { 3047 consumeToken(Token::integer); 3048 *isEq = true; 3049 return expr; 3050 } 3051 return (emitError("expected '0' after '=='"), nullptr); 3052 } 3053 3054 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), 3055 nullptr); 3056 } 3057 3058 /// Parse the constraints that are part of an integer set definition. 3059 /// integer-set-inline 3060 /// ::= dim-and-symbol-id-lists `:` 3061 /// '(' affine-constraint-conjunction? ')' 3062 /// affine-constraint-conjunction ::= affine-constraint (`,` 3063 /// affine-constraint)* 3064 /// 3065 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, 3066 unsigned numSymbols) { 3067 if (parseToken(Token::l_paren, 3068 "expected '(' at start of integer set constraint list")) 3069 return IntegerSet(); 3070 3071 SmallVector<AffineExpr, 4> constraints; 3072 SmallVector<bool, 4> isEqs; 3073 auto parseElt = [&]() -> ParseResult { 3074 bool isEq; 3075 auto elt = parseAffineConstraint(&isEq); 3076 ParseResult res = elt ? success() : failure(); 3077 if (elt) { 3078 constraints.push_back(elt); 3079 isEqs.push_back(isEq); 3080 } 3081 return res; 3082 }; 3083 3084 // Parse a list of affine constraints (comma-separated). 3085 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3086 return IntegerSet(); 3087 3088 // If no constraints were parsed, then treat this as a degenerate 'true' case. 3089 if (constraints.empty()) { 3090 /* 0 == 0 */ 3091 auto zero = getAffineConstantExpr(0, getContext()); 3092 return IntegerSet::get(numDims, numSymbols, zero, true); 3093 } 3094 3095 // Parsed a valid integer set. 3096 return IntegerSet::get(numDims, numSymbols, constraints, isEqs); 3097 } 3098 3099 /// Parse an ambiguous reference to either and affine map or an integer set. 3100 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, 3101 IntegerSet &set) { 3102 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); 3103 } 3104 ParseResult Parser::parseAffineMapReference(AffineMap &map) { 3105 llvm::SMLoc curLoc = getToken().getLoc(); 3106 IntegerSet set; 3107 if (parseAffineMapOrIntegerSetReference(map, set)) 3108 return failure(); 3109 if (set) 3110 return emitError(curLoc, "expected AffineMap, but got IntegerSet"); 3111 return success(); 3112 } 3113 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) { 3114 llvm::SMLoc curLoc = getToken().getLoc(); 3115 AffineMap map; 3116 if (parseAffineMapOrIntegerSetReference(map, set)) 3117 return failure(); 3118 if (map) 3119 return emitError(curLoc, "expected IntegerSet, but got AffineMap"); 3120 return success(); 3121 } 3122 3123 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to 3124 /// parse SSA value uses encountered while parsing affine expressions. 3125 ParseResult 3126 Parser::parseAffineMapOfSSAIds(AffineMap &map, 3127 function_ref<ParseResult(bool)> parseElement, 3128 OpAsmParser::Delimiter delimiter) { 3129 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement) 3130 .parseAffineMapOfSSAIds(map, delimiter); 3131 } 3132 3133 //===----------------------------------------------------------------------===// 3134 // OperationParser 3135 //===----------------------------------------------------------------------===// 3136 3137 namespace { 3138 /// This class provides support for parsing operations and regions of 3139 /// operations. 3140 class OperationParser : public Parser { 3141 public: 3142 OperationParser(ParserState &state, ModuleOp moduleOp) 3143 : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) { 3144 } 3145 3146 ~OperationParser(); 3147 3148 /// After parsing is finished, this function must be called to see if there 3149 /// are any remaining issues. 3150 ParseResult finalize(); 3151 3152 //===--------------------------------------------------------------------===// 3153 // SSA Value Handling 3154 //===--------------------------------------------------------------------===// 3155 3156 /// This represents a use of an SSA value in the program. The first two 3157 /// entries in the tuple are the name and result number of a reference. The 3158 /// third is the location of the reference, which is used in case this ends 3159 /// up being a use of an undefined value. 3160 struct SSAUseInfo { 3161 StringRef name; // Value name, e.g. %42 or %abc 3162 unsigned number; // Number, specified with #12 3163 SMLoc loc; // Location of first definition or use. 3164 }; 3165 3166 /// Push a new SSA name scope to the parser. 3167 void pushSSANameScope(bool isIsolated); 3168 3169 /// Pop the last SSA name scope from the parser. 3170 ParseResult popSSANameScope(); 3171 3172 /// Register a definition of a value with the symbol table. 3173 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 3174 3175 /// Parse an optional list of SSA uses into 'results'. 3176 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 3177 3178 /// Parse a single SSA use into 'result'. 3179 ParseResult parseSSAUse(SSAUseInfo &result); 3180 3181 /// Given a reference to an SSA value and its type, return a reference. This 3182 /// returns null on failure. 3183 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 3184 3185 ParseResult parseSSADefOrUseAndType( 3186 const std::function<ParseResult(SSAUseInfo, Type)> &action); 3187 3188 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 3189 3190 /// Return the location of the value identified by its name and number if it 3191 /// has been already reference. 3192 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 3193 auto &values = isolatedNameScopes.back().values; 3194 if (!values.count(name) || number >= values[name].size()) 3195 return {}; 3196 if (values[name][number].first) 3197 return values[name][number].second; 3198 return {}; 3199 } 3200 3201 //===--------------------------------------------------------------------===// 3202 // Operation Parsing 3203 //===--------------------------------------------------------------------===// 3204 3205 /// Parse an operation instance. 3206 ParseResult parseOperation(); 3207 3208 /// Parse a single operation successor and its operand list. 3209 ParseResult parseSuccessorAndUseList(Block *&dest, 3210 SmallVectorImpl<Value> &operands); 3211 3212 /// Parse a comma-separated list of operation successors in brackets. 3213 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations, 3214 SmallVectorImpl<SmallVector<Value, 4>> &operands); 3215 3216 /// Parse an operation instance that is in the generic form. 3217 Operation *parseGenericOperation(); 3218 3219 /// Parse an operation instance that is in the generic form and insert it at 3220 /// the provided insertion point. 3221 Operation *parseGenericOperation(Block *insertBlock, 3222 Block::iterator insertPt); 3223 3224 /// Parse an operation instance that is in the op-defined custom form. 3225 Operation *parseCustomOperation(); 3226 3227 //===--------------------------------------------------------------------===// 3228 // Region Parsing 3229 //===--------------------------------------------------------------------===// 3230 3231 /// Parse a region into 'region' with the provided entry block arguments. 3232 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 3233 /// isolated from those above. 3234 ParseResult parseRegion(Region ®ion, 3235 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 3236 bool isIsolatedNameScope = false); 3237 3238 /// Parse a region body into 'region'. 3239 ParseResult parseRegionBody(Region ®ion); 3240 3241 //===--------------------------------------------------------------------===// 3242 // Block Parsing 3243 //===--------------------------------------------------------------------===// 3244 3245 /// Parse a new block into 'block'. 3246 ParseResult parseBlock(Block *&block); 3247 3248 /// Parse a list of operations into 'block'. 3249 ParseResult parseBlockBody(Block *block); 3250 3251 /// Parse a (possibly empty) list of block arguments. 3252 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results, 3253 Block *owner); 3254 3255 /// Get the block with the specified name, creating it if it doesn't 3256 /// already exist. The location specified is the point of use, which allows 3257 /// us to diagnose references to blocks that are not defined precisely. 3258 Block *getBlockNamed(StringRef name, SMLoc loc); 3259 3260 /// Define the block with the specified name. Returns the Block* or nullptr in 3261 /// the case of redefinition. 3262 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 3263 3264 private: 3265 /// Returns the info for a block at the current scope for the given name. 3266 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 3267 return blocksByName.back()[name]; 3268 } 3269 3270 /// Insert a new forward reference to the given block. 3271 void insertForwardRef(Block *block, SMLoc loc) { 3272 forwardRef.back().try_emplace(block, loc); 3273 } 3274 3275 /// Erase any forward reference to the given block. 3276 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 3277 3278 /// Record that a definition was added at the current scope. 3279 void recordDefinition(StringRef def); 3280 3281 /// Get the value entry for the given SSA name. 3282 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name); 3283 3284 /// Create a forward reference placeholder value with the given location and 3285 /// result type. 3286 Value createForwardRefPlaceholder(SMLoc loc, Type type); 3287 3288 /// Return true if this is a forward reference. 3289 bool isForwardRefPlaceholder(Value value) { 3290 return forwardRefPlaceholders.count(value); 3291 } 3292 3293 /// This struct represents an isolated SSA name scope. This scope may contain 3294 /// other nested non-isolated scopes. These scopes are used for operations 3295 /// that are known to be isolated to allow for reusing names within their 3296 /// regions, even if those names are used above. 3297 struct IsolatedSSANameScope { 3298 /// Record that a definition was added at the current scope. 3299 void recordDefinition(StringRef def) { 3300 definitionsPerScope.back().insert(def); 3301 } 3302 3303 /// Push a nested name scope. 3304 void pushSSANameScope() { definitionsPerScope.push_back({}); } 3305 3306 /// Pop a nested name scope. 3307 void popSSANameScope() { 3308 for (auto &def : definitionsPerScope.pop_back_val()) 3309 values.erase(def.getKey()); 3310 } 3311 3312 /// This keeps track of all of the SSA values we are tracking for each name 3313 /// scope, indexed by their name. This has one entry per result number. 3314 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values; 3315 3316 /// This keeps track of all of the values defined by a specific name scope. 3317 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 3318 }; 3319 3320 /// A list of isolated name scopes. 3321 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 3322 3323 /// This keeps track of the block names as well as the location of the first 3324 /// reference for each nested name scope. This is used to diagnose invalid 3325 /// block references and memorize them. 3326 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 3327 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 3328 3329 /// These are all of the placeholders we've made along with the location of 3330 /// their first reference, to allow checking for use of undefined values. 3331 DenseMap<Value, SMLoc> forwardRefPlaceholders; 3332 3333 /// The builder used when creating parsed operation instances. 3334 OpBuilder opBuilder; 3335 3336 /// The top level module operation. 3337 ModuleOp moduleOp; 3338 }; 3339 } // end anonymous namespace 3340 3341 OperationParser::~OperationParser() { 3342 for (auto &fwd : forwardRefPlaceholders) { 3343 // Drop all uses of undefined forward declared reference and destroy 3344 // defining operation. 3345 fwd.first.dropAllUses(); 3346 fwd.first.getDefiningOp()->destroy(); 3347 } 3348 } 3349 3350 /// After parsing is finished, this function must be called to see if there are 3351 /// any remaining issues. 3352 ParseResult OperationParser::finalize() { 3353 // Check for any forward references that are left. If we find any, error 3354 // out. 3355 if (!forwardRefPlaceholders.empty()) { 3356 SmallVector<std::pair<const char *, Value>, 4> errors; 3357 // Iteration over the map isn't deterministic, so sort by source location. 3358 for (auto entry : forwardRefPlaceholders) 3359 errors.push_back({entry.second.getPointer(), entry.first}); 3360 llvm::array_pod_sort(errors.begin(), errors.end()); 3361 3362 for (auto entry : errors) { 3363 auto loc = SMLoc::getFromPointer(entry.first); 3364 emitError(loc, "use of undeclared SSA value name"); 3365 } 3366 return failure(); 3367 } 3368 3369 return success(); 3370 } 3371 3372 //===----------------------------------------------------------------------===// 3373 // SSA Value Handling 3374 //===----------------------------------------------------------------------===// 3375 3376 void OperationParser::pushSSANameScope(bool isIsolated) { 3377 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 3378 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 3379 3380 // Push back a new name definition scope. 3381 if (isIsolated) 3382 isolatedNameScopes.push_back({}); 3383 isolatedNameScopes.back().pushSSANameScope(); 3384 } 3385 3386 ParseResult OperationParser::popSSANameScope() { 3387 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 3388 3389 // Verify that all referenced blocks were defined. 3390 if (!forwardRefInCurrentScope.empty()) { 3391 SmallVector<std::pair<const char *, Block *>, 4> errors; 3392 // Iteration over the map isn't deterministic, so sort by source location. 3393 for (auto entry : forwardRefInCurrentScope) { 3394 errors.push_back({entry.second.getPointer(), entry.first}); 3395 // Add this block to the top-level region to allow for automatic cleanup. 3396 moduleOp.getOperation()->getRegion(0).push_back(entry.first); 3397 } 3398 llvm::array_pod_sort(errors.begin(), errors.end()); 3399 3400 for (auto entry : errors) { 3401 auto loc = SMLoc::getFromPointer(entry.first); 3402 emitError(loc, "reference to an undefined block"); 3403 } 3404 return failure(); 3405 } 3406 3407 // Pop the next nested namescope. If there is only one internal namescope, 3408 // just pop the isolated scope. 3409 auto ¤tNameScope = isolatedNameScopes.back(); 3410 if (currentNameScope.definitionsPerScope.size() == 1) 3411 isolatedNameScopes.pop_back(); 3412 else 3413 currentNameScope.popSSANameScope(); 3414 3415 blocksByName.pop_back(); 3416 return success(); 3417 } 3418 3419 /// Register a definition of a value with the symbol table. 3420 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 3421 auto &entries = getSSAValueEntry(useInfo.name); 3422 3423 // Make sure there is a slot for this value. 3424 if (entries.size() <= useInfo.number) 3425 entries.resize(useInfo.number + 1); 3426 3427 // If we already have an entry for this, check to see if it was a definition 3428 // or a forward reference. 3429 if (auto existing = entries[useInfo.number].first) { 3430 if (!isForwardRefPlaceholder(existing)) { 3431 return emitError(useInfo.loc) 3432 .append("redefinition of SSA value '", useInfo.name, "'") 3433 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3434 .append("previously defined here"); 3435 } 3436 3437 // If it was a forward reference, update everything that used it to use 3438 // the actual definition instead, delete the forward ref, and remove it 3439 // from our set of forward references we track. 3440 existing.replaceAllUsesWith(value); 3441 existing.getDefiningOp()->destroy(); 3442 forwardRefPlaceholders.erase(existing); 3443 } 3444 3445 /// Record this definition for the current scope. 3446 entries[useInfo.number] = {value, useInfo.loc}; 3447 recordDefinition(useInfo.name); 3448 return success(); 3449 } 3450 3451 /// Parse a (possibly empty) list of SSA operands. 3452 /// 3453 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 3454 /// ssa-use-list-opt ::= ssa-use-list? 3455 /// 3456 ParseResult 3457 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 3458 if (getToken().isNot(Token::percent_identifier)) 3459 return success(); 3460 return parseCommaSeparatedList([&]() -> ParseResult { 3461 SSAUseInfo result; 3462 if (parseSSAUse(result)) 3463 return failure(); 3464 results.push_back(result); 3465 return success(); 3466 }); 3467 } 3468 3469 /// Parse a SSA operand for an operation. 3470 /// 3471 /// ssa-use ::= ssa-id 3472 /// 3473 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 3474 result.name = getTokenSpelling(); 3475 result.number = 0; 3476 result.loc = getToken().getLoc(); 3477 if (parseToken(Token::percent_identifier, "expected SSA operand")) 3478 return failure(); 3479 3480 // If we have an attribute ID, it is a result number. 3481 if (getToken().is(Token::hash_identifier)) { 3482 if (auto value = getToken().getHashIdentifierNumber()) 3483 result.number = value.getValue(); 3484 else 3485 return emitError("invalid SSA value result number"); 3486 consumeToken(Token::hash_identifier); 3487 } 3488 3489 return success(); 3490 } 3491 3492 /// Given an unbound reference to an SSA value and its type, return the value 3493 /// it specifies. This returns null on failure. 3494 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 3495 auto &entries = getSSAValueEntry(useInfo.name); 3496 3497 // If we have already seen a value of this name, return it. 3498 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 3499 auto result = entries[useInfo.number].first; 3500 // Check that the type matches the other uses. 3501 if (result.getType() == type) 3502 return result; 3503 3504 emitError(useInfo.loc, "use of value '") 3505 .append(useInfo.name, 3506 "' expects different type than prior uses: ", type, " vs ", 3507 result.getType()) 3508 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3509 .append("prior use here"); 3510 return nullptr; 3511 } 3512 3513 // Make sure we have enough slots for this. 3514 if (entries.size() <= useInfo.number) 3515 entries.resize(useInfo.number + 1); 3516 3517 // If the value has already been defined and this is an overly large result 3518 // number, diagnose that. 3519 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 3520 return (emitError(useInfo.loc, "reference to invalid result number"), 3521 nullptr); 3522 3523 // Otherwise, this is a forward reference. Create a placeholder and remember 3524 // that we did so. 3525 auto result = createForwardRefPlaceholder(useInfo.loc, type); 3526 entries[useInfo.number].first = result; 3527 entries[useInfo.number].second = useInfo.loc; 3528 return result; 3529 } 3530 3531 /// Parse an SSA use with an associated type. 3532 /// 3533 /// ssa-use-and-type ::= ssa-use `:` type 3534 ParseResult OperationParser::parseSSADefOrUseAndType( 3535 const std::function<ParseResult(SSAUseInfo, Type)> &action) { 3536 SSAUseInfo useInfo; 3537 if (parseSSAUse(useInfo) || 3538 parseToken(Token::colon, "expected ':' and type for SSA operand")) 3539 return failure(); 3540 3541 auto type = parseType(); 3542 if (!type) 3543 return failure(); 3544 3545 return action(useInfo, type); 3546 } 3547 3548 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 3549 /// followed by a type list. 3550 /// 3551 /// ssa-use-and-type-list 3552 /// ::= ssa-use-list ':' type-list-no-parens 3553 /// 3554 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 3555 SmallVectorImpl<Value> &results) { 3556 SmallVector<SSAUseInfo, 4> valueIDs; 3557 if (parseOptionalSSAUseList(valueIDs)) 3558 return failure(); 3559 3560 // If there were no operands, then there is no colon or type lists. 3561 if (valueIDs.empty()) 3562 return success(); 3563 3564 SmallVector<Type, 4> types; 3565 if (parseToken(Token::colon, "expected ':' in operand list") || 3566 parseTypeListNoParens(types)) 3567 return failure(); 3568 3569 if (valueIDs.size() != types.size()) 3570 return emitError("expected ") 3571 << valueIDs.size() << " types to match operand list"; 3572 3573 results.reserve(valueIDs.size()); 3574 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 3575 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 3576 results.push_back(value); 3577 else 3578 return failure(); 3579 } 3580 3581 return success(); 3582 } 3583 3584 /// Record that a definition was added at the current scope. 3585 void OperationParser::recordDefinition(StringRef def) { 3586 isolatedNameScopes.back().recordDefinition(def); 3587 } 3588 3589 /// Get the value entry for the given SSA name. 3590 SmallVectorImpl<std::pair<Value, SMLoc>> & 3591 OperationParser::getSSAValueEntry(StringRef name) { 3592 return isolatedNameScopes.back().values[name]; 3593 } 3594 3595 /// Create and remember a new placeholder for a forward reference. 3596 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 3597 // Forward references are always created as operations, because we just need 3598 // something with a def/use chain. 3599 // 3600 // We create these placeholders as having an empty name, which we know 3601 // cannot be created through normal user input, allowing us to distinguish 3602 // them. 3603 auto name = OperationName("placeholder", getContext()); 3604 auto *op = Operation::create( 3605 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 3606 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0, 3607 /*resizableOperandList=*/false); 3608 forwardRefPlaceholders[op->getResult(0)] = loc; 3609 return op->getResult(0); 3610 } 3611 3612 //===----------------------------------------------------------------------===// 3613 // Operation Parsing 3614 //===----------------------------------------------------------------------===// 3615 3616 /// Parse an operation. 3617 /// 3618 /// operation ::= op-result-list? 3619 /// (generic-operation | custom-operation) 3620 /// trailing-location? 3621 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 3622 /// successor-list? (`(` region-list `)`)? 3623 /// attribute-dict? `:` function-type 3624 /// custom-operation ::= bare-id custom-operation-format 3625 /// op-result-list ::= op-result (`,` op-result)* `=` 3626 /// op-result ::= ssa-id (`:` integer-literal) 3627 /// 3628 ParseResult OperationParser::parseOperation() { 3629 auto loc = getToken().getLoc(); 3630 SmallVector<std::tuple<StringRef, unsigned, SMLoc>, 1> resultIDs; 3631 size_t numExpectedResults = 0; 3632 if (getToken().is(Token::percent_identifier)) { 3633 // Parse the group of result ids. 3634 auto parseNextResult = [&]() -> ParseResult { 3635 // Parse the next result id. 3636 if (!getToken().is(Token::percent_identifier)) 3637 return emitError("expected valid ssa identifier"); 3638 3639 Token nameTok = getToken(); 3640 consumeToken(Token::percent_identifier); 3641 3642 // If the next token is a ':', we parse the expected result count. 3643 size_t expectedSubResults = 1; 3644 if (consumeIf(Token::colon)) { 3645 // Check that the next token is an integer. 3646 if (!getToken().is(Token::integer)) 3647 return emitError("expected integer number of results"); 3648 3649 // Check that number of results is > 0. 3650 auto val = getToken().getUInt64IntegerValue(); 3651 if (!val.hasValue() || val.getValue() < 1) 3652 return emitError("expected named operation to have atleast 1 result"); 3653 consumeToken(Token::integer); 3654 expectedSubResults = *val; 3655 } 3656 3657 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 3658 nameTok.getLoc()); 3659 numExpectedResults += expectedSubResults; 3660 return success(); 3661 }; 3662 if (parseCommaSeparatedList(parseNextResult)) 3663 return failure(); 3664 3665 if (parseToken(Token::equal, "expected '=' after SSA name")) 3666 return failure(); 3667 } 3668 3669 Operation *op; 3670 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 3671 op = parseCustomOperation(); 3672 else if (getToken().is(Token::string)) 3673 op = parseGenericOperation(); 3674 else 3675 return emitError("expected operation name in quotes"); 3676 3677 // If parsing of the basic operation failed, then this whole thing fails. 3678 if (!op) 3679 return failure(); 3680 3681 // If the operation had a name, register it. 3682 if (!resultIDs.empty()) { 3683 if (op->getNumResults() == 0) 3684 return emitError(loc, "cannot name an operation with no results"); 3685 if (numExpectedResults != op->getNumResults()) 3686 return emitError(loc, "operation defines ") 3687 << op->getNumResults() << " results but was provided " 3688 << numExpectedResults << " to bind"; 3689 3690 // Add definitions for each of the result groups. 3691 unsigned opResI = 0; 3692 for (std::tuple<StringRef, unsigned, SMLoc> &resIt : resultIDs) { 3693 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 3694 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 3695 op->getResult(opResI++))) 3696 return failure(); 3697 } 3698 } 3699 } 3700 3701 return success(); 3702 } 3703 3704 /// Parse a single operation successor and its operand list. 3705 /// 3706 /// successor ::= block-id branch-use-list? 3707 /// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)` 3708 /// 3709 ParseResult 3710 OperationParser::parseSuccessorAndUseList(Block *&dest, 3711 SmallVectorImpl<Value> &operands) { 3712 // Verify branch is identifier and get the matching block. 3713 if (!getToken().is(Token::caret_identifier)) 3714 return emitError("expected block name"); 3715 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 3716 consumeToken(); 3717 3718 // Handle optional arguments. 3719 if (consumeIf(Token::l_paren) && 3720 (parseOptionalSSAUseAndTypeList(operands) || 3721 parseToken(Token::r_paren, "expected ')' to close argument list"))) { 3722 return failure(); 3723 } 3724 3725 return success(); 3726 } 3727 3728 /// Parse a comma-separated list of operation successors in brackets. 3729 /// 3730 /// successor-list ::= `[` successor (`,` successor )* `]` 3731 /// 3732 ParseResult OperationParser::parseSuccessors( 3733 SmallVectorImpl<Block *> &destinations, 3734 SmallVectorImpl<SmallVector<Value, 4>> &operands) { 3735 if (parseToken(Token::l_square, "expected '['")) 3736 return failure(); 3737 3738 auto parseElt = [this, &destinations, &operands]() { 3739 Block *dest; 3740 SmallVector<Value, 4> destOperands; 3741 auto res = parseSuccessorAndUseList(dest, destOperands); 3742 destinations.push_back(dest); 3743 operands.push_back(destOperands); 3744 return res; 3745 }; 3746 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 3747 /*allowEmptyList=*/false); 3748 } 3749 3750 namespace { 3751 // RAII-style guard for cleaning up the regions in the operation state before 3752 // deleting them. Within the parser, regions may get deleted if parsing failed, 3753 // and other errors may be present, in particular undominated uses. This makes 3754 // sure such uses are deleted. 3755 struct CleanupOpStateRegions { 3756 ~CleanupOpStateRegions() { 3757 SmallVector<Region *, 4> regionsToClean; 3758 regionsToClean.reserve(state.regions.size()); 3759 for (auto ®ion : state.regions) 3760 if (region) 3761 for (auto &block : *region) 3762 block.dropAllDefinedValueUses(); 3763 } 3764 OperationState &state; 3765 }; 3766 } // namespace 3767 3768 Operation *OperationParser::parseGenericOperation() { 3769 // Get location information for the operation. 3770 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 3771 3772 auto name = getToken().getStringValue(); 3773 if (name.empty()) 3774 return (emitError("empty operation name is invalid"), nullptr); 3775 if (name.find('\0') != StringRef::npos) 3776 return (emitError("null character not allowed in operation name"), nullptr); 3777 3778 consumeToken(Token::string); 3779 3780 OperationState result(srcLocation, name); 3781 3782 // Generic operations have a resizable operation list. 3783 result.setOperandListToResizable(); 3784 3785 // Parse the operand list. 3786 SmallVector<SSAUseInfo, 8> operandInfos; 3787 3788 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 3789 parseOptionalSSAUseList(operandInfos) || 3790 parseToken(Token::r_paren, "expected ')' to end operand list")) { 3791 return nullptr; 3792 } 3793 3794 // Parse the successor list but don't add successors to the result yet to 3795 // avoid messing up with the argument order. 3796 SmallVector<Block *, 2> successors; 3797 SmallVector<SmallVector<Value, 4>, 2> successorOperands; 3798 if (getToken().is(Token::l_square)) { 3799 // Check if the operation is a known terminator. 3800 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 3801 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) 3802 return emitError("successors in non-terminator"), nullptr; 3803 if (parseSuccessors(successors, successorOperands)) 3804 return nullptr; 3805 } 3806 3807 // Parse the region list. 3808 CleanupOpStateRegions guard{result}; 3809 if (consumeIf(Token::l_paren)) { 3810 do { 3811 // Create temporary regions with the top level region as parent. 3812 result.regions.emplace_back(new Region(moduleOp)); 3813 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 3814 return nullptr; 3815 } while (consumeIf(Token::comma)); 3816 if (parseToken(Token::r_paren, "expected ')' to end region list")) 3817 return nullptr; 3818 } 3819 3820 if (getToken().is(Token::l_brace)) { 3821 if (parseAttributeDict(result.attributes)) 3822 return nullptr; 3823 } 3824 3825 if (parseToken(Token::colon, "expected ':' followed by operation type")) 3826 return nullptr; 3827 3828 auto typeLoc = getToken().getLoc(); 3829 auto type = parseType(); 3830 if (!type) 3831 return nullptr; 3832 auto fnType = type.dyn_cast<FunctionType>(); 3833 if (!fnType) 3834 return (emitError(typeLoc, "expected function type"), nullptr); 3835 3836 result.addTypes(fnType.getResults()); 3837 3838 // Check that we have the right number of types for the operands. 3839 auto operandTypes = fnType.getInputs(); 3840 if (operandTypes.size() != operandInfos.size()) { 3841 auto plural = "s"[operandInfos.size() == 1]; 3842 return (emitError(typeLoc, "expected ") 3843 << operandInfos.size() << " operand type" << plural 3844 << " but had " << operandTypes.size(), 3845 nullptr); 3846 } 3847 3848 // Resolve all of the operands. 3849 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 3850 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 3851 if (!result.operands.back()) 3852 return nullptr; 3853 } 3854 3855 // Add the successors, and their operands after the proper operands. 3856 for (auto succ : llvm::zip(successors, successorOperands)) { 3857 Block *successor = std::get<0>(succ); 3858 const SmallVector<Value, 4> &operands = std::get<1>(succ); 3859 result.addSuccessor(successor, operands); 3860 } 3861 3862 // Parse a location if one is present. 3863 if (parseOptionalTrailingLocation(result.location)) 3864 return nullptr; 3865 3866 return opBuilder.createOperation(result); 3867 } 3868 3869 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 3870 Block::iterator insertPt) { 3871 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 3872 opBuilder.setInsertionPoint(insertBlock, insertPt); 3873 return parseGenericOperation(); 3874 } 3875 3876 namespace { 3877 class CustomOpAsmParser : public OpAsmParser { 3878 public: 3879 CustomOpAsmParser(SMLoc nameLoc, const AbstractOperation *opDefinition, 3880 OperationParser &parser) 3881 : nameLoc(nameLoc), opDefinition(opDefinition), parser(parser) {} 3882 3883 /// Parse an instance of the operation described by 'opDefinition' into the 3884 /// provided operation state. 3885 ParseResult parseOperation(OperationState &opState) { 3886 if (opDefinition->parseAssembly(*this, opState)) 3887 return failure(); 3888 return success(); 3889 } 3890 3891 Operation *parseGenericOperation(Block *insertBlock, 3892 Block::iterator insertPt) final { 3893 return parser.parseGenericOperation(insertBlock, insertPt); 3894 } 3895 3896 //===--------------------------------------------------------------------===// 3897 // Utilities 3898 //===--------------------------------------------------------------------===// 3899 3900 /// Return if any errors were emitted during parsing. 3901 bool didEmitError() const { return emittedError; } 3902 3903 /// Emit a diagnostic at the specified location and return failure. 3904 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 3905 emittedError = true; 3906 return parser.emitError(loc, "custom op '" + opDefinition->name + "' " + 3907 message); 3908 } 3909 3910 llvm::SMLoc getCurrentLocation() override { 3911 return parser.getToken().getLoc(); 3912 } 3913 3914 Builder &getBuilder() const override { return parser.builder; } 3915 3916 llvm::SMLoc getNameLoc() const override { return nameLoc; } 3917 3918 //===--------------------------------------------------------------------===// 3919 // Token Parsing 3920 //===--------------------------------------------------------------------===// 3921 3922 /// Parse a `->` token. 3923 ParseResult parseArrow() override { 3924 return parser.parseToken(Token::arrow, "expected '->'"); 3925 } 3926 3927 /// Parses a `->` if present. 3928 ParseResult parseOptionalArrow() override { 3929 return success(parser.consumeIf(Token::arrow)); 3930 } 3931 3932 /// Parse a `:` token. 3933 ParseResult parseColon() override { 3934 return parser.parseToken(Token::colon, "expected ':'"); 3935 } 3936 3937 /// Parse a `:` token if present. 3938 ParseResult parseOptionalColon() override { 3939 return success(parser.consumeIf(Token::colon)); 3940 } 3941 3942 /// Parse a `,` token. 3943 ParseResult parseComma() override { 3944 return parser.parseToken(Token::comma, "expected ','"); 3945 } 3946 3947 /// Parse a `,` token if present. 3948 ParseResult parseOptionalComma() override { 3949 return success(parser.consumeIf(Token::comma)); 3950 } 3951 3952 /// Parses a `...` if present. 3953 ParseResult parseOptionalEllipsis() override { 3954 return success(parser.consumeIf(Token::ellipsis)); 3955 } 3956 3957 /// Parse a `=` token. 3958 ParseResult parseEqual() override { 3959 return parser.parseToken(Token::equal, "expected '='"); 3960 } 3961 3962 /// Parse a '<' token. 3963 ParseResult parseLess() override { 3964 return parser.parseToken(Token::less, "expected '<'"); 3965 } 3966 3967 /// Parse a '>' token. 3968 ParseResult parseGreater() override { 3969 return parser.parseToken(Token::greater, "expected '>'"); 3970 } 3971 3972 /// Parse a `(` token. 3973 ParseResult parseLParen() override { 3974 return parser.parseToken(Token::l_paren, "expected '('"); 3975 } 3976 3977 /// Parses a '(' if present. 3978 ParseResult parseOptionalLParen() override { 3979 return success(parser.consumeIf(Token::l_paren)); 3980 } 3981 3982 /// Parse a `)` token. 3983 ParseResult parseRParen() override { 3984 return parser.parseToken(Token::r_paren, "expected ')'"); 3985 } 3986 3987 /// Parses a ')' if present. 3988 ParseResult parseOptionalRParen() override { 3989 return success(parser.consumeIf(Token::r_paren)); 3990 } 3991 3992 /// Parse a `[` token. 3993 ParseResult parseLSquare() override { 3994 return parser.parseToken(Token::l_square, "expected '['"); 3995 } 3996 3997 /// Parses a '[' if present. 3998 ParseResult parseOptionalLSquare() override { 3999 return success(parser.consumeIf(Token::l_square)); 4000 } 4001 4002 /// Parse a `]` token. 4003 ParseResult parseRSquare() override { 4004 return parser.parseToken(Token::r_square, "expected ']'"); 4005 } 4006 4007 /// Parses a ']' if present. 4008 ParseResult parseOptionalRSquare() override { 4009 return success(parser.consumeIf(Token::r_square)); 4010 } 4011 4012 //===--------------------------------------------------------------------===// 4013 // Attribute Parsing 4014 //===--------------------------------------------------------------------===// 4015 4016 /// Parse an arbitrary attribute of a given type and return it in result. This 4017 /// also adds the attribute to the specified attribute list with the specified 4018 /// name. 4019 ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName, 4020 SmallVectorImpl<NamedAttribute> &attrs) override { 4021 result = parser.parseAttribute(type); 4022 if (!result) 4023 return failure(); 4024 4025 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 4026 return success(); 4027 } 4028 4029 /// Parse a named dictionary into 'result' if it is present. 4030 ParseResult 4031 parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override { 4032 if (parser.getToken().isNot(Token::l_brace)) 4033 return success(); 4034 return parser.parseAttributeDict(result); 4035 } 4036 4037 /// Parse a named dictionary into 'result' if the `attributes` keyword is 4038 /// present. 4039 ParseResult parseOptionalAttrDictWithKeyword( 4040 SmallVectorImpl<NamedAttribute> &result) override { 4041 if (failed(parseOptionalKeyword("attributes"))) 4042 return success(); 4043 return parser.parseAttributeDict(result); 4044 } 4045 4046 /// Parse an affine map instance into 'map'. 4047 ParseResult parseAffineMap(AffineMap &map) override { 4048 return parser.parseAffineMapReference(map); 4049 } 4050 4051 /// Parse an integer set instance into 'set'. 4052 ParseResult printIntegerSet(IntegerSet &set) override { 4053 return parser.parseIntegerSetReference(set); 4054 } 4055 4056 //===--------------------------------------------------------------------===// 4057 // Identifier Parsing 4058 //===--------------------------------------------------------------------===// 4059 4060 /// Returns if the current token corresponds to a keyword. 4061 bool isCurrentTokenAKeyword() const { 4062 return parser.getToken().is(Token::bare_identifier) || 4063 parser.getToken().isKeyword(); 4064 } 4065 4066 /// Parse the given keyword if present. 4067 ParseResult parseOptionalKeyword(StringRef keyword) override { 4068 // Check that the current token has the same spelling. 4069 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 4070 return failure(); 4071 parser.consumeToken(); 4072 return success(); 4073 } 4074 4075 /// Parse a keyword, if present, into 'keyword'. 4076 ParseResult parseOptionalKeyword(StringRef *keyword) override { 4077 // Check that the current token is a keyword. 4078 if (!isCurrentTokenAKeyword()) 4079 return failure(); 4080 4081 *keyword = parser.getTokenSpelling(); 4082 parser.consumeToken(); 4083 return success(); 4084 } 4085 4086 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 4087 /// string attribute named 'attrName'. 4088 ParseResult 4089 parseOptionalSymbolName(StringAttr &result, StringRef attrName, 4090 SmallVectorImpl<NamedAttribute> &attrs) override { 4091 Token atToken = parser.getToken(); 4092 if (atToken.isNot(Token::at_identifier)) 4093 return failure(); 4094 4095 result = getBuilder().getStringAttr(extractSymbolReference(atToken)); 4096 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 4097 parser.consumeToken(); 4098 return success(); 4099 } 4100 4101 //===--------------------------------------------------------------------===// 4102 // Operand Parsing 4103 //===--------------------------------------------------------------------===// 4104 4105 /// Parse a single operand. 4106 ParseResult parseOperand(OperandType &result) override { 4107 OperationParser::SSAUseInfo useInfo; 4108 if (parser.parseSSAUse(useInfo)) 4109 return failure(); 4110 4111 result = {useInfo.loc, useInfo.name, useInfo.number}; 4112 return success(); 4113 } 4114 4115 /// Parse zero or more SSA comma-separated operand references with a specified 4116 /// surrounding delimiter, and an optional required operand count. 4117 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 4118 int requiredOperandCount = -1, 4119 Delimiter delimiter = Delimiter::None) override { 4120 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 4121 requiredOperandCount, delimiter); 4122 } 4123 4124 /// Parse zero or more SSA comma-separated operand or region arguments with 4125 /// optional surrounding delimiter and required operand count. 4126 ParseResult 4127 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 4128 bool isOperandList, int requiredOperandCount = -1, 4129 Delimiter delimiter = Delimiter::None) { 4130 auto startLoc = parser.getToken().getLoc(); 4131 4132 // Handle delimiters. 4133 switch (delimiter) { 4134 case Delimiter::None: 4135 // Don't check for the absence of a delimiter if the number of operands 4136 // is unknown (and hence the operand list could be empty). 4137 if (requiredOperandCount == -1) 4138 break; 4139 // Token already matches an identifier and so can't be a delimiter. 4140 if (parser.getToken().is(Token::percent_identifier)) 4141 break; 4142 // Test against known delimiters. 4143 if (parser.getToken().is(Token::l_paren) || 4144 parser.getToken().is(Token::l_square)) 4145 return emitError(startLoc, "unexpected delimiter"); 4146 return emitError(startLoc, "invalid operand"); 4147 case Delimiter::OptionalParen: 4148 if (parser.getToken().isNot(Token::l_paren)) 4149 return success(); 4150 LLVM_FALLTHROUGH; 4151 case Delimiter::Paren: 4152 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 4153 return failure(); 4154 break; 4155 case Delimiter::OptionalSquare: 4156 if (parser.getToken().isNot(Token::l_square)) 4157 return success(); 4158 LLVM_FALLTHROUGH; 4159 case Delimiter::Square: 4160 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 4161 return failure(); 4162 break; 4163 } 4164 4165 // Check for zero operands. 4166 if (parser.getToken().is(Token::percent_identifier)) { 4167 do { 4168 OperandType operandOrArg; 4169 if (isOperandList ? parseOperand(operandOrArg) 4170 : parseRegionArgument(operandOrArg)) 4171 return failure(); 4172 result.push_back(operandOrArg); 4173 } while (parser.consumeIf(Token::comma)); 4174 } 4175 4176 // Handle delimiters. If we reach here, the optional delimiters were 4177 // present, so we need to parse their closing one. 4178 switch (delimiter) { 4179 case Delimiter::None: 4180 break; 4181 case Delimiter::OptionalParen: 4182 case Delimiter::Paren: 4183 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 4184 return failure(); 4185 break; 4186 case Delimiter::OptionalSquare: 4187 case Delimiter::Square: 4188 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 4189 return failure(); 4190 break; 4191 } 4192 4193 if (requiredOperandCount != -1 && 4194 result.size() != static_cast<size_t>(requiredOperandCount)) 4195 return emitError(startLoc, "expected ") 4196 << requiredOperandCount << " operands"; 4197 return success(); 4198 } 4199 4200 /// Parse zero or more trailing SSA comma-separated trailing operand 4201 /// references with a specified surrounding delimiter, and an optional 4202 /// required operand count. A leading comma is expected before the operands. 4203 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 4204 int requiredOperandCount, 4205 Delimiter delimiter) override { 4206 if (parser.getToken().is(Token::comma)) { 4207 parseComma(); 4208 return parseOperandList(result, requiredOperandCount, delimiter); 4209 } 4210 if (requiredOperandCount != -1) 4211 return emitError(parser.getToken().getLoc(), "expected ") 4212 << requiredOperandCount << " operands"; 4213 return success(); 4214 } 4215 4216 /// Resolve an operand to an SSA value, emitting an error on failure. 4217 ParseResult resolveOperand(const OperandType &operand, Type type, 4218 SmallVectorImpl<Value> &result) override { 4219 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4220 operand.location}; 4221 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 4222 result.push_back(value); 4223 return success(); 4224 } 4225 return failure(); 4226 } 4227 4228 /// Parse an AffineMap of SSA ids. 4229 ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 4230 Attribute &mapAttr, StringRef attrName, 4231 SmallVectorImpl<NamedAttribute> &attrs, 4232 Delimiter delimiter) override { 4233 SmallVector<OperandType, 2> dimOperands; 4234 SmallVector<OperandType, 1> symOperands; 4235 4236 auto parseElement = [&](bool isSymbol) -> ParseResult { 4237 OperandType operand; 4238 if (parseOperand(operand)) 4239 return failure(); 4240 if (isSymbol) 4241 symOperands.push_back(operand); 4242 else 4243 dimOperands.push_back(operand); 4244 return success(); 4245 }; 4246 4247 AffineMap map; 4248 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 4249 return failure(); 4250 // Add AffineMap attribute. 4251 if (map) { 4252 mapAttr = AffineMapAttr::get(map); 4253 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 4254 } 4255 4256 // Add dim operands before symbol operands in 'operands'. 4257 operands.assign(dimOperands.begin(), dimOperands.end()); 4258 operands.append(symOperands.begin(), symOperands.end()); 4259 return success(); 4260 } 4261 4262 //===--------------------------------------------------------------------===// 4263 // Region Parsing 4264 //===--------------------------------------------------------------------===// 4265 4266 /// Parse a region that takes `arguments` of `argTypes` types. This 4267 /// effectively defines the SSA values of `arguments` and assigns their type. 4268 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 4269 ArrayRef<Type> argTypes, 4270 bool enableNameShadowing) override { 4271 assert(arguments.size() == argTypes.size() && 4272 "mismatching number of arguments and types"); 4273 4274 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 4275 regionArguments; 4276 for (auto pair : llvm::zip(arguments, argTypes)) { 4277 const OperandType &operand = std::get<0>(pair); 4278 Type type = std::get<1>(pair); 4279 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4280 operand.location}; 4281 regionArguments.emplace_back(operandInfo, type); 4282 } 4283 4284 // Try to parse the region. 4285 assert((!enableNameShadowing || 4286 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) && 4287 "name shadowing is only allowed on isolated regions"); 4288 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 4289 return failure(); 4290 return success(); 4291 } 4292 4293 /// Parses a region if present. 4294 ParseResult parseOptionalRegion(Region ®ion, 4295 ArrayRef<OperandType> arguments, 4296 ArrayRef<Type> argTypes, 4297 bool enableNameShadowing) override { 4298 if (parser.getToken().isNot(Token::l_brace)) 4299 return success(); 4300 return parseRegion(region, arguments, argTypes, enableNameShadowing); 4301 } 4302 4303 /// Parse a region argument. The type of the argument will be resolved later 4304 /// by a call to `parseRegion`. 4305 ParseResult parseRegionArgument(OperandType &argument) override { 4306 return parseOperand(argument); 4307 } 4308 4309 /// Parse a region argument if present. 4310 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 4311 if (parser.getToken().isNot(Token::percent_identifier)) 4312 return success(); 4313 return parseRegionArgument(argument); 4314 } 4315 4316 ParseResult 4317 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 4318 int requiredOperandCount = -1, 4319 Delimiter delimiter = Delimiter::None) override { 4320 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 4321 requiredOperandCount, delimiter); 4322 } 4323 4324 //===--------------------------------------------------------------------===// 4325 // Successor Parsing 4326 //===--------------------------------------------------------------------===// 4327 4328 /// Parse a single operation successor and its operand list. 4329 ParseResult 4330 parseSuccessorAndUseList(Block *&dest, 4331 SmallVectorImpl<Value> &operands) override { 4332 return parser.parseSuccessorAndUseList(dest, operands); 4333 } 4334 4335 //===--------------------------------------------------------------------===// 4336 // Type Parsing 4337 //===--------------------------------------------------------------------===// 4338 4339 /// Parse a type. 4340 ParseResult parseType(Type &result) override { 4341 return failure(!(result = parser.parseType())); 4342 } 4343 4344 /// Parse an optional arrow followed by a type list. 4345 ParseResult 4346 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 4347 if (!parser.consumeIf(Token::arrow)) 4348 return success(); 4349 return parser.parseFunctionResultTypes(result); 4350 } 4351 4352 /// Parse a colon followed by a type. 4353 ParseResult parseColonType(Type &result) override { 4354 return failure(parser.parseToken(Token::colon, "expected ':'") || 4355 !(result = parser.parseType())); 4356 } 4357 4358 /// Parse a colon followed by a type list, which must have at least one type. 4359 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 4360 if (parser.parseToken(Token::colon, "expected ':'")) 4361 return failure(); 4362 return parser.parseTypeListNoParens(result); 4363 } 4364 4365 /// Parse an optional colon followed by a type list, which if present must 4366 /// have at least one type. 4367 ParseResult 4368 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 4369 if (!parser.consumeIf(Token::colon)) 4370 return success(); 4371 return parser.parseTypeListNoParens(result); 4372 } 4373 4374 private: 4375 /// The source location of the operation name. 4376 SMLoc nameLoc; 4377 4378 /// The abstract information of the operation. 4379 const AbstractOperation *opDefinition; 4380 4381 /// The main operation parser. 4382 OperationParser &parser; 4383 4384 /// A flag that indicates if any errors were emitted during parsing. 4385 bool emittedError = false; 4386 }; 4387 } // end anonymous namespace. 4388 4389 Operation *OperationParser::parseCustomOperation() { 4390 auto opLoc = getToken().getLoc(); 4391 auto opName = getTokenSpelling(); 4392 4393 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 4394 if (!opDefinition && !opName.contains('.')) { 4395 // If the operation name has no namespace prefix we treat it as a standard 4396 // operation and prefix it with "std". 4397 // TODO: Would it be better to just build a mapping of the registered 4398 // operations in the standard dialect? 4399 opDefinition = 4400 AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); 4401 } 4402 4403 if (!opDefinition) { 4404 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 4405 return nullptr; 4406 } 4407 4408 consumeToken(); 4409 4410 // If the custom op parser crashes, produce some indication to help 4411 // debugging. 4412 std::string opNameStr = opName.str(); 4413 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 4414 opNameStr.c_str()); 4415 4416 // Get location information for the operation. 4417 auto srcLocation = getEncodedSourceLocation(opLoc); 4418 4419 // Have the op implementation take a crack and parsing this. 4420 OperationState opState(srcLocation, opDefinition->name); 4421 CleanupOpStateRegions guard{opState}; 4422 CustomOpAsmParser opAsmParser(opLoc, opDefinition, *this); 4423 if (opAsmParser.parseOperation(opState)) 4424 return nullptr; 4425 4426 // If it emitted an error, we failed. 4427 if (opAsmParser.didEmitError()) 4428 return nullptr; 4429 4430 // Parse a location if one is present. 4431 if (parseOptionalTrailingLocation(opState.location)) 4432 return nullptr; 4433 4434 // Otherwise, we succeeded. Use the state it parsed as our op information. 4435 return opBuilder.createOperation(opState); 4436 } 4437 4438 //===----------------------------------------------------------------------===// 4439 // Region Parsing 4440 //===----------------------------------------------------------------------===// 4441 4442 /// Region. 4443 /// 4444 /// region ::= '{' region-body 4445 /// 4446 ParseResult OperationParser::parseRegion( 4447 Region ®ion, 4448 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 4449 bool isIsolatedNameScope) { 4450 // Parse the '{'. 4451 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 4452 return failure(); 4453 4454 // Check for an empty region. 4455 if (entryArguments.empty() && consumeIf(Token::r_brace)) 4456 return success(); 4457 auto currentPt = opBuilder.saveInsertionPoint(); 4458 4459 // Push a new named value scope. 4460 pushSSANameScope(isIsolatedNameScope); 4461 4462 // Parse the first block directly to allow for it to be unnamed. 4463 Block *block = new Block(); 4464 4465 // Add arguments to the entry block. 4466 if (!entryArguments.empty()) { 4467 for (auto &placeholderArgPair : entryArguments) { 4468 auto &argInfo = placeholderArgPair.first; 4469 // Ensure that the argument was not already defined. 4470 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 4471 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 4472 "' is already in use") 4473 .attachNote(getEncodedSourceLocation(*defLoc)) 4474 << "previously referenced here"; 4475 } 4476 if (addDefinition(placeholderArgPair.first, 4477 block->addArgument(placeholderArgPair.second))) { 4478 delete block; 4479 return failure(); 4480 } 4481 } 4482 4483 // If we had named arguments, then don't allow a block name. 4484 if (getToken().is(Token::caret_identifier)) 4485 return emitError("invalid block name in region with named arguments"); 4486 } 4487 4488 if (parseBlock(block)) { 4489 delete block; 4490 return failure(); 4491 } 4492 4493 // Verify that no other arguments were parsed. 4494 if (!entryArguments.empty() && 4495 block->getNumArguments() > entryArguments.size()) { 4496 delete block; 4497 return emitError("entry block arguments were already defined"); 4498 } 4499 4500 // Parse the rest of the region. 4501 region.push_back(block); 4502 if (parseRegionBody(region)) 4503 return failure(); 4504 4505 // Pop the SSA value scope for this region. 4506 if (popSSANameScope()) 4507 return failure(); 4508 4509 // Reset the original insertion point. 4510 opBuilder.restoreInsertionPoint(currentPt); 4511 return success(); 4512 } 4513 4514 /// Region. 4515 /// 4516 /// region-body ::= block* '}' 4517 /// 4518 ParseResult OperationParser::parseRegionBody(Region ®ion) { 4519 // Parse the list of blocks. 4520 while (!consumeIf(Token::r_brace)) { 4521 Block *newBlock = nullptr; 4522 if (parseBlock(newBlock)) 4523 return failure(); 4524 region.push_back(newBlock); 4525 } 4526 return success(); 4527 } 4528 4529 //===----------------------------------------------------------------------===// 4530 // Block Parsing 4531 //===----------------------------------------------------------------------===// 4532 4533 /// Block declaration. 4534 /// 4535 /// block ::= block-label? operation* 4536 /// block-label ::= block-id block-arg-list? `:` 4537 /// block-id ::= caret-id 4538 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 4539 /// 4540 ParseResult OperationParser::parseBlock(Block *&block) { 4541 // The first block of a region may already exist, if it does the caret 4542 // identifier is optional. 4543 if (block && getToken().isNot(Token::caret_identifier)) 4544 return parseBlockBody(block); 4545 4546 SMLoc nameLoc = getToken().getLoc(); 4547 auto name = getTokenSpelling(); 4548 if (parseToken(Token::caret_identifier, "expected block name")) 4549 return failure(); 4550 4551 block = defineBlockNamed(name, nameLoc, block); 4552 4553 // Fail if the block was already defined. 4554 if (!block) 4555 return emitError(nameLoc, "redefinition of block '") << name << "'"; 4556 4557 // If an argument list is present, parse it. 4558 if (consumeIf(Token::l_paren)) { 4559 SmallVector<BlockArgument, 8> bbArgs; 4560 if (parseOptionalBlockArgList(bbArgs, block) || 4561 parseToken(Token::r_paren, "expected ')' to end argument list")) 4562 return failure(); 4563 } 4564 4565 if (parseToken(Token::colon, "expected ':' after block name")) 4566 return failure(); 4567 4568 return parseBlockBody(block); 4569 } 4570 4571 ParseResult OperationParser::parseBlockBody(Block *block) { 4572 // Set the insertion point to the end of the block to parse. 4573 opBuilder.setInsertionPointToEnd(block); 4574 4575 // Parse the list of operations that make up the body of the block. 4576 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 4577 if (parseOperation()) 4578 return failure(); 4579 4580 return success(); 4581 } 4582 4583 /// Get the block with the specified name, creating it if it doesn't already 4584 /// exist. The location specified is the point of use, which allows 4585 /// us to diagnose references to blocks that are not defined precisely. 4586 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 4587 auto &blockAndLoc = getBlockInfoByName(name); 4588 if (!blockAndLoc.first) { 4589 blockAndLoc = {new Block(), loc}; 4590 insertForwardRef(blockAndLoc.first, loc); 4591 } 4592 4593 return blockAndLoc.first; 4594 } 4595 4596 /// Define the block with the specified name. Returns the Block* or nullptr in 4597 /// the case of redefinition. 4598 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 4599 Block *existing) { 4600 auto &blockAndLoc = getBlockInfoByName(name); 4601 if (!blockAndLoc.first) { 4602 // If the caller provided a block, use it. Otherwise create a new one. 4603 if (!existing) 4604 existing = new Block(); 4605 blockAndLoc.first = existing; 4606 blockAndLoc.second = loc; 4607 return blockAndLoc.first; 4608 } 4609 4610 // Forward declarations are removed once defined, so if we are defining a 4611 // existing block and it is not a forward declaration, then it is a 4612 // redeclaration. 4613 if (!eraseForwardRef(blockAndLoc.first)) 4614 return nullptr; 4615 return blockAndLoc.first; 4616 } 4617 4618 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 4619 /// 4620 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 4621 /// 4622 ParseResult OperationParser::parseOptionalBlockArgList( 4623 SmallVectorImpl<BlockArgument> &results, Block *owner) { 4624 if (getToken().is(Token::r_brace)) 4625 return success(); 4626 4627 // If the block already has arguments, then we're handling the entry block. 4628 // Parse and register the names for the arguments, but do not add them. 4629 bool definingExistingArgs = owner->getNumArguments() != 0; 4630 unsigned nextArgument = 0; 4631 4632 return parseCommaSeparatedList([&]() -> ParseResult { 4633 return parseSSADefOrUseAndType( 4634 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 4635 // If this block did not have existing arguments, define a new one. 4636 if (!definingExistingArgs) 4637 return addDefinition(useInfo, owner->addArgument(type)); 4638 4639 // Otherwise, ensure that this argument has already been created. 4640 if (nextArgument >= owner->getNumArguments()) 4641 return emitError("too many arguments specified in argument list"); 4642 4643 // Finally, make sure the existing argument has the correct type. 4644 auto arg = owner->getArgument(nextArgument++); 4645 if (arg.getType() != type) 4646 return emitError("argument and block argument type mismatch"); 4647 return addDefinition(useInfo, arg); 4648 }); 4649 }); 4650 } 4651 4652 //===----------------------------------------------------------------------===// 4653 // Top-level entity parsing. 4654 //===----------------------------------------------------------------------===// 4655 4656 namespace { 4657 /// This parser handles entities that are only valid at the top level of the 4658 /// file. 4659 class ModuleParser : public Parser { 4660 public: 4661 explicit ModuleParser(ParserState &state) : Parser(state) {} 4662 4663 ParseResult parseModule(ModuleOp module); 4664 4665 private: 4666 /// Parse an attribute alias declaration. 4667 ParseResult parseAttributeAliasDef(); 4668 4669 /// Parse an attribute alias declaration. 4670 ParseResult parseTypeAliasDef(); 4671 }; 4672 } // end anonymous namespace 4673 4674 /// Parses an attribute alias declaration. 4675 /// 4676 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 4677 /// 4678 ParseResult ModuleParser::parseAttributeAliasDef() { 4679 assert(getToken().is(Token::hash_identifier)); 4680 StringRef aliasName = getTokenSpelling().drop_front(); 4681 4682 // Check for redefinitions. 4683 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 4684 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 4685 4686 // Make sure this isn't invading the dialect attribute namespace. 4687 if (aliasName.contains('.')) 4688 return emitError("attribute names with a '.' are reserved for " 4689 "dialect-defined names"); 4690 4691 consumeToken(Token::hash_identifier); 4692 4693 // Parse the '='. 4694 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 4695 return failure(); 4696 4697 // Parse the attribute value. 4698 Attribute attr = parseAttribute(); 4699 if (!attr) 4700 return failure(); 4701 4702 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 4703 return success(); 4704 } 4705 4706 /// Parse a type alias declaration. 4707 /// 4708 /// type-alias-def ::= '!' alias-name `=` 'type' type 4709 /// 4710 ParseResult ModuleParser::parseTypeAliasDef() { 4711 assert(getToken().is(Token::exclamation_identifier)); 4712 StringRef aliasName = getTokenSpelling().drop_front(); 4713 4714 // Check for redefinitions. 4715 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 4716 return emitError("redefinition of type alias id '" + aliasName + "'"); 4717 4718 // Make sure this isn't invading the dialect type namespace. 4719 if (aliasName.contains('.')) 4720 return emitError("type names with a '.' are reserved for " 4721 "dialect-defined names"); 4722 4723 consumeToken(Token::exclamation_identifier); 4724 4725 // Parse the '=' and 'type'. 4726 if (parseToken(Token::equal, "expected '=' in type alias definition") || 4727 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 4728 return failure(); 4729 4730 // Parse the type. 4731 Type aliasedType = parseType(); 4732 if (!aliasedType) 4733 return failure(); 4734 4735 // Register this alias with the parser state. 4736 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 4737 return success(); 4738 } 4739 4740 /// This is the top-level module parser. 4741 ParseResult ModuleParser::parseModule(ModuleOp module) { 4742 OperationParser opParser(getState(), module); 4743 4744 // Module itself is a name scope. 4745 opParser.pushSSANameScope(/*isIsolated=*/true); 4746 4747 while (true) { 4748 switch (getToken().getKind()) { 4749 default: 4750 // Parse a top-level operation. 4751 if (opParser.parseOperation()) 4752 return failure(); 4753 break; 4754 4755 // If we got to the end of the file, then we're done. 4756 case Token::eof: { 4757 if (opParser.finalize()) 4758 return failure(); 4759 4760 // Handle the case where the top level module was explicitly defined. 4761 auto &bodyBlocks = module.getBodyRegion().getBlocks(); 4762 auto &operations = bodyBlocks.front().getOperations(); 4763 assert(!operations.empty() && "expected a valid module terminator"); 4764 4765 // Check that the first operation is a module, and it is the only 4766 // non-terminator operation. 4767 ModuleOp nested = dyn_cast<ModuleOp>(operations.front()); 4768 if (nested && std::next(operations.begin(), 2) == operations.end()) { 4769 // Merge the data of the nested module operation into 'module'. 4770 module.setLoc(nested.getLoc()); 4771 module.setAttrs(nested.getOperation()->getAttrList()); 4772 bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks()); 4773 4774 // Erase the original module body. 4775 bodyBlocks.pop_front(); 4776 } 4777 4778 return opParser.popSSANameScope(); 4779 } 4780 4781 // If we got an error token, then the lexer already emitted an error, just 4782 // stop. Someday we could introduce error recovery if there was demand 4783 // for it. 4784 case Token::error: 4785 return failure(); 4786 4787 // Parse an attribute alias. 4788 case Token::hash_identifier: 4789 if (parseAttributeAliasDef()) 4790 return failure(); 4791 break; 4792 4793 // Parse a type alias. 4794 case Token::exclamation_identifier: 4795 if (parseTypeAliasDef()) 4796 return failure(); 4797 break; 4798 } 4799 } 4800 } 4801 4802 //===----------------------------------------------------------------------===// 4803 4804 /// This parses the file specified by the indicated SourceMgr and returns an 4805 /// MLIR module if it was valid. If not, it emits diagnostics and returns 4806 /// null. 4807 OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 4808 MLIRContext *context) { 4809 auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 4810 4811 // This is the result module we are parsing into. 4812 OwningModuleRef module(ModuleOp::create(FileLineColLoc::get( 4813 sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context))); 4814 4815 SymbolState aliasState; 4816 ParserState state(sourceMgr, context, aliasState); 4817 if (ModuleParser(state).parseModule(*module)) 4818 return nullptr; 4819 4820 // Make sure the parse module has no other structural problems detected by 4821 // the verifier. 4822 if (failed(verify(*module))) 4823 return nullptr; 4824 4825 return module; 4826 } 4827 4828 /// This parses the file specified by the indicated filename and returns an 4829 /// MLIR module if it was valid. If not, the error message is emitted through 4830 /// the error handler registered in the context, and a null pointer is returned. 4831 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4832 MLIRContext *context) { 4833 llvm::SourceMgr sourceMgr; 4834 return parseSourceFile(filename, sourceMgr, context); 4835 } 4836 4837 /// This parses the file specified by the indicated filename using the provided 4838 /// SourceMgr and returns an MLIR module if it was valid. If not, the error 4839 /// message is emitted through the error handler registered in the context, and 4840 /// a null pointer is returned. 4841 OwningModuleRef mlir::parseSourceFile(StringRef filename, 4842 llvm::SourceMgr &sourceMgr, 4843 MLIRContext *context) { 4844 if (sourceMgr.getNumBuffers() != 0) { 4845 // TODO(b/136086478): Extend to support multiple buffers. 4846 emitError(mlir::UnknownLoc::get(context), 4847 "only main buffer parsed at the moment"); 4848 return nullptr; 4849 } 4850 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 4851 if (std::error_code error = file_or_err.getError()) { 4852 emitError(mlir::UnknownLoc::get(context), 4853 "could not open input file " + filename); 4854 return nullptr; 4855 } 4856 4857 // Load the MLIR module. 4858 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 4859 return parseSourceFile(sourceMgr, context); 4860 } 4861 4862 /// This parses the program string to a MLIR module if it was valid. If not, 4863 /// it emits diagnostics and returns null. 4864 OwningModuleRef mlir::parseSourceString(StringRef moduleStr, 4865 MLIRContext *context) { 4866 auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); 4867 if (!memBuffer) 4868 return nullptr; 4869 4870 SourceMgr sourceMgr; 4871 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 4872 return parseSourceFile(sourceMgr, context); 4873 } 4874 4875 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 4876 /// parsing failed, nullptr is returned. The number of bytes read from the input 4877 /// string is returned in 'numRead'. 4878 template <typename T, typename ParserFn> 4879 static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead, 4880 ParserFn &&parserFn) { 4881 SymbolState aliasState; 4882 return parseSymbol<T>( 4883 inputStr, context, aliasState, 4884 [&](Parser &parser) { 4885 SourceMgrDiagnosticHandler handler( 4886 const_cast<llvm::SourceMgr &>(parser.getSourceMgr()), 4887 parser.getContext()); 4888 return parserFn(parser); 4889 }, 4890 &numRead); 4891 } 4892 4893 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) { 4894 size_t numRead = 0; 4895 return parseAttribute(attrStr, context, numRead); 4896 } 4897 Attribute mlir::parseAttribute(StringRef attrStr, Type type) { 4898 size_t numRead = 0; 4899 return parseAttribute(attrStr, type, numRead); 4900 } 4901 4902 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context, 4903 size_t &numRead) { 4904 return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) { 4905 return parser.parseAttribute(); 4906 }); 4907 } 4908 Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) { 4909 return parseSymbol<Attribute>( 4910 attrStr, type.getContext(), numRead, 4911 [type](Parser &parser) { return parser.parseAttribute(type); }); 4912 } 4913 4914 Type mlir::parseType(StringRef typeStr, MLIRContext *context) { 4915 size_t numRead = 0; 4916 return parseType(typeStr, context, numRead); 4917 } 4918 4919 Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) { 4920 return parseSymbol<Type>(typeStr, context, numRead, 4921 [](Parser &parser) { return parser.parseType(); }); 4922 } 4923