1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "Parser.h" 14 #include "AsmParserImpl.h" 15 #include "mlir/IR/AffineMap.h" 16 #include "mlir/IR/BuiltinOps.h" 17 #include "mlir/IR/Dialect.h" 18 #include "mlir/IR/Verifier.h" 19 #include "mlir/Parser/AsmParserState.h" 20 #include "mlir/Parser/Parser.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/ScopeExit.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/bit.h" 25 #include "llvm/Support/PrettyStackTrace.h" 26 #include "llvm/Support/SourceMgr.h" 27 #include <algorithm> 28 29 using namespace mlir; 30 using namespace mlir::detail; 31 using llvm::MemoryBuffer; 32 using llvm::SourceMgr; 33 34 //===----------------------------------------------------------------------===// 35 // Parser 36 //===----------------------------------------------------------------------===// 37 38 /// Parse a list of comma-separated items with an optional delimiter. If a 39 /// delimiter is provided, then an empty list is allowed. If not, then at 40 /// least one element will be parsed. 41 ParseResult 42 Parser::parseCommaSeparatedList(Delimiter delimiter, 43 function_ref<ParseResult()> parseElementFn, 44 StringRef contextMessage) { 45 switch (delimiter) { 46 case Delimiter::None: 47 break; 48 case Delimiter::OptionalParen: 49 if (getToken().isNot(Token::l_paren)) 50 return success(); 51 LLVM_FALLTHROUGH; 52 case Delimiter::Paren: 53 if (parseToken(Token::l_paren, "expected '('" + contextMessage)) 54 return failure(); 55 // Check for empty list. 56 if (consumeIf(Token::r_paren)) 57 return success(); 58 break; 59 case Delimiter::OptionalLessGreater: 60 // Check for absent list. 61 if (getToken().isNot(Token::less)) 62 return success(); 63 LLVM_FALLTHROUGH; 64 case Delimiter::LessGreater: 65 if (parseToken(Token::less, "expected '<'" + contextMessage)) 66 return success(); 67 // Check for empty list. 68 if (consumeIf(Token::greater)) 69 return success(); 70 break; 71 case Delimiter::OptionalSquare: 72 if (getToken().isNot(Token::l_square)) 73 return success(); 74 LLVM_FALLTHROUGH; 75 case Delimiter::Square: 76 if (parseToken(Token::l_square, "expected '['" + contextMessage)) 77 return failure(); 78 // Check for empty list. 79 if (consumeIf(Token::r_square)) 80 return success(); 81 break; 82 case Delimiter::OptionalBraces: 83 if (getToken().isNot(Token::l_brace)) 84 return success(); 85 LLVM_FALLTHROUGH; 86 case Delimiter::Braces: 87 if (parseToken(Token::l_brace, "expected '{'" + contextMessage)) 88 return failure(); 89 // Check for empty list. 90 if (consumeIf(Token::r_brace)) 91 return success(); 92 break; 93 } 94 95 // Non-empty case starts with an element. 96 if (parseElementFn()) 97 return failure(); 98 99 // Otherwise we have a list of comma separated elements. 100 while (consumeIf(Token::comma)) { 101 if (parseElementFn()) 102 return failure(); 103 } 104 105 switch (delimiter) { 106 case Delimiter::None: 107 return success(); 108 case Delimiter::OptionalParen: 109 case Delimiter::Paren: 110 return parseToken(Token::r_paren, "expected ')'" + contextMessage); 111 case Delimiter::OptionalLessGreater: 112 case Delimiter::LessGreater: 113 return parseToken(Token::greater, "expected '>'" + contextMessage); 114 case Delimiter::OptionalSquare: 115 case Delimiter::Square: 116 return parseToken(Token::r_square, "expected ']'" + contextMessage); 117 case Delimiter::OptionalBraces: 118 case Delimiter::Braces: 119 return parseToken(Token::r_brace, "expected '}'" + contextMessage); 120 } 121 llvm_unreachable("Unknown delimiter"); 122 } 123 124 /// Parse a comma-separated list of elements, terminated with an arbitrary 125 /// token. This allows empty lists if allowEmptyList is true. 126 /// 127 /// abstract-list ::= rightToken // if allowEmptyList == true 128 /// abstract-list ::= element (',' element)* rightToken 129 /// 130 ParseResult 131 Parser::parseCommaSeparatedListUntil(Token::Kind rightToken, 132 function_ref<ParseResult()> parseElement, 133 bool allowEmptyList) { 134 // Handle the empty case. 135 if (getToken().is(rightToken)) { 136 if (!allowEmptyList) 137 return emitError("expected list element"); 138 consumeToken(rightToken); 139 return success(); 140 } 141 142 if (parseCommaSeparatedList(parseElement) || 143 parseToken(rightToken, "expected ',' or '" + 144 Token::getTokenSpelling(rightToken) + "'")) 145 return failure(); 146 147 return success(); 148 } 149 150 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 151 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 152 153 // If we hit a parse error in response to a lexer error, then the lexer 154 // already reported the error. 155 if (getToken().is(Token::error)) 156 diag.abandon(); 157 return diag; 158 } 159 160 /// Consume the specified token if present and return success. On failure, 161 /// output a diagnostic and return failure. 162 ParseResult Parser::parseToken(Token::Kind expectedToken, 163 const Twine &message) { 164 if (consumeIf(expectedToken)) 165 return success(); 166 return emitError(message); 167 } 168 169 /// Parse an optional integer value from the stream. 170 OptionalParseResult Parser::parseOptionalInteger(APInt &result) { 171 Token curToken = getToken(); 172 if (curToken.isNot(Token::integer, Token::minus)) 173 return llvm::None; 174 175 bool negative = consumeIf(Token::minus); 176 Token curTok = getToken(); 177 if (parseToken(Token::integer, "expected integer value")) 178 return failure(); 179 180 StringRef spelling = curTok.getSpelling(); 181 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 182 if (spelling.getAsInteger(isHex ? 0 : 10, result)) 183 return emitError(curTok.getLoc(), "integer value too large"); 184 185 // Make sure we have a zero at the top so we return the right signedness. 186 if (result.isNegative()) 187 result = result.zext(result.getBitWidth() + 1); 188 189 // Process the negative sign if present. 190 if (negative) 191 result.negate(); 192 193 return success(); 194 } 195 196 /// Parse a floating point value from an integer literal token. 197 ParseResult Parser::parseFloatFromIntegerLiteral( 198 Optional<APFloat> &result, const Token &tok, bool isNegative, 199 const llvm::fltSemantics &semantics, size_t typeSizeInBits) { 200 SMLoc loc = tok.getLoc(); 201 StringRef spelling = tok.getSpelling(); 202 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 203 if (!isHex) { 204 return emitError(loc, "unexpected decimal integer literal for a " 205 "floating point value") 206 .attachNote() 207 << "add a trailing dot to make the literal a float"; 208 } 209 if (isNegative) { 210 return emitError(loc, "hexadecimal float literal should not have a " 211 "leading minus"); 212 } 213 214 Optional<uint64_t> value = tok.getUInt64IntegerValue(); 215 if (!value.hasValue()) 216 return emitError(loc, "hexadecimal float constant out of range for type"); 217 218 if (&semantics == &APFloat::IEEEdouble()) { 219 result = APFloat(semantics, APInt(typeSizeInBits, *value)); 220 return success(); 221 } 222 223 APInt apInt(typeSizeInBits, *value); 224 if (apInt != *value) 225 return emitError(loc, "hexadecimal float constant out of range for type"); 226 result = APFloat(semantics, apInt); 227 228 return success(); 229 } 230 231 //===----------------------------------------------------------------------===// 232 // OperationParser 233 //===----------------------------------------------------------------------===// 234 235 namespace { 236 /// This class provides support for parsing operations and regions of 237 /// operations. 238 class OperationParser : public Parser { 239 public: 240 OperationParser(ParserState &state, ModuleOp topLevelOp); 241 ~OperationParser(); 242 243 /// After parsing is finished, this function must be called to see if there 244 /// are any remaining issues. 245 ParseResult finalize(); 246 247 //===--------------------------------------------------------------------===// 248 // SSA Value Handling 249 //===--------------------------------------------------------------------===// 250 251 /// This represents a use of an SSA value in the program. The first two 252 /// entries in the tuple are the name and result number of a reference. The 253 /// third is the location of the reference, which is used in case this ends 254 /// up being a use of an undefined value. 255 struct SSAUseInfo { 256 StringRef name; // Value name, e.g. %42 or %abc 257 unsigned number; // Number, specified with #12 258 SMLoc loc; // Location of first definition or use. 259 }; 260 struct DeferredLocInfo { 261 SMLoc loc; 262 StringRef identifier; 263 }; 264 265 /// Push a new SSA name scope to the parser. 266 void pushSSANameScope(bool isIsolated); 267 268 /// Pop the last SSA name scope from the parser. 269 ParseResult popSSANameScope(); 270 271 /// Register a definition of a value with the symbol table. 272 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 273 274 /// Parse an optional list of SSA uses into 'results'. 275 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 276 277 /// Parse a single SSA use into 'result'. 278 ParseResult parseSSAUse(SSAUseInfo &result); 279 280 /// Given a reference to an SSA value and its type, return a reference. This 281 /// returns null on failure. 282 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 283 284 ParseResult 285 parseSSADefOrUseAndType(function_ref<ParseResult(SSAUseInfo, Type)> action); 286 287 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 288 289 /// Return the location of the value identified by its name and number if it 290 /// has been already reference. 291 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 292 auto &values = isolatedNameScopes.back().values; 293 if (!values.count(name) || number >= values[name].size()) 294 return {}; 295 if (values[name][number].value) 296 return values[name][number].loc; 297 return {}; 298 } 299 300 //===--------------------------------------------------------------------===// 301 // Operation Parsing 302 //===--------------------------------------------------------------------===// 303 304 /// Parse an operation instance. 305 ParseResult parseOperation(); 306 307 /// Parse a single operation successor. 308 ParseResult parseSuccessor(Block *&dest); 309 310 /// Parse a comma-separated list of operation successors in brackets. 311 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations); 312 313 /// Parse an operation instance that is in the generic form. 314 Operation *parseGenericOperation(); 315 316 /// Parse different components, viz., use-info of operand(s), successor(s), 317 /// region(s), attribute(s) and function-type, of the generic form of an 318 /// operation instance and populate the input operation-state 'result' with 319 /// those components. If any of the components is explicitly provided, then 320 /// skip parsing that component. 321 ParseResult parseGenericOperationAfterOpName( 322 OperationState &result, 323 Optional<ArrayRef<SSAUseInfo>> parsedOperandUseInfo = llvm::None, 324 Optional<ArrayRef<Block *>> parsedSuccessors = llvm::None, 325 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions = 326 llvm::None, 327 Optional<ArrayRef<NamedAttribute>> parsedAttributes = llvm::None, 328 Optional<FunctionType> parsedFnType = llvm::None); 329 330 /// Parse an operation instance that is in the generic form and insert it at 331 /// the provided insertion point. 332 Operation *parseGenericOperation(Block *insertBlock, 333 Block::iterator insertPt); 334 335 /// This type is used to keep track of things that are either an Operation or 336 /// a BlockArgument. We cannot use Value for this, because not all Operations 337 /// have results. 338 using OpOrArgument = llvm::PointerUnion<Operation *, BlockArgument>; 339 340 /// Parse an optional trailing location and add it to the specifier Operation 341 /// or `UnresolvedOperand` if present. 342 /// 343 /// trailing-location ::= (`loc` (`(` location `)` | attribute-alias))? 344 /// 345 ParseResult parseTrailingLocationSpecifier(OpOrArgument opOrArgument); 346 347 /// Parse a location alias, that is a sequence looking like: #loc42 348 /// The alias may have already be defined or may be defined later, in which 349 /// case an OpaqueLoc is used a placeholder. 350 ParseResult parseLocationAlias(LocationAttr &loc); 351 352 /// This is the structure of a result specifier in the assembly syntax, 353 /// including the name, number of results, and location. 354 using ResultRecord = std::tuple<StringRef, unsigned, SMLoc>; 355 356 /// Parse an operation instance that is in the op-defined custom form. 357 /// resultInfo specifies information about the "%name =" specifiers. 358 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs); 359 360 /// Parse the name of an operation, in the custom form. On success, return a 361 /// an object of type 'OperationName'. Otherwise, failure is returned. 362 FailureOr<OperationName> parseCustomOperationName(); 363 364 //===--------------------------------------------------------------------===// 365 // Region Parsing 366 //===--------------------------------------------------------------------===// 367 368 /// Parse a region into 'region' with the provided entry block arguments. 369 /// If non-empty, 'argLocations' contains an optional locations for each 370 /// argument. 'isIsolatedNameScope' indicates if the naming scope of this 371 /// region is isolated from those above. 372 ParseResult parseRegion(Region ®ion, 373 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 374 ArrayRef<Location> argLocations, 375 bool isIsolatedNameScope = false); 376 377 /// Parse a region body into 'region'. 378 ParseResult 379 parseRegionBody(Region ®ion, SMLoc startLoc, 380 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 381 ArrayRef<Location> argLocations, bool isIsolatedNameScope); 382 383 //===--------------------------------------------------------------------===// 384 // Block Parsing 385 //===--------------------------------------------------------------------===// 386 387 /// Parse a new block into 'block'. 388 ParseResult parseBlock(Block *&block); 389 390 /// Parse a list of operations into 'block'. 391 ParseResult parseBlockBody(Block *block); 392 393 /// Parse a (possibly empty) list of block arguments. 394 ParseResult parseOptionalBlockArgList(Block *owner); 395 396 /// Get the block with the specified name, creating it if it doesn't 397 /// already exist. The location specified is the point of use, which allows 398 /// us to diagnose references to blocks that are not defined precisely. 399 Block *getBlockNamed(StringRef name, SMLoc loc); 400 401 private: 402 /// This class represents a definition of a Block. 403 struct BlockDefinition { 404 /// A pointer to the defined Block. 405 Block *block; 406 /// The location that the Block was defined at. 407 SMLoc loc; 408 }; 409 /// This class represents a definition of a Value. 410 struct ValueDefinition { 411 /// A pointer to the defined Value. 412 Value value; 413 /// The location that the Value was defined at. 414 SMLoc loc; 415 }; 416 417 /// Returns the info for a block at the current scope for the given name. 418 BlockDefinition &getBlockInfoByName(StringRef name) { 419 return blocksByName.back()[name]; 420 } 421 422 /// Insert a new forward reference to the given block. 423 void insertForwardRef(Block *block, SMLoc loc) { 424 forwardRef.back().try_emplace(block, loc); 425 } 426 427 /// Erase any forward reference to the given block. 428 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 429 430 /// Record that a definition was added at the current scope. 431 void recordDefinition(StringRef def); 432 433 /// Get the value entry for the given SSA name. 434 SmallVectorImpl<ValueDefinition> &getSSAValueEntry(StringRef name); 435 436 /// Create a forward reference placeholder value with the given location and 437 /// result type. 438 Value createForwardRefPlaceholder(SMLoc loc, Type type); 439 440 /// Return true if this is a forward reference. 441 bool isForwardRefPlaceholder(Value value) { 442 return forwardRefPlaceholders.count(value); 443 } 444 445 /// This struct represents an isolated SSA name scope. This scope may contain 446 /// other nested non-isolated scopes. These scopes are used for operations 447 /// that are known to be isolated to allow for reusing names within their 448 /// regions, even if those names are used above. 449 struct IsolatedSSANameScope { 450 /// Record that a definition was added at the current scope. 451 void recordDefinition(StringRef def) { 452 definitionsPerScope.back().insert(def); 453 } 454 455 /// Push a nested name scope. 456 void pushSSANameScope() { definitionsPerScope.push_back({}); } 457 458 /// Pop a nested name scope. 459 void popSSANameScope() { 460 for (auto &def : definitionsPerScope.pop_back_val()) 461 values.erase(def.getKey()); 462 } 463 464 /// This keeps track of all of the SSA values we are tracking for each name 465 /// scope, indexed by their name. This has one entry per result number. 466 llvm::StringMap<SmallVector<ValueDefinition, 1>> values; 467 468 /// This keeps track of all of the values defined by a specific name scope. 469 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 470 }; 471 472 /// A list of isolated name scopes. 473 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 474 475 /// This keeps track of the block names as well as the location of the first 476 /// reference for each nested name scope. This is used to diagnose invalid 477 /// block references and memorize them. 478 SmallVector<DenseMap<StringRef, BlockDefinition>, 2> blocksByName; 479 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 480 481 /// These are all of the placeholders we've made along with the location of 482 /// their first reference, to allow checking for use of undefined values. 483 DenseMap<Value, SMLoc> forwardRefPlaceholders; 484 485 /// Deffered locations: when parsing `loc(#loc42)` we add an entry to this 486 /// map. After parsing the definition `#loc42 = ...` we'll patch back users 487 /// of this location. 488 std::vector<DeferredLocInfo> deferredLocsReferences; 489 490 /// The builder used when creating parsed operation instances. 491 OpBuilder opBuilder; 492 493 /// The top level operation that holds all of the parsed operations. 494 Operation *topLevelOp; 495 }; 496 } // namespace 497 498 MLIR_DECLARE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *) 499 MLIR_DEFINE_EXPLICIT_TYPE_ID(OperationParser::DeferredLocInfo *) 500 501 OperationParser::OperationParser(ParserState &state, ModuleOp topLevelOp) 502 : Parser(state), opBuilder(topLevelOp.getRegion()), topLevelOp(topLevelOp) { 503 // The top level operation starts a new name scope. 504 pushSSANameScope(/*isIsolated=*/true); 505 506 // If we are populating the parser state, prepare it for parsing. 507 if (state.asmState) 508 state.asmState->initialize(topLevelOp); 509 } 510 511 OperationParser::~OperationParser() { 512 for (auto &fwd : forwardRefPlaceholders) { 513 // Drop all uses of undefined forward declared reference and destroy 514 // defining operation. 515 fwd.first.dropAllUses(); 516 fwd.first.getDefiningOp()->destroy(); 517 } 518 for (const auto &scope : forwardRef) { 519 for (const auto &fwd : scope) { 520 // Delete all blocks that were created as forward references but never 521 // included into a region. 522 fwd.first->dropAllUses(); 523 delete fwd.first; 524 } 525 } 526 } 527 528 /// After parsing is finished, this function must be called to see if there are 529 /// any remaining issues. 530 ParseResult OperationParser::finalize() { 531 // Check for any forward references that are left. If we find any, error 532 // out. 533 if (!forwardRefPlaceholders.empty()) { 534 SmallVector<const char *, 4> errors; 535 // Iteration over the map isn't deterministic, so sort by source location. 536 for (auto entry : forwardRefPlaceholders) 537 errors.push_back(entry.second.getPointer()); 538 llvm::array_pod_sort(errors.begin(), errors.end()); 539 540 for (const char *entry : errors) { 541 auto loc = SMLoc::getFromPointer(entry); 542 emitError(loc, "use of undeclared SSA value name"); 543 } 544 return failure(); 545 } 546 547 // Resolve the locations of any deferred operations. 548 auto &attributeAliases = state.symbols.attributeAliasDefinitions; 549 auto locID = TypeID::get<DeferredLocInfo *>(); 550 auto resolveLocation = [&, this](auto &opOrArgument) -> LogicalResult { 551 auto fwdLoc = opOrArgument.getLoc().template dyn_cast<OpaqueLoc>(); 552 if (!fwdLoc || fwdLoc.getUnderlyingTypeID() != locID) 553 return success(); 554 auto locInfo = deferredLocsReferences[fwdLoc.getUnderlyingLocation()]; 555 Attribute attr = attributeAliases.lookup(locInfo.identifier); 556 if (!attr) 557 return this->emitError(locInfo.loc) 558 << "operation location alias was never defined"; 559 auto locAttr = attr.dyn_cast<LocationAttr>(); 560 if (!locAttr) 561 return this->emitError(locInfo.loc) 562 << "expected location, but found '" << attr << "'"; 563 opOrArgument.setLoc(locAttr); 564 return success(); 565 }; 566 567 auto walkRes = topLevelOp->walk([&](Operation *op) { 568 if (failed(resolveLocation(*op))) 569 return WalkResult::interrupt(); 570 for (Region ®ion : op->getRegions()) 571 for (Block &block : region.getBlocks()) 572 for (BlockArgument arg : block.getArguments()) 573 if (failed(resolveLocation(arg))) 574 return WalkResult::interrupt(); 575 return WalkResult::advance(); 576 }); 577 if (walkRes.wasInterrupted()) 578 return failure(); 579 580 // Pop the top level name scope. 581 if (failed(popSSANameScope())) 582 return failure(); 583 584 // Verify that the parsed operations are valid. 585 if (failed(verify(topLevelOp))) 586 return failure(); 587 588 // If we are populating the parser state, finalize the top-level operation. 589 if (state.asmState) 590 state.asmState->finalize(topLevelOp); 591 return success(); 592 } 593 594 //===----------------------------------------------------------------------===// 595 // SSA Value Handling 596 //===----------------------------------------------------------------------===// 597 598 void OperationParser::pushSSANameScope(bool isIsolated) { 599 blocksByName.push_back(DenseMap<StringRef, BlockDefinition>()); 600 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 601 602 // Push back a new name definition scope. 603 if (isIsolated) 604 isolatedNameScopes.push_back({}); 605 isolatedNameScopes.back().pushSSANameScope(); 606 } 607 608 ParseResult OperationParser::popSSANameScope() { 609 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 610 611 // Verify that all referenced blocks were defined. 612 if (!forwardRefInCurrentScope.empty()) { 613 SmallVector<std::pair<const char *, Block *>, 4> errors; 614 // Iteration over the map isn't deterministic, so sort by source location. 615 for (auto entry : forwardRefInCurrentScope) { 616 errors.push_back({entry.second.getPointer(), entry.first}); 617 // Add this block to the top-level region to allow for automatic cleanup. 618 topLevelOp->getRegion(0).push_back(entry.first); 619 } 620 llvm::array_pod_sort(errors.begin(), errors.end()); 621 622 for (auto entry : errors) { 623 auto loc = SMLoc::getFromPointer(entry.first); 624 emitError(loc, "reference to an undefined block"); 625 } 626 return failure(); 627 } 628 629 // Pop the next nested namescope. If there is only one internal namescope, 630 // just pop the isolated scope. 631 auto ¤tNameScope = isolatedNameScopes.back(); 632 if (currentNameScope.definitionsPerScope.size() == 1) 633 isolatedNameScopes.pop_back(); 634 else 635 currentNameScope.popSSANameScope(); 636 637 blocksByName.pop_back(); 638 return success(); 639 } 640 641 /// Register a definition of a value with the symbol table. 642 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 643 auto &entries = getSSAValueEntry(useInfo.name); 644 645 // Make sure there is a slot for this value. 646 if (entries.size() <= useInfo.number) 647 entries.resize(useInfo.number + 1); 648 649 // If we already have an entry for this, check to see if it was a definition 650 // or a forward reference. 651 if (auto existing = entries[useInfo.number].value) { 652 if (!isForwardRefPlaceholder(existing)) { 653 return emitError(useInfo.loc) 654 .append("redefinition of SSA value '", useInfo.name, "'") 655 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 656 .append("previously defined here"); 657 } 658 659 if (existing.getType() != value.getType()) { 660 return emitError(useInfo.loc) 661 .append("definition of SSA value '", useInfo.name, "#", 662 useInfo.number, "' has type ", value.getType()) 663 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 664 .append("previously used here with type ", existing.getType()); 665 } 666 667 // If it was a forward reference, update everything that used it to use 668 // the actual definition instead, delete the forward ref, and remove it 669 // from our set of forward references we track. 670 existing.replaceAllUsesWith(value); 671 existing.getDefiningOp()->destroy(); 672 forwardRefPlaceholders.erase(existing); 673 674 // If a definition of the value already exists, replace it in the assembly 675 // state. 676 if (state.asmState) 677 state.asmState->refineDefinition(existing, value); 678 } 679 680 /// Record this definition for the current scope. 681 entries[useInfo.number] = {value, useInfo.loc}; 682 recordDefinition(useInfo.name); 683 return success(); 684 } 685 686 /// Parse a (possibly empty) list of SSA operands. 687 /// 688 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 689 /// ssa-use-list-opt ::= ssa-use-list? 690 /// 691 ParseResult 692 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 693 if (getToken().isNot(Token::percent_identifier)) 694 return success(); 695 return parseCommaSeparatedList([&]() -> ParseResult { 696 SSAUseInfo result; 697 if (parseSSAUse(result)) 698 return failure(); 699 results.push_back(result); 700 return success(); 701 }); 702 } 703 704 /// Parse a SSA operand for an operation. 705 /// 706 /// ssa-use ::= ssa-id 707 /// 708 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 709 result.name = getTokenSpelling(); 710 result.number = 0; 711 result.loc = getToken().getLoc(); 712 if (parseToken(Token::percent_identifier, "expected SSA operand")) 713 return failure(); 714 715 // If we have an attribute ID, it is a result number. 716 if (getToken().is(Token::hash_identifier)) { 717 if (auto value = getToken().getHashIdentifierNumber()) 718 result.number = value.getValue(); 719 else 720 return emitError("invalid SSA value result number"); 721 consumeToken(Token::hash_identifier); 722 } 723 724 return success(); 725 } 726 727 /// Given an unbound reference to an SSA value and its type, return the value 728 /// it specifies. This returns null on failure. 729 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 730 auto &entries = getSSAValueEntry(useInfo.name); 731 732 // Functor used to record the use of the given value if the assembly state 733 // field is populated. 734 auto maybeRecordUse = [&](Value value) { 735 if (state.asmState) 736 state.asmState->addUses(value, useInfo.loc); 737 return value; 738 }; 739 740 // If we have already seen a value of this name, return it. 741 if (useInfo.number < entries.size() && entries[useInfo.number].value) { 742 Value result = entries[useInfo.number].value; 743 // Check that the type matches the other uses. 744 if (result.getType() == type) 745 return maybeRecordUse(result); 746 747 emitError(useInfo.loc, "use of value '") 748 .append(useInfo.name, 749 "' expects different type than prior uses: ", type, " vs ", 750 result.getType()) 751 .attachNote(getEncodedSourceLocation(entries[useInfo.number].loc)) 752 .append("prior use here"); 753 return nullptr; 754 } 755 756 // Make sure we have enough slots for this. 757 if (entries.size() <= useInfo.number) 758 entries.resize(useInfo.number + 1); 759 760 // If the value has already been defined and this is an overly large result 761 // number, diagnose that. 762 if (entries[0].value && !isForwardRefPlaceholder(entries[0].value)) 763 return (emitError(useInfo.loc, "reference to invalid result number"), 764 nullptr); 765 766 // Otherwise, this is a forward reference. Create a placeholder and remember 767 // that we did so. 768 Value result = createForwardRefPlaceholder(useInfo.loc, type); 769 entries[useInfo.number] = {result, useInfo.loc}; 770 return maybeRecordUse(result); 771 } 772 773 /// Parse an SSA use with an associated type. 774 /// 775 /// ssa-use-and-type ::= ssa-use `:` type 776 ParseResult OperationParser::parseSSADefOrUseAndType( 777 function_ref<ParseResult(SSAUseInfo, Type)> action) { 778 SSAUseInfo useInfo; 779 if (parseSSAUse(useInfo) || 780 parseToken(Token::colon, "expected ':' and type for SSA operand")) 781 return failure(); 782 783 auto type = parseType(); 784 if (!type) 785 return failure(); 786 787 return action(useInfo, type); 788 } 789 790 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 791 /// followed by a type list. 792 /// 793 /// ssa-use-and-type-list 794 /// ::= ssa-use-list ':' type-list-no-parens 795 /// 796 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 797 SmallVectorImpl<Value> &results) { 798 SmallVector<SSAUseInfo, 4> valueIDs; 799 if (parseOptionalSSAUseList(valueIDs)) 800 return failure(); 801 802 // If there were no operands, then there is no colon or type lists. 803 if (valueIDs.empty()) 804 return success(); 805 806 SmallVector<Type, 4> types; 807 if (parseToken(Token::colon, "expected ':' in operand list") || 808 parseTypeListNoParens(types)) 809 return failure(); 810 811 if (valueIDs.size() != types.size()) 812 return emitError("expected ") 813 << valueIDs.size() << " types to match operand list"; 814 815 results.reserve(valueIDs.size()); 816 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 817 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 818 results.push_back(value); 819 else 820 return failure(); 821 } 822 823 return success(); 824 } 825 826 /// Record that a definition was added at the current scope. 827 void OperationParser::recordDefinition(StringRef def) { 828 isolatedNameScopes.back().recordDefinition(def); 829 } 830 831 /// Get the value entry for the given SSA name. 832 auto OperationParser::getSSAValueEntry(StringRef name) 833 -> SmallVectorImpl<ValueDefinition> & { 834 return isolatedNameScopes.back().values[name]; 835 } 836 837 /// Create and remember a new placeholder for a forward reference. 838 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 839 // Forward references are always created as operations, because we just need 840 // something with a def/use chain. 841 // 842 // We create these placeholders as having an empty name, which we know 843 // cannot be created through normal user input, allowing us to distinguish 844 // them. 845 auto name = OperationName("builtin.unrealized_conversion_cast", getContext()); 846 auto *op = Operation::create( 847 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 848 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0); 849 forwardRefPlaceholders[op->getResult(0)] = loc; 850 return op->getResult(0); 851 } 852 853 //===----------------------------------------------------------------------===// 854 // Operation Parsing 855 //===----------------------------------------------------------------------===// 856 857 /// Parse an operation. 858 /// 859 /// operation ::= op-result-list? 860 /// (generic-operation | custom-operation) 861 /// trailing-location? 862 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 863 /// successor-list? (`(` region-list `)`)? 864 /// attribute-dict? `:` function-type 865 /// custom-operation ::= bare-id custom-operation-format 866 /// op-result-list ::= op-result (`,` op-result)* `=` 867 /// op-result ::= ssa-id (`:` integer-literal) 868 /// 869 ParseResult OperationParser::parseOperation() { 870 auto loc = getToken().getLoc(); 871 SmallVector<ResultRecord, 1> resultIDs; 872 size_t numExpectedResults = 0; 873 if (getToken().is(Token::percent_identifier)) { 874 // Parse the group of result ids. 875 auto parseNextResult = [&]() -> ParseResult { 876 // Parse the next result id. 877 if (!getToken().is(Token::percent_identifier)) 878 return emitError("expected valid ssa identifier"); 879 880 Token nameTok = getToken(); 881 consumeToken(Token::percent_identifier); 882 883 // If the next token is a ':', we parse the expected result count. 884 size_t expectedSubResults = 1; 885 if (consumeIf(Token::colon)) { 886 // Check that the next token is an integer. 887 if (!getToken().is(Token::integer)) 888 return emitError("expected integer number of results"); 889 890 // Check that number of results is > 0. 891 auto val = getToken().getUInt64IntegerValue(); 892 if (!val.hasValue() || val.getValue() < 1) 893 return emitError("expected named operation to have atleast 1 result"); 894 consumeToken(Token::integer); 895 expectedSubResults = *val; 896 } 897 898 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 899 nameTok.getLoc()); 900 numExpectedResults += expectedSubResults; 901 return success(); 902 }; 903 if (parseCommaSeparatedList(parseNextResult)) 904 return failure(); 905 906 if (parseToken(Token::equal, "expected '=' after SSA name")) 907 return failure(); 908 } 909 910 Operation *op; 911 Token nameTok = getToken(); 912 if (nameTok.is(Token::bare_identifier) || nameTok.isKeyword()) 913 op = parseCustomOperation(resultIDs); 914 else if (nameTok.is(Token::string)) 915 op = parseGenericOperation(); 916 else 917 return emitError("expected operation name in quotes"); 918 919 // If parsing of the basic operation failed, then this whole thing fails. 920 if (!op) 921 return failure(); 922 923 // If the operation had a name, register it. 924 if (!resultIDs.empty()) { 925 if (op->getNumResults() == 0) 926 return emitError(loc, "cannot name an operation with no results"); 927 if (numExpectedResults != op->getNumResults()) 928 return emitError(loc, "operation defines ") 929 << op->getNumResults() << " results but was provided " 930 << numExpectedResults << " to bind"; 931 932 // Add this operation to the assembly state if it was provided to populate. 933 if (state.asmState) { 934 unsigned resultIt = 0; 935 SmallVector<std::pair<unsigned, SMLoc>> asmResultGroups; 936 asmResultGroups.reserve(resultIDs.size()); 937 for (ResultRecord &record : resultIDs) { 938 asmResultGroups.emplace_back(resultIt, std::get<2>(record)); 939 resultIt += std::get<1>(record); 940 } 941 state.asmState->finalizeOperationDefinition( 942 op, nameTok.getLocRange(), /*endLoc=*/getToken().getLoc(), 943 asmResultGroups); 944 } 945 946 // Add definitions for each of the result groups. 947 unsigned opResI = 0; 948 for (ResultRecord &resIt : resultIDs) { 949 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 950 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 951 op->getResult(opResI++))) 952 return failure(); 953 } 954 } 955 956 // Add this operation to the assembly state if it was provided to populate. 957 } else if (state.asmState) { 958 state.asmState->finalizeOperationDefinition(op, nameTok.getLocRange(), 959 /*endLoc=*/getToken().getLoc()); 960 } 961 962 return success(); 963 } 964 965 /// Parse a single operation successor. 966 /// 967 /// successor ::= block-id 968 /// 969 ParseResult OperationParser::parseSuccessor(Block *&dest) { 970 // Verify branch is identifier and get the matching block. 971 if (!getToken().is(Token::caret_identifier)) 972 return emitError("expected block name"); 973 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 974 consumeToken(); 975 return success(); 976 } 977 978 /// Parse a comma-separated list of operation successors in brackets. 979 /// 980 /// successor-list ::= `[` successor (`,` successor )* `]` 981 /// 982 ParseResult 983 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) { 984 if (parseToken(Token::l_square, "expected '['")) 985 return failure(); 986 987 auto parseElt = [this, &destinations] { 988 Block *dest; 989 ParseResult res = parseSuccessor(dest); 990 destinations.push_back(dest); 991 return res; 992 }; 993 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 994 /*allowEmptyList=*/false); 995 } 996 997 namespace { 998 // RAII-style guard for cleaning up the regions in the operation state before 999 // deleting them. Within the parser, regions may get deleted if parsing failed, 1000 // and other errors may be present, in particular undominated uses. This makes 1001 // sure such uses are deleted. 1002 struct CleanupOpStateRegions { 1003 ~CleanupOpStateRegions() { 1004 SmallVector<Region *, 4> regionsToClean; 1005 regionsToClean.reserve(state.regions.size()); 1006 for (auto ®ion : state.regions) 1007 if (region) 1008 for (auto &block : *region) 1009 block.dropAllDefinedValueUses(); 1010 } 1011 OperationState &state; 1012 }; 1013 } // namespace 1014 1015 ParseResult OperationParser::parseGenericOperationAfterOpName( 1016 OperationState &result, Optional<ArrayRef<SSAUseInfo>> parsedOperandUseInfo, 1017 Optional<ArrayRef<Block *>> parsedSuccessors, 1018 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions, 1019 Optional<ArrayRef<NamedAttribute>> parsedAttributes, 1020 Optional<FunctionType> parsedFnType) { 1021 1022 // Parse the operand list, if not explicitly provided. 1023 SmallVector<SSAUseInfo, 8> opInfo; 1024 if (!parsedOperandUseInfo) { 1025 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 1026 parseOptionalSSAUseList(opInfo) || 1027 parseToken(Token::r_paren, "expected ')' to end operand list")) { 1028 return failure(); 1029 } 1030 parsedOperandUseInfo = opInfo; 1031 } 1032 1033 // Parse the successor list, if not explicitly provided. 1034 if (!parsedSuccessors) { 1035 if (getToken().is(Token::l_square)) { 1036 // Check if the operation is not a known terminator. 1037 if (!result.name.mightHaveTrait<OpTrait::IsTerminator>()) 1038 return emitError("successors in non-terminator"); 1039 1040 SmallVector<Block *, 2> successors; 1041 if (parseSuccessors(successors)) 1042 return failure(); 1043 result.addSuccessors(successors); 1044 } 1045 } else { 1046 result.addSuccessors(*parsedSuccessors); 1047 } 1048 1049 // Parse the region list, if not explicitly provided. 1050 if (!parsedRegions) { 1051 if (consumeIf(Token::l_paren)) { 1052 do { 1053 // Create temporary regions with the top level region as parent. 1054 result.regions.emplace_back(new Region(topLevelOp)); 1055 if (parseRegion(*result.regions.back(), /*entryArguments=*/{}, 1056 /*argLocations=*/{})) 1057 return failure(); 1058 } while (consumeIf(Token::comma)); 1059 if (parseToken(Token::r_paren, "expected ')' to end region list")) 1060 return failure(); 1061 } 1062 } else { 1063 result.addRegions(*parsedRegions); 1064 } 1065 1066 // Parse the attributes, if not explicitly provided. 1067 if (!parsedAttributes) { 1068 if (getToken().is(Token::l_brace)) { 1069 if (parseAttributeDict(result.attributes)) 1070 return failure(); 1071 } 1072 } else { 1073 result.addAttributes(*parsedAttributes); 1074 } 1075 1076 // Parse the operation type, if not explicitly provided. 1077 Location typeLoc = result.location; 1078 if (!parsedFnType) { 1079 if (parseToken(Token::colon, "expected ':' followed by operation type")) 1080 return failure(); 1081 1082 typeLoc = getEncodedSourceLocation(getToken().getLoc()); 1083 auto type = parseType(); 1084 if (!type) 1085 return failure(); 1086 auto fnType = type.dyn_cast<FunctionType>(); 1087 if (!fnType) 1088 return mlir::emitError(typeLoc, "expected function type"); 1089 1090 parsedFnType = fnType; 1091 } 1092 1093 result.addTypes(parsedFnType->getResults()); 1094 1095 // Check that we have the right number of types for the operands. 1096 ArrayRef<Type> operandTypes = parsedFnType->getInputs(); 1097 if (operandTypes.size() != parsedOperandUseInfo->size()) { 1098 auto plural = "s"[parsedOperandUseInfo->size() == 1]; 1099 return mlir::emitError(typeLoc, "expected ") 1100 << parsedOperandUseInfo->size() << " operand type" << plural 1101 << " but had " << operandTypes.size(); 1102 } 1103 1104 // Resolve all of the operands. 1105 for (unsigned i = 0, e = parsedOperandUseInfo->size(); i != e; ++i) { 1106 result.operands.push_back( 1107 resolveSSAUse((*parsedOperandUseInfo)[i], operandTypes[i])); 1108 if (!result.operands.back()) 1109 return failure(); 1110 } 1111 1112 return success(); 1113 } 1114 1115 Operation *OperationParser::parseGenericOperation() { 1116 // Get location information for the operation. 1117 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 1118 1119 std::string name = getToken().getStringValue(); 1120 if (name.empty()) 1121 return (emitError("empty operation name is invalid"), nullptr); 1122 if (name.find('\0') != StringRef::npos) 1123 return (emitError("null character not allowed in operation name"), nullptr); 1124 1125 consumeToken(Token::string); 1126 1127 OperationState result(srcLocation, name); 1128 CleanupOpStateRegions guard{result}; 1129 1130 // Lazy load dialects in the context as needed. 1131 if (!result.name.isRegistered()) { 1132 StringRef dialectName = StringRef(name).split('.').first; 1133 if (!getContext()->getLoadedDialect(dialectName) && 1134 !getContext()->getOrLoadDialect(dialectName) && 1135 !getContext()->allowsUnregisteredDialects()) { 1136 // Emit an error if the dialect couldn't be loaded (i.e., it was not 1137 // registered) and unregistered dialects aren't allowed. 1138 emitError("operation being parsed with an unregistered dialect. If " 1139 "this is intended, please use -allow-unregistered-dialect " 1140 "with the MLIR tool used"); 1141 return nullptr; 1142 } 1143 } 1144 1145 // If we are populating the parser state, start a new operation definition. 1146 if (state.asmState) 1147 state.asmState->startOperationDefinition(result.name); 1148 1149 if (parseGenericOperationAfterOpName(result)) 1150 return nullptr; 1151 1152 // Create the operation and try to parse a location for it. 1153 Operation *op = opBuilder.create(result); 1154 if (parseTrailingLocationSpecifier(op)) 1155 return nullptr; 1156 return op; 1157 } 1158 1159 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 1160 Block::iterator insertPt) { 1161 Token nameToken = getToken(); 1162 1163 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 1164 opBuilder.setInsertionPoint(insertBlock, insertPt); 1165 Operation *op = parseGenericOperation(); 1166 if (!op) 1167 return nullptr; 1168 1169 // If we are populating the parser asm state, finalize this operation 1170 // definition. 1171 if (state.asmState) 1172 state.asmState->finalizeOperationDefinition(op, nameToken.getLocRange(), 1173 /*endLoc=*/getToken().getLoc()); 1174 return op; 1175 } 1176 1177 namespace { 1178 class CustomOpAsmParser : public AsmParserImpl<OpAsmParser> { 1179 public: 1180 CustomOpAsmParser( 1181 SMLoc nameLoc, ArrayRef<OperationParser::ResultRecord> resultIDs, 1182 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly, 1183 bool isIsolatedFromAbove, StringRef opName, OperationParser &parser) 1184 : AsmParserImpl<OpAsmParser>(nameLoc, parser), resultIDs(resultIDs), 1185 parseAssembly(parseAssembly), isIsolatedFromAbove(isIsolatedFromAbove), 1186 opName(opName), parser(parser) { 1187 (void)isIsolatedFromAbove; // Only used in assert, silence unused warning. 1188 } 1189 1190 /// Parse an instance of the operation described by 'opDefinition' into the 1191 /// provided operation state. 1192 ParseResult parseOperation(OperationState &opState) { 1193 if (parseAssembly(*this, opState)) 1194 return failure(); 1195 // Verify that the parsed attributes does not have duplicate attributes. 1196 // This can happen if an attribute set during parsing is also specified in 1197 // the attribute dictionary in the assembly, or the attribute is set 1198 // multiple during parsing. 1199 Optional<NamedAttribute> duplicate = opState.attributes.findDuplicate(); 1200 if (duplicate) 1201 return emitError(getNameLoc(), "attribute '") 1202 << duplicate->getName().getValue() 1203 << "' occurs more than once in the attribute list"; 1204 return success(); 1205 } 1206 1207 Operation *parseGenericOperation(Block *insertBlock, 1208 Block::iterator insertPt) final { 1209 return parser.parseGenericOperation(insertBlock, insertPt); 1210 } 1211 1212 FailureOr<OperationName> parseCustomOperationName() final { 1213 return parser.parseCustomOperationName(); 1214 } 1215 1216 ParseResult parseGenericOperationAfterOpName( 1217 OperationState &result, 1218 Optional<ArrayRef<UnresolvedOperand>> parsedUnresolvedOperands, 1219 Optional<ArrayRef<Block *>> parsedSuccessors, 1220 Optional<MutableArrayRef<std::unique_ptr<Region>>> parsedRegions, 1221 Optional<ArrayRef<NamedAttribute>> parsedAttributes, 1222 Optional<FunctionType> parsedFnType) final { 1223 1224 // TODO: The types, UnresolvedOperand and SSAUseInfo, both share the same 1225 // members but in different order. It would be cleaner to make one alias of 1226 // the other, making the following code redundant. 1227 SmallVector<OperationParser::SSAUseInfo> parsedOperandUseInfo; 1228 if (parsedUnresolvedOperands) { 1229 for (const UnresolvedOperand &parsedUnresolvedOperand : 1230 *parsedUnresolvedOperands) 1231 parsedOperandUseInfo.push_back({ 1232 parsedUnresolvedOperand.name, 1233 parsedUnresolvedOperand.number, 1234 parsedUnresolvedOperand.location, 1235 }); 1236 } 1237 1238 return parser.parseGenericOperationAfterOpName( 1239 result, 1240 parsedUnresolvedOperands ? llvm::makeArrayRef(parsedOperandUseInfo) 1241 : llvm::None, 1242 parsedSuccessors, parsedRegions, parsedAttributes, parsedFnType); 1243 } 1244 //===--------------------------------------------------------------------===// 1245 // Utilities 1246 //===--------------------------------------------------------------------===// 1247 1248 /// Return the name of the specified result in the specified syntax, as well 1249 /// as the subelement in the name. For example, in this operation: 1250 /// 1251 /// %x, %y:2, %z = foo.op 1252 /// 1253 /// getResultName(0) == {"x", 0 } 1254 /// getResultName(1) == {"y", 0 } 1255 /// getResultName(2) == {"y", 1 } 1256 /// getResultName(3) == {"z", 0 } 1257 std::pair<StringRef, unsigned> 1258 getResultName(unsigned resultNo) const override { 1259 // Scan for the resultID that contains this result number. 1260 for (const auto &entry : resultIDs) { 1261 if (resultNo < std::get<1>(entry)) { 1262 // Don't pass on the leading %. 1263 StringRef name = std::get<0>(entry).drop_front(); 1264 return {name, resultNo}; 1265 } 1266 resultNo -= std::get<1>(entry); 1267 } 1268 1269 // Invalid result number. 1270 return {"", ~0U}; 1271 } 1272 1273 /// Return the number of declared SSA results. This returns 4 for the foo.op 1274 /// example in the comment for getResultName. 1275 size_t getNumResults() const override { 1276 size_t count = 0; 1277 for (auto &entry : resultIDs) 1278 count += std::get<1>(entry); 1279 return count; 1280 } 1281 1282 /// Emit a diagnostic at the specified location and return failure. 1283 InFlightDiagnostic emitError(SMLoc loc, const Twine &message) override { 1284 return AsmParserImpl<OpAsmParser>::emitError(loc, "custom op '" + opName + 1285 "' " + message); 1286 } 1287 1288 //===--------------------------------------------------------------------===// 1289 // Operand Parsing 1290 //===--------------------------------------------------------------------===// 1291 1292 /// Parse a single operand. 1293 ParseResult parseOperand(UnresolvedOperand &result) override { 1294 OperationParser::SSAUseInfo useInfo; 1295 if (parser.parseSSAUse(useInfo)) 1296 return failure(); 1297 1298 result = {useInfo.loc, useInfo.name, useInfo.number}; 1299 return success(); 1300 } 1301 1302 /// Parse a single operand if present. 1303 OptionalParseResult parseOptionalOperand(UnresolvedOperand &result) override { 1304 if (parser.getToken().is(Token::percent_identifier)) 1305 return parseOperand(result); 1306 return llvm::None; 1307 } 1308 1309 /// Parse zero or more SSA comma-separated operand references with a specified 1310 /// surrounding delimiter, and an optional required operand count. 1311 ParseResult parseOperandList(SmallVectorImpl<UnresolvedOperand> &result, 1312 int requiredOperandCount = -1, 1313 Delimiter delimiter = Delimiter::None) override { 1314 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 1315 requiredOperandCount, delimiter); 1316 } 1317 1318 /// Parse zero or more SSA comma-separated operand or region arguments with 1319 /// optional surrounding delimiter and required operand count. 1320 ParseResult 1321 parseOperandOrRegionArgList(SmallVectorImpl<UnresolvedOperand> &result, 1322 bool isOperandList, int requiredOperandCount = -1, 1323 Delimiter delimiter = Delimiter::None) { 1324 auto startLoc = parser.getToken().getLoc(); 1325 1326 // The no-delimiter case has some special handling for better diagnostics. 1327 if (delimiter == Delimiter::None) { 1328 // parseCommaSeparatedList doesn't handle the missing case for "none", 1329 // so we handle it custom here. 1330 if (parser.getToken().isNot(Token::percent_identifier)) { 1331 // If we didn't require any operands or required exactly zero (weird) 1332 // then this is success. 1333 if (requiredOperandCount == -1 || requiredOperandCount == 0) 1334 return success(); 1335 1336 // Otherwise, try to produce a nice error message. 1337 if (parser.getToken().is(Token::l_paren) || 1338 parser.getToken().is(Token::l_square)) 1339 return emitError(startLoc, "unexpected delimiter"); 1340 return emitError(startLoc, "invalid operand"); 1341 } 1342 } 1343 1344 auto parseOneOperand = [&]() -> ParseResult { 1345 UnresolvedOperand operandOrArg; 1346 if (isOperandList ? parseOperand(operandOrArg) 1347 : parseRegionArgument(operandOrArg)) 1348 return failure(); 1349 result.push_back(operandOrArg); 1350 return success(); 1351 }; 1352 1353 if (parseCommaSeparatedList(delimiter, parseOneOperand, " in operand list")) 1354 return failure(); 1355 1356 // Check that we got the expected # of elements. 1357 if (requiredOperandCount != -1 && 1358 result.size() != static_cast<size_t>(requiredOperandCount)) 1359 return emitError(startLoc, "expected ") 1360 << requiredOperandCount << " operands"; 1361 return success(); 1362 } 1363 1364 /// Parse zero or more trailing SSA comma-separated trailing operand 1365 /// references with a specified surrounding delimiter, and an optional 1366 /// required operand count. A leading comma is expected before the operands. 1367 ParseResult 1368 parseTrailingOperandList(SmallVectorImpl<UnresolvedOperand> &result, 1369 int requiredOperandCount, 1370 Delimiter delimiter) override { 1371 if (parser.getToken().is(Token::comma)) { 1372 parseComma(); 1373 return parseOperandList(result, requiredOperandCount, delimiter); 1374 } 1375 if (requiredOperandCount != -1) 1376 return emitError(parser.getToken().getLoc(), "expected ") 1377 << requiredOperandCount << " operands"; 1378 return success(); 1379 } 1380 1381 /// Resolve an operand to an SSA value, emitting an error on failure. 1382 ParseResult resolveOperand(const UnresolvedOperand &operand, Type type, 1383 SmallVectorImpl<Value> &result) override { 1384 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 1385 operand.location}; 1386 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 1387 result.push_back(value); 1388 return success(); 1389 } 1390 return failure(); 1391 } 1392 1393 /// Parse an AffineMap of SSA ids. 1394 ParseResult 1395 parseAffineMapOfSSAIds(SmallVectorImpl<UnresolvedOperand> &operands, 1396 Attribute &mapAttr, StringRef attrName, 1397 NamedAttrList &attrs, Delimiter delimiter) override { 1398 SmallVector<UnresolvedOperand, 2> dimOperands; 1399 SmallVector<UnresolvedOperand, 1> symOperands; 1400 1401 auto parseElement = [&](bool isSymbol) -> ParseResult { 1402 UnresolvedOperand operand; 1403 if (parseOperand(operand)) 1404 return failure(); 1405 if (isSymbol) 1406 symOperands.push_back(operand); 1407 else 1408 dimOperands.push_back(operand); 1409 return success(); 1410 }; 1411 1412 AffineMap map; 1413 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 1414 return failure(); 1415 // Add AffineMap attribute. 1416 if (map) { 1417 mapAttr = AffineMapAttr::get(map); 1418 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 1419 } 1420 1421 // Add dim operands before symbol operands in 'operands'. 1422 operands.assign(dimOperands.begin(), dimOperands.end()); 1423 operands.append(symOperands.begin(), symOperands.end()); 1424 return success(); 1425 } 1426 1427 /// Parse an AffineExpr of SSA ids. 1428 ParseResult 1429 parseAffineExprOfSSAIds(SmallVectorImpl<UnresolvedOperand> &dimOperands, 1430 SmallVectorImpl<UnresolvedOperand> &symbOperands, 1431 AffineExpr &expr) override { 1432 auto parseElement = [&](bool isSymbol) -> ParseResult { 1433 UnresolvedOperand operand; 1434 if (parseOperand(operand)) 1435 return failure(); 1436 if (isSymbol) 1437 symbOperands.push_back(operand); 1438 else 1439 dimOperands.push_back(operand); 1440 return success(); 1441 }; 1442 1443 return parser.parseAffineExprOfSSAIds(expr, parseElement); 1444 } 1445 1446 //===--------------------------------------------------------------------===// 1447 // Region Parsing 1448 //===--------------------------------------------------------------------===// 1449 1450 /// Parse a region that takes `arguments` of `argTypes` types. This 1451 /// effectively defines the SSA values of `arguments` and assigns their type. 1452 ParseResult parseRegion(Region ®ion, ArrayRef<UnresolvedOperand> arguments, 1453 ArrayRef<Type> argTypes, 1454 ArrayRef<Location> argLocations, 1455 bool enableNameShadowing) override { 1456 assert(arguments.size() == argTypes.size() && 1457 "mismatching number of arguments and types"); 1458 1459 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 1460 regionArguments; 1461 for (auto pair : llvm::zip(arguments, argTypes)) { 1462 const UnresolvedOperand &operand = std::get<0>(pair); 1463 Type type = std::get<1>(pair); 1464 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 1465 operand.location}; 1466 regionArguments.emplace_back(operandInfo, type); 1467 } 1468 1469 // Try to parse the region. 1470 (void)isIsolatedFromAbove; 1471 assert((!enableNameShadowing || isIsolatedFromAbove) && 1472 "name shadowing is only allowed on isolated regions"); 1473 if (parser.parseRegion(region, regionArguments, argLocations, 1474 enableNameShadowing)) 1475 return failure(); 1476 return success(); 1477 } 1478 1479 /// Parses a region if present. 1480 OptionalParseResult parseOptionalRegion(Region ®ion, 1481 ArrayRef<UnresolvedOperand> arguments, 1482 ArrayRef<Type> argTypes, 1483 ArrayRef<Location> argLocations, 1484 bool enableNameShadowing) override { 1485 if (parser.getToken().isNot(Token::l_brace)) 1486 return llvm::None; 1487 return parseRegion(region, arguments, argTypes, argLocations, 1488 enableNameShadowing); 1489 } 1490 1491 /// Parses a region if present. If the region is present, a new region is 1492 /// allocated and placed in `region`. If no region is present, `region` 1493 /// remains untouched. 1494 OptionalParseResult parseOptionalRegion( 1495 std::unique_ptr<Region> ®ion, ArrayRef<UnresolvedOperand> arguments, 1496 ArrayRef<Type> argTypes, bool enableNameShadowing = false) override { 1497 if (parser.getToken().isNot(Token::l_brace)) 1498 return llvm::None; 1499 std::unique_ptr<Region> newRegion = std::make_unique<Region>(); 1500 if (parseRegion(*newRegion, arguments, argTypes, /*argLocations=*/{}, 1501 enableNameShadowing)) 1502 return failure(); 1503 1504 region = std::move(newRegion); 1505 return success(); 1506 } 1507 1508 /// Parse a region argument. The type of the argument will be resolved later 1509 /// by a call to `parseRegion`. 1510 ParseResult parseRegionArgument(UnresolvedOperand &argument) override { 1511 return parseOperand(argument); 1512 } 1513 1514 /// Parse a region argument if present. 1515 ParseResult 1516 parseOptionalRegionArgument(UnresolvedOperand &argument) override { 1517 if (parser.getToken().isNot(Token::percent_identifier)) 1518 return success(); 1519 return parseRegionArgument(argument); 1520 } 1521 1522 ParseResult 1523 parseRegionArgumentList(SmallVectorImpl<UnresolvedOperand> &result, 1524 int requiredOperandCount = -1, 1525 Delimiter delimiter = Delimiter::None) override { 1526 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 1527 requiredOperandCount, delimiter); 1528 } 1529 1530 //===--------------------------------------------------------------------===// 1531 // Successor Parsing 1532 //===--------------------------------------------------------------------===// 1533 1534 /// Parse a single operation successor. 1535 ParseResult parseSuccessor(Block *&dest) override { 1536 return parser.parseSuccessor(dest); 1537 } 1538 1539 /// Parse an optional operation successor and its operand list. 1540 OptionalParseResult parseOptionalSuccessor(Block *&dest) override { 1541 if (parser.getToken().isNot(Token::caret_identifier)) 1542 return llvm::None; 1543 return parseSuccessor(dest); 1544 } 1545 1546 /// Parse a single operation successor and its operand list. 1547 ParseResult 1548 parseSuccessorAndUseList(Block *&dest, 1549 SmallVectorImpl<Value> &operands) override { 1550 if (parseSuccessor(dest)) 1551 return failure(); 1552 1553 // Handle optional arguments. 1554 if (succeeded(parseOptionalLParen()) && 1555 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) { 1556 return failure(); 1557 } 1558 return success(); 1559 } 1560 1561 //===--------------------------------------------------------------------===// 1562 // Type Parsing 1563 //===--------------------------------------------------------------------===// 1564 1565 /// Parse a list of assignments of the form 1566 /// (%x1 = %y1, %x2 = %y2, ...). 1567 OptionalParseResult parseOptionalAssignmentList( 1568 SmallVectorImpl<UnresolvedOperand> &lhs, 1569 SmallVectorImpl<UnresolvedOperand> &rhs) override { 1570 if (failed(parseOptionalLParen())) 1571 return llvm::None; 1572 1573 auto parseElt = [&]() -> ParseResult { 1574 UnresolvedOperand regionArg, operand; 1575 if (parseRegionArgument(regionArg) || parseEqual() || 1576 parseOperand(operand)) 1577 return failure(); 1578 lhs.push_back(regionArg); 1579 rhs.push_back(operand); 1580 return success(); 1581 }; 1582 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 1583 } 1584 1585 /// Parse a list of assignments of the form 1586 /// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...). 1587 OptionalParseResult 1588 parseOptionalAssignmentListWithTypes(SmallVectorImpl<UnresolvedOperand> &lhs, 1589 SmallVectorImpl<UnresolvedOperand> &rhs, 1590 SmallVectorImpl<Type> &types) override { 1591 if (failed(parseOptionalLParen())) 1592 return llvm::None; 1593 1594 auto parseElt = [&]() -> ParseResult { 1595 UnresolvedOperand regionArg, operand; 1596 Type type; 1597 if (parseRegionArgument(regionArg) || parseEqual() || 1598 parseOperand(operand) || parseColon() || parseType(type)) 1599 return failure(); 1600 lhs.push_back(regionArg); 1601 rhs.push_back(operand); 1602 types.push_back(type); 1603 return success(); 1604 }; 1605 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 1606 } 1607 1608 /// Parse a loc(...) specifier if present, filling in result if so. 1609 ParseResult 1610 parseOptionalLocationSpecifier(Optional<Location> &result) override { 1611 // If there is a 'loc' we parse a trailing location. 1612 if (!parser.consumeIf(Token::kw_loc)) 1613 return success(); 1614 LocationAttr directLoc; 1615 if (parser.parseToken(Token::l_paren, "expected '(' in location")) 1616 return failure(); 1617 1618 Token tok = parser.getToken(); 1619 1620 // Check to see if we are parsing a location alias. 1621 // Otherwise, we parse the location directly. 1622 if (tok.is(Token::hash_identifier)) { 1623 if (parser.parseLocationAlias(directLoc)) 1624 return failure(); 1625 } else if (parser.parseLocationInstance(directLoc)) { 1626 return failure(); 1627 } 1628 1629 if (parser.parseToken(Token::r_paren, "expected ')' in location")) 1630 return failure(); 1631 1632 result = directLoc; 1633 return success(); 1634 } 1635 1636 private: 1637 /// Information about the result name specifiers. 1638 ArrayRef<OperationParser::ResultRecord> resultIDs; 1639 1640 /// The abstract information of the operation. 1641 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssembly; 1642 bool isIsolatedFromAbove; 1643 StringRef opName; 1644 1645 /// The backing operation parser. 1646 OperationParser &parser; 1647 }; 1648 } // namespace 1649 1650 FailureOr<OperationName> OperationParser::parseCustomOperationName() { 1651 std::string opName = getTokenSpelling().str(); 1652 if (opName.empty()) 1653 return (emitError("empty operation name is invalid"), failure()); 1654 1655 consumeToken(); 1656 1657 Optional<RegisteredOperationName> opInfo = 1658 RegisteredOperationName::lookup(opName, getContext()); 1659 StringRef defaultDialect = getState().defaultDialectStack.back(); 1660 Dialect *dialect = nullptr; 1661 if (opInfo) { 1662 dialect = &opInfo->getDialect(); 1663 } else { 1664 if (StringRef(opName).contains('.')) { 1665 // This op has a dialect, we try to check if we can register it in the 1666 // context on the fly. 1667 StringRef dialectName = StringRef(opName).split('.').first; 1668 dialect = getContext()->getLoadedDialect(dialectName); 1669 if (!dialect && (dialect = getContext()->getOrLoadDialect(dialectName))) 1670 opInfo = RegisteredOperationName::lookup(opName, getContext()); 1671 } else { 1672 // If the operation name has no namespace prefix we lookup the current 1673 // default dialect (set through OpAsmOpInterface). 1674 opInfo = RegisteredOperationName::lookup( 1675 Twine(defaultDialect + "." + opName).str(), getContext()); 1676 // FIXME: Remove this in favor of using default dialects. 1677 if (!opInfo && getContext()->getOrLoadDialect("func")) { 1678 opInfo = RegisteredOperationName::lookup(Twine("func." + opName).str(), 1679 getContext()); 1680 } 1681 if (opInfo) { 1682 dialect = &opInfo->getDialect(); 1683 opName = opInfo->getStringRef().str(); 1684 } else if (!defaultDialect.empty()) { 1685 dialect = getContext()->getOrLoadDialect(defaultDialect); 1686 opName = (defaultDialect + "." + opName).str(); 1687 } 1688 } 1689 } 1690 1691 return OperationName(opName, getContext()); 1692 } 1693 1694 Operation * 1695 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) { 1696 SMLoc opLoc = getToken().getLoc(); 1697 1698 FailureOr<OperationName> opNameInfo = parseCustomOperationName(); 1699 if (failed(opNameInfo)) 1700 return nullptr; 1701 1702 StringRef opName = opNameInfo->getStringRef(); 1703 Dialect *dialect = opNameInfo->getDialect(); 1704 Optional<RegisteredOperationName> opInfo = opNameInfo->getRegisteredInfo(); 1705 1706 // This is the actual hook for the custom op parsing, usually implemented by 1707 // the op itself (`Op::parse()`). We retrieve it either from the 1708 // RegisteredOperationName or from the Dialect. 1709 function_ref<ParseResult(OpAsmParser &, OperationState &)> parseAssemblyFn; 1710 bool isIsolatedFromAbove = false; 1711 1712 StringRef defaultDialect = ""; 1713 if (opInfo) { 1714 parseAssemblyFn = opInfo->getParseAssemblyFn(); 1715 isIsolatedFromAbove = opInfo->hasTrait<OpTrait::IsIsolatedFromAbove>(); 1716 auto *iface = opInfo->getInterface<OpAsmOpInterface>(); 1717 if (iface && !iface->getDefaultDialect().empty()) 1718 defaultDialect = iface->getDefaultDialect(); 1719 } else { 1720 Optional<Dialect::ParseOpHook> dialectHook; 1721 if (dialect) 1722 dialectHook = dialect->getParseOperationHook(opName); 1723 if (!dialectHook.hasValue()) { 1724 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 1725 return nullptr; 1726 } 1727 parseAssemblyFn = *dialectHook; 1728 } 1729 getState().defaultDialectStack.push_back(defaultDialect); 1730 auto restoreDefaultDialect = llvm::make_scope_exit( 1731 [&]() { getState().defaultDialectStack.pop_back(); }); 1732 1733 // If the custom op parser crashes, produce some indication to help 1734 // debugging. 1735 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 1736 opNameInfo->getIdentifier().data()); 1737 1738 // Get location information for the operation. 1739 auto srcLocation = getEncodedSourceLocation(opLoc); 1740 OperationState opState(srcLocation, *opNameInfo); 1741 1742 // If we are populating the parser state, start a new operation definition. 1743 if (state.asmState) 1744 state.asmState->startOperationDefinition(opState.name); 1745 1746 // Have the op implementation take a crack and parsing this. 1747 CleanupOpStateRegions guard{opState}; 1748 CustomOpAsmParser opAsmParser(opLoc, resultIDs, parseAssemblyFn, 1749 isIsolatedFromAbove, opName, *this); 1750 if (opAsmParser.parseOperation(opState)) 1751 return nullptr; 1752 1753 // If it emitted an error, we failed. 1754 if (opAsmParser.didEmitError()) 1755 return nullptr; 1756 1757 // Otherwise, create the operation and try to parse a location for it. 1758 Operation *op = opBuilder.create(opState); 1759 if (parseTrailingLocationSpecifier(op)) 1760 return nullptr; 1761 return op; 1762 } 1763 1764 ParseResult OperationParser::parseLocationAlias(LocationAttr &loc) { 1765 Token tok = getToken(); 1766 consumeToken(Token::hash_identifier); 1767 StringRef identifier = tok.getSpelling().drop_front(); 1768 if (identifier.contains('.')) { 1769 return emitError(tok.getLoc()) 1770 << "expected location, but found dialect attribute: '#" << identifier 1771 << "'"; 1772 } 1773 1774 // If this alias can be resolved, do it now. 1775 Attribute attr = state.symbols.attributeAliasDefinitions.lookup(identifier); 1776 if (attr) { 1777 if (!(loc = attr.dyn_cast<LocationAttr>())) 1778 return emitError(tok.getLoc()) 1779 << "expected location, but found '" << attr << "'"; 1780 } else { 1781 // Otherwise, remember this operation and resolve its location later. 1782 // In the meantime, use a special OpaqueLoc as a marker. 1783 loc = OpaqueLoc::get(deferredLocsReferences.size(), 1784 TypeID::get<DeferredLocInfo *>(), 1785 UnknownLoc::get(getContext())); 1786 deferredLocsReferences.push_back(DeferredLocInfo{tok.getLoc(), identifier}); 1787 } 1788 return success(); 1789 } 1790 1791 ParseResult 1792 OperationParser::parseTrailingLocationSpecifier(OpOrArgument opOrArgument) { 1793 // If there is a 'loc' we parse a trailing location. 1794 if (!consumeIf(Token::kw_loc)) 1795 return success(); 1796 if (parseToken(Token::l_paren, "expected '(' in location")) 1797 return failure(); 1798 Token tok = getToken(); 1799 1800 // Check to see if we are parsing a location alias. 1801 // Otherwise, we parse the location directly. 1802 LocationAttr directLoc; 1803 if (tok.is(Token::hash_identifier)) { 1804 if (parseLocationAlias(directLoc)) 1805 return failure(); 1806 } else if (parseLocationInstance(directLoc)) { 1807 return failure(); 1808 } 1809 1810 if (parseToken(Token::r_paren, "expected ')' in location")) 1811 return failure(); 1812 1813 if (auto *op = opOrArgument.dyn_cast<Operation *>()) 1814 op->setLoc(directLoc); 1815 else 1816 opOrArgument.get<BlockArgument>().setLoc(directLoc); 1817 return success(); 1818 } 1819 1820 //===----------------------------------------------------------------------===// 1821 // Region Parsing 1822 //===----------------------------------------------------------------------===// 1823 1824 ParseResult OperationParser::parseRegion( 1825 Region ®ion, 1826 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 1827 ArrayRef<Location> argLocations, bool isIsolatedNameScope) { 1828 // Parse the '{'. 1829 Token lBraceTok = getToken(); 1830 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 1831 return failure(); 1832 1833 // If we are populating the parser state, start a new region definition. 1834 if (state.asmState) 1835 state.asmState->startRegionDefinition(); 1836 1837 // Parse the region body. 1838 if ((!entryArguments.empty() || getToken().isNot(Token::r_brace)) && 1839 parseRegionBody(region, lBraceTok.getLoc(), entryArguments, argLocations, 1840 isIsolatedNameScope)) { 1841 return failure(); 1842 } 1843 consumeToken(Token::r_brace); 1844 1845 // If we are populating the parser state, finalize this region. 1846 if (state.asmState) 1847 state.asmState->finalizeRegionDefinition(); 1848 1849 return success(); 1850 } 1851 1852 ParseResult OperationParser::parseRegionBody( 1853 Region ®ion, SMLoc startLoc, 1854 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 1855 ArrayRef<Location> argLocations, bool isIsolatedNameScope) { 1856 assert(argLocations.empty() || argLocations.size() == entryArguments.size()); 1857 auto currentPt = opBuilder.saveInsertionPoint(); 1858 1859 // Push a new named value scope. 1860 pushSSANameScope(isIsolatedNameScope); 1861 1862 // Parse the first block directly to allow for it to be unnamed. 1863 auto owningBlock = std::make_unique<Block>(); 1864 Block *block = owningBlock.get(); 1865 1866 // If this block is not defined in the source file, add a definition for it 1867 // now in the assembly state. Blocks with a name will be defined when the name 1868 // is parsed. 1869 if (state.asmState && getToken().isNot(Token::caret_identifier)) 1870 state.asmState->addDefinition(block, startLoc); 1871 1872 // Add arguments to the entry block. 1873 if (!entryArguments.empty()) { 1874 // If we had named arguments, then don't allow a block name. 1875 if (getToken().is(Token::caret_identifier)) 1876 return emitError("invalid block name in region with named arguments"); 1877 1878 for (const auto &it : llvm::enumerate(entryArguments)) { 1879 size_t argIndex = it.index(); 1880 auto &placeholderArgPair = it.value(); 1881 auto &argInfo = placeholderArgPair.first; 1882 1883 // Ensure that the argument was not already defined. 1884 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 1885 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 1886 "' is already in use") 1887 .attachNote(getEncodedSourceLocation(*defLoc)) 1888 << "previously referenced here"; 1889 } 1890 BlockArgument arg = block->addArgument( 1891 placeholderArgPair.second, 1892 argLocations.empty() 1893 ? getEncodedSourceLocation(placeholderArgPair.first.loc) 1894 : argLocations[argIndex]); 1895 1896 // Add a definition of this arg to the assembly state if provided. 1897 if (state.asmState) 1898 state.asmState->addDefinition(arg, argInfo.loc); 1899 1900 // Record the definition for this argument. 1901 if (addDefinition(argInfo, arg)) 1902 return failure(); 1903 } 1904 } 1905 1906 if (parseBlock(block)) 1907 return failure(); 1908 1909 // Verify that no other arguments were parsed. 1910 if (!entryArguments.empty() && 1911 block->getNumArguments() > entryArguments.size()) { 1912 return emitError("entry block arguments were already defined"); 1913 } 1914 1915 // Parse the rest of the region. 1916 region.push_back(owningBlock.release()); 1917 while (getToken().isNot(Token::r_brace)) { 1918 Block *newBlock = nullptr; 1919 if (parseBlock(newBlock)) 1920 return failure(); 1921 region.push_back(newBlock); 1922 } 1923 1924 // Pop the SSA value scope for this region. 1925 if (popSSANameScope()) 1926 return failure(); 1927 1928 // Reset the original insertion point. 1929 opBuilder.restoreInsertionPoint(currentPt); 1930 return success(); 1931 } 1932 1933 //===----------------------------------------------------------------------===// 1934 // Block Parsing 1935 //===----------------------------------------------------------------------===// 1936 1937 /// Block declaration. 1938 /// 1939 /// block ::= block-label? operation* 1940 /// block-label ::= block-id block-arg-list? `:` 1941 /// block-id ::= caret-id 1942 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 1943 /// 1944 ParseResult OperationParser::parseBlock(Block *&block) { 1945 // The first block of a region may already exist, if it does the caret 1946 // identifier is optional. 1947 if (block && getToken().isNot(Token::caret_identifier)) 1948 return parseBlockBody(block); 1949 1950 SMLoc nameLoc = getToken().getLoc(); 1951 auto name = getTokenSpelling(); 1952 if (parseToken(Token::caret_identifier, "expected block name")) 1953 return failure(); 1954 1955 // Define the block with the specified name. 1956 auto &blockAndLoc = getBlockInfoByName(name); 1957 blockAndLoc.loc = nameLoc; 1958 1959 // Use a unique pointer for in-flight block being parsed. Release ownership 1960 // only in the case of a successful parse. This ensures that the Block 1961 // allocated is released if the parse fails and control returns early. 1962 std::unique_ptr<Block> inflightBlock; 1963 1964 // If a block has yet to be set, this is a new definition. If the caller 1965 // provided a block, use it. Otherwise create a new one. 1966 if (!blockAndLoc.block) { 1967 if (block) { 1968 blockAndLoc.block = block; 1969 } else { 1970 inflightBlock = std::make_unique<Block>(); 1971 blockAndLoc.block = inflightBlock.get(); 1972 } 1973 1974 // Otherwise, the block has a forward declaration. Forward declarations are 1975 // removed once defined, so if we are defining a existing block and it is 1976 // not a forward declaration, then it is a redeclaration. Fail if the block 1977 // was already defined. 1978 } else if (!eraseForwardRef(blockAndLoc.block)) { 1979 return emitError(nameLoc, "redefinition of block '") << name << "'"; 1980 } 1981 1982 // Populate the high level assembly state if necessary. 1983 if (state.asmState) 1984 state.asmState->addDefinition(blockAndLoc.block, nameLoc); 1985 1986 block = blockAndLoc.block; 1987 1988 // If an argument list is present, parse it. 1989 if (getToken().is(Token::l_paren)) 1990 if (parseOptionalBlockArgList(block)) 1991 return failure(); 1992 1993 if (parseToken(Token::colon, "expected ':' after block name")) 1994 return failure(); 1995 1996 ParseResult res = parseBlockBody(block); 1997 if (succeeded(res)) 1998 inflightBlock.release(); 1999 return res; 2000 } 2001 2002 ParseResult OperationParser::parseBlockBody(Block *block) { 2003 // Set the insertion point to the end of the block to parse. 2004 opBuilder.setInsertionPointToEnd(block); 2005 2006 // Parse the list of operations that make up the body of the block. 2007 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 2008 if (parseOperation()) 2009 return failure(); 2010 2011 return success(); 2012 } 2013 2014 /// Get the block with the specified name, creating it if it doesn't already 2015 /// exist. The location specified is the point of use, which allows 2016 /// us to diagnose references to blocks that are not defined precisely. 2017 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 2018 BlockDefinition &blockDef = getBlockInfoByName(name); 2019 if (!blockDef.block) { 2020 blockDef = {new Block(), loc}; 2021 insertForwardRef(blockDef.block, blockDef.loc); 2022 } 2023 2024 // Populate the high level assembly state if necessary. 2025 if (state.asmState) 2026 state.asmState->addUses(blockDef.block, loc); 2027 2028 return blockDef.block; 2029 } 2030 2031 /// Parse a (possibly empty) list of SSA operands with types as block arguments 2032 /// enclosed in parentheses. 2033 /// 2034 /// value-id-and-type-list ::= value-id-and-type (`,` ssa-id-and-type)* 2035 /// block-arg-list ::= `(` value-id-and-type-list? `)` 2036 /// 2037 ParseResult OperationParser::parseOptionalBlockArgList(Block *owner) { 2038 if (getToken().is(Token::r_brace)) 2039 return success(); 2040 2041 // If the block already has arguments, then we're handling the entry block. 2042 // Parse and register the names for the arguments, but do not add them. 2043 bool definingExistingArgs = owner->getNumArguments() != 0; 2044 unsigned nextArgument = 0; 2045 2046 return parseCommaSeparatedList(Delimiter::Paren, [&]() -> ParseResult { 2047 return parseSSADefOrUseAndType( 2048 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 2049 BlockArgument arg; 2050 2051 // If we are defining existing arguments, ensure that the argument 2052 // has already been created with the right type. 2053 if (definingExistingArgs) { 2054 // Otherwise, ensure that this argument has already been created. 2055 if (nextArgument >= owner->getNumArguments()) 2056 return emitError("too many arguments specified in argument list"); 2057 2058 // Finally, make sure the existing argument has the correct type. 2059 arg = owner->getArgument(nextArgument++); 2060 if (arg.getType() != type) 2061 return emitError("argument and block argument type mismatch"); 2062 } else { 2063 auto loc = getEncodedSourceLocation(useInfo.loc); 2064 arg = owner->addArgument(type, loc); 2065 } 2066 2067 // If the argument has an explicit loc(...) specifier, parse and apply 2068 // it. 2069 if (parseTrailingLocationSpecifier(arg)) 2070 return failure(); 2071 2072 // Mark this block argument definition in the parser state if it was 2073 // provided. 2074 if (state.asmState) 2075 state.asmState->addDefinition(arg, useInfo.loc); 2076 2077 return addDefinition(useInfo, arg); 2078 }); 2079 }); 2080 } 2081 2082 //===----------------------------------------------------------------------===// 2083 // Top-level entity parsing. 2084 //===----------------------------------------------------------------------===// 2085 2086 namespace { 2087 /// This parser handles entities that are only valid at the top level of the 2088 /// file. 2089 class TopLevelOperationParser : public Parser { 2090 public: 2091 explicit TopLevelOperationParser(ParserState &state) : Parser(state) {} 2092 2093 /// Parse a set of operations into the end of the given Block. 2094 ParseResult parse(Block *topLevelBlock, Location parserLoc); 2095 2096 private: 2097 /// Parse an attribute alias declaration. 2098 ParseResult parseAttributeAliasDef(); 2099 2100 /// Parse an attribute alias declaration. 2101 ParseResult parseTypeAliasDef(); 2102 }; 2103 } // namespace 2104 2105 /// Parses an attribute alias declaration. 2106 /// 2107 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 2108 /// 2109 ParseResult TopLevelOperationParser::parseAttributeAliasDef() { 2110 assert(getToken().is(Token::hash_identifier)); 2111 StringRef aliasName = getTokenSpelling().drop_front(); 2112 2113 // Check for redefinitions. 2114 if (state.symbols.attributeAliasDefinitions.count(aliasName) > 0) 2115 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 2116 2117 // Make sure this isn't invading the dialect attribute namespace. 2118 if (aliasName.contains('.')) 2119 return emitError("attribute names with a '.' are reserved for " 2120 "dialect-defined names"); 2121 2122 consumeToken(Token::hash_identifier); 2123 2124 // Parse the '='. 2125 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 2126 return failure(); 2127 2128 // Parse the attribute value. 2129 Attribute attr = parseAttribute(); 2130 if (!attr) 2131 return failure(); 2132 2133 state.symbols.attributeAliasDefinitions[aliasName] = attr; 2134 return success(); 2135 } 2136 2137 /// Parse a type alias declaration. 2138 /// 2139 /// type-alias-def ::= '!' alias-name `=` 'type' type 2140 /// 2141 ParseResult TopLevelOperationParser::parseTypeAliasDef() { 2142 assert(getToken().is(Token::exclamation_identifier)); 2143 StringRef aliasName = getTokenSpelling().drop_front(); 2144 2145 // Check for redefinitions. 2146 if (state.symbols.typeAliasDefinitions.count(aliasName) > 0) 2147 return emitError("redefinition of type alias id '" + aliasName + "'"); 2148 2149 // Make sure this isn't invading the dialect type namespace. 2150 if (aliasName.contains('.')) 2151 return emitError("type names with a '.' are reserved for " 2152 "dialect-defined names"); 2153 2154 consumeToken(Token::exclamation_identifier); 2155 2156 // Parse the '=' and 'type'. 2157 if (parseToken(Token::equal, "expected '=' in type alias definition") || 2158 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 2159 return failure(); 2160 2161 // Parse the type. 2162 Type aliasedType = parseType(); 2163 if (!aliasedType) 2164 return failure(); 2165 2166 // Register this alias with the parser state. 2167 state.symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 2168 return success(); 2169 } 2170 2171 ParseResult TopLevelOperationParser::parse(Block *topLevelBlock, 2172 Location parserLoc) { 2173 // Create a top-level operation to contain the parsed state. 2174 OwningOpRef<ModuleOp> topLevelOp(ModuleOp::create(parserLoc)); 2175 OperationParser opParser(state, topLevelOp.get()); 2176 while (true) { 2177 switch (getToken().getKind()) { 2178 default: 2179 // Parse a top-level operation. 2180 if (opParser.parseOperation()) 2181 return failure(); 2182 break; 2183 2184 // If we got to the end of the file, then we're done. 2185 case Token::eof: { 2186 if (opParser.finalize()) 2187 return failure(); 2188 2189 // Splice the blocks of the parsed operation over to the provided 2190 // top-level block. 2191 auto &parsedOps = topLevelOp->getBody()->getOperations(); 2192 auto &destOps = topLevelBlock->getOperations(); 2193 destOps.splice(destOps.empty() ? destOps.end() : std::prev(destOps.end()), 2194 parsedOps, parsedOps.begin(), parsedOps.end()); 2195 return success(); 2196 } 2197 2198 // If we got an error token, then the lexer already emitted an error, just 2199 // stop. Someday we could introduce error recovery if there was demand 2200 // for it. 2201 case Token::error: 2202 return failure(); 2203 2204 // Parse an attribute alias. 2205 case Token::hash_identifier: 2206 if (parseAttributeAliasDef()) 2207 return failure(); 2208 break; 2209 2210 // Parse a type alias. 2211 case Token::exclamation_identifier: 2212 if (parseTypeAliasDef()) 2213 return failure(); 2214 break; 2215 } 2216 } 2217 } 2218 2219 //===----------------------------------------------------------------------===// 2220 2221 LogicalResult mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 2222 Block *block, MLIRContext *context, 2223 LocationAttr *sourceFileLoc, 2224 AsmParserState *asmState) { 2225 const auto *sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 2226 2227 Location parserLoc = FileLineColLoc::get( 2228 context, sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0); 2229 if (sourceFileLoc) 2230 *sourceFileLoc = parserLoc; 2231 2232 SymbolState aliasState; 2233 ParserState state(sourceMgr, context, aliasState, asmState); 2234 return TopLevelOperationParser(state).parse(block, parserLoc); 2235 } 2236 2237 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, Block *block, 2238 MLIRContext *context, 2239 LocationAttr *sourceFileLoc) { 2240 llvm::SourceMgr sourceMgr; 2241 return parseSourceFile(filename, sourceMgr, block, context, sourceFileLoc); 2242 } 2243 2244 LogicalResult mlir::parseSourceFile(llvm::StringRef filename, 2245 llvm::SourceMgr &sourceMgr, Block *block, 2246 MLIRContext *context, 2247 LocationAttr *sourceFileLoc, 2248 AsmParserState *asmState) { 2249 if (sourceMgr.getNumBuffers() != 0) { 2250 // TODO: Extend to support multiple buffers. 2251 return emitError(mlir::UnknownLoc::get(context), 2252 "only main buffer parsed at the moment"); 2253 } 2254 auto fileOrErr = llvm::MemoryBuffer::getFileOrSTDIN(filename); 2255 if (std::error_code error = fileOrErr.getError()) 2256 return emitError(mlir::UnknownLoc::get(context), 2257 "could not open input file " + filename); 2258 2259 // Load the MLIR source file. 2260 sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), SMLoc()); 2261 return parseSourceFile(sourceMgr, block, context, sourceFileLoc, asmState); 2262 } 2263 2264 LogicalResult mlir::parseSourceString(llvm::StringRef sourceStr, Block *block, 2265 MLIRContext *context, 2266 LocationAttr *sourceFileLoc) { 2267 auto memBuffer = MemoryBuffer::getMemBuffer(sourceStr); 2268 if (!memBuffer) 2269 return failure(); 2270 2271 SourceMgr sourceMgr; 2272 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 2273 return parseSourceFile(sourceMgr, block, context, sourceFileLoc); 2274 } 2275