1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Parser.h" 14 #include "mlir/IR/AffineMap.h" 15 #include "mlir/IR/BuiltinOps.h" 16 #include "mlir/IR/Dialect.h" 17 #include "mlir/IR/Verifier.h" 18 #include "mlir/Parser.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/StringSet.h" 21 #include "llvm/ADT/bit.h" 22 #include "llvm/Support/PrettyStackTrace.h" 23 #include "llvm/Support/SourceMgr.h" 24 #include <algorithm> 25 26 using namespace mlir; 27 using namespace mlir::detail; 28 using llvm::MemoryBuffer; 29 using llvm::SMLoc; 30 using llvm::SourceMgr; 31 32 //===----------------------------------------------------------------------===// 33 // Parser 34 //===----------------------------------------------------------------------===// 35 36 /// Parse a comma separated list of elements that must have at least one entry 37 /// in it. 38 ParseResult 39 Parser::parseCommaSeparatedList(function_ref<ParseResult()> parseElement) { 40 // Non-empty case starts with an element. 41 if (parseElement()) 42 return failure(); 43 44 // Otherwise we have a list of comma separated elements. 45 while (consumeIf(Token::comma)) { 46 if (parseElement()) 47 return failure(); 48 } 49 return success(); 50 } 51 52 /// Parse a comma-separated list of elements, terminated with an arbitrary 53 /// token. This allows empty lists if allowEmptyList is true. 54 /// 55 /// abstract-list ::= rightToken // if allowEmptyList == true 56 /// abstract-list ::= element (',' element)* rightToken 57 /// 58 ParseResult 59 Parser::parseCommaSeparatedListUntil(Token::Kind rightToken, 60 function_ref<ParseResult()> parseElement, 61 bool allowEmptyList) { 62 // Handle the empty case. 63 if (getToken().is(rightToken)) { 64 if (!allowEmptyList) 65 return emitError("expected list element"); 66 consumeToken(rightToken); 67 return success(); 68 } 69 70 if (parseCommaSeparatedList(parseElement) || 71 parseToken(rightToken, "expected ',' or '" + 72 Token::getTokenSpelling(rightToken) + "'")) 73 return failure(); 74 75 return success(); 76 } 77 78 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 79 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 80 81 // If we hit a parse error in response to a lexer error, then the lexer 82 // already reported the error. 83 if (getToken().is(Token::error)) 84 diag.abandon(); 85 return diag; 86 } 87 88 /// Consume the specified token if present and return success. On failure, 89 /// output a diagnostic and return failure. 90 ParseResult Parser::parseToken(Token::Kind expectedToken, 91 const Twine &message) { 92 if (consumeIf(expectedToken)) 93 return success(); 94 return emitError(message); 95 } 96 97 /// Parse an optional integer value from the stream. 98 OptionalParseResult Parser::parseOptionalInteger(uint64_t &result) { 99 Token curToken = getToken(); 100 if (curToken.isNot(Token::integer, Token::minus)) 101 return llvm::None; 102 103 bool negative = consumeIf(Token::minus); 104 Token curTok = getToken(); 105 if (parseToken(Token::integer, "expected integer value")) 106 return failure(); 107 108 auto val = curTok.getUInt64IntegerValue(); 109 if (!val) 110 return emitError(curTok.getLoc(), "integer value too large"); 111 result = negative ? -*val : *val; 112 return success(); 113 } 114 115 /// Parse a floating point value from an integer literal token. 116 ParseResult Parser::parseFloatFromIntegerLiteral( 117 Optional<APFloat> &result, const Token &tok, bool isNegative, 118 const llvm::fltSemantics &semantics, size_t typeSizeInBits) { 119 llvm::SMLoc loc = tok.getLoc(); 120 StringRef spelling = tok.getSpelling(); 121 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 122 if (!isHex) { 123 return emitError(loc, "unexpected decimal integer literal for a " 124 "floating point value") 125 .attachNote() 126 << "add a trailing dot to make the literal a float"; 127 } 128 if (isNegative) { 129 return emitError(loc, "hexadecimal float literal should not have a " 130 "leading minus"); 131 } 132 133 Optional<uint64_t> value = tok.getUInt64IntegerValue(); 134 if (!value.hasValue()) 135 return emitError(loc, "hexadecimal float constant out of range for type"); 136 137 if (&semantics == &APFloat::IEEEdouble()) { 138 result = APFloat(semantics, APInt(typeSizeInBits, *value)); 139 return success(); 140 } 141 142 APInt apInt(typeSizeInBits, *value); 143 if (apInt != *value) 144 return emitError(loc, "hexadecimal float constant out of range for type"); 145 result = APFloat(semantics, apInt); 146 147 return success(); 148 } 149 150 //===----------------------------------------------------------------------===// 151 // OperationParser 152 //===----------------------------------------------------------------------===// 153 154 namespace { 155 /// This class provides support for parsing operations and regions of 156 /// operations. 157 class OperationParser : public Parser { 158 public: 159 OperationParser(ParserState &state, Operation *topLevelOp) 160 : Parser(state), opBuilder(topLevelOp->getRegion(0)), 161 topLevelOp(topLevelOp) { 162 // The top level operation starts a new name scope. 163 pushSSANameScope(/*isIsolated=*/true); 164 } 165 166 ~OperationParser(); 167 168 /// After parsing is finished, this function must be called to see if there 169 /// are any remaining issues. 170 ParseResult finalize(); 171 172 //===--------------------------------------------------------------------===// 173 // SSA Value Handling 174 //===--------------------------------------------------------------------===// 175 176 /// This represents a use of an SSA value in the program. The first two 177 /// entries in the tuple are the name and result number of a reference. The 178 /// third is the location of the reference, which is used in case this ends 179 /// up being a use of an undefined value. 180 struct SSAUseInfo { 181 StringRef name; // Value name, e.g. %42 or %abc 182 unsigned number; // Number, specified with #12 183 SMLoc loc; // Location of first definition or use. 184 }; 185 186 /// Push a new SSA name scope to the parser. 187 void pushSSANameScope(bool isIsolated); 188 189 /// Pop the last SSA name scope from the parser. 190 ParseResult popSSANameScope(); 191 192 /// Register a definition of a value with the symbol table. 193 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 194 195 /// Parse an optional list of SSA uses into 'results'. 196 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 197 198 /// Parse a single SSA use into 'result'. 199 ParseResult parseSSAUse(SSAUseInfo &result); 200 201 /// Given a reference to an SSA value and its type, return a reference. This 202 /// returns null on failure. 203 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 204 205 ParseResult 206 parseSSADefOrUseAndType(function_ref<ParseResult(SSAUseInfo, Type)> action); 207 208 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 209 210 /// Return the location of the value identified by its name and number if it 211 /// has been already reference. 212 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 213 auto &values = isolatedNameScopes.back().values; 214 if (!values.count(name) || number >= values[name].size()) 215 return {}; 216 if (values[name][number].first) 217 return values[name][number].second; 218 return {}; 219 } 220 221 //===--------------------------------------------------------------------===// 222 // Operation Parsing 223 //===--------------------------------------------------------------------===// 224 225 /// Parse an operation instance. 226 ParseResult parseOperation(); 227 228 /// Parse a single operation successor. 229 ParseResult parseSuccessor(Block *&dest); 230 231 /// Parse a comma-separated list of operation successors in brackets. 232 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations); 233 234 /// Parse an operation instance that is in the generic form. 235 Operation *parseGenericOperation(); 236 237 /// Parse an operation instance that is in the generic form and insert it at 238 /// the provided insertion point. 239 Operation *parseGenericOperation(Block *insertBlock, 240 Block::iterator insertPt); 241 242 /// Parse an optional trailing location for the given operation. 243 /// 244 /// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))? 245 /// 246 ParseResult parseTrailingOperationLocation(Operation *op); 247 248 /// This is the structure of a result specifier in the assembly syntax, 249 /// including the name, number of results, and location. 250 using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>; 251 252 /// Parse an operation instance that is in the op-defined custom form. 253 /// resultInfo specifies information about the "%name =" specifiers. 254 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs); 255 256 //===--------------------------------------------------------------------===// 257 // Region Parsing 258 //===--------------------------------------------------------------------===// 259 260 /// Parse a region into 'region' with the provided entry block arguments. 261 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 262 /// isolated from those above. 263 ParseResult parseRegion(Region ®ion, 264 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 265 bool isIsolatedNameScope = false); 266 267 /// Parse a region body into 'region'. 268 ParseResult parseRegionBody(Region ®ion); 269 270 //===--------------------------------------------------------------------===// 271 // Block Parsing 272 //===--------------------------------------------------------------------===// 273 274 /// Parse a new block into 'block'. 275 ParseResult parseBlock(Block *&block); 276 277 /// Parse a list of operations into 'block'. 278 ParseResult parseBlockBody(Block *block); 279 280 /// Parse a (possibly empty) list of block arguments. 281 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results, 282 Block *owner); 283 284 /// Get the block with the specified name, creating it if it doesn't 285 /// already exist. The location specified is the point of use, which allows 286 /// us to diagnose references to blocks that are not defined precisely. 287 Block *getBlockNamed(StringRef name, SMLoc loc); 288 289 /// Define the block with the specified name. Returns the Block* or nullptr in 290 /// the case of redefinition. 291 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 292 293 private: 294 /// Returns the info for a block at the current scope for the given name. 295 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 296 return blocksByName.back()[name]; 297 } 298 299 /// Insert a new forward reference to the given block. 300 void insertForwardRef(Block *block, SMLoc loc) { 301 forwardRef.back().try_emplace(block, loc); 302 } 303 304 /// Erase any forward reference to the given block. 305 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 306 307 /// Record that a definition was added at the current scope. 308 void recordDefinition(StringRef def); 309 310 /// Get the value entry for the given SSA name. 311 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name); 312 313 /// Create a forward reference placeholder value with the given location and 314 /// result type. 315 Value createForwardRefPlaceholder(SMLoc loc, Type type); 316 317 /// Return true if this is a forward reference. 318 bool isForwardRefPlaceholder(Value value) { 319 return forwardRefPlaceholders.count(value); 320 } 321 322 /// This struct represents an isolated SSA name scope. This scope may contain 323 /// other nested non-isolated scopes. These scopes are used for operations 324 /// that are known to be isolated to allow for reusing names within their 325 /// regions, even if those names are used above. 326 struct IsolatedSSANameScope { 327 /// Record that a definition was added at the current scope. 328 void recordDefinition(StringRef def) { 329 definitionsPerScope.back().insert(def); 330 } 331 332 /// Push a nested name scope. 333 void pushSSANameScope() { definitionsPerScope.push_back({}); } 334 335 /// Pop a nested name scope. 336 void popSSANameScope() { 337 for (auto &def : definitionsPerScope.pop_back_val()) 338 values.erase(def.getKey()); 339 } 340 341 /// This keeps track of all of the SSA values we are tracking for each name 342 /// scope, indexed by their name. This has one entry per result number. 343 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values; 344 345 /// This keeps track of all of the values defined by a specific name scope. 346 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 347 }; 348 349 /// A list of isolated name scopes. 350 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 351 352 /// This keeps track of the block names as well as the location of the first 353 /// reference for each nested name scope. This is used to diagnose invalid 354 /// block references and memorize them. 355 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 356 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 357 358 /// These are all of the placeholders we've made along with the location of 359 /// their first reference, to allow checking for use of undefined values. 360 DenseMap<Value, SMLoc> forwardRefPlaceholders; 361 362 /// A set of operations whose locations reference aliases that have yet to 363 /// be resolved. 364 SmallVector<std::pair<Operation *, Token>, 8> opsWithDeferredLocs; 365 366 /// The builder used when creating parsed operation instances. 367 OpBuilder opBuilder; 368 369 /// The top level operation that holds all of the parsed operations. 370 Operation *topLevelOp; 371 }; 372 } // end anonymous namespace 373 374 OperationParser::~OperationParser() { 375 for (auto &fwd : forwardRefPlaceholders) { 376 // Drop all uses of undefined forward declared reference and destroy 377 // defining operation. 378 fwd.first.dropAllUses(); 379 fwd.first.getDefiningOp()->destroy(); 380 } 381 for (const auto &scope : forwardRef) { 382 for (const auto &fwd : scope) { 383 // Delete all blocks that were created as forward references but never 384 // included into a region. 385 fwd.first->dropAllUses(); 386 delete fwd.first; 387 } 388 } 389 } 390 391 /// After parsing is finished, this function must be called to see if there are 392 /// any remaining issues. 393 ParseResult OperationParser::finalize() { 394 // Check for any forward references that are left. If we find any, error 395 // out. 396 if (!forwardRefPlaceholders.empty()) { 397 SmallVector<const char *, 4> errors; 398 // Iteration over the map isn't deterministic, so sort by source location. 399 for (auto entry : forwardRefPlaceholders) 400 errors.push_back(entry.second.getPointer()); 401 llvm::array_pod_sort(errors.begin(), errors.end()); 402 403 for (auto entry : errors) { 404 auto loc = SMLoc::getFromPointer(entry); 405 emitError(loc, "use of undeclared SSA value name"); 406 } 407 return failure(); 408 } 409 410 // Resolve the locations of any deferred operations. 411 auto &attributeAliases = getState().symbols.attributeAliasDefinitions; 412 for (std::pair<Operation *, Token> &it : opsWithDeferredLocs) { 413 llvm::SMLoc tokLoc = it.second.getLoc(); 414 StringRef identifier = it.second.getSpelling().drop_front(); 415 Attribute attr = attributeAliases.lookup(identifier); 416 if (!attr) 417 return emitError(tokLoc) << "operation location alias was never defined"; 418 419 LocationAttr locAttr = attr.dyn_cast<LocationAttr>(); 420 if (!locAttr) 421 return emitError(tokLoc) 422 << "expected location, but found '" << attr << "'"; 423 it.first->setLoc(locAttr); 424 } 425 426 // Pop the top level name scope. 427 return popSSANameScope(); 428 } 429 430 //===----------------------------------------------------------------------===// 431 // SSA Value Handling 432 //===----------------------------------------------------------------------===// 433 434 void OperationParser::pushSSANameScope(bool isIsolated) { 435 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 436 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 437 438 // Push back a new name definition scope. 439 if (isIsolated) 440 isolatedNameScopes.push_back({}); 441 isolatedNameScopes.back().pushSSANameScope(); 442 } 443 444 ParseResult OperationParser::popSSANameScope() { 445 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 446 447 // Verify that all referenced blocks were defined. 448 if (!forwardRefInCurrentScope.empty()) { 449 SmallVector<std::pair<const char *, Block *>, 4> errors; 450 // Iteration over the map isn't deterministic, so sort by source location. 451 for (auto entry : forwardRefInCurrentScope) { 452 errors.push_back({entry.second.getPointer(), entry.first}); 453 // Add this block to the top-level region to allow for automatic cleanup. 454 topLevelOp->getRegion(0).push_back(entry.first); 455 } 456 llvm::array_pod_sort(errors.begin(), errors.end()); 457 458 for (auto entry : errors) { 459 auto loc = SMLoc::getFromPointer(entry.first); 460 emitError(loc, "reference to an undefined block"); 461 } 462 return failure(); 463 } 464 465 // Pop the next nested namescope. If there is only one internal namescope, 466 // just pop the isolated scope. 467 auto ¤tNameScope = isolatedNameScopes.back(); 468 if (currentNameScope.definitionsPerScope.size() == 1) 469 isolatedNameScopes.pop_back(); 470 else 471 currentNameScope.popSSANameScope(); 472 473 blocksByName.pop_back(); 474 return success(); 475 } 476 477 /// Register a definition of a value with the symbol table. 478 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 479 auto &entries = getSSAValueEntry(useInfo.name); 480 481 // Make sure there is a slot for this value. 482 if (entries.size() <= useInfo.number) 483 entries.resize(useInfo.number + 1); 484 485 // If we already have an entry for this, check to see if it was a definition 486 // or a forward reference. 487 if (auto existing = entries[useInfo.number].first) { 488 if (!isForwardRefPlaceholder(existing)) { 489 return emitError(useInfo.loc) 490 .append("redefinition of SSA value '", useInfo.name, "'") 491 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 492 .append("previously defined here"); 493 } 494 495 if (existing.getType() != value.getType()) { 496 return emitError(useInfo.loc) 497 .append("definition of SSA value '", useInfo.name, "#", 498 useInfo.number, "' has type ", value.getType()) 499 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 500 .append("previously used here with type ", existing.getType()); 501 } 502 503 // If it was a forward reference, update everything that used it to use 504 // the actual definition instead, delete the forward ref, and remove it 505 // from our set of forward references we track. 506 existing.replaceAllUsesWith(value); 507 existing.getDefiningOp()->destroy(); 508 forwardRefPlaceholders.erase(existing); 509 } 510 511 /// Record this definition for the current scope. 512 entries[useInfo.number] = {value, useInfo.loc}; 513 recordDefinition(useInfo.name); 514 return success(); 515 } 516 517 /// Parse a (possibly empty) list of SSA operands. 518 /// 519 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 520 /// ssa-use-list-opt ::= ssa-use-list? 521 /// 522 ParseResult 523 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 524 if (getToken().isNot(Token::percent_identifier)) 525 return success(); 526 return parseCommaSeparatedList([&]() -> ParseResult { 527 SSAUseInfo result; 528 if (parseSSAUse(result)) 529 return failure(); 530 results.push_back(result); 531 return success(); 532 }); 533 } 534 535 /// Parse a SSA operand for an operation. 536 /// 537 /// ssa-use ::= ssa-id 538 /// 539 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 540 result.name = getTokenSpelling(); 541 result.number = 0; 542 result.loc = getToken().getLoc(); 543 if (parseToken(Token::percent_identifier, "expected SSA operand")) 544 return failure(); 545 546 // If we have an attribute ID, it is a result number. 547 if (getToken().is(Token::hash_identifier)) { 548 if (auto value = getToken().getHashIdentifierNumber()) 549 result.number = value.getValue(); 550 else 551 return emitError("invalid SSA value result number"); 552 consumeToken(Token::hash_identifier); 553 } 554 555 return success(); 556 } 557 558 /// Given an unbound reference to an SSA value and its type, return the value 559 /// it specifies. This returns null on failure. 560 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 561 auto &entries = getSSAValueEntry(useInfo.name); 562 563 // If we have already seen a value of this name, return it. 564 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 565 auto result = entries[useInfo.number].first; 566 // Check that the type matches the other uses. 567 if (result.getType() == type) 568 return result; 569 570 emitError(useInfo.loc, "use of value '") 571 .append(useInfo.name, 572 "' expects different type than prior uses: ", type, " vs ", 573 result.getType()) 574 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 575 .append("prior use here"); 576 return nullptr; 577 } 578 579 // Make sure we have enough slots for this. 580 if (entries.size() <= useInfo.number) 581 entries.resize(useInfo.number + 1); 582 583 // If the value has already been defined and this is an overly large result 584 // number, diagnose that. 585 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 586 return (emitError(useInfo.loc, "reference to invalid result number"), 587 nullptr); 588 589 // Otherwise, this is a forward reference. Create a placeholder and remember 590 // that we did so. 591 auto result = createForwardRefPlaceholder(useInfo.loc, type); 592 entries[useInfo.number].first = result; 593 entries[useInfo.number].second = useInfo.loc; 594 return result; 595 } 596 597 /// Parse an SSA use with an associated type. 598 /// 599 /// ssa-use-and-type ::= ssa-use `:` type 600 ParseResult OperationParser::parseSSADefOrUseAndType( 601 function_ref<ParseResult(SSAUseInfo, Type)> action) { 602 SSAUseInfo useInfo; 603 if (parseSSAUse(useInfo) || 604 parseToken(Token::colon, "expected ':' and type for SSA operand")) 605 return failure(); 606 607 auto type = parseType(); 608 if (!type) 609 return failure(); 610 611 return action(useInfo, type); 612 } 613 614 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 615 /// followed by a type list. 616 /// 617 /// ssa-use-and-type-list 618 /// ::= ssa-use-list ':' type-list-no-parens 619 /// 620 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 621 SmallVectorImpl<Value> &results) { 622 SmallVector<SSAUseInfo, 4> valueIDs; 623 if (parseOptionalSSAUseList(valueIDs)) 624 return failure(); 625 626 // If there were no operands, then there is no colon or type lists. 627 if (valueIDs.empty()) 628 return success(); 629 630 SmallVector<Type, 4> types; 631 if (parseToken(Token::colon, "expected ':' in operand list") || 632 parseTypeListNoParens(types)) 633 return failure(); 634 635 if (valueIDs.size() != types.size()) 636 return emitError("expected ") 637 << valueIDs.size() << " types to match operand list"; 638 639 results.reserve(valueIDs.size()); 640 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 641 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 642 results.push_back(value); 643 else 644 return failure(); 645 } 646 647 return success(); 648 } 649 650 /// Record that a definition was added at the current scope. 651 void OperationParser::recordDefinition(StringRef def) { 652 isolatedNameScopes.back().recordDefinition(def); 653 } 654 655 /// Get the value entry for the given SSA name. 656 SmallVectorImpl<std::pair<Value, SMLoc>> & 657 OperationParser::getSSAValueEntry(StringRef name) { 658 return isolatedNameScopes.back().values[name]; 659 } 660 661 /// Create and remember a new placeholder for a forward reference. 662 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 663 // Forward references are always created as operations, because we just need 664 // something with a def/use chain. 665 // 666 // We create these placeholders as having an empty name, which we know 667 // cannot be created through normal user input, allowing us to distinguish 668 // them. 669 auto name = OperationName("placeholder", getContext()); 670 auto *op = Operation::create( 671 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 672 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0); 673 forwardRefPlaceholders[op->getResult(0)] = loc; 674 return op->getResult(0); 675 } 676 677 //===----------------------------------------------------------------------===// 678 // Operation Parsing 679 //===----------------------------------------------------------------------===// 680 681 /// Parse an operation. 682 /// 683 /// operation ::= op-result-list? 684 /// (generic-operation | custom-operation) 685 /// trailing-location? 686 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 687 /// successor-list? (`(` region-list `)`)? 688 /// attribute-dict? `:` function-type 689 /// custom-operation ::= bare-id custom-operation-format 690 /// op-result-list ::= op-result (`,` op-result)* `=` 691 /// op-result ::= ssa-id (`:` integer-literal) 692 /// 693 ParseResult OperationParser::parseOperation() { 694 auto loc = getToken().getLoc(); 695 SmallVector<ResultRecord, 1> resultIDs; 696 size_t numExpectedResults = 0; 697 if (getToken().is(Token::percent_identifier)) { 698 // Parse the group of result ids. 699 auto parseNextResult = [&]() -> ParseResult { 700 // Parse the next result id. 701 if (!getToken().is(Token::percent_identifier)) 702 return emitError("expected valid ssa identifier"); 703 704 Token nameTok = getToken(); 705 consumeToken(Token::percent_identifier); 706 707 // If the next token is a ':', we parse the expected result count. 708 size_t expectedSubResults = 1; 709 if (consumeIf(Token::colon)) { 710 // Check that the next token is an integer. 711 if (!getToken().is(Token::integer)) 712 return emitError("expected integer number of results"); 713 714 // Check that number of results is > 0. 715 auto val = getToken().getUInt64IntegerValue(); 716 if (!val.hasValue() || val.getValue() < 1) 717 return emitError("expected named operation to have atleast 1 result"); 718 consumeToken(Token::integer); 719 expectedSubResults = *val; 720 } 721 722 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 723 nameTok.getLoc()); 724 numExpectedResults += expectedSubResults; 725 return success(); 726 }; 727 if (parseCommaSeparatedList(parseNextResult)) 728 return failure(); 729 730 if (parseToken(Token::equal, "expected '=' after SSA name")) 731 return failure(); 732 } 733 734 Operation *op; 735 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 736 op = parseCustomOperation(resultIDs); 737 else if (getToken().is(Token::string)) 738 op = parseGenericOperation(); 739 else 740 return emitError("expected operation name in quotes"); 741 742 // If parsing of the basic operation failed, then this whole thing fails. 743 if (!op) 744 return failure(); 745 746 // If the operation had a name, register it. 747 if (!resultIDs.empty()) { 748 if (op->getNumResults() == 0) 749 return emitError(loc, "cannot name an operation with no results"); 750 if (numExpectedResults != op->getNumResults()) 751 return emitError(loc, "operation defines ") 752 << op->getNumResults() << " results but was provided " 753 << numExpectedResults << " to bind"; 754 755 // Add definitions for each of the result groups. 756 unsigned opResI = 0; 757 for (ResultRecord &resIt : resultIDs) { 758 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 759 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 760 op->getResult(opResI++))) 761 return failure(); 762 } 763 } 764 } 765 766 return success(); 767 } 768 769 /// Parse a single operation successor. 770 /// 771 /// successor ::= block-id 772 /// 773 ParseResult OperationParser::parseSuccessor(Block *&dest) { 774 // Verify branch is identifier and get the matching block. 775 if (!getToken().is(Token::caret_identifier)) 776 return emitError("expected block name"); 777 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 778 consumeToken(); 779 return success(); 780 } 781 782 /// Parse a comma-separated list of operation successors in brackets. 783 /// 784 /// successor-list ::= `[` successor (`,` successor )* `]` 785 /// 786 ParseResult 787 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) { 788 if (parseToken(Token::l_square, "expected '['")) 789 return failure(); 790 791 auto parseElt = [this, &destinations] { 792 Block *dest; 793 ParseResult res = parseSuccessor(dest); 794 destinations.push_back(dest); 795 return res; 796 }; 797 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 798 /*allowEmptyList=*/false); 799 } 800 801 namespace { 802 // RAII-style guard for cleaning up the regions in the operation state before 803 // deleting them. Within the parser, regions may get deleted if parsing failed, 804 // and other errors may be present, in particular undominated uses. This makes 805 // sure such uses are deleted. 806 struct CleanupOpStateRegions { 807 ~CleanupOpStateRegions() { 808 SmallVector<Region *, 4> regionsToClean; 809 regionsToClean.reserve(state.regions.size()); 810 for (auto ®ion : state.regions) 811 if (region) 812 for (auto &block : *region) 813 block.dropAllDefinedValueUses(); 814 } 815 OperationState &state; 816 }; 817 } // namespace 818 819 Operation *OperationParser::parseGenericOperation() { 820 // Get location information for the operation. 821 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 822 823 std::string name = getToken().getStringValue(); 824 if (name.empty()) 825 return (emitError("empty operation name is invalid"), nullptr); 826 if (name.find('\0') != StringRef::npos) 827 return (emitError("null character not allowed in operation name"), nullptr); 828 829 consumeToken(Token::string); 830 831 OperationState result(srcLocation, name); 832 833 // Lazy load dialects in the context as needed. 834 if (!result.name.getAbstractOperation()) { 835 StringRef dialectName = StringRef(name).split('.').first; 836 if (!getContext()->getLoadedDialect(dialectName) && 837 getContext()->getOrLoadDialect(dialectName)) { 838 result.name = OperationName(name, getContext()); 839 } 840 } 841 842 // Parse the operand list. 843 SmallVector<SSAUseInfo, 8> operandInfos; 844 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 845 parseOptionalSSAUseList(operandInfos) || 846 parseToken(Token::r_paren, "expected ')' to end operand list")) { 847 return nullptr; 848 } 849 850 // Parse the successor list. 851 if (getToken().is(Token::l_square)) { 852 // Check if the operation is a known terminator. 853 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 854 if (abstractOp && !abstractOp->hasTrait<OpTrait::IsTerminator>()) 855 return emitError("successors in non-terminator"), nullptr; 856 857 SmallVector<Block *, 2> successors; 858 if (parseSuccessors(successors)) 859 return nullptr; 860 result.addSuccessors(successors); 861 } 862 863 // Parse the region list. 864 CleanupOpStateRegions guard{result}; 865 if (consumeIf(Token::l_paren)) { 866 do { 867 // Create temporary regions with the top level region as parent. 868 result.regions.emplace_back(new Region(topLevelOp)); 869 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 870 return nullptr; 871 } while (consumeIf(Token::comma)); 872 if (parseToken(Token::r_paren, "expected ')' to end region list")) 873 return nullptr; 874 } 875 876 if (getToken().is(Token::l_brace)) { 877 if (parseAttributeDict(result.attributes)) 878 return nullptr; 879 } 880 881 if (parseToken(Token::colon, "expected ':' followed by operation type")) 882 return nullptr; 883 884 auto typeLoc = getToken().getLoc(); 885 auto type = parseType(); 886 if (!type) 887 return nullptr; 888 auto fnType = type.dyn_cast<FunctionType>(); 889 if (!fnType) 890 return (emitError(typeLoc, "expected function type"), nullptr); 891 892 result.addTypes(fnType.getResults()); 893 894 // Check that we have the right number of types for the operands. 895 auto operandTypes = fnType.getInputs(); 896 if (operandTypes.size() != operandInfos.size()) { 897 auto plural = "s"[operandInfos.size() == 1]; 898 return (emitError(typeLoc, "expected ") 899 << operandInfos.size() << " operand type" << plural 900 << " but had " << operandTypes.size(), 901 nullptr); 902 } 903 904 // Resolve all of the operands. 905 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 906 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 907 if (!result.operands.back()) 908 return nullptr; 909 } 910 911 // Create the operation and try to parse a location for it. 912 Operation *op = opBuilder.createOperation(result); 913 if (parseTrailingOperationLocation(op)) 914 return nullptr; 915 return op; 916 } 917 918 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 919 Block::iterator insertPt) { 920 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 921 opBuilder.setInsertionPoint(insertBlock, insertPt); 922 return parseGenericOperation(); 923 } 924 925 namespace { 926 class CustomOpAsmParser : public OpAsmParser { 927 public: 928 CustomOpAsmParser( 929 SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs, 930 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly, 931 bool isIsolatedFromAbove, StringRef opName, OperationParser &parser) 932 : nameLoc(nameLoc), resultIDs(resultIDs), parseAssembly(parseAssembly), 933 isIsolatedFromAbove(isIsolatedFromAbove), opName(opName), 934 parser(parser) {} 935 936 /// Parse an instance of the operation described by 'opDefinition' into the 937 /// provided operation state. 938 ParseResult parseOperation(OperationState &opState) { 939 if (parseAssembly(*this, opState)) 940 return failure(); 941 // Verify that the parsed attributes does not have duplicate attributes. 942 // This can happen if an attribute set during parsing is also specified in 943 // the attribute dictionary in the assembly, or the attribute is set 944 // multiple during parsing. 945 Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate(); 946 if (duplicate) 947 return emitError(getNameLoc(), "attribute '") 948 << duplicate->first 949 << "' occurs more than once in the attribute list"; 950 return success(); 951 } 952 953 Operation *parseGenericOperation(Block *insertBlock, 954 Block::iterator insertPt) final { 955 return parser.parseGenericOperation(insertBlock, insertPt); 956 } 957 958 //===--------------------------------------------------------------------===// 959 // Utilities 960 //===--------------------------------------------------------------------===// 961 962 /// Return if any errors were emitted during parsing. 963 bool didEmitError() const { return emittedError; } 964 965 /// Emit a diagnostic at the specified location and return failure. 966 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 967 emittedError = true; 968 return parser.emitError(loc, "custom op '" + opName + "' " + message); 969 } 970 971 llvm::SMLoc getCurrentLocation() override { 972 return parser.getToken().getLoc(); 973 } 974 975 Builder &getBuilder() const override { return parser.builder; } 976 977 /// Return the name of the specified result in the specified syntax, as well 978 /// as the subelement in the name. For example, in this operation: 979 /// 980 /// %x, %y:2, %z = foo.op 981 /// 982 /// getResultName(0) == {"x", 0 } 983 /// getResultName(1) == {"y", 0 } 984 /// getResultName(2) == {"y", 1 } 985 /// getResultName(3) == {"z", 0 } 986 std::pair<StringRef, unsigned> 987 getResultName(unsigned resultNo) const override { 988 // Scan for the resultID that contains this result number. 989 for (unsigned nameID = 0, e = resultIDs.size(); nameID != e; ++nameID) { 990 const auto &entry = resultIDs[nameID]; 991 if (resultNo < std::get<1>(entry)) { 992 // Don't pass on the leading %. 993 StringRef name = std::get<0>(entry).drop_front(); 994 return {name, resultNo}; 995 } 996 resultNo -= std::get<1>(entry); 997 } 998 999 // Invalid result number. 1000 return {"", ~0U}; 1001 } 1002 1003 /// Return the number of declared SSA results. This returns 4 for the foo.op 1004 /// example in the comment for getResultName. 1005 size_t getNumResults() const override { 1006 size_t count = 0; 1007 for (auto &entry : resultIDs) 1008 count += std::get<1>(entry); 1009 return count; 1010 } 1011 1012 llvm::SMLoc getNameLoc() const override { return nameLoc; } 1013 1014 //===--------------------------------------------------------------------===// 1015 // Token Parsing 1016 //===--------------------------------------------------------------------===// 1017 1018 /// Parse a `->` token. 1019 ParseResult parseArrow() override { 1020 return parser.parseToken(Token::arrow, "expected '->'"); 1021 } 1022 1023 /// Parses a `->` if present. 1024 ParseResult parseOptionalArrow() override { 1025 return success(parser.consumeIf(Token::arrow)); 1026 } 1027 1028 /// Parse a '{' token. 1029 ParseResult parseLBrace() override { 1030 return parser.parseToken(Token::l_brace, "expected '{'"); 1031 } 1032 1033 /// Parse a '{' token if present 1034 ParseResult parseOptionalLBrace() override { 1035 return success(parser.consumeIf(Token::l_brace)); 1036 } 1037 1038 /// Parse a `}` token. 1039 ParseResult parseRBrace() override { 1040 return parser.parseToken(Token::r_brace, "expected '}'"); 1041 } 1042 1043 /// Parse a `}` token if present 1044 ParseResult parseOptionalRBrace() override { 1045 return success(parser.consumeIf(Token::r_brace)); 1046 } 1047 1048 /// Parse a `:` token. 1049 ParseResult parseColon() override { 1050 return parser.parseToken(Token::colon, "expected ':'"); 1051 } 1052 1053 /// Parse a `:` token if present. 1054 ParseResult parseOptionalColon() override { 1055 return success(parser.consumeIf(Token::colon)); 1056 } 1057 1058 /// Parse a `,` token. 1059 ParseResult parseComma() override { 1060 return parser.parseToken(Token::comma, "expected ','"); 1061 } 1062 1063 /// Parse a `,` token if present. 1064 ParseResult parseOptionalComma() override { 1065 return success(parser.consumeIf(Token::comma)); 1066 } 1067 1068 /// Parses a `...` if present. 1069 ParseResult parseOptionalEllipsis() override { 1070 return success(parser.consumeIf(Token::ellipsis)); 1071 } 1072 1073 /// Parse a `=` token. 1074 ParseResult parseEqual() override { 1075 return parser.parseToken(Token::equal, "expected '='"); 1076 } 1077 1078 /// Parse a `=` token if present. 1079 ParseResult parseOptionalEqual() override { 1080 return success(parser.consumeIf(Token::equal)); 1081 } 1082 1083 /// Parse a '<' token. 1084 ParseResult parseLess() override { 1085 return parser.parseToken(Token::less, "expected '<'"); 1086 } 1087 1088 /// Parse a '<' token if present. 1089 ParseResult parseOptionalLess() override { 1090 return success(parser.consumeIf(Token::less)); 1091 } 1092 1093 /// Parse a '>' token. 1094 ParseResult parseGreater() override { 1095 return parser.parseToken(Token::greater, "expected '>'"); 1096 } 1097 1098 /// Parse a '>' token if present. 1099 ParseResult parseOptionalGreater() override { 1100 return success(parser.consumeIf(Token::greater)); 1101 } 1102 1103 /// Parse a `(` token. 1104 ParseResult parseLParen() override { 1105 return parser.parseToken(Token::l_paren, "expected '('"); 1106 } 1107 1108 /// Parses a '(' if present. 1109 ParseResult parseOptionalLParen() override { 1110 return success(parser.consumeIf(Token::l_paren)); 1111 } 1112 1113 /// Parse a `)` token. 1114 ParseResult parseRParen() override { 1115 return parser.parseToken(Token::r_paren, "expected ')'"); 1116 } 1117 1118 /// Parses a ')' if present. 1119 ParseResult parseOptionalRParen() override { 1120 return success(parser.consumeIf(Token::r_paren)); 1121 } 1122 1123 /// Parse a `[` token. 1124 ParseResult parseLSquare() override { 1125 return parser.parseToken(Token::l_square, "expected '['"); 1126 } 1127 1128 /// Parses a '[' if present. 1129 ParseResult parseOptionalLSquare() override { 1130 return success(parser.consumeIf(Token::l_square)); 1131 } 1132 1133 /// Parse a `]` token. 1134 ParseResult parseRSquare() override { 1135 return parser.parseToken(Token::r_square, "expected ']'"); 1136 } 1137 1138 /// Parses a ']' if present. 1139 ParseResult parseOptionalRSquare() override { 1140 return success(parser.consumeIf(Token::r_square)); 1141 } 1142 1143 /// Parses a '?' token. 1144 ParseResult parseQuestion() override { 1145 return parser.parseToken(Token::question, "expected '?'"); 1146 } 1147 1148 /// Parses a '?' token if present. 1149 ParseResult parseOptionalQuestion() override { 1150 return success(parser.consumeIf(Token::question)); 1151 } 1152 1153 /// Parses a '+' token. 1154 ParseResult parsePlus() override { 1155 return parser.parseToken(Token::plus, "expected '+'"); 1156 } 1157 1158 /// Parses a '+' token if present. 1159 ParseResult parseOptionalPlus() override { 1160 return success(parser.consumeIf(Token::plus)); 1161 } 1162 1163 /// Parses a '*' token. 1164 ParseResult parseStar() override { 1165 return parser.parseToken(Token::star, "expected '*'"); 1166 } 1167 1168 /// Parses a '*' token if present. 1169 ParseResult parseOptionalStar() override { 1170 return success(parser.consumeIf(Token::star)); 1171 } 1172 1173 /// Parse an optional integer value from the stream. 1174 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 1175 return parser.parseOptionalInteger(result); 1176 } 1177 1178 //===--------------------------------------------------------------------===// 1179 // Attribute Parsing 1180 //===--------------------------------------------------------------------===// 1181 1182 /// Parse an arbitrary attribute of a given type and return it in result. 1183 ParseResult parseAttribute(Attribute &result, Type type) override { 1184 result = parser.parseAttribute(type); 1185 return success(static_cast<bool>(result)); 1186 } 1187 1188 /// Parse an optional attribute. 1189 template <typename AttrT> 1190 OptionalParseResult 1191 parseOptionalAttributeAndAddToList(AttrT &result, Type type, 1192 StringRef attrName, NamedAttrList &attrs) { 1193 OptionalParseResult parseResult = 1194 parser.parseOptionalAttribute(result, type); 1195 if (parseResult.hasValue() && succeeded(*parseResult)) 1196 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 1197 return parseResult; 1198 } 1199 OptionalParseResult parseOptionalAttribute(Attribute &result, Type type, 1200 StringRef attrName, 1201 NamedAttrList &attrs) override { 1202 return parseOptionalAttributeAndAddToList(result, type, attrName, attrs); 1203 } 1204 OptionalParseResult parseOptionalAttribute(ArrayAttr &result, Type type, 1205 StringRef attrName, 1206 NamedAttrList &attrs) override { 1207 return parseOptionalAttributeAndAddToList(result, type, attrName, attrs); 1208 } 1209 OptionalParseResult parseOptionalAttribute(StringAttr &result, Type type, 1210 StringRef attrName, 1211 NamedAttrList &attrs) override { 1212 return parseOptionalAttributeAndAddToList(result, type, attrName, attrs); 1213 } 1214 1215 /// Parse a named dictionary into 'result' if it is present. 1216 ParseResult parseOptionalAttrDict(NamedAttrList &result) override { 1217 if (parser.getToken().isNot(Token::l_brace)) 1218 return success(); 1219 return parser.parseAttributeDict(result); 1220 } 1221 1222 /// Parse a named dictionary into 'result' if the `attributes` keyword is 1223 /// present. 1224 ParseResult parseOptionalAttrDictWithKeyword(NamedAttrList &result) override { 1225 if (failed(parseOptionalKeyword("attributes"))) 1226 return success(); 1227 return parser.parseAttributeDict(result); 1228 } 1229 1230 /// Parse an affine map instance into 'map'. 1231 ParseResult parseAffineMap(AffineMap &map) override { 1232 return parser.parseAffineMapReference(map); 1233 } 1234 1235 /// Parse an integer set instance into 'set'. 1236 ParseResult printIntegerSet(IntegerSet &set) override { 1237 return parser.parseIntegerSetReference(set); 1238 } 1239 1240 //===--------------------------------------------------------------------===// 1241 // Identifier Parsing 1242 //===--------------------------------------------------------------------===// 1243 1244 /// Returns true if the current token corresponds to a keyword. 1245 bool isCurrentTokenAKeyword() const { 1246 return parser.getToken().is(Token::bare_identifier) || 1247 parser.getToken().isKeyword(); 1248 } 1249 1250 /// Parse the given keyword if present. 1251 ParseResult parseOptionalKeyword(StringRef keyword) override { 1252 // Check that the current token has the same spelling. 1253 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 1254 return failure(); 1255 parser.consumeToken(); 1256 return success(); 1257 } 1258 1259 /// Parse a keyword, if present, into 'keyword'. 1260 ParseResult parseOptionalKeyword(StringRef *keyword) override { 1261 // Check that the current token is a keyword. 1262 if (!isCurrentTokenAKeyword()) 1263 return failure(); 1264 1265 *keyword = parser.getTokenSpelling(); 1266 parser.consumeToken(); 1267 return success(); 1268 } 1269 1270 /// Parse a keyword if it is one of the 'allowedKeywords'. 1271 ParseResult 1272 parseOptionalKeyword(StringRef *keyword, 1273 ArrayRef<StringRef> allowedKeywords) override { 1274 // Check that the current token is a keyword. 1275 if (!isCurrentTokenAKeyword()) 1276 return failure(); 1277 1278 StringRef currentKeyword = parser.getTokenSpelling(); 1279 if (llvm::is_contained(allowedKeywords, currentKeyword)) { 1280 *keyword = currentKeyword; 1281 parser.consumeToken(); 1282 return success(); 1283 } 1284 1285 return failure(); 1286 } 1287 1288 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 1289 /// string attribute named 'attrName'. 1290 ParseResult parseOptionalSymbolName(StringAttr &result, StringRef attrName, 1291 NamedAttrList &attrs) override { 1292 Token atToken = parser.getToken(); 1293 if (atToken.isNot(Token::at_identifier)) 1294 return failure(); 1295 1296 result = getBuilder().getStringAttr(atToken.getSymbolReference()); 1297 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 1298 parser.consumeToken(); 1299 return success(); 1300 } 1301 1302 //===--------------------------------------------------------------------===// 1303 // Operand Parsing 1304 //===--------------------------------------------------------------------===// 1305 1306 /// Parse a single operand. 1307 ParseResult parseOperand(OperandType &result) override { 1308 OperationParser::SSAUseInfo useInfo; 1309 if (parser.parseSSAUse(useInfo)) 1310 return failure(); 1311 1312 result = {useInfo.loc, useInfo.name, useInfo.number}; 1313 return success(); 1314 } 1315 1316 /// Parse a single operand if present. 1317 OptionalParseResult parseOptionalOperand(OperandType &result) override { 1318 if (parser.getToken().is(Token::percent_identifier)) 1319 return parseOperand(result); 1320 return llvm::None; 1321 } 1322 1323 /// Parse zero or more SSA comma-separated operand references with a specified 1324 /// surrounding delimiter, and an optional required operand count. 1325 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 1326 int requiredOperandCount = -1, 1327 Delimiter delimiter = Delimiter::None) override { 1328 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 1329 requiredOperandCount, delimiter); 1330 } 1331 1332 /// Parse zero or more SSA comma-separated operand or region arguments with 1333 /// optional surrounding delimiter and required operand count. 1334 ParseResult 1335 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 1336 bool isOperandList, int requiredOperandCount = -1, 1337 Delimiter delimiter = Delimiter::None) { 1338 auto startLoc = parser.getToken().getLoc(); 1339 1340 // Handle delimiters. 1341 switch (delimiter) { 1342 case Delimiter::None: 1343 // Don't check for the absence of a delimiter if the number of operands 1344 // is unknown (and hence the operand list could be empty). 1345 if (requiredOperandCount == -1) 1346 break; 1347 // Token already matches an identifier and so can't be a delimiter. 1348 if (parser.getToken().is(Token::percent_identifier)) 1349 break; 1350 // Test against known delimiters. 1351 if (parser.getToken().is(Token::l_paren) || 1352 parser.getToken().is(Token::l_square)) 1353 return emitError(startLoc, "unexpected delimiter"); 1354 return emitError(startLoc, "invalid operand"); 1355 case Delimiter::OptionalParen: 1356 if (parser.getToken().isNot(Token::l_paren)) 1357 return success(); 1358 LLVM_FALLTHROUGH; 1359 case Delimiter::Paren: 1360 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 1361 return failure(); 1362 break; 1363 case Delimiter::OptionalSquare: 1364 if (parser.getToken().isNot(Token::l_square)) 1365 return success(); 1366 LLVM_FALLTHROUGH; 1367 case Delimiter::Square: 1368 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 1369 return failure(); 1370 break; 1371 } 1372 1373 // Check for zero operands. 1374 if (parser.getToken().is(Token::percent_identifier)) { 1375 do { 1376 OperandType operandOrArg; 1377 if (isOperandList ? parseOperand(operandOrArg) 1378 : parseRegionArgument(operandOrArg)) 1379 return failure(); 1380 result.push_back(operandOrArg); 1381 } while (parser.consumeIf(Token::comma)); 1382 } 1383 1384 // Handle delimiters. If we reach here, the optional delimiters were 1385 // present, so we need to parse their closing one. 1386 switch (delimiter) { 1387 case Delimiter::None: 1388 break; 1389 case Delimiter::OptionalParen: 1390 case Delimiter::Paren: 1391 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 1392 return failure(); 1393 break; 1394 case Delimiter::OptionalSquare: 1395 case Delimiter::Square: 1396 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 1397 return failure(); 1398 break; 1399 } 1400 1401 if (requiredOperandCount != -1 && 1402 result.size() != static_cast<size_t>(requiredOperandCount)) 1403 return emitError(startLoc, "expected ") 1404 << requiredOperandCount << " operands"; 1405 return success(); 1406 } 1407 1408 /// Parse zero or more trailing SSA comma-separated trailing operand 1409 /// references with a specified surrounding delimiter, and an optional 1410 /// required operand count. A leading comma is expected before the operands. 1411 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 1412 int requiredOperandCount, 1413 Delimiter delimiter) override { 1414 if (parser.getToken().is(Token::comma)) { 1415 parseComma(); 1416 return parseOperandList(result, requiredOperandCount, delimiter); 1417 } 1418 if (requiredOperandCount != -1) 1419 return emitError(parser.getToken().getLoc(), "expected ") 1420 << requiredOperandCount << " operands"; 1421 return success(); 1422 } 1423 1424 /// Resolve an operand to an SSA value, emitting an error on failure. 1425 ParseResult resolveOperand(const OperandType &operand, Type type, 1426 SmallVectorImpl<Value> &result) override { 1427 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 1428 operand.location}; 1429 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 1430 result.push_back(value); 1431 return success(); 1432 } 1433 return failure(); 1434 } 1435 1436 /// Parse an AffineMap of SSA ids. 1437 ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 1438 Attribute &mapAttr, StringRef attrName, 1439 NamedAttrList &attrs, 1440 Delimiter delimiter) override { 1441 SmallVector<OperandType, 2> dimOperands; 1442 SmallVector<OperandType, 1> symOperands; 1443 1444 auto parseElement = [&](bool isSymbol) -> ParseResult { 1445 OperandType operand; 1446 if (parseOperand(operand)) 1447 return failure(); 1448 if (isSymbol) 1449 symOperands.push_back(operand); 1450 else 1451 dimOperands.push_back(operand); 1452 return success(); 1453 }; 1454 1455 AffineMap map; 1456 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 1457 return failure(); 1458 // Add AffineMap attribute. 1459 if (map) { 1460 mapAttr = AffineMapAttr::get(map); 1461 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 1462 } 1463 1464 // Add dim operands before symbol operands in 'operands'. 1465 operands.assign(dimOperands.begin(), dimOperands.end()); 1466 operands.append(symOperands.begin(), symOperands.end()); 1467 return success(); 1468 } 1469 1470 //===--------------------------------------------------------------------===// 1471 // Region Parsing 1472 //===--------------------------------------------------------------------===// 1473 1474 /// Parse a region that takes `arguments` of `argTypes` types. This 1475 /// effectively defines the SSA values of `arguments` and assigns their type. 1476 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 1477 ArrayRef<Type> argTypes, 1478 bool enableNameShadowing) override { 1479 assert(arguments.size() == argTypes.size() && 1480 "mismatching number of arguments and types"); 1481 1482 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 1483 regionArguments; 1484 for (auto pair : llvm::zip(arguments, argTypes)) { 1485 const OperandType &operand = std::get<0>(pair); 1486 Type type = std::get<1>(pair); 1487 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 1488 operand.location}; 1489 regionArguments.emplace_back(operandInfo, type); 1490 } 1491 1492 // Try to parse the region. 1493 assert((!enableNameShadowing || isIsolatedFromAbove) && 1494 "name shadowing is only allowed on isolated regions"); 1495 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 1496 return failure(); 1497 return success(); 1498 } 1499 1500 /// Parses a region if present. 1501 OptionalParseResult parseOptionalRegion(Region ®ion, 1502 ArrayRef<OperandType> arguments, 1503 ArrayRef<Type> argTypes, 1504 bool enableNameShadowing) override { 1505 if (parser.getToken().isNot(Token::l_brace)) 1506 return llvm::None; 1507 return parseRegion(region, arguments, argTypes, enableNameShadowing); 1508 } 1509 1510 /// Parses a region if present. If the region is present, a new region is 1511 /// allocated and placed in `region`. If no region is present, `region` 1512 /// remains untouched. 1513 OptionalParseResult 1514 parseOptionalRegion(std::unique_ptr<Region> ®ion, 1515 ArrayRef<OperandType> arguments, ArrayRef<Type> argTypes, 1516 bool enableNameShadowing = false) override { 1517 if (parser.getToken().isNot(Token::l_brace)) 1518 return llvm::None; 1519 std::unique_ptr<Region> newRegion = std::make_unique<Region>(); 1520 if (parseRegion(*newRegion, arguments, argTypes, enableNameShadowing)) 1521 return failure(); 1522 1523 region = std::move(newRegion); 1524 return success(); 1525 } 1526 1527 /// Parse a region argument. The type of the argument will be resolved later 1528 /// by a call to `parseRegion`. 1529 ParseResult parseRegionArgument(OperandType &argument) override { 1530 return parseOperand(argument); 1531 } 1532 1533 /// Parse a region argument if present. 1534 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 1535 if (parser.getToken().isNot(Token::percent_identifier)) 1536 return success(); 1537 return parseRegionArgument(argument); 1538 } 1539 1540 ParseResult 1541 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 1542 int requiredOperandCount = -1, 1543 Delimiter delimiter = Delimiter::None) override { 1544 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 1545 requiredOperandCount, delimiter); 1546 } 1547 1548 //===--------------------------------------------------------------------===// 1549 // Successor Parsing 1550 //===--------------------------------------------------------------------===// 1551 1552 /// Parse a single operation successor. 1553 ParseResult parseSuccessor(Block *&dest) override { 1554 return parser.parseSuccessor(dest); 1555 } 1556 1557 /// Parse an optional operation successor and its operand list. 1558 OptionalParseResult parseOptionalSuccessor(Block *&dest) override { 1559 if (parser.getToken().isNot(Token::caret_identifier)) 1560 return llvm::None; 1561 return parseSuccessor(dest); 1562 } 1563 1564 /// Parse a single operation successor and its operand list. 1565 ParseResult 1566 parseSuccessorAndUseList(Block *&dest, 1567 SmallVectorImpl<Value> &operands) override { 1568 if (parseSuccessor(dest)) 1569 return failure(); 1570 1571 // Handle optional arguments. 1572 if (succeeded(parseOptionalLParen()) && 1573 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) { 1574 return failure(); 1575 } 1576 return success(); 1577 } 1578 1579 //===--------------------------------------------------------------------===// 1580 // Type Parsing 1581 //===--------------------------------------------------------------------===// 1582 1583 /// Parse a type. 1584 ParseResult parseType(Type &result) override { 1585 return failure(!(result = parser.parseType())); 1586 } 1587 1588 /// Parse an optional type. 1589 OptionalParseResult parseOptionalType(Type &result) override { 1590 return parser.parseOptionalType(result); 1591 } 1592 1593 /// Parse an arrow followed by a type list. 1594 ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override { 1595 if (parseArrow() || parser.parseFunctionResultTypes(result)) 1596 return failure(); 1597 return success(); 1598 } 1599 1600 /// Parse an optional arrow followed by a type list. 1601 ParseResult 1602 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 1603 if (!parser.consumeIf(Token::arrow)) 1604 return success(); 1605 return parser.parseFunctionResultTypes(result); 1606 } 1607 1608 /// Parse a colon followed by a type. 1609 ParseResult parseColonType(Type &result) override { 1610 return failure(parser.parseToken(Token::colon, "expected ':'") || 1611 !(result = parser.parseType())); 1612 } 1613 1614 /// Parse a colon followed by a type list, which must have at least one type. 1615 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 1616 if (parser.parseToken(Token::colon, "expected ':'")) 1617 return failure(); 1618 return parser.parseTypeListNoParens(result); 1619 } 1620 1621 /// Parse an optional colon followed by a type list, which if present must 1622 /// have at least one type. 1623 ParseResult 1624 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 1625 if (!parser.consumeIf(Token::colon)) 1626 return success(); 1627 return parser.parseTypeListNoParens(result); 1628 } 1629 1630 /// Parse a list of assignments of the form 1631 /// (%x1 = %y1, %x2 = %y2, ...). 1632 OptionalParseResult 1633 parseOptionalAssignmentList(SmallVectorImpl<OperandType> &lhs, 1634 SmallVectorImpl<OperandType> &rhs) override { 1635 if (failed(parseOptionalLParen())) 1636 return llvm::None; 1637 1638 auto parseElt = [&]() -> ParseResult { 1639 OperandType regionArg, operand; 1640 if (parseRegionArgument(regionArg) || parseEqual() || 1641 parseOperand(operand)) 1642 return failure(); 1643 lhs.push_back(regionArg); 1644 rhs.push_back(operand); 1645 return success(); 1646 }; 1647 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 1648 } 1649 1650 private: 1651 /// The source location of the operation name. 1652 SMLoc nameLoc; 1653 1654 /// Information about the result name specifiers. 1655 ArrayRef<OperationParser::ResultRecord> resultIDs; 1656 1657 /// The abstract information of the operation. 1658 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly; 1659 bool isIsolatedFromAbove; 1660 StringRef opName; 1661 1662 /// The main operation parser. 1663 OperationParser &parser; 1664 1665 /// A flag that indicates if any errors were emitted during parsing. 1666 bool emittedError = false; 1667 }; 1668 } // end anonymous namespace. 1669 1670 Operation * 1671 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) { 1672 llvm::SMLoc opLoc = getToken().getLoc(); 1673 StringRef opName = getTokenSpelling(); 1674 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 1675 Dialect *dialect = nullptr; 1676 if (opDefinition) { 1677 dialect = &opDefinition->dialect; 1678 } else { 1679 if (opName.contains('.')) { 1680 // This op has a dialect, we try to check if we can register it in the 1681 // context on the fly. 1682 StringRef dialectName = opName.split('.').first; 1683 dialect = getContext()->getLoadedDialect(dialectName); 1684 if (!dialect && (dialect = getContext()->getOrLoadDialect(dialectName))) 1685 opDefinition = AbstractOperation::lookup(opName, getContext()); 1686 } else { 1687 // If the operation name has no namespace prefix we treat it as a standard 1688 // operation and prefix it with "std". 1689 // TODO: Would it be better to just build a mapping of the registered 1690 // operations in the standard dialect? 1691 if (getContext()->getOrLoadDialect("std")) { 1692 opDefinition = AbstractOperation::lookup(Twine("std." + opName).str(), 1693 getContext()); 1694 if (opDefinition) 1695 opName = opDefinition->name.strref(); 1696 } 1697 } 1698 } 1699 1700 // This is the actual hook for the custom op parsing, usually implemented by 1701 // the op itself (`Op::parse()`). We retrieve it either from the 1702 // AbstractOperation or from the Dialect. 1703 std::function<ParseResult(OpAsmParser &, OperationState &)> parseAssemblyFn; 1704 bool isIsolatedFromAbove = false; 1705 1706 if (opDefinition) { 1707 parseAssemblyFn = opDefinition->getParseAssemblyFn(); 1708 isIsolatedFromAbove = 1709 opDefinition->hasTrait<OpTrait::IsIsolatedFromAbove>(); 1710 } else { 1711 Optional<Dialect::ParseOpHook> dialectHook; 1712 if (dialect) 1713 dialectHook = dialect->getParseOperationHook(opName); 1714 if (!dialectHook.hasValue()) { 1715 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 1716 return nullptr; 1717 } 1718 parseAssemblyFn = *dialectHook; 1719 } 1720 1721 consumeToken(); 1722 1723 // If the custom op parser crashes, produce some indication to help 1724 // debugging. 1725 std::string opNameStr = opName.str(); 1726 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 1727 opNameStr.c_str()); 1728 1729 // Get location information for the operation. 1730 auto srcLocation = getEncodedSourceLocation(opLoc); 1731 1732 // Have the op implementation take a crack and parsing this. 1733 OperationState opState(srcLocation, opName); 1734 CleanupOpStateRegions guard{opState}; 1735 CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn, 1736 isIsolatedFromAbove, opName, *this); 1737 if (opAsmParser.parseOperation(opState)) 1738 return nullptr; 1739 1740 // If it emitted an error, we failed. 1741 if (opAsmParser.didEmitError()) 1742 return nullptr; 1743 1744 // Otherwise, create the operation and try to parse a location for it. 1745 Operation *op = opBuilder.createOperation(opState); 1746 if (parseTrailingOperationLocation(op)) 1747 return nullptr; 1748 return op; 1749 } 1750 1751 ParseResult OperationParser::parseTrailingOperationLocation(Operation *op) { 1752 // If there is a 'loc' we parse a trailing location. 1753 if (!consumeIf(Token::kw_loc)) 1754 return success(); 1755 if (parseToken(Token::l_paren, "expected '(' in location")) 1756 return failure(); 1757 Token tok = getToken(); 1758 1759 // Check to see if we are parsing a location alias. 1760 LocationAttr directLoc; 1761 if (tok.is(Token::hash_identifier)) { 1762 consumeToken(); 1763 1764 StringRef identifier = tok.getSpelling().drop_front(); 1765 if (identifier.contains('.')) { 1766 return emitError(tok.getLoc()) 1767 << "expected location, but found dialect attribute: '#" 1768 << identifier << "'"; 1769 } 1770 1771 // If this alias can be resolved, do it now. 1772 Attribute attr = 1773 getState().symbols.attributeAliasDefinitions.lookup(identifier); 1774 if (attr) { 1775 if (!(directLoc = attr.dyn_cast<LocationAttr>())) 1776 return emitError(tok.getLoc()) 1777 << "expected location, but found '" << attr << "'"; 1778 } else { 1779 // Otherwise, remember this operation and resolve its location later. 1780 opsWithDeferredLocs.emplace_back(op, tok); 1781 } 1782 1783 // Otherwise, we parse the location directly. 1784 } else if (parseLocationInstance(directLoc)) { 1785 return failure(); 1786 } 1787 1788 if (parseToken(Token::r_paren, "expected ')' in location")) 1789 return failure(); 1790 1791 if (directLoc) 1792 op->setLoc(directLoc); 1793 return success(); 1794 } 1795 1796 //===----------------------------------------------------------------------===// 1797 // Region Parsing 1798 //===----------------------------------------------------------------------===// 1799 1800 /// Region. 1801 /// 1802 /// region ::= '{' region-body 1803 /// 1804 ParseResult OperationParser::parseRegion( 1805 Region ®ion, 1806 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 1807 bool isIsolatedNameScope) { 1808 // Parse the '{'. 1809 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 1810 return failure(); 1811 1812 // Check for an empty region. 1813 if (entryArguments.empty() && consumeIf(Token::r_brace)) 1814 return success(); 1815 auto currentPt = opBuilder.saveInsertionPoint(); 1816 1817 // Push a new named value scope. 1818 pushSSANameScope(isIsolatedNameScope); 1819 1820 // Parse the first block directly to allow for it to be unnamed. 1821 auto owning_block = std::make_unique<Block>(); 1822 Block *block = owning_block.get(); 1823 1824 // Add arguments to the entry block. 1825 if (!entryArguments.empty()) { 1826 for (auto &placeholderArgPair : entryArguments) { 1827 auto &argInfo = placeholderArgPair.first; 1828 // Ensure that the argument was not already defined. 1829 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 1830 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 1831 "' is already in use") 1832 .attachNote(getEncodedSourceLocation(*defLoc)) 1833 << "previously referenced here"; 1834 } 1835 if (addDefinition(placeholderArgPair.first, 1836 block->addArgument(placeholderArgPair.second))) { 1837 return failure(); 1838 } 1839 } 1840 1841 // If we had named arguments, then don't allow a block name. 1842 if (getToken().is(Token::caret_identifier)) 1843 return emitError("invalid block name in region with named arguments"); 1844 } 1845 1846 if (parseBlock(block)) { 1847 return failure(); 1848 } 1849 1850 // Verify that no other arguments were parsed. 1851 if (!entryArguments.empty() && 1852 block->getNumArguments() > entryArguments.size()) { 1853 return emitError("entry block arguments were already defined"); 1854 } 1855 1856 // Parse the rest of the region. 1857 region.push_back(owning_block.release()); 1858 if (parseRegionBody(region)) 1859 return failure(); 1860 1861 // Pop the SSA value scope for this region. 1862 if (popSSANameScope()) 1863 return failure(); 1864 1865 // Reset the original insertion point. 1866 opBuilder.restoreInsertionPoint(currentPt); 1867 return success(); 1868 } 1869 1870 /// Region. 1871 /// 1872 /// region-body ::= block* '}' 1873 /// 1874 ParseResult OperationParser::parseRegionBody(Region ®ion) { 1875 // Parse the list of blocks. 1876 while (!consumeIf(Token::r_brace)) { 1877 Block *newBlock = nullptr; 1878 if (parseBlock(newBlock)) 1879 return failure(); 1880 region.push_back(newBlock); 1881 } 1882 return success(); 1883 } 1884 1885 //===----------------------------------------------------------------------===// 1886 // Block Parsing 1887 //===----------------------------------------------------------------------===// 1888 1889 /// Block declaration. 1890 /// 1891 /// block ::= block-label? operation* 1892 /// block-label ::= block-id block-arg-list? `:` 1893 /// block-id ::= caret-id 1894 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 1895 /// 1896 ParseResult OperationParser::parseBlock(Block *&block) { 1897 // The first block of a region may already exist, if it does the caret 1898 // identifier is optional. 1899 if (block && getToken().isNot(Token::caret_identifier)) 1900 return parseBlockBody(block); 1901 1902 SMLoc nameLoc = getToken().getLoc(); 1903 auto name = getTokenSpelling(); 1904 if (parseToken(Token::caret_identifier, "expected block name")) 1905 return failure(); 1906 1907 block = defineBlockNamed(name, nameLoc, block); 1908 1909 // Fail if the block was already defined. 1910 if (!block) 1911 return emitError(nameLoc, "redefinition of block '") << name << "'"; 1912 1913 // If an argument list is present, parse it. 1914 if (consumeIf(Token::l_paren)) { 1915 SmallVector<BlockArgument, 8> bbArgs; 1916 if (parseOptionalBlockArgList(bbArgs, block) || 1917 parseToken(Token::r_paren, "expected ')' to end argument list")) 1918 return failure(); 1919 } 1920 1921 if (parseToken(Token::colon, "expected ':' after block name")) 1922 return failure(); 1923 1924 return parseBlockBody(block); 1925 } 1926 1927 ParseResult OperationParser::parseBlockBody(Block *block) { 1928 // Set the insertion point to the end of the block to parse. 1929 opBuilder.setInsertionPointToEnd(block); 1930 1931 // Parse the list of operations that make up the body of the block. 1932 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 1933 if (parseOperation()) 1934 return failure(); 1935 1936 return success(); 1937 } 1938 1939 /// Get the block with the specified name, creating it if it doesn't already 1940 /// exist. The location specified is the point of use, which allows 1941 /// us to diagnose references to blocks that are not defined precisely. 1942 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 1943 auto &blockAndLoc = getBlockInfoByName(name); 1944 if (!blockAndLoc.first) { 1945 blockAndLoc = {new Block(), loc}; 1946 insertForwardRef(blockAndLoc.first, loc); 1947 } 1948 1949 return blockAndLoc.first; 1950 } 1951 1952 /// Define the block with the specified name. Returns the Block* or nullptr in 1953 /// the case of redefinition. 1954 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 1955 Block *existing) { 1956 auto &blockAndLoc = getBlockInfoByName(name); 1957 if (!blockAndLoc.first) { 1958 // If the caller provided a block, use it. Otherwise create a new one. 1959 if (!existing) 1960 existing = new Block(); 1961 blockAndLoc.first = existing; 1962 blockAndLoc.second = loc; 1963 return blockAndLoc.first; 1964 } 1965 1966 // Forward declarations are removed once defined, so if we are defining a 1967 // existing block and it is not a forward declaration, then it is a 1968 // redeclaration. 1969 if (!eraseForwardRef(blockAndLoc.first)) 1970 return nullptr; 1971 return blockAndLoc.first; 1972 } 1973 1974 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 1975 /// 1976 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 1977 /// 1978 ParseResult OperationParser::parseOptionalBlockArgList( 1979 SmallVectorImpl<BlockArgument> &results, Block *owner) { 1980 if (getToken().is(Token::r_brace)) 1981 return success(); 1982 1983 // If the block already has arguments, then we're handling the entry block. 1984 // Parse and register the names for the arguments, but do not add them. 1985 bool definingExistingArgs = owner->getNumArguments() != 0; 1986 unsigned nextArgument = 0; 1987 1988 return parseCommaSeparatedList([&]() -> ParseResult { 1989 return parseSSADefOrUseAndType( 1990 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 1991 // If this block did not have existing arguments, define a new one. 1992 if (!definingExistingArgs) 1993 return addDefinition(useInfo, owner->addArgument(type)); 1994 1995 // Otherwise, ensure that this argument has already been created. 1996 if (nextArgument >= owner->getNumArguments()) 1997 return emitError("too many arguments specified in argument list"); 1998 1999 // Finally, make sure the existing argument has the correct type. 2000 auto arg = owner->getArgument(nextArgument++); 2001 if (arg.getType() != type) 2002 return emitError("argument and block argument type mismatch"); 2003 return addDefinition(useInfo, arg); 2004 }); 2005 }); 2006 } 2007 2008 //===----------------------------------------------------------------------===// 2009 // Top-level entity parsing. 2010 //===----------------------------------------------------------------------===// 2011 2012 namespace { 2013 /// This parser handles entities that are only valid at the top level of the 2014 /// file. 2015 class TopLevelOperationParser : public Parser { 2016 public: 2017 explicit TopLevelOperationParser(ParserState &state) : Parser(state) {} 2018 2019 /// Parse a set of operations into the end of the given Block. 2020 ParseResult parse(Block *topLevelBlock, Location parserLoc); 2021 2022 private: 2023 /// Parse an attribute alias declaration. 2024 ParseResult parseAttributeAliasDef(); 2025 2026 /// Parse an attribute alias declaration. 2027 ParseResult parseTypeAliasDef(); 2028 }; 2029 } // end anonymous namespace 2030 2031 /// Parses an attribute alias declaration. 2032 /// 2033 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 2034 /// 2035 ParseResult TopLevelOperationParser::parseAttributeAliasDef() { 2036 assert(getToken().is(Token::hash_identifier)); 2037 StringRef aliasName = getTokenSpelling().drop_front(); 2038 2039 // Check for redefinitions. 2040 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 2041 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 2042 2043 // Make sure this isn't invading the dialect attribute namespace. 2044 if (aliasName.contains('.')) 2045 return emitError("attribute names with a '.' are reserved for " 2046 "dialect-defined names"); 2047 2048 consumeToken(Token::hash_identifier); 2049 2050 // Parse the '='. 2051 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 2052 return failure(); 2053 2054 // Parse the attribute value. 2055 Attribute attr = parseAttribute(); 2056 if (!attr) 2057 return failure(); 2058 2059 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 2060 return success(); 2061 } 2062 2063 /// Parse a type alias declaration. 2064 /// 2065 /// type-alias-def ::= '!' alias-name `=` 'type' type 2066 /// 2067 ParseResult TopLevelOperationParser::parseTypeAliasDef() { 2068 assert(getToken().is(Token::exclamation_identifier)); 2069 StringRef aliasName = getTokenSpelling().drop_front(); 2070 2071 // Check for redefinitions. 2072 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 2073 return emitError("redefinition of type alias id '" + aliasName + "'"); 2074 2075 // Make sure this isn't invading the dialect type namespace. 2076 if (aliasName.contains('.')) 2077 return emitError("type names with a '.' are reserved for " 2078 "dialect-defined names"); 2079 2080 consumeToken(Token::exclamation_identifier); 2081 2082 // Parse the '=' and 'type'. 2083 if (parseToken(Token::equal, "expected '=' in type alias definition") || 2084 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 2085 return failure(); 2086 2087 // Parse the type. 2088 Type aliasedType = parseType(); 2089 if (!aliasedType) 2090 return failure(); 2091 2092 // Register this alias with the parser state. 2093 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 2094 return success(); 2095 } 2096 2097 ParseResult TopLevelOperationParser::parse(Block *topLevelBlock, 2098 Location parserLoc) { 2099 // Create a top-level operation to contain the parsed state. 2100 OwningOpRef<Operation *> topLevelOp(ModuleOp::create(parserLoc)); 2101 OperationParser opParser(getState(), topLevelOp.get()); 2102 while (true) { 2103 switch (getToken().getKind()) { 2104 default: 2105 // Parse a top-level operation. 2106 if (opParser.parseOperation()) 2107 return failure(); 2108 break; 2109 2110 // If we got to the end of the file, then we're done. 2111 case Token::eof: { 2112 if (opParser.finalize()) 2113 return failure(); 2114 2115 // Verify that the parsed operations are valid. 2116 if (failed(verify(topLevelOp.get()))) 2117 return failure(); 2118 2119 // Splice the blocks of the parsed operation over to the provided 2120 // top-level block. 2121 auto &parsedOps = (*topLevelOp)->getRegion(0).front().getOperations(); 2122 auto &destOps = topLevelBlock->getOperations(); 2123 destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()), 2124 parsedOps, parsedOps.begin(), parsedOps.end()); 2125 return success(); 2126 } 2127 2128 // If we got an error token, then the lexer already emitted an error, just 2129 // stop. Someday we could introduce error recovery if there was demand 2130 // for it. 2131 case Token::error: 2132 return failure(); 2133 2134 // Parse an attribute alias. 2135 case Token::hash_identifier: 2136 if (parseAttributeAliasDef()) 2137 return failure(); 2138 break; 2139 2140 // Parse a type alias. 2141 case Token::exclamation_identifier: 2142 if (parseTypeAliasDef()) 2143 return failure(); 2144 break; 2145 } 2146 } 2147 } 2148 2149 //===----------------------------------------------------------------------===// 2150 2151 LogicalResult mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 2152 Block *block, MLIRContext *context, 2153 LocationAttr *sourceFileLoc) { 2154 const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 2155 2156 Location parserLoc = FileLineColLoc::get( 2157 context, sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0); 2158 if (sourceFileLoc) 2159 *sourceFileLoc = parserLoc; 2160 2161 SymbolState aliasState; 2162 ParserState state(sourceMgr, context, aliasState); 2163 return TopLevelOperationParser(state).parse(block, parserLoc); 2164 } 2165 2166 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, Block *block, 2167 MLIRContext *context, 2168 LocationAttr *sourceFileLoc) { 2169 llvm::SourceMgr sourceMgr; 2170 return parseSourceFile(filename, sourceMgr, block, context, sourceFileLoc); 2171 } 2172 2173 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, 2174 llvm::SourceMgr &sourceMgr, Block *block, 2175 MLIRContext *context, 2176 LocationAttr *sourceFileLoc) { 2177 if (sourceMgr.getNumBuffers() != 0) { 2178 // TODO: Extend to support multiple buffers. 2179 return emitError(mlir::UnknownLoc::get(context), 2180 "only main buffer parsed at the moment"); 2181 } 2182 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 2183 if (std::error_code error = file_or_err.getError()) 2184 return emitError(mlir::UnknownLoc::get(context), 2185 "could not open input file " + filename); 2186 2187 // Load the MLIR source file. 2188 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 2189 return parseSourceFile(sourceMgr, block, context, sourceFileLoc); 2190 } 2191 2192 LogicalResult mlir::parseSourceString(llvm::StringRef sourceStr, Block *block, 2193 MLIRContext *context, 2194 LocationAttr *sourceFileLoc) { 2195 auto memBuffer = MemoryBuffer::getMemBuffer(sourceStr); 2196 if (!memBuffer) 2197 return failure(); 2198 2199 SourceMgr sourceMgr; 2200 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 2201 return parseSourceFile(sourceMgr, block, context, sourceFileLoc); 2202 } 2203