1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Parser.h" 14 #include "Lexer.h" 15 #include "mlir/Analysis/Verifier.h" 16 #include "mlir/IR/AffineExpr.h" 17 #include "mlir/IR/AffineMap.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/Dialect.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/IntegerSet.h" 23 #include "mlir/IR/Location.h" 24 #include "mlir/IR/MLIRContext.h" 25 #include "mlir/IR/Module.h" 26 #include "mlir/IR/OpImplementation.h" 27 #include "mlir/IR/StandardTypes.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/ADT/StringSet.h" 32 #include "llvm/ADT/bit.h" 33 #include "llvm/Support/PrettyStackTrace.h" 34 #include "llvm/Support/SMLoc.h" 35 #include "llvm/Support/SourceMgr.h" 36 #include <algorithm> 37 using namespace mlir; 38 using llvm::MemoryBuffer; 39 using llvm::SMLoc; 40 using llvm::SourceMgr; 41 42 namespace { 43 class Parser; 44 45 //===----------------------------------------------------------------------===// 46 // SymbolState 47 //===----------------------------------------------------------------------===// 48 49 /// This class contains record of any parsed top-level symbols. 50 struct SymbolState { 51 // A map from attribute alias identifier to Attribute. 52 llvm::StringMap<Attribute> attributeAliasDefinitions; 53 54 // A map from type alias identifier to Type. 55 llvm::StringMap<Type> typeAliasDefinitions; 56 57 /// A set of locations into the main parser memory buffer for each of the 58 /// active nested parsers. Given that some nested parsers, i.e. custom dialect 59 /// parsers, operate on a temporary memory buffer, this provides an anchor 60 /// point for emitting diagnostics. 61 SmallVector<llvm::SMLoc, 1> nestedParserLocs; 62 63 /// The top-level lexer that contains the original memory buffer provided by 64 /// the user. This is used by nested parsers to get a properly encoded source 65 /// location. 66 Lexer *topLevelLexer = nullptr; 67 }; 68 69 //===----------------------------------------------------------------------===// 70 // ParserState 71 //===----------------------------------------------------------------------===// 72 73 /// This class refers to all of the state maintained globally by the parser, 74 /// such as the current lexer position etc. 75 struct ParserState { 76 ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx, 77 SymbolState &symbols) 78 : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()), 79 symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) { 80 // Set the top level lexer for the symbol state if one doesn't exist. 81 if (!symbols.topLevelLexer) 82 symbols.topLevelLexer = &lex; 83 } 84 ~ParserState() { 85 // Reset the top level lexer if it refers the lexer in our state. 86 if (symbols.topLevelLexer == &lex) 87 symbols.topLevelLexer = nullptr; 88 } 89 ParserState(const ParserState &) = delete; 90 void operator=(const ParserState &) = delete; 91 92 /// The context we're parsing into. 93 MLIRContext *const context; 94 95 /// The lexer for the source file we're parsing. 96 Lexer lex; 97 98 /// This is the next token that hasn't been consumed yet. 99 Token curToken; 100 101 /// The current state for symbol parsing. 102 SymbolState &symbols; 103 104 /// The depth of this parser in the nested parsing stack. 105 size_t parserDepth; 106 }; 107 108 //===----------------------------------------------------------------------===// 109 // Parser 110 //===----------------------------------------------------------------------===// 111 112 /// This class implement support for parsing global entities like types and 113 /// shared entities like SSA names. It is intended to be subclassed by 114 /// specialized subparsers that include state, e.g. when a local symbol table. 115 class Parser { 116 public: 117 Builder builder; 118 119 Parser(ParserState &state) : builder(state.context), state(state) {} 120 121 // Helper methods to get stuff from the parser-global state. 122 ParserState &getState() const { return state; } 123 MLIRContext *getContext() const { return state.context; } 124 const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } 125 126 /// Parse a comma-separated list of elements up until the specified end token. 127 ParseResult 128 parseCommaSeparatedListUntil(Token::Kind rightToken, 129 const std::function<ParseResult()> &parseElement, 130 bool allowEmptyList = true); 131 132 /// Parse a comma separated list of elements that must have at least one entry 133 /// in it. 134 ParseResult 135 parseCommaSeparatedList(const std::function<ParseResult()> &parseElement); 136 137 ParseResult parsePrettyDialectSymbolName(StringRef &prettyName); 138 139 // We have two forms of parsing methods - those that return a non-null 140 // pointer on success, and those that return a ParseResult to indicate whether 141 // they returned a failure. The second class fills in by-reference arguments 142 // as the results of their action. 143 144 //===--------------------------------------------------------------------===// 145 // Error Handling 146 //===--------------------------------------------------------------------===// 147 148 /// Emit an error and return failure. 149 InFlightDiagnostic emitError(const Twine &message = {}) { 150 return emitError(state.curToken.getLoc(), message); 151 } 152 InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {}); 153 154 /// Encode the specified source location information into an attribute for 155 /// attachment to the IR. 156 Location getEncodedSourceLocation(llvm::SMLoc loc) { 157 // If there are no active nested parsers, we can get the encoded source 158 // location directly. 159 if (state.parserDepth == 0) 160 return state.lex.getEncodedSourceLocation(loc); 161 // Otherwise, we need to re-encode it to point to the top level buffer. 162 return state.symbols.topLevelLexer->getEncodedSourceLocation( 163 remapLocationToTopLevelBuffer(loc)); 164 } 165 166 /// Remaps the given SMLoc to the top level lexer of the parser. This is used 167 /// to adjust locations of potentially nested parsers to ensure that they can 168 /// be emitted properly as diagnostics. 169 llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) { 170 // If there are no active nested parsers, we can return location directly. 171 SymbolState &symbols = state.symbols; 172 if (state.parserDepth == 0) 173 return loc; 174 assert(symbols.topLevelLexer && "expected valid top-level lexer"); 175 176 // Otherwise, we need to remap the location to the main parser. This is 177 // simply offseting the location onto the location of the last nested 178 // parser. 179 size_t offset = loc.getPointer() - state.lex.getBufferBegin(); 180 auto *rawLoc = 181 symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset; 182 return llvm::SMLoc::getFromPointer(rawLoc); 183 } 184 185 //===--------------------------------------------------------------------===// 186 // Token Parsing 187 //===--------------------------------------------------------------------===// 188 189 /// Return the current token the parser is inspecting. 190 const Token &getToken() const { return state.curToken; } 191 StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } 192 193 /// If the current token has the specified kind, consume it and return true. 194 /// If not, return false. 195 bool consumeIf(Token::Kind kind) { 196 if (state.curToken.isNot(kind)) 197 return false; 198 consumeToken(kind); 199 return true; 200 } 201 202 /// Advance the current lexer onto the next token. 203 void consumeToken() { 204 assert(state.curToken.isNot(Token::eof, Token::error) && 205 "shouldn't advance past EOF or errors"); 206 state.curToken = state.lex.lexToken(); 207 } 208 209 /// Advance the current lexer onto the next token, asserting what the expected 210 /// current token is. This is preferred to the above method because it leads 211 /// to more self-documenting code with better checking. 212 void consumeToken(Token::Kind kind) { 213 assert(state.curToken.is(kind) && "consumed an unexpected token"); 214 consumeToken(); 215 } 216 217 /// Consume the specified token if present and return success. On failure, 218 /// output a diagnostic and return failure. 219 ParseResult parseToken(Token::Kind expectedToken, const Twine &message); 220 221 //===--------------------------------------------------------------------===// 222 // Type Parsing 223 //===--------------------------------------------------------------------===// 224 225 ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements); 226 ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements); 227 ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements); 228 229 /// Optionally parse a type. 230 OptionalParseResult parseOptionalType(Type &type); 231 232 /// Parse an arbitrary type. 233 Type parseType(); 234 235 /// Parse a complex type. 236 Type parseComplexType(); 237 238 /// Parse an extended type. 239 Type parseExtendedType(); 240 241 /// Parse a function type. 242 Type parseFunctionType(); 243 244 /// Parse a memref type. 245 Type parseMemRefType(); 246 247 /// Parse a non function type. 248 Type parseNonFunctionType(); 249 250 /// Parse a tensor type. 251 Type parseTensorType(); 252 253 /// Parse a tuple type. 254 Type parseTupleType(); 255 256 /// Parse a vector type. 257 VectorType parseVectorType(); 258 ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 259 bool allowDynamic = true); 260 ParseResult parseXInDimensionList(); 261 262 /// Parse strided layout specification. 263 ParseResult parseStridedLayout(int64_t &offset, 264 SmallVectorImpl<int64_t> &strides); 265 266 // Parse a brace-delimiter list of comma-separated integers with `?` as an 267 // unknown marker. 268 ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions); 269 270 //===--------------------------------------------------------------------===// 271 // Attribute Parsing 272 //===--------------------------------------------------------------------===// 273 274 /// Parse an arbitrary attribute with an optional type. 275 Attribute parseAttribute(Type type = {}); 276 277 /// Parse an attribute dictionary. 278 ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes); 279 280 /// Parse an extended attribute. 281 Attribute parseExtendedAttr(Type type); 282 283 /// Parse a float attribute. 284 Attribute parseFloatAttr(Type type, bool isNegative); 285 286 /// Parse a decimal or a hexadecimal literal, which can be either an integer 287 /// or a float attribute. 288 Attribute parseDecOrHexAttr(Type type, bool isNegative); 289 290 /// Parse an opaque elements attribute. 291 Attribute parseOpaqueElementsAttr(Type attrType); 292 293 /// Parse a dense elements attribute. 294 Attribute parseDenseElementsAttr(Type attrType); 295 ShapedType parseElementsLiteralType(Type type); 296 297 /// Parse a sparse elements attribute. 298 Attribute parseSparseElementsAttr(Type attrType); 299 300 //===--------------------------------------------------------------------===// 301 // Location Parsing 302 //===--------------------------------------------------------------------===// 303 304 /// Parse an inline location. 305 ParseResult parseLocation(LocationAttr &loc); 306 307 /// Parse a raw location instance. 308 ParseResult parseLocationInstance(LocationAttr &loc); 309 310 /// Parse a callsite location instance. 311 ParseResult parseCallSiteLocation(LocationAttr &loc); 312 313 /// Parse a fused location instance. 314 ParseResult parseFusedLocation(LocationAttr &loc); 315 316 /// Parse a name or FileLineCol location instance. 317 ParseResult parseNameOrFileLineColLocation(LocationAttr &loc); 318 319 /// Parse an optional trailing location. 320 /// 321 /// trailing-location ::= (`loc` `(` location `)`)? 322 /// 323 ParseResult parseOptionalTrailingLocation(Location &loc) { 324 // If there is a 'loc' we parse a trailing location. 325 if (!getToken().is(Token::kw_loc)) 326 return success(); 327 328 // Parse the location. 329 LocationAttr directLoc; 330 if (parseLocation(directLoc)) 331 return failure(); 332 loc = directLoc; 333 return success(); 334 } 335 336 //===--------------------------------------------------------------------===// 337 // Affine Parsing 338 //===--------------------------------------------------------------------===// 339 340 /// Parse a reference to either an affine map, or an integer set. 341 ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, 342 IntegerSet &set); 343 ParseResult parseAffineMapReference(AffineMap &map); 344 ParseResult parseIntegerSetReference(IntegerSet &set); 345 346 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 347 ParseResult 348 parseAffineMapOfSSAIds(AffineMap &map, 349 function_ref<ParseResult(bool)> parseElement, 350 OpAsmParser::Delimiter delimiter); 351 352 private: 353 /// The Parser is subclassed and reinstantiated. Do not add additional 354 /// non-trivial state here, add it to the ParserState class. 355 ParserState &state; 356 }; 357 } // end anonymous namespace 358 359 //===----------------------------------------------------------------------===// 360 // Helper methods. 361 //===----------------------------------------------------------------------===// 362 363 /// Parse a comma separated list of elements that must have at least one entry 364 /// in it. 365 ParseResult Parser::parseCommaSeparatedList( 366 const std::function<ParseResult()> &parseElement) { 367 // Non-empty case starts with an element. 368 if (parseElement()) 369 return failure(); 370 371 // Otherwise we have a list of comma separated elements. 372 while (consumeIf(Token::comma)) { 373 if (parseElement()) 374 return failure(); 375 } 376 return success(); 377 } 378 379 /// Parse a comma-separated list of elements, terminated with an arbitrary 380 /// token. This allows empty lists if allowEmptyList is true. 381 /// 382 /// abstract-list ::= rightToken // if allowEmptyList == true 383 /// abstract-list ::= element (',' element)* rightToken 384 /// 385 ParseResult Parser::parseCommaSeparatedListUntil( 386 Token::Kind rightToken, const std::function<ParseResult()> &parseElement, 387 bool allowEmptyList) { 388 // Handle the empty case. 389 if (getToken().is(rightToken)) { 390 if (!allowEmptyList) 391 return emitError("expected list element"); 392 consumeToken(rightToken); 393 return success(); 394 } 395 396 if (parseCommaSeparatedList(parseElement) || 397 parseToken(rightToken, "expected ',' or '" + 398 Token::getTokenSpelling(rightToken) + "'")) 399 return failure(); 400 401 return success(); 402 } 403 404 //===----------------------------------------------------------------------===// 405 // DialectAsmParser 406 //===----------------------------------------------------------------------===// 407 408 namespace { 409 /// This class provides the main implementation of the DialectAsmParser that 410 /// allows for dialects to parse attributes and types. This allows for dialect 411 /// hooking into the main MLIR parsing logic. 412 class CustomDialectAsmParser : public DialectAsmParser { 413 public: 414 CustomDialectAsmParser(StringRef fullSpec, Parser &parser) 415 : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()), 416 parser(parser) {} 417 ~CustomDialectAsmParser() override {} 418 419 /// Emit a diagnostic at the specified location and return failure. 420 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 421 return parser.emitError(loc, message); 422 } 423 424 /// Return a builder which provides useful access to MLIRContext, global 425 /// objects like types and attributes. 426 Builder &getBuilder() const override { return parser.builder; } 427 428 /// Get the location of the next token and store it into the argument. This 429 /// always succeeds. 430 llvm::SMLoc getCurrentLocation() override { 431 return parser.getToken().getLoc(); 432 } 433 434 /// Return the location of the original name token. 435 llvm::SMLoc getNameLoc() const override { return nameLoc; } 436 437 /// Re-encode the given source location as an MLIR location and return it. 438 Location getEncodedSourceLoc(llvm::SMLoc loc) override { 439 return parser.getEncodedSourceLocation(loc); 440 } 441 442 /// Returns the full specification of the symbol being parsed. This allows 443 /// for using a separate parser if necessary. 444 StringRef getFullSymbolSpec() const override { return fullSpec; } 445 446 /// Parse a floating point value from the stream. 447 ParseResult parseFloat(double &result) override { 448 bool negative = parser.consumeIf(Token::minus); 449 Token curTok = parser.getToken(); 450 451 // Check for a floating point value. 452 if (curTok.is(Token::floatliteral)) { 453 auto val = curTok.getFloatingPointValue(); 454 if (!val.hasValue()) 455 return emitError(curTok.getLoc(), "floating point value too large"); 456 parser.consumeToken(Token::floatliteral); 457 result = negative ? -*val : *val; 458 return success(); 459 } 460 461 // TODO(riverriddle) support hex floating point values. 462 return emitError(getCurrentLocation(), "expected floating point literal"); 463 } 464 465 /// Parse an optional integer value from the stream. 466 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 467 Token curToken = parser.getToken(); 468 if (curToken.isNot(Token::integer, Token::minus)) 469 return llvm::None; 470 471 bool negative = parser.consumeIf(Token::minus); 472 Token curTok = parser.getToken(); 473 if (parser.parseToken(Token::integer, "expected integer value")) 474 return failure(); 475 476 auto val = curTok.getUInt64IntegerValue(); 477 if (!val) 478 return emitError(curTok.getLoc(), "integer value too large"); 479 result = negative ? -*val : *val; 480 return success(); 481 } 482 483 //===--------------------------------------------------------------------===// 484 // Token Parsing 485 //===--------------------------------------------------------------------===// 486 487 /// Parse a `->` token. 488 ParseResult parseArrow() override { 489 return parser.parseToken(Token::arrow, "expected '->'"); 490 } 491 492 /// Parses a `->` if present. 493 ParseResult parseOptionalArrow() override { 494 return success(parser.consumeIf(Token::arrow)); 495 } 496 497 /// Parse a '{' token. 498 ParseResult parseLBrace() override { 499 return parser.parseToken(Token::l_brace, "expected '{'"); 500 } 501 502 /// Parse a '{' token if present 503 ParseResult parseOptionalLBrace() override { 504 return success(parser.consumeIf(Token::l_brace)); 505 } 506 507 /// Parse a `}` token. 508 ParseResult parseRBrace() override { 509 return parser.parseToken(Token::r_brace, "expected '}'"); 510 } 511 512 /// Parse a `}` token if present 513 ParseResult parseOptionalRBrace() override { 514 return success(parser.consumeIf(Token::r_brace)); 515 } 516 517 /// Parse a `:` token. 518 ParseResult parseColon() override { 519 return parser.parseToken(Token::colon, "expected ':'"); 520 } 521 522 /// Parse a `:` token if present. 523 ParseResult parseOptionalColon() override { 524 return success(parser.consumeIf(Token::colon)); 525 } 526 527 /// Parse a `,` token. 528 ParseResult parseComma() override { 529 return parser.parseToken(Token::comma, "expected ','"); 530 } 531 532 /// Parse a `,` token if present. 533 ParseResult parseOptionalComma() override { 534 return success(parser.consumeIf(Token::comma)); 535 } 536 537 /// Parses a `...` if present. 538 ParseResult parseOptionalEllipsis() override { 539 return success(parser.consumeIf(Token::ellipsis)); 540 } 541 542 /// Parse a `=` token. 543 ParseResult parseEqual() override { 544 return parser.parseToken(Token::equal, "expected '='"); 545 } 546 547 /// Parse a '<' token. 548 ParseResult parseLess() override { 549 return parser.parseToken(Token::less, "expected '<'"); 550 } 551 552 /// Parse a `<` token if present. 553 ParseResult parseOptionalLess() override { 554 return success(parser.consumeIf(Token::less)); 555 } 556 557 /// Parse a '>' token. 558 ParseResult parseGreater() override { 559 return parser.parseToken(Token::greater, "expected '>'"); 560 } 561 562 /// Parse a `>` token if present. 563 ParseResult parseOptionalGreater() override { 564 return success(parser.consumeIf(Token::greater)); 565 } 566 567 /// Parse a `(` token. 568 ParseResult parseLParen() override { 569 return parser.parseToken(Token::l_paren, "expected '('"); 570 } 571 572 /// Parses a '(' if present. 573 ParseResult parseOptionalLParen() override { 574 return success(parser.consumeIf(Token::l_paren)); 575 } 576 577 /// Parse a `)` token. 578 ParseResult parseRParen() override { 579 return parser.parseToken(Token::r_paren, "expected ')'"); 580 } 581 582 /// Parses a ')' if present. 583 ParseResult parseOptionalRParen() override { 584 return success(parser.consumeIf(Token::r_paren)); 585 } 586 587 /// Parse a `[` token. 588 ParseResult parseLSquare() override { 589 return parser.parseToken(Token::l_square, "expected '['"); 590 } 591 592 /// Parses a '[' if present. 593 ParseResult parseOptionalLSquare() override { 594 return success(parser.consumeIf(Token::l_square)); 595 } 596 597 /// Parse a `]` token. 598 ParseResult parseRSquare() override { 599 return parser.parseToken(Token::r_square, "expected ']'"); 600 } 601 602 /// Parses a ']' if present. 603 ParseResult parseOptionalRSquare() override { 604 return success(parser.consumeIf(Token::r_square)); 605 } 606 607 /// Parses a '?' if present. 608 ParseResult parseOptionalQuestion() override { 609 return success(parser.consumeIf(Token::question)); 610 } 611 612 /// Parses a '*' if present. 613 ParseResult parseOptionalStar() override { 614 return success(parser.consumeIf(Token::star)); 615 } 616 617 /// Returns if the current token corresponds to a keyword. 618 bool isCurrentTokenAKeyword() const { 619 return parser.getToken().is(Token::bare_identifier) || 620 parser.getToken().isKeyword(); 621 } 622 623 /// Parse the given keyword if present. 624 ParseResult parseOptionalKeyword(StringRef keyword) override { 625 // Check that the current token has the same spelling. 626 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 627 return failure(); 628 parser.consumeToken(); 629 return success(); 630 } 631 632 /// Parse a keyword, if present, into 'keyword'. 633 ParseResult parseOptionalKeyword(StringRef *keyword) override { 634 // Check that the current token is a keyword. 635 if (!isCurrentTokenAKeyword()) 636 return failure(); 637 638 *keyword = parser.getTokenSpelling(); 639 parser.consumeToken(); 640 return success(); 641 } 642 643 //===--------------------------------------------------------------------===// 644 // Attribute Parsing 645 //===--------------------------------------------------------------------===// 646 647 /// Parse an arbitrary attribute and return it in result. 648 ParseResult parseAttribute(Attribute &result, Type type) override { 649 result = parser.parseAttribute(type); 650 return success(static_cast<bool>(result)); 651 } 652 653 /// Parse an affine map instance into 'map'. 654 ParseResult parseAffineMap(AffineMap &map) override { 655 return parser.parseAffineMapReference(map); 656 } 657 658 /// Parse an integer set instance into 'set'. 659 ParseResult printIntegerSet(IntegerSet &set) override { 660 return parser.parseIntegerSetReference(set); 661 } 662 663 //===--------------------------------------------------------------------===// 664 // Type Parsing 665 //===--------------------------------------------------------------------===// 666 667 ParseResult parseType(Type &result) override { 668 result = parser.parseType(); 669 return success(static_cast<bool>(result)); 670 } 671 672 ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions, 673 bool allowDynamic) override { 674 return parser.parseDimensionListRanked(dimensions, allowDynamic); 675 } 676 677 private: 678 /// The full symbol specification. 679 StringRef fullSpec; 680 681 /// The source location of the dialect symbol. 682 SMLoc nameLoc; 683 684 /// The main parser. 685 Parser &parser; 686 }; 687 } // namespace 688 689 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s, 690 /// and may be recursive. Return with the 'prettyName' StringRef encompassing 691 /// the entire pretty name. 692 /// 693 /// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>' 694 /// pretty-dialect-sym-contents ::= pretty-dialect-sym-body 695 /// | '(' pretty-dialect-sym-contents+ ')' 696 /// | '[' pretty-dialect-sym-contents+ ']' 697 /// | '{' pretty-dialect-sym-contents+ '}' 698 /// | '[^[<({>\])}\0]+' 699 /// 700 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) { 701 // Pretty symbol names are a relatively unstructured format that contains a 702 // series of properly nested punctuation, with anything else in the middle. 703 // Scan ahead to find it and consume it if successful, otherwise emit an 704 // error. 705 auto *curPtr = getTokenSpelling().data(); 706 707 SmallVector<char, 8> nestedPunctuation; 708 709 // Scan over the nested punctuation, bailing out on error and consuming until 710 // we find the end. We know that we're currently looking at the '<', so we 711 // can go until we find the matching '>' character. 712 assert(*curPtr == '<'); 713 do { 714 char c = *curPtr++; 715 switch (c) { 716 case '\0': 717 // This also handles the EOF case. 718 return emitError("unexpected nul or EOF in pretty dialect name"); 719 case '<': 720 case '[': 721 case '(': 722 case '{': 723 nestedPunctuation.push_back(c); 724 continue; 725 726 case '-': 727 // The sequence `->` is treated as special token. 728 if (*curPtr == '>') 729 ++curPtr; 730 continue; 731 732 case '>': 733 if (nestedPunctuation.pop_back_val() != '<') 734 return emitError("unbalanced '>' character in pretty dialect name"); 735 break; 736 case ']': 737 if (nestedPunctuation.pop_back_val() != '[') 738 return emitError("unbalanced ']' character in pretty dialect name"); 739 break; 740 case ')': 741 if (nestedPunctuation.pop_back_val() != '(') 742 return emitError("unbalanced ')' character in pretty dialect name"); 743 break; 744 case '}': 745 if (nestedPunctuation.pop_back_val() != '{') 746 return emitError("unbalanced '}' character in pretty dialect name"); 747 break; 748 749 default: 750 continue; 751 } 752 } while (!nestedPunctuation.empty()); 753 754 // Ok, we succeeded, remember where we stopped, reset the lexer to know it is 755 // consuming all this stuff, and return. 756 state.lex.resetPointer(curPtr); 757 758 unsigned length = curPtr - prettyName.begin(); 759 prettyName = StringRef(prettyName.begin(), length); 760 consumeToken(); 761 return success(); 762 } 763 764 /// Parse an extended dialect symbol. 765 template <typename Symbol, typename SymbolAliasMap, typename CreateFn> 766 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok, 767 SymbolAliasMap &aliases, 768 CreateFn &&createSymbol) { 769 // Parse the dialect namespace. 770 StringRef identifier = p.getTokenSpelling().drop_front(); 771 auto loc = p.getToken().getLoc(); 772 p.consumeToken(identifierTok); 773 774 // If there is no '<' token following this, and if the typename contains no 775 // dot, then we are parsing a symbol alias. 776 if (p.getToken().isNot(Token::less) && !identifier.contains('.')) { 777 // Check for an alias for this type. 778 auto aliasIt = aliases.find(identifier); 779 if (aliasIt == aliases.end()) 780 return (p.emitError("undefined symbol alias id '" + identifier + "'"), 781 nullptr); 782 return aliasIt->second; 783 } 784 785 // Otherwise, we are parsing a dialect-specific symbol. If the name contains 786 // a dot, then this is the "pretty" form. If not, it is the verbose form that 787 // looks like <"...">. 788 std::string symbolData; 789 auto dialectName = identifier; 790 791 // Handle the verbose form, where "identifier" is a simple dialect name. 792 if (!identifier.contains('.')) { 793 // Consume the '<'. 794 if (p.parseToken(Token::less, "expected '<' in dialect type")) 795 return nullptr; 796 797 // Parse the symbol specific data. 798 if (p.getToken().isNot(Token::string)) 799 return (p.emitError("expected string literal data in dialect symbol"), 800 nullptr); 801 symbolData = p.getToken().getStringValue(); 802 loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1); 803 p.consumeToken(Token::string); 804 805 // Consume the '>'. 806 if (p.parseToken(Token::greater, "expected '>' in dialect symbol")) 807 return nullptr; 808 } else { 809 // Ok, the dialect name is the part of the identifier before the dot, the 810 // part after the dot is the dialect's symbol, or the start thereof. 811 auto dotHalves = identifier.split('.'); 812 dialectName = dotHalves.first; 813 auto prettyName = dotHalves.second; 814 loc = llvm::SMLoc::getFromPointer(prettyName.data()); 815 816 // If the dialect's symbol is followed immediately by a <, then lex the body 817 // of it into prettyName. 818 if (p.getToken().is(Token::less) && 819 prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) { 820 if (p.parsePrettyDialectSymbolName(prettyName)) 821 return nullptr; 822 } 823 824 symbolData = prettyName.str(); 825 } 826 827 // Record the name location of the type remapped to the top level buffer. 828 llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc); 829 p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer); 830 831 // Call into the provided symbol construction function. 832 Symbol sym = createSymbol(dialectName, symbolData, loc); 833 834 // Pop the last parser location. 835 p.getState().symbols.nestedParserLocs.pop_back(); 836 return sym; 837 } 838 839 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 840 /// parsing failed, nullptr is returned. The number of bytes read from the input 841 /// string is returned in 'numRead'. 842 template <typename T, typename ParserFn> 843 static T parseSymbol(StringRef inputStr, MLIRContext *context, 844 SymbolState &symbolState, ParserFn &&parserFn, 845 size_t *numRead = nullptr) { 846 SourceMgr sourceMgr; 847 auto memBuffer = MemoryBuffer::getMemBuffer( 848 inputStr, /*BufferName=*/"<mlir_parser_buffer>", 849 /*RequiresNullTerminator=*/false); 850 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 851 ParserState state(sourceMgr, context, symbolState); 852 Parser parser(state); 853 854 Token startTok = parser.getToken(); 855 T symbol = parserFn(parser); 856 if (!symbol) 857 return T(); 858 859 // If 'numRead' is valid, then provide the number of bytes that were read. 860 Token endTok = parser.getToken(); 861 if (numRead) { 862 *numRead = static_cast<size_t>(endTok.getLoc().getPointer() - 863 startTok.getLoc().getPointer()); 864 865 // Otherwise, ensure that all of the tokens were parsed. 866 } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) { 867 parser.emitError(endTok.getLoc(), "encountered unexpected token"); 868 return T(); 869 } 870 return symbol; 871 } 872 873 //===----------------------------------------------------------------------===// 874 // Error Handling 875 //===----------------------------------------------------------------------===// 876 877 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 878 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 879 880 // If we hit a parse error in response to a lexer error, then the lexer 881 // already reported the error. 882 if (getToken().is(Token::error)) 883 diag.abandon(); 884 return diag; 885 } 886 887 //===----------------------------------------------------------------------===// 888 // Token Parsing 889 //===----------------------------------------------------------------------===// 890 891 /// Consume the specified token if present and return success. On failure, 892 /// output a diagnostic and return failure. 893 ParseResult Parser::parseToken(Token::Kind expectedToken, 894 const Twine &message) { 895 if (consumeIf(expectedToken)) 896 return success(); 897 return emitError(message); 898 } 899 900 //===----------------------------------------------------------------------===// 901 // Type Parsing 902 //===----------------------------------------------------------------------===// 903 904 /// Optionally parse a type. 905 OptionalParseResult Parser::parseOptionalType(Type &type) { 906 // There are many different starting tokens for a type, check them here. 907 switch (getToken().getKind()) { 908 case Token::l_paren: 909 case Token::kw_memref: 910 case Token::kw_tensor: 911 case Token::kw_complex: 912 case Token::kw_tuple: 913 case Token::kw_vector: 914 case Token::inttype: 915 case Token::kw_bf16: 916 case Token::kw_f16: 917 case Token::kw_f32: 918 case Token::kw_f64: 919 case Token::kw_index: 920 case Token::kw_none: 921 case Token::exclamation_identifier: 922 return failure(!(type = parseType())); 923 924 default: 925 return llvm::None; 926 } 927 } 928 929 /// Parse an arbitrary type. 930 /// 931 /// type ::= function-type 932 /// | non-function-type 933 /// 934 Type Parser::parseType() { 935 if (getToken().is(Token::l_paren)) 936 return parseFunctionType(); 937 return parseNonFunctionType(); 938 } 939 940 /// Parse a function result type. 941 /// 942 /// function-result-type ::= type-list-parens 943 /// | non-function-type 944 /// 945 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) { 946 if (getToken().is(Token::l_paren)) 947 return parseTypeListParens(elements); 948 949 Type t = parseNonFunctionType(); 950 if (!t) 951 return failure(); 952 elements.push_back(t); 953 return success(); 954 } 955 956 /// Parse a list of types without an enclosing parenthesis. The list must have 957 /// at least one member. 958 /// 959 /// type-list-no-parens ::= type (`,` type)* 960 /// 961 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) { 962 auto parseElt = [&]() -> ParseResult { 963 auto elt = parseType(); 964 elements.push_back(elt); 965 return elt ? success() : failure(); 966 }; 967 968 return parseCommaSeparatedList(parseElt); 969 } 970 971 /// Parse a parenthesized list of types. 972 /// 973 /// type-list-parens ::= `(` `)` 974 /// | `(` type-list-no-parens `)` 975 /// 976 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) { 977 if (parseToken(Token::l_paren, "expected '('")) 978 return failure(); 979 980 // Handle empty lists. 981 if (getToken().is(Token::r_paren)) 982 return consumeToken(), success(); 983 984 if (parseTypeListNoParens(elements) || 985 parseToken(Token::r_paren, "expected ')'")) 986 return failure(); 987 return success(); 988 } 989 990 /// Parse a complex type. 991 /// 992 /// complex-type ::= `complex` `<` type `>` 993 /// 994 Type Parser::parseComplexType() { 995 consumeToken(Token::kw_complex); 996 997 // Parse the '<'. 998 if (parseToken(Token::less, "expected '<' in complex type")) 999 return nullptr; 1000 1001 llvm::SMLoc elementTypeLoc = getToken().getLoc(); 1002 auto elementType = parseType(); 1003 if (!elementType || 1004 parseToken(Token::greater, "expected '>' in complex type")) 1005 return nullptr; 1006 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) 1007 return emitError(elementTypeLoc, "invalid element type for complex"), 1008 nullptr; 1009 1010 return ComplexType::get(elementType); 1011 } 1012 1013 /// Parse an extended type. 1014 /// 1015 /// extended-type ::= (dialect-type | type-alias) 1016 /// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>` 1017 /// dialect-type ::= `!` alias-name pretty-dialect-attribute-body? 1018 /// type-alias ::= `!` alias-name 1019 /// 1020 Type Parser::parseExtendedType() { 1021 return parseExtendedSymbol<Type>( 1022 *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions, 1023 [&](StringRef dialectName, StringRef symbolData, 1024 llvm::SMLoc loc) -> Type { 1025 // If we found a registered dialect, then ask it to parse the type. 1026 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1027 return parseSymbol<Type>( 1028 symbolData, state.context, state.symbols, [&](Parser &parser) { 1029 CustomDialectAsmParser customParser(symbolData, parser); 1030 return dialect->parseType(customParser); 1031 }); 1032 } 1033 1034 // Otherwise, form a new opaque type. 1035 return OpaqueType::getChecked( 1036 Identifier::get(dialectName, state.context), symbolData, 1037 state.context, getEncodedSourceLocation(loc)); 1038 }); 1039 } 1040 1041 /// Parse a function type. 1042 /// 1043 /// function-type ::= type-list-parens `->` function-result-type 1044 /// 1045 Type Parser::parseFunctionType() { 1046 assert(getToken().is(Token::l_paren)); 1047 1048 SmallVector<Type, 4> arguments, results; 1049 if (parseTypeListParens(arguments) || 1050 parseToken(Token::arrow, "expected '->' in function type") || 1051 parseFunctionResultTypes(results)) 1052 return nullptr; 1053 1054 return builder.getFunctionType(arguments, results); 1055 } 1056 1057 /// Parse the offset and strides from a strided layout specification. 1058 /// 1059 /// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list 1060 /// 1061 ParseResult Parser::parseStridedLayout(int64_t &offset, 1062 SmallVectorImpl<int64_t> &strides) { 1063 // Parse offset. 1064 consumeToken(Token::kw_offset); 1065 if (!consumeIf(Token::colon)) 1066 return emitError("expected colon after `offset` keyword"); 1067 auto maybeOffset = getToken().getUnsignedIntegerValue(); 1068 bool question = getToken().is(Token::question); 1069 if (!maybeOffset && !question) 1070 return emitError("invalid offset"); 1071 offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue()) 1072 : MemRefType::getDynamicStrideOrOffset(); 1073 consumeToken(); 1074 1075 if (!consumeIf(Token::comma)) 1076 return emitError("expected comma after offset value"); 1077 1078 // Parse stride list. 1079 if (!consumeIf(Token::kw_strides)) 1080 return emitError("expected `strides` keyword after offset specification"); 1081 if (!consumeIf(Token::colon)) 1082 return emitError("expected colon after `strides` keyword"); 1083 if (failed(parseStrideList(strides))) 1084 return emitError("invalid braces-enclosed stride list"); 1085 if (llvm::any_of(strides, [](int64_t st) { return st == 0; })) 1086 return emitError("invalid memref stride"); 1087 1088 return success(); 1089 } 1090 1091 /// Parse a memref type. 1092 /// 1093 /// memref-type ::= ranked-memref-type | unranked-memref-type 1094 /// 1095 /// ranked-memref-type ::= `memref` `<` dimension-list-ranked type 1096 /// (`,` semi-affine-map-composition)? (`,` 1097 /// memory-space)? `>` 1098 /// 1099 /// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>` 1100 /// 1101 /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map 1102 /// memory-space ::= integer-literal /* | TODO: address-space-id */ 1103 /// 1104 Type Parser::parseMemRefType() { 1105 consumeToken(Token::kw_memref); 1106 1107 if (parseToken(Token::less, "expected '<' in memref type")) 1108 return nullptr; 1109 1110 bool isUnranked; 1111 SmallVector<int64_t, 4> dimensions; 1112 1113 if (consumeIf(Token::star)) { 1114 // This is an unranked memref type. 1115 isUnranked = true; 1116 if (parseXInDimensionList()) 1117 return nullptr; 1118 1119 } else { 1120 isUnranked = false; 1121 if (parseDimensionListRanked(dimensions)) 1122 return nullptr; 1123 } 1124 1125 // Parse the element type. 1126 auto typeLoc = getToken().getLoc(); 1127 auto elementType = parseType(); 1128 if (!elementType) 1129 return nullptr; 1130 1131 // Check that memref is formed from allowed types. 1132 if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>() && 1133 !elementType.isa<ComplexType>()) 1134 return emitError(typeLoc, "invalid memref element type"), nullptr; 1135 1136 // Parse semi-affine-map-composition. 1137 SmallVector<AffineMap, 2> affineMapComposition; 1138 Optional<unsigned> memorySpace; 1139 unsigned numDims = dimensions.size(); 1140 1141 auto parseElt = [&]() -> ParseResult { 1142 // Check for the memory space. 1143 if (getToken().is(Token::integer)) { 1144 if (memorySpace) 1145 return emitError("multiple memory spaces specified in memref type"); 1146 memorySpace = getToken().getUnsignedIntegerValue(); 1147 if (!memorySpace.hasValue()) 1148 return emitError("invalid memory space in memref type"); 1149 consumeToken(Token::integer); 1150 return success(); 1151 } 1152 if (isUnranked) 1153 return emitError("cannot have affine map for unranked memref type"); 1154 if (memorySpace) 1155 return emitError("expected memory space to be last in memref type"); 1156 1157 AffineMap map; 1158 llvm::SMLoc mapLoc = getToken().getLoc(); 1159 if (getToken().is(Token::kw_offset)) { 1160 int64_t offset; 1161 SmallVector<int64_t, 4> strides; 1162 if (failed(parseStridedLayout(offset, strides))) 1163 return failure(); 1164 // Construct strided affine map. 1165 map = makeStridedLinearLayoutMap(strides, offset, state.context); 1166 } else { 1167 // Parse an affine map attribute. 1168 auto affineMap = parseAttribute(); 1169 if (!affineMap) 1170 return failure(); 1171 auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>(); 1172 if (!affineMapAttr) 1173 return emitError("expected affine map in memref type"); 1174 map = affineMapAttr.getValue(); 1175 } 1176 1177 if (map.getNumDims() != numDims) { 1178 size_t i = affineMapComposition.size(); 1179 return emitError(mapLoc, "memref affine map dimension mismatch between ") 1180 << (i == 0 ? Twine("memref rank") : "affine map " + Twine(i)) 1181 << " and affine map" << i + 1 << ": " << numDims 1182 << " != " << map.getNumDims(); 1183 } 1184 numDims = map.getNumResults(); 1185 affineMapComposition.push_back(map); 1186 return success(); 1187 }; 1188 1189 // Parse a list of mappings and address space if present. 1190 if (!consumeIf(Token::greater)) { 1191 // Parse comma separated list of affine maps, followed by memory space. 1192 if (parseToken(Token::comma, "expected ',' or '>' in memref type") || 1193 parseCommaSeparatedListUntil(Token::greater, parseElt, 1194 /*allowEmptyList=*/false)) { 1195 return nullptr; 1196 } 1197 } 1198 1199 if (isUnranked) 1200 return UnrankedMemRefType::get(elementType, memorySpace.getValueOr(0)); 1201 1202 return MemRefType::get(dimensions, elementType, affineMapComposition, 1203 memorySpace.getValueOr(0)); 1204 } 1205 1206 /// Parse any type except the function type. 1207 /// 1208 /// non-function-type ::= integer-type 1209 /// | index-type 1210 /// | float-type 1211 /// | extended-type 1212 /// | vector-type 1213 /// | tensor-type 1214 /// | memref-type 1215 /// | complex-type 1216 /// | tuple-type 1217 /// | none-type 1218 /// 1219 /// index-type ::= `index` 1220 /// float-type ::= `f16` | `bf16` | `f32` | `f64` 1221 /// none-type ::= `none` 1222 /// 1223 Type Parser::parseNonFunctionType() { 1224 switch (getToken().getKind()) { 1225 default: 1226 return (emitError("expected non-function type"), nullptr); 1227 case Token::kw_memref: 1228 return parseMemRefType(); 1229 case Token::kw_tensor: 1230 return parseTensorType(); 1231 case Token::kw_complex: 1232 return parseComplexType(); 1233 case Token::kw_tuple: 1234 return parseTupleType(); 1235 case Token::kw_vector: 1236 return parseVectorType(); 1237 // integer-type 1238 case Token::inttype: { 1239 auto width = getToken().getIntTypeBitwidth(); 1240 if (!width.hasValue()) 1241 return (emitError("invalid integer width"), nullptr); 1242 if (width.getValue() > IntegerType::kMaxWidth) { 1243 emitError(getToken().getLoc(), "integer bitwidth is limited to ") 1244 << IntegerType::kMaxWidth << " bits"; 1245 return nullptr; 1246 } 1247 1248 IntegerType::SignednessSemantics signSemantics = IntegerType::Signless; 1249 if (Optional<bool> signedness = getToken().getIntTypeSignedness()) 1250 signSemantics = *signedness ? IntegerType::Signed : IntegerType::Unsigned; 1251 1252 auto loc = getEncodedSourceLocation(getToken().getLoc()); 1253 consumeToken(Token::inttype); 1254 return IntegerType::getChecked(width.getValue(), signSemantics, loc); 1255 } 1256 1257 // float-type 1258 case Token::kw_bf16: 1259 consumeToken(Token::kw_bf16); 1260 return builder.getBF16Type(); 1261 case Token::kw_f16: 1262 consumeToken(Token::kw_f16); 1263 return builder.getF16Type(); 1264 case Token::kw_f32: 1265 consumeToken(Token::kw_f32); 1266 return builder.getF32Type(); 1267 case Token::kw_f64: 1268 consumeToken(Token::kw_f64); 1269 return builder.getF64Type(); 1270 1271 // index-type 1272 case Token::kw_index: 1273 consumeToken(Token::kw_index); 1274 return builder.getIndexType(); 1275 1276 // none-type 1277 case Token::kw_none: 1278 consumeToken(Token::kw_none); 1279 return builder.getNoneType(); 1280 1281 // extended type 1282 case Token::exclamation_identifier: 1283 return parseExtendedType(); 1284 } 1285 } 1286 1287 /// Parse a tensor type. 1288 /// 1289 /// tensor-type ::= `tensor` `<` dimension-list type `>` 1290 /// dimension-list ::= dimension-list-ranked | `*x` 1291 /// 1292 Type Parser::parseTensorType() { 1293 consumeToken(Token::kw_tensor); 1294 1295 if (parseToken(Token::less, "expected '<' in tensor type")) 1296 return nullptr; 1297 1298 bool isUnranked; 1299 SmallVector<int64_t, 4> dimensions; 1300 1301 if (consumeIf(Token::star)) { 1302 // This is an unranked tensor type. 1303 isUnranked = true; 1304 1305 if (parseXInDimensionList()) 1306 return nullptr; 1307 1308 } else { 1309 isUnranked = false; 1310 if (parseDimensionListRanked(dimensions)) 1311 return nullptr; 1312 } 1313 1314 // Parse the element type. 1315 auto elementTypeLoc = getToken().getLoc(); 1316 auto elementType = parseType(); 1317 if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) 1318 return nullptr; 1319 if (!TensorType::isValidElementType(elementType)) 1320 return emitError(elementTypeLoc, "invalid tensor element type"), nullptr; 1321 1322 if (isUnranked) 1323 return UnrankedTensorType::get(elementType); 1324 return RankedTensorType::get(dimensions, elementType); 1325 } 1326 1327 /// Parse a tuple type. 1328 /// 1329 /// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>` 1330 /// 1331 Type Parser::parseTupleType() { 1332 consumeToken(Token::kw_tuple); 1333 1334 // Parse the '<'. 1335 if (parseToken(Token::less, "expected '<' in tuple type")) 1336 return nullptr; 1337 1338 // Check for an empty tuple by directly parsing '>'. 1339 if (consumeIf(Token::greater)) 1340 return TupleType::get(getContext()); 1341 1342 // Parse the element types and the '>'. 1343 SmallVector<Type, 4> types; 1344 if (parseTypeListNoParens(types) || 1345 parseToken(Token::greater, "expected '>' in tuple type")) 1346 return nullptr; 1347 1348 return TupleType::get(types, getContext()); 1349 } 1350 1351 /// Parse a vector type. 1352 /// 1353 /// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>` 1354 /// non-empty-static-dimension-list ::= decimal-literal `x` 1355 /// static-dimension-list 1356 /// static-dimension-list ::= (decimal-literal `x`)* 1357 /// 1358 VectorType Parser::parseVectorType() { 1359 consumeToken(Token::kw_vector); 1360 1361 if (parseToken(Token::less, "expected '<' in vector type")) 1362 return nullptr; 1363 1364 SmallVector<int64_t, 4> dimensions; 1365 if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) 1366 return nullptr; 1367 if (dimensions.empty()) 1368 return (emitError("expected dimension size in vector type"), nullptr); 1369 if (any_of(dimensions, [](int64_t i) { return i <= 0; })) 1370 return emitError(getToken().getLoc(), 1371 "vector types must have positive constant sizes"), 1372 nullptr; 1373 1374 // Parse the element type. 1375 auto typeLoc = getToken().getLoc(); 1376 auto elementType = parseType(); 1377 if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) 1378 return nullptr; 1379 if (!VectorType::isValidElementType(elementType)) 1380 return emitError(typeLoc, "vector elements must be int or float type"), 1381 nullptr; 1382 1383 return VectorType::get(dimensions, elementType); 1384 } 1385 1386 /// Parse a dimension list of a tensor or memref type. This populates the 1387 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and 1388 /// errors out on `?` otherwise. 1389 /// 1390 /// dimension-list-ranked ::= (dimension `x`)* 1391 /// dimension ::= `?` | decimal-literal 1392 /// 1393 /// When `allowDynamic` is not set, this is used to parse: 1394 /// 1395 /// static-dimension-list ::= (decimal-literal `x`)* 1396 ParseResult 1397 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 1398 bool allowDynamic) { 1399 while (getToken().isAny(Token::integer, Token::question)) { 1400 if (consumeIf(Token::question)) { 1401 if (!allowDynamic) 1402 return emitError("expected static shape"); 1403 dimensions.push_back(-1); 1404 } else { 1405 // Hexadecimal integer literals (starting with `0x`) are not allowed in 1406 // aggregate type declarations. Therefore, `0xf32` should be processed as 1407 // a sequence of separate elements `0`, `x`, `f32`. 1408 if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { 1409 // We can get here only if the token is an integer literal. Hexadecimal 1410 // integer literals can only start with `0x` (`1x` wouldn't lex as a 1411 // literal, just `1` would, at which point we don't get into this 1412 // branch). 1413 assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); 1414 dimensions.push_back(0); 1415 state.lex.resetPointer(getTokenSpelling().data() + 1); 1416 consumeToken(); 1417 } else { 1418 // Make sure this integer value is in bound and valid. 1419 auto dimension = getToken().getUnsignedIntegerValue(); 1420 if (!dimension.hasValue()) 1421 return emitError("invalid dimension"); 1422 dimensions.push_back((int64_t)dimension.getValue()); 1423 consumeToken(Token::integer); 1424 } 1425 } 1426 1427 // Make sure we have an 'x' or something like 'xbf32'. 1428 if (parseXInDimensionList()) 1429 return failure(); 1430 } 1431 1432 return success(); 1433 } 1434 1435 /// Parse an 'x' token in a dimension list, handling the case where the x is 1436 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next 1437 /// token. 1438 ParseResult Parser::parseXInDimensionList() { 1439 if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') 1440 return emitError("expected 'x' in dimension list"); 1441 1442 // If we had a prefix of 'x', lex the next token immediately after the 'x'. 1443 if (getTokenSpelling().size() != 1) 1444 state.lex.resetPointer(getTokenSpelling().data() + 1); 1445 1446 // Consume the 'x'. 1447 consumeToken(Token::bare_identifier); 1448 1449 return success(); 1450 } 1451 1452 // Parse a comma-separated list of dimensions, possibly empty: 1453 // stride-list ::= `[` (dimension (`,` dimension)*)? `]` 1454 ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) { 1455 if (!consumeIf(Token::l_square)) 1456 return failure(); 1457 // Empty list early exit. 1458 if (consumeIf(Token::r_square)) 1459 return success(); 1460 while (true) { 1461 if (consumeIf(Token::question)) { 1462 dimensions.push_back(MemRefType::getDynamicStrideOrOffset()); 1463 } else { 1464 // This must be an integer value. 1465 int64_t val; 1466 if (getToken().getSpelling().getAsInteger(10, val)) 1467 return emitError("invalid integer value: ") << getToken().getSpelling(); 1468 // Make sure it is not the one value for `?`. 1469 if (ShapedType::isDynamic(val)) 1470 return emitError("invalid integer value: ") 1471 << getToken().getSpelling() 1472 << ", use `?` to specify a dynamic dimension"; 1473 dimensions.push_back(val); 1474 consumeToken(Token::integer); 1475 } 1476 if (!consumeIf(Token::comma)) 1477 break; 1478 } 1479 if (!consumeIf(Token::r_square)) 1480 return failure(); 1481 return success(); 1482 } 1483 1484 //===----------------------------------------------------------------------===// 1485 // Attribute parsing. 1486 //===----------------------------------------------------------------------===// 1487 1488 /// Return the symbol reference referred to by the given token, that is known to 1489 /// be an @-identifier. 1490 static std::string extractSymbolReference(Token tok) { 1491 assert(tok.is(Token::at_identifier) && "expected valid @-identifier"); 1492 StringRef nameStr = tok.getSpelling().drop_front(); 1493 1494 // Check to see if the reference is a string literal, or a bare identifier. 1495 if (nameStr.front() == '"') 1496 return tok.getStringValue(); 1497 return std::string(nameStr); 1498 } 1499 1500 /// Parse an arbitrary attribute. 1501 /// 1502 /// attribute-value ::= `unit` 1503 /// | bool-literal 1504 /// | integer-literal (`:` (index-type | integer-type))? 1505 /// | float-literal (`:` float-type)? 1506 /// | string-literal (`:` type)? 1507 /// | type 1508 /// | `[` (attribute-value (`,` attribute-value)*)? `]` 1509 /// | `{` (attribute-entry (`,` attribute-entry)*)? `}` 1510 /// | symbol-ref-id (`::` symbol-ref-id)* 1511 /// | `dense` `<` attribute-value `>` `:` 1512 /// (tensor-type | vector-type) 1513 /// | `sparse` `<` attribute-value `,` attribute-value `>` 1514 /// `:` (tensor-type | vector-type) 1515 /// | `opaque` `<` dialect-namespace `,` hex-string-literal 1516 /// `>` `:` (tensor-type | vector-type) 1517 /// | extended-attribute 1518 /// 1519 Attribute Parser::parseAttribute(Type type) { 1520 switch (getToken().getKind()) { 1521 // Parse an AffineMap or IntegerSet attribute. 1522 case Token::kw_affine_map: { 1523 consumeToken(Token::kw_affine_map); 1524 1525 AffineMap map; 1526 if (parseToken(Token::less, "expected '<' in affine map") || 1527 parseAffineMapReference(map) || 1528 parseToken(Token::greater, "expected '>' in affine map")) 1529 return Attribute(); 1530 return AffineMapAttr::get(map); 1531 } 1532 case Token::kw_affine_set: { 1533 consumeToken(Token::kw_affine_set); 1534 1535 IntegerSet set; 1536 if (parseToken(Token::less, "expected '<' in integer set") || 1537 parseIntegerSetReference(set) || 1538 parseToken(Token::greater, "expected '>' in integer set")) 1539 return Attribute(); 1540 return IntegerSetAttr::get(set); 1541 } 1542 1543 // Parse an array attribute. 1544 case Token::l_square: { 1545 consumeToken(Token::l_square); 1546 1547 SmallVector<Attribute, 4> elements; 1548 auto parseElt = [&]() -> ParseResult { 1549 elements.push_back(parseAttribute()); 1550 return elements.back() ? success() : failure(); 1551 }; 1552 1553 if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) 1554 return nullptr; 1555 return builder.getArrayAttr(elements); 1556 } 1557 1558 // Parse a boolean attribute. 1559 case Token::kw_false: 1560 consumeToken(Token::kw_false); 1561 return builder.getBoolAttr(false); 1562 case Token::kw_true: 1563 consumeToken(Token::kw_true); 1564 return builder.getBoolAttr(true); 1565 1566 // Parse a dense elements attribute. 1567 case Token::kw_dense: 1568 return parseDenseElementsAttr(type); 1569 1570 // Parse a dictionary attribute. 1571 case Token::l_brace: { 1572 SmallVector<NamedAttribute, 4> elements; 1573 if (parseAttributeDict(elements)) 1574 return nullptr; 1575 return builder.getDictionaryAttr(elements); 1576 } 1577 1578 // Parse an extended attribute, i.e. alias or dialect attribute. 1579 case Token::hash_identifier: 1580 return parseExtendedAttr(type); 1581 1582 // Parse floating point and integer attributes. 1583 case Token::floatliteral: 1584 return parseFloatAttr(type, /*isNegative=*/false); 1585 case Token::integer: 1586 return parseDecOrHexAttr(type, /*isNegative=*/false); 1587 case Token::minus: { 1588 consumeToken(Token::minus); 1589 if (getToken().is(Token::integer)) 1590 return parseDecOrHexAttr(type, /*isNegative=*/true); 1591 if (getToken().is(Token::floatliteral)) 1592 return parseFloatAttr(type, /*isNegative=*/true); 1593 1594 return (emitError("expected constant integer or floating point value"), 1595 nullptr); 1596 } 1597 1598 // Parse a location attribute. 1599 case Token::kw_loc: { 1600 LocationAttr attr; 1601 return failed(parseLocation(attr)) ? Attribute() : attr; 1602 } 1603 1604 // Parse an opaque elements attribute. 1605 case Token::kw_opaque: 1606 return parseOpaqueElementsAttr(type); 1607 1608 // Parse a sparse elements attribute. 1609 case Token::kw_sparse: 1610 return parseSparseElementsAttr(type); 1611 1612 // Parse a string attribute. 1613 case Token::string: { 1614 auto val = getToken().getStringValue(); 1615 consumeToken(Token::string); 1616 // Parse the optional trailing colon type if one wasn't explicitly provided. 1617 if (!type && consumeIf(Token::colon) && !(type = parseType())) 1618 return Attribute(); 1619 1620 return type ? StringAttr::get(val, type) 1621 : StringAttr::get(val, getContext()); 1622 } 1623 1624 // Parse a symbol reference attribute. 1625 case Token::at_identifier: { 1626 std::string nameStr = extractSymbolReference(getToken()); 1627 consumeToken(Token::at_identifier); 1628 1629 // Parse any nested references. 1630 std::vector<FlatSymbolRefAttr> nestedRefs; 1631 while (getToken().is(Token::colon)) { 1632 // Check for the '::' prefix. 1633 const char *curPointer = getToken().getLoc().getPointer(); 1634 consumeToken(Token::colon); 1635 if (!consumeIf(Token::colon)) { 1636 state.lex.resetPointer(curPointer); 1637 consumeToken(); 1638 break; 1639 } 1640 // Parse the reference itself. 1641 auto curLoc = getToken().getLoc(); 1642 if (getToken().isNot(Token::at_identifier)) { 1643 emitError(curLoc, "expected nested symbol reference identifier"); 1644 return Attribute(); 1645 } 1646 1647 std::string nameStr = extractSymbolReference(getToken()); 1648 consumeToken(Token::at_identifier); 1649 nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext())); 1650 } 1651 1652 return builder.getSymbolRefAttr(nameStr, nestedRefs); 1653 } 1654 1655 // Parse a 'unit' attribute. 1656 case Token::kw_unit: 1657 consumeToken(Token::kw_unit); 1658 return builder.getUnitAttr(); 1659 1660 default: 1661 // Parse a type attribute. 1662 if (Type type = parseType()) 1663 return TypeAttr::get(type); 1664 return nullptr; 1665 } 1666 } 1667 1668 /// Attribute dictionary. 1669 /// 1670 /// attribute-dict ::= `{` `}` 1671 /// | `{` attribute-entry (`,` attribute-entry)* `}` 1672 /// attribute-entry ::= (bare-id | string-literal) `=` attribute-value 1673 /// 1674 ParseResult 1675 Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) { 1676 if (parseToken(Token::l_brace, "expected '{' in attribute dictionary")) 1677 return failure(); 1678 1679 auto parseElt = [&]() -> ParseResult { 1680 // The name of an attribute can either be a bare identifier, or a string. 1681 Optional<Identifier> nameId; 1682 if (getToken().is(Token::string)) 1683 nameId = builder.getIdentifier(getToken().getStringValue()); 1684 else if (getToken().isAny(Token::bare_identifier, Token::inttype) || 1685 getToken().isKeyword()) 1686 nameId = builder.getIdentifier(getTokenSpelling()); 1687 else 1688 return emitError("expected attribute name"); 1689 consumeToken(); 1690 1691 // Try to parse the '=' for the attribute value. 1692 if (!consumeIf(Token::equal)) { 1693 // If there is no '=', we treat this as a unit attribute. 1694 attributes.push_back({*nameId, builder.getUnitAttr()}); 1695 return success(); 1696 } 1697 1698 auto attr = parseAttribute(); 1699 if (!attr) 1700 return failure(); 1701 1702 attributes.push_back({*nameId, attr}); 1703 return success(); 1704 }; 1705 1706 if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) 1707 return failure(); 1708 1709 return success(); 1710 } 1711 1712 /// Parse an extended attribute. 1713 /// 1714 /// extended-attribute ::= (dialect-attribute | attribute-alias) 1715 /// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>` 1716 /// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body? 1717 /// attribute-alias ::= `#` alias-name 1718 /// 1719 Attribute Parser::parseExtendedAttr(Type type) { 1720 Attribute attr = parseExtendedSymbol<Attribute>( 1721 *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions, 1722 [&](StringRef dialectName, StringRef symbolData, 1723 llvm::SMLoc loc) -> Attribute { 1724 // Parse an optional trailing colon type. 1725 Type attrType = type; 1726 if (consumeIf(Token::colon) && !(attrType = parseType())) 1727 return Attribute(); 1728 1729 // If we found a registered dialect, then ask it to parse the attribute. 1730 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1731 return parseSymbol<Attribute>( 1732 symbolData, state.context, state.symbols, [&](Parser &parser) { 1733 CustomDialectAsmParser customParser(symbolData, parser); 1734 return dialect->parseAttribute(customParser, attrType); 1735 }); 1736 } 1737 1738 // Otherwise, form a new opaque attribute. 1739 return OpaqueAttr::getChecked( 1740 Identifier::get(dialectName, state.context), symbolData, 1741 attrType ? attrType : NoneType::get(state.context), 1742 getEncodedSourceLocation(loc)); 1743 }); 1744 1745 // Ensure that the attribute has the same type as requested. 1746 if (attr && type && attr.getType() != type) { 1747 emitError("attribute type different than expected: expected ") 1748 << type << ", but got " << attr.getType(); 1749 return nullptr; 1750 } 1751 return attr; 1752 } 1753 1754 /// Parse a float attribute. 1755 Attribute Parser::parseFloatAttr(Type type, bool isNegative) { 1756 auto val = getToken().getFloatingPointValue(); 1757 if (!val.hasValue()) 1758 return (emitError("floating point value too large for attribute"), nullptr); 1759 consumeToken(Token::floatliteral); 1760 if (!type) { 1761 // Default to F64 when no type is specified. 1762 if (!consumeIf(Token::colon)) 1763 type = builder.getF64Type(); 1764 else if (!(type = parseType())) 1765 return nullptr; 1766 } 1767 if (!type.isa<FloatType>()) 1768 return (emitError("floating point value not valid for specified type"), 1769 nullptr); 1770 return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue()); 1771 } 1772 1773 /// Construct a float attribute bitwise equivalent to the integer literal. 1774 static Optional<APFloat> buildHexadecimalFloatLiteral(Parser *p, FloatType type, 1775 uint64_t value) { 1776 // FIXME: bfloat is currently stored as a double internally because it doesn't 1777 // have valid APFloat semantics. 1778 if (type.isF64() || type.isBF16()) 1779 return APFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value)); 1780 1781 APInt apInt(type.getWidth(), value); 1782 if (apInt != value) { 1783 p->emitError("hexadecimal float constant out of range for type"); 1784 return llvm::None; 1785 } 1786 return APFloat(type.getFloatSemantics(), apInt); 1787 } 1788 1789 /// Construct an APint from a parsed value, a known attribute type and 1790 /// sign. 1791 static Optional<APInt> buildAttributeAPInt(Type type, bool isNegative, 1792 StringRef spelling) { 1793 // Parse the integer value into an APInt that is big enough to hold the value. 1794 APInt result; 1795 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1796 if (spelling.getAsInteger(isHex ? 0 : 10, result)) 1797 return llvm::None; 1798 1799 // Extend or truncate the bitwidth to the right size. 1800 unsigned width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); 1801 if (width > result.getBitWidth()) { 1802 result = result.zext(width); 1803 } else if (width < result.getBitWidth()) { 1804 // The parser can return an unnecessarily wide result with leading zeros. 1805 // This isn't a problem, but truncating off bits is bad. 1806 if (result.countLeadingZeros() < result.getBitWidth() - width) 1807 return llvm::None; 1808 1809 result = result.trunc(width); 1810 } 1811 1812 if (isNegative) { 1813 // The value is negative, we have an overflow if the sign bit is not set 1814 // in the negated apInt. 1815 result.negate(); 1816 if (!result.isSignBitSet()) 1817 return llvm::None; 1818 } else if ((type.isSignedInteger() || type.isIndex()) && 1819 result.isSignBitSet()) { 1820 // The value is a positive signed integer or index, 1821 // we have an overflow if the sign bit is set. 1822 return llvm::None; 1823 } 1824 1825 return result; 1826 } 1827 1828 /// Parse a decimal or a hexadecimal literal, which can be either an integer 1829 /// or a float attribute. 1830 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) { 1831 // Remember if the literal is hexadecimal. 1832 StringRef spelling = getToken().getSpelling(); 1833 auto loc = state.curToken.getLoc(); 1834 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1835 1836 consumeToken(Token::integer); 1837 if (!type) { 1838 // Default to i64 if not type is specified. 1839 if (!consumeIf(Token::colon)) 1840 type = builder.getIntegerType(64); 1841 else if (!(type = parseType())) 1842 return nullptr; 1843 } 1844 1845 if (auto floatType = type.dyn_cast<FloatType>()) { 1846 if (isNegative) 1847 return emitError( 1848 loc, 1849 "hexadecimal float literal should not have a leading minus"), 1850 nullptr; 1851 if (!isHex) { 1852 emitError(loc, "unexpected decimal integer literal for a float attribute") 1853 .attachNote() 1854 << "add a trailing dot to make the literal a float"; 1855 return nullptr; 1856 } 1857 1858 auto val = Token::getUInt64IntegerValue(spelling); 1859 if (!val.hasValue()) 1860 return emitError("integer constant out of range for attribute"), nullptr; 1861 1862 // Construct a float attribute bitwise equivalent to the integer literal. 1863 Optional<APFloat> apVal = 1864 buildHexadecimalFloatLiteral(this, floatType, *val); 1865 return apVal ? FloatAttr::get(floatType, *apVal) : Attribute(); 1866 } 1867 1868 if (!type.isa<IntegerType>() && !type.isa<IndexType>()) 1869 return emitError(loc, "integer literal not valid for specified type"), 1870 nullptr; 1871 1872 if (isNegative && type.isUnsignedInteger()) { 1873 emitError(loc, 1874 "negative integer literal not valid for unsigned integer type"); 1875 return nullptr; 1876 } 1877 1878 Optional<APInt> apInt = buildAttributeAPInt(type, isNegative, spelling); 1879 if (!apInt) 1880 return emitError(loc, "integer constant out of range for attribute"), 1881 nullptr; 1882 return builder.getIntegerAttr(type, *apInt); 1883 } 1884 1885 /// Parse elements values stored within a hex etring. On success, the values are 1886 /// stored into 'result'. 1887 static ParseResult parseElementAttrHexValues(Parser &parser, Token tok, 1888 std::string &result) { 1889 std::string val = tok.getStringValue(); 1890 if (val.size() < 2 || val[0] != '0' || val[1] != 'x') 1891 return parser.emitError(tok.getLoc(), 1892 "elements hex string should start with '0x'"); 1893 1894 StringRef hexValues = StringRef(val).drop_front(2); 1895 if (!llvm::all_of(hexValues, llvm::isHexDigit)) 1896 return parser.emitError(tok.getLoc(), 1897 "elements hex string only contains hex digits"); 1898 1899 result = llvm::fromHex(hexValues); 1900 return success(); 1901 } 1902 1903 /// Parse an opaque elements attribute. 1904 Attribute Parser::parseOpaqueElementsAttr(Type attrType) { 1905 consumeToken(Token::kw_opaque); 1906 if (parseToken(Token::less, "expected '<' after 'opaque'")) 1907 return nullptr; 1908 1909 if (getToken().isNot(Token::string)) 1910 return (emitError("expected dialect namespace"), nullptr); 1911 1912 auto name = getToken().getStringValue(); 1913 auto *dialect = builder.getContext()->getRegisteredDialect(name); 1914 // TODO(shpeisman): Allow for having an unknown dialect on an opaque 1915 // attribute. Otherwise, it can't be roundtripped without having the dialect 1916 // registered. 1917 if (!dialect) 1918 return (emitError("no registered dialect with namespace '" + name + "'"), 1919 nullptr); 1920 consumeToken(Token::string); 1921 1922 if (parseToken(Token::comma, "expected ','")) 1923 return nullptr; 1924 1925 Token hexTok = getToken(); 1926 if (parseToken(Token::string, "elements hex string should start with '0x'") || 1927 parseToken(Token::greater, "expected '>'")) 1928 return nullptr; 1929 auto type = parseElementsLiteralType(attrType); 1930 if (!type) 1931 return nullptr; 1932 1933 std::string data; 1934 if (parseElementAttrHexValues(*this, hexTok, data)) 1935 return nullptr; 1936 return OpaqueElementsAttr::get(dialect, type, data); 1937 } 1938 1939 namespace { 1940 class TensorLiteralParser { 1941 public: 1942 TensorLiteralParser(Parser &p) : p(p) {} 1943 1944 /// Parse the elements of a tensor literal. If 'allowHex' is true, the parser 1945 /// may also parse a tensor literal that is store as a hex string. 1946 ParseResult parse(bool allowHex); 1947 1948 /// Build a dense attribute instance with the parsed elements and the given 1949 /// shaped type. 1950 DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type); 1951 1952 ArrayRef<int64_t> getShape() const { return shape; } 1953 1954 private: 1955 enum class ElementKind { Boolean, Integer, Float }; 1956 1957 /// Return a string to represent the given element kind. 1958 const char *getElementKindStr(ElementKind kind) { 1959 switch (kind) { 1960 case ElementKind::Boolean: 1961 return "'boolean'"; 1962 case ElementKind::Integer: 1963 return "'integer'"; 1964 case ElementKind::Float: 1965 return "'float'"; 1966 } 1967 llvm_unreachable("unknown element kind"); 1968 } 1969 1970 /// Build a Dense Integer attribute for the given type. 1971 DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type, 1972 IntegerType eltTy); 1973 1974 /// Build a Dense Float attribute for the given type. 1975 DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type, 1976 FloatType eltTy); 1977 1978 /// Build a Dense attribute with hex data for the given type. 1979 DenseElementsAttr getHexAttr(llvm::SMLoc loc, ShapedType type); 1980 1981 /// Parse a single element, returning failure if it isn't a valid element 1982 /// literal. For example: 1983 /// parseElement(1) -> Success, 1 1984 /// parseElement([1]) -> Failure 1985 ParseResult parseElement(); 1986 1987 /// Parse a list of either lists or elements, returning the dimensions of the 1988 /// parsed sub-tensors in dims. For example: 1989 /// parseList([1, 2, 3]) -> Success, [3] 1990 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 1991 /// parseList([[1, 2], 3]) -> Failure 1992 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 1993 ParseResult parseList(SmallVectorImpl<int64_t> &dims); 1994 1995 /// Parse a literal that was printed as a hex string. 1996 ParseResult parseHexElements(); 1997 1998 Parser &p; 1999 2000 /// The shape inferred from the parsed elements. 2001 SmallVector<int64_t, 4> shape; 2002 2003 /// Storage used when parsing elements, this is a pair of <is_negated, token>. 2004 std::vector<std::pair<bool, Token>> storage; 2005 2006 /// A flag that indicates the type of elements that have been parsed. 2007 Optional<ElementKind> knownEltKind; 2008 2009 /// Storage used when parsing elements that were stored as hex values. 2010 Optional<Token> hexStorage; 2011 }; 2012 } // namespace 2013 2014 /// Parse the elements of a tensor literal. If 'allowHex' is true, the parser 2015 /// may also parse a tensor literal that is store as a hex string. 2016 ParseResult TensorLiteralParser::parse(bool allowHex) { 2017 // If hex is allowed, check for a string literal. 2018 if (allowHex && p.getToken().is(Token::string)) { 2019 hexStorage = p.getToken(); 2020 p.consumeToken(Token::string); 2021 return success(); 2022 } 2023 // Otherwise, parse a list or an individual element. 2024 if (p.getToken().is(Token::l_square)) 2025 return parseList(shape); 2026 return parseElement(); 2027 } 2028 2029 /// Build a dense attribute instance with the parsed elements and the given 2030 /// shaped type. 2031 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc, 2032 ShapedType type) { 2033 // Check to see if we parsed the literal from a hex string. 2034 if (hexStorage.hasValue()) 2035 return getHexAttr(loc, type); 2036 2037 // Check that the parsed storage size has the same number of elements to the 2038 // type, or is a known splat. 2039 if (!shape.empty() && getShape() != type.getShape()) { 2040 p.emitError(loc) << "inferred shape of elements literal ([" << getShape() 2041 << "]) does not match type ([" << type.getShape() << "])"; 2042 return nullptr; 2043 } 2044 2045 // If the type is an integer, build a set of APInt values from the storage 2046 // with the correct bitwidth. 2047 if (auto intTy = type.getElementType().dyn_cast<IntegerType>()) 2048 return getIntAttr(loc, type, intTy); 2049 2050 // Otherwise, this must be a floating point type. 2051 auto floatTy = type.getElementType().dyn_cast<FloatType>(); 2052 if (!floatTy) { 2053 p.emitError(loc) << "expected floating-point or integer element type, got " 2054 << type.getElementType(); 2055 return nullptr; 2056 } 2057 return getFloatAttr(loc, type, floatTy); 2058 } 2059 2060 /// Build a Dense Integer attribute for the given type. 2061 DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc, 2062 ShapedType type, 2063 IntegerType eltTy) { 2064 std::vector<APInt> intElements; 2065 intElements.reserve(storage.size()); 2066 auto isUintType = type.getElementType().isUnsignedInteger(); 2067 for (const auto &signAndToken : storage) { 2068 bool isNegative = signAndToken.first; 2069 const Token &token = signAndToken.second; 2070 auto tokenLoc = token.getLoc(); 2071 2072 if (isNegative && isUintType) { 2073 p.emitError(tokenLoc) 2074 << "expected unsigned integer elements, but parsed negative value"; 2075 return nullptr; 2076 } 2077 2078 // Check to see if floating point values were parsed. 2079 if (token.is(Token::floatliteral)) { 2080 p.emitError(tokenLoc) 2081 << "expected integer elements, but parsed floating-point"; 2082 return nullptr; 2083 } 2084 2085 assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) && 2086 "unexpected token type"); 2087 if (token.isAny(Token::kw_true, Token::kw_false)) { 2088 if (!eltTy.isInteger(1)) 2089 p.emitError(tokenLoc) 2090 << "expected i1 type for 'true' or 'false' values"; 2091 APInt apInt(eltTy.getWidth(), token.is(Token::kw_true), 2092 /*isSigned=*/false); 2093 intElements.push_back(apInt); 2094 continue; 2095 } 2096 2097 // Create APInt values for each element with the correct bitwidth. 2098 Optional<APInt> apInt = 2099 buildAttributeAPInt(eltTy, isNegative, token.getSpelling()); 2100 if (!apInt) 2101 return (p.emitError(tokenLoc, "integer constant out of range for type"), 2102 nullptr); 2103 intElements.push_back(*apInt); 2104 } 2105 2106 return DenseElementsAttr::get(type, intElements); 2107 } 2108 2109 /// Build a Dense Float attribute for the given type. 2110 DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc, 2111 ShapedType type, 2112 FloatType eltTy) { 2113 std::vector<APFloat> floatValues; 2114 floatValues.reserve(storage.size()); 2115 for (const auto &signAndToken : storage) { 2116 bool isNegative = signAndToken.first; 2117 const Token &token = signAndToken.second; 2118 2119 // Handle hexadecimal float literals. 2120 if (token.is(Token::integer) && token.getSpelling().startswith("0x")) { 2121 if (isNegative) { 2122 p.emitError(token.getLoc()) 2123 << "hexadecimal float literal should not have a leading minus"; 2124 return nullptr; 2125 } 2126 auto val = token.getUInt64IntegerValue(); 2127 if (!val.hasValue()) { 2128 p.emitError("hexadecimal float constant out of range for attribute"); 2129 return nullptr; 2130 } 2131 Optional<APFloat> apVal = buildHexadecimalFloatLiteral(&p, eltTy, *val); 2132 if (!apVal) 2133 return nullptr; 2134 floatValues.push_back(*apVal); 2135 continue; 2136 } 2137 2138 // Check to see if any decimal integers or booleans were parsed. 2139 if (!token.is(Token::floatliteral)) { 2140 p.emitError() << "expected floating-point elements, but parsed integer"; 2141 return nullptr; 2142 } 2143 2144 // Build the float values from tokens. 2145 auto val = token.getFloatingPointValue(); 2146 if (!val.hasValue()) { 2147 p.emitError("floating point value too large for attribute"); 2148 return nullptr; 2149 } 2150 // Treat BF16 as double because it is not supported in LLVM's APFloat. 2151 APFloat apVal(isNegative ? -*val : *val); 2152 if (!eltTy.isBF16() && !eltTy.isF64()) { 2153 bool unused; 2154 apVal.convert(eltTy.getFloatSemantics(), APFloat::rmNearestTiesToEven, 2155 &unused); 2156 } 2157 floatValues.push_back(apVal); 2158 } 2159 2160 return DenseElementsAttr::get(type, floatValues); 2161 } 2162 2163 /// Build a Dense attribute with hex data for the given type. 2164 DenseElementsAttr TensorLiteralParser::getHexAttr(llvm::SMLoc loc, 2165 ShapedType type) { 2166 Type elementType = type.getElementType(); 2167 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) { 2168 p.emitError(loc) << "expected floating-point or integer element type, got " 2169 << elementType; 2170 return nullptr; 2171 } 2172 2173 std::string data; 2174 if (parseElementAttrHexValues(p, hexStorage.getValue(), data)) 2175 return nullptr; 2176 2177 // Check that the size of the hex data corresponds to the size of the type, or 2178 // a splat of the type. 2179 // TODO: bf16 is currently stored as a double, this should be removed when 2180 // APFloat properly supports it. 2181 int64_t elementWidth = 2182 elementType.isBF16() ? 64 : elementType.getIntOrFloatBitWidth(); 2183 if (static_cast<int64_t>(data.size() * CHAR_BIT) != 2184 (type.getNumElements() * elementWidth)) { 2185 p.emitError(loc) << "elements hex data size is invalid for provided type: " 2186 << type; 2187 return nullptr; 2188 } 2189 2190 return DenseElementsAttr::getFromRawBuffer( 2191 type, ArrayRef<char>(data.data(), data.size()), /*isSplatBuffer=*/false); 2192 } 2193 2194 ParseResult TensorLiteralParser::parseElement() { 2195 switch (p.getToken().getKind()) { 2196 // Parse a boolean element. 2197 case Token::kw_true: 2198 case Token::kw_false: 2199 case Token::floatliteral: 2200 case Token::integer: 2201 storage.emplace_back(/*isNegative=*/false, p.getToken()); 2202 p.consumeToken(); 2203 break; 2204 2205 // Parse a signed integer or a negative floating-point element. 2206 case Token::minus: 2207 p.consumeToken(Token::minus); 2208 if (!p.getToken().isAny(Token::floatliteral, Token::integer)) 2209 return p.emitError("expected integer or floating point literal"); 2210 storage.emplace_back(/*isNegative=*/true, p.getToken()); 2211 p.consumeToken(); 2212 break; 2213 2214 default: 2215 return p.emitError("expected element literal of primitive type"); 2216 } 2217 2218 return success(); 2219 } 2220 2221 /// Parse a list of either lists or elements, returning the dimensions of the 2222 /// parsed sub-tensors in dims. For example: 2223 /// parseList([1, 2, 3]) -> Success, [3] 2224 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 2225 /// parseList([[1, 2], 3]) -> Failure 2226 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 2227 ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) { 2228 p.consumeToken(Token::l_square); 2229 2230 auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims, 2231 const SmallVectorImpl<int64_t> &newDims) -> ParseResult { 2232 if (prevDims == newDims) 2233 return success(); 2234 return p.emitError("tensor literal is invalid; ranks are not consistent " 2235 "between elements"); 2236 }; 2237 2238 bool first = true; 2239 SmallVector<int64_t, 4> newDims; 2240 unsigned size = 0; 2241 auto parseCommaSeparatedList = [&]() -> ParseResult { 2242 SmallVector<int64_t, 4> thisDims; 2243 if (p.getToken().getKind() == Token::l_square) { 2244 if (parseList(thisDims)) 2245 return failure(); 2246 } else if (parseElement()) { 2247 return failure(); 2248 } 2249 ++size; 2250 if (!first) 2251 return checkDims(newDims, thisDims); 2252 newDims = thisDims; 2253 first = false; 2254 return success(); 2255 }; 2256 if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) 2257 return failure(); 2258 2259 // Return the sublists' dimensions with 'size' prepended. 2260 dims.clear(); 2261 dims.push_back(size); 2262 dims.append(newDims.begin(), newDims.end()); 2263 return success(); 2264 } 2265 2266 /// Parse a dense elements attribute. 2267 Attribute Parser::parseDenseElementsAttr(Type attrType) { 2268 consumeToken(Token::kw_dense); 2269 if (parseToken(Token::less, "expected '<' after 'dense'")) 2270 return nullptr; 2271 2272 // Parse the literal data. 2273 TensorLiteralParser literalParser(*this); 2274 if (literalParser.parse(/*allowHex=*/true)) 2275 return nullptr; 2276 2277 if (parseToken(Token::greater, "expected '>'")) 2278 return nullptr; 2279 2280 auto typeLoc = getToken().getLoc(); 2281 auto type = parseElementsLiteralType(attrType); 2282 if (!type) 2283 return nullptr; 2284 return literalParser.getAttr(typeLoc, type); 2285 } 2286 2287 /// Shaped type for elements attribute. 2288 /// 2289 /// elements-literal-type ::= vector-type | ranked-tensor-type 2290 /// 2291 /// This method also checks the type has static shape. 2292 ShapedType Parser::parseElementsLiteralType(Type type) { 2293 // If the user didn't provide a type, parse the colon type for the literal. 2294 if (!type) { 2295 if (parseToken(Token::colon, "expected ':'")) 2296 return nullptr; 2297 if (!(type = parseType())) 2298 return nullptr; 2299 } 2300 2301 if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) { 2302 emitError("elements literal must be a ranked tensor or vector type"); 2303 return nullptr; 2304 } 2305 2306 auto sType = type.cast<ShapedType>(); 2307 if (!sType.hasStaticShape()) 2308 return (emitError("elements literal type must have static shape"), nullptr); 2309 2310 return sType; 2311 } 2312 2313 /// Parse a sparse elements attribute. 2314 Attribute Parser::parseSparseElementsAttr(Type attrType) { 2315 consumeToken(Token::kw_sparse); 2316 if (parseToken(Token::less, "Expected '<' after 'sparse'")) 2317 return nullptr; 2318 2319 /// Parse the indices. We don't allow hex values here as we may need to use 2320 /// the inferred shape. 2321 auto indicesLoc = getToken().getLoc(); 2322 TensorLiteralParser indiceParser(*this); 2323 if (indiceParser.parse(/*allowHex=*/false)) 2324 return nullptr; 2325 2326 if (parseToken(Token::comma, "expected ','")) 2327 return nullptr; 2328 2329 /// Parse the values. 2330 auto valuesLoc = getToken().getLoc(); 2331 TensorLiteralParser valuesParser(*this); 2332 if (valuesParser.parse(/*allowHex=*/true)) 2333 return nullptr; 2334 2335 if (parseToken(Token::greater, "expected '>'")) 2336 return nullptr; 2337 2338 auto type = parseElementsLiteralType(attrType); 2339 if (!type) 2340 return nullptr; 2341 2342 // If the indices are a splat, i.e. the literal parser parsed an element and 2343 // not a list, we set the shape explicitly. The indices are represented by a 2344 // 2-dimensional shape where the second dimension is the rank of the type. 2345 // Given that the parsed indices is a splat, we know that we only have one 2346 // indice and thus one for the first dimension. 2347 auto indiceEltType = builder.getIntegerType(64); 2348 ShapedType indicesType; 2349 if (indiceParser.getShape().empty()) { 2350 indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType); 2351 } else { 2352 // Otherwise, set the shape to the one parsed by the literal parser. 2353 indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType); 2354 } 2355 auto indices = indiceParser.getAttr(indicesLoc, indicesType); 2356 2357 // If the values are a splat, set the shape explicitly based on the number of 2358 // indices. The number of indices is encoded in the first dimension of the 2359 // indice shape type. 2360 auto valuesEltType = type.getElementType(); 2361 ShapedType valuesType = 2362 valuesParser.getShape().empty() 2363 ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType) 2364 : RankedTensorType::get(valuesParser.getShape(), valuesEltType); 2365 auto values = valuesParser.getAttr(valuesLoc, valuesType); 2366 2367 /// Sanity check. 2368 if (valuesType.getRank() != 1) 2369 return (emitError("expected 1-d tensor for values"), nullptr); 2370 2371 auto sameShape = (indicesType.getRank() == 1) || 2372 (type.getRank() == indicesType.getDimSize(1)); 2373 auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); 2374 if (!sameShape || !sameElementNum) { 2375 emitError() << "expected shape ([" << type.getShape() 2376 << "]); inferred shape of indices literal ([" 2377 << indicesType.getShape() 2378 << "]); inferred shape of values literal ([" 2379 << valuesType.getShape() << "])"; 2380 return nullptr; 2381 } 2382 2383 // Build the sparse elements attribute by the indices and values. 2384 return SparseElementsAttr::get(type, indices, values); 2385 } 2386 2387 //===----------------------------------------------------------------------===// 2388 // Location parsing. 2389 //===----------------------------------------------------------------------===// 2390 2391 /// Parse a location. 2392 /// 2393 /// location ::= `loc` inline-location 2394 /// inline-location ::= '(' location-inst ')' 2395 /// 2396 ParseResult Parser::parseLocation(LocationAttr &loc) { 2397 // Check for 'loc' identifier. 2398 if (parseToken(Token::kw_loc, "expected 'loc' keyword")) 2399 return emitError(); 2400 2401 // Parse the inline-location. 2402 if (parseToken(Token::l_paren, "expected '(' in inline location") || 2403 parseLocationInstance(loc) || 2404 parseToken(Token::r_paren, "expected ')' in inline location")) 2405 return failure(); 2406 return success(); 2407 } 2408 2409 /// Specific location instances. 2410 /// 2411 /// location-inst ::= filelinecol-location | 2412 /// name-location | 2413 /// callsite-location | 2414 /// fused-location | 2415 /// unknown-location 2416 /// filelinecol-location ::= string-literal ':' integer-literal 2417 /// ':' integer-literal 2418 /// name-location ::= string-literal 2419 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' 2420 /// fused-location ::= fused ('<' attribute-value '>')? 2421 /// '[' location-inst (location-inst ',')* ']' 2422 /// unknown-location ::= 'unknown' 2423 /// 2424 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) { 2425 consumeToken(Token::bare_identifier); 2426 2427 // Parse the '('. 2428 if (parseToken(Token::l_paren, "expected '(' in callsite location")) 2429 return failure(); 2430 2431 // Parse the callee location. 2432 LocationAttr calleeLoc; 2433 if (parseLocationInstance(calleeLoc)) 2434 return failure(); 2435 2436 // Parse the 'at'. 2437 if (getToken().isNot(Token::bare_identifier) || 2438 getToken().getSpelling() != "at") 2439 return emitError("expected 'at' in callsite location"); 2440 consumeToken(Token::bare_identifier); 2441 2442 // Parse the caller location. 2443 LocationAttr callerLoc; 2444 if (parseLocationInstance(callerLoc)) 2445 return failure(); 2446 2447 // Parse the ')'. 2448 if (parseToken(Token::r_paren, "expected ')' in callsite location")) 2449 return failure(); 2450 2451 // Return the callsite location. 2452 loc = CallSiteLoc::get(calleeLoc, callerLoc); 2453 return success(); 2454 } 2455 2456 ParseResult Parser::parseFusedLocation(LocationAttr &loc) { 2457 consumeToken(Token::bare_identifier); 2458 2459 // Try to parse the optional metadata. 2460 Attribute metadata; 2461 if (consumeIf(Token::less)) { 2462 metadata = parseAttribute(); 2463 if (!metadata) 2464 return emitError("expected valid attribute metadata"); 2465 // Parse the '>' token. 2466 if (parseToken(Token::greater, 2467 "expected '>' after fused location metadata")) 2468 return failure(); 2469 } 2470 2471 SmallVector<Location, 4> locations; 2472 auto parseElt = [&] { 2473 LocationAttr newLoc; 2474 if (parseLocationInstance(newLoc)) 2475 return failure(); 2476 locations.push_back(newLoc); 2477 return success(); 2478 }; 2479 2480 if (parseToken(Token::l_square, "expected '[' in fused location") || 2481 parseCommaSeparatedList(parseElt) || 2482 parseToken(Token::r_square, "expected ']' in fused location")) 2483 return failure(); 2484 2485 // Return the fused location. 2486 loc = FusedLoc::get(locations, metadata, getContext()); 2487 return success(); 2488 } 2489 2490 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) { 2491 auto *ctx = getContext(); 2492 auto str = getToken().getStringValue(); 2493 consumeToken(Token::string); 2494 2495 // If the next token is ':' this is a filelinecol location. 2496 if (consumeIf(Token::colon)) { 2497 // Parse the line number. 2498 if (getToken().isNot(Token::integer)) 2499 return emitError("expected integer line number in FileLineColLoc"); 2500 auto line = getToken().getUnsignedIntegerValue(); 2501 if (!line.hasValue()) 2502 return emitError("expected integer line number in FileLineColLoc"); 2503 consumeToken(Token::integer); 2504 2505 // Parse the ':'. 2506 if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) 2507 return failure(); 2508 2509 // Parse the column number. 2510 if (getToken().isNot(Token::integer)) 2511 return emitError("expected integer column number in FileLineColLoc"); 2512 auto column = getToken().getUnsignedIntegerValue(); 2513 if (!column.hasValue()) 2514 return emitError("expected integer column number in FileLineColLoc"); 2515 consumeToken(Token::integer); 2516 2517 loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx); 2518 return success(); 2519 } 2520 2521 // Otherwise, this is a NameLoc. 2522 2523 // Check for a child location. 2524 if (consumeIf(Token::l_paren)) { 2525 auto childSourceLoc = getToken().getLoc(); 2526 2527 // Parse the child location. 2528 LocationAttr childLoc; 2529 if (parseLocationInstance(childLoc)) 2530 return failure(); 2531 2532 // The child must not be another NameLoc. 2533 if (childLoc.isa<NameLoc>()) 2534 return emitError(childSourceLoc, 2535 "child of NameLoc cannot be another NameLoc"); 2536 loc = NameLoc::get(Identifier::get(str, ctx), childLoc); 2537 2538 // Parse the closing ')'. 2539 if (parseToken(Token::r_paren, 2540 "expected ')' after child location of NameLoc")) 2541 return failure(); 2542 } else { 2543 loc = NameLoc::get(Identifier::get(str, ctx), ctx); 2544 } 2545 2546 return success(); 2547 } 2548 2549 ParseResult Parser::parseLocationInstance(LocationAttr &loc) { 2550 // Handle either name or filelinecol locations. 2551 if (getToken().is(Token::string)) 2552 return parseNameOrFileLineColLocation(loc); 2553 2554 // Bare tokens required for other cases. 2555 if (!getToken().is(Token::bare_identifier)) 2556 return emitError("expected location instance"); 2557 2558 // Check for the 'callsite' signifying a callsite location. 2559 if (getToken().getSpelling() == "callsite") 2560 return parseCallSiteLocation(loc); 2561 2562 // If the token is 'fused', then this is a fused location. 2563 if (getToken().getSpelling() == "fused") 2564 return parseFusedLocation(loc); 2565 2566 // Check for a 'unknown' for an unknown location. 2567 if (getToken().getSpelling() == "unknown") { 2568 consumeToken(Token::bare_identifier); 2569 loc = UnknownLoc::get(getContext()); 2570 return success(); 2571 } 2572 2573 return emitError("expected location instance"); 2574 } 2575 2576 //===----------------------------------------------------------------------===// 2577 // Affine parsing. 2578 //===----------------------------------------------------------------------===// 2579 2580 /// Lower precedence ops (all at the same precedence level). LNoOp is false in 2581 /// the boolean sense. 2582 enum AffineLowPrecOp { 2583 /// Null value. 2584 LNoOp, 2585 Add, 2586 Sub 2587 }; 2588 2589 /// Higher precedence ops - all at the same precedence level. HNoOp is false 2590 /// in the boolean sense. 2591 enum AffineHighPrecOp { 2592 /// Null value. 2593 HNoOp, 2594 Mul, 2595 FloorDiv, 2596 CeilDiv, 2597 Mod 2598 }; 2599 2600 namespace { 2601 /// This is a specialized parser for affine structures (affine maps, affine 2602 /// expressions, and integer sets), maintaining the state transient to their 2603 /// bodies. 2604 class AffineParser : public Parser { 2605 public: 2606 AffineParser(ParserState &state, bool allowParsingSSAIds = false, 2607 function_ref<ParseResult(bool)> parseElement = nullptr) 2608 : Parser(state), allowParsingSSAIds(allowParsingSSAIds), 2609 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {} 2610 2611 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); 2612 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); 2613 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); 2614 ParseResult parseAffineMapOfSSAIds(AffineMap &map, 2615 OpAsmParser::Delimiter delimiter); 2616 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds, 2617 unsigned &numDims); 2618 2619 private: 2620 // Binary affine op parsing. 2621 AffineLowPrecOp consumeIfLowPrecOp(); 2622 AffineHighPrecOp consumeIfHighPrecOp(); 2623 2624 // Identifier lists for polyhedral structures. 2625 ParseResult parseDimIdList(unsigned &numDims); 2626 ParseResult parseSymbolIdList(unsigned &numSymbols); 2627 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, 2628 unsigned &numSymbols); 2629 ParseResult parseIdentifierDefinition(AffineExpr idExpr); 2630 2631 AffineExpr parseAffineExpr(); 2632 AffineExpr parseParentheticalExpr(); 2633 AffineExpr parseNegateExpression(AffineExpr lhs); 2634 AffineExpr parseIntegerExpr(); 2635 AffineExpr parseBareIdExpr(); 2636 AffineExpr parseSSAIdExpr(bool isSymbol); 2637 AffineExpr parseSymbolSSAIdExpr(); 2638 2639 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, 2640 AffineExpr rhs, SMLoc opLoc); 2641 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, 2642 AffineExpr rhs); 2643 AffineExpr parseAffineOperandExpr(AffineExpr lhs); 2644 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); 2645 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, 2646 SMLoc llhsOpLoc); 2647 AffineExpr parseAffineConstraint(bool *isEq); 2648 2649 private: 2650 bool allowParsingSSAIds; 2651 function_ref<ParseResult(bool)> parseElement; 2652 unsigned numDimOperands; 2653 unsigned numSymbolOperands; 2654 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols; 2655 }; 2656 } // end anonymous namespace 2657 2658 /// Create an affine binary high precedence op expression (mul's, div's, mod). 2659 /// opLoc is the location of the op token to be used to report errors 2660 /// for non-conforming expressions. 2661 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, 2662 AffineExpr lhs, AffineExpr rhs, 2663 SMLoc opLoc) { 2664 // TODO: make the error location info accurate. 2665 switch (op) { 2666 case Mul: 2667 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { 2668 emitError(opLoc, "non-affine expression: at least one of the multiply " 2669 "operands has to be either a constant or symbolic"); 2670 return nullptr; 2671 } 2672 return lhs * rhs; 2673 case FloorDiv: 2674 if (!rhs.isSymbolicOrConstant()) { 2675 emitError(opLoc, "non-affine expression: right operand of floordiv " 2676 "has to be either a constant or symbolic"); 2677 return nullptr; 2678 } 2679 return lhs.floorDiv(rhs); 2680 case CeilDiv: 2681 if (!rhs.isSymbolicOrConstant()) { 2682 emitError(opLoc, "non-affine expression: right operand of ceildiv " 2683 "has to be either a constant or symbolic"); 2684 return nullptr; 2685 } 2686 return lhs.ceilDiv(rhs); 2687 case Mod: 2688 if (!rhs.isSymbolicOrConstant()) { 2689 emitError(opLoc, "non-affine expression: right operand of mod " 2690 "has to be either a constant or symbolic"); 2691 return nullptr; 2692 } 2693 return lhs % rhs; 2694 case HNoOp: 2695 llvm_unreachable("can't create affine expression for null high prec op"); 2696 return nullptr; 2697 } 2698 llvm_unreachable("Unknown AffineHighPrecOp"); 2699 } 2700 2701 /// Create an affine binary low precedence op expression (add, sub). 2702 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, 2703 AffineExpr lhs, AffineExpr rhs) { 2704 switch (op) { 2705 case AffineLowPrecOp::Add: 2706 return lhs + rhs; 2707 case AffineLowPrecOp::Sub: 2708 return lhs - rhs; 2709 case AffineLowPrecOp::LNoOp: 2710 llvm_unreachable("can't create affine expression for null low prec op"); 2711 return nullptr; 2712 } 2713 llvm_unreachable("Unknown AffineLowPrecOp"); 2714 } 2715 2716 /// Consume this token if it is a lower precedence affine op (there are only 2717 /// two precedence levels). 2718 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { 2719 switch (getToken().getKind()) { 2720 case Token::plus: 2721 consumeToken(Token::plus); 2722 return AffineLowPrecOp::Add; 2723 case Token::minus: 2724 consumeToken(Token::minus); 2725 return AffineLowPrecOp::Sub; 2726 default: 2727 return AffineLowPrecOp::LNoOp; 2728 } 2729 } 2730 2731 /// Consume this token if it is a higher precedence affine op (there are only 2732 /// two precedence levels) 2733 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { 2734 switch (getToken().getKind()) { 2735 case Token::star: 2736 consumeToken(Token::star); 2737 return Mul; 2738 case Token::kw_floordiv: 2739 consumeToken(Token::kw_floordiv); 2740 return FloorDiv; 2741 case Token::kw_ceildiv: 2742 consumeToken(Token::kw_ceildiv); 2743 return CeilDiv; 2744 case Token::kw_mod: 2745 consumeToken(Token::kw_mod); 2746 return Mod; 2747 default: 2748 return HNoOp; 2749 } 2750 } 2751 2752 /// Parse a high precedence op expression list: mul, div, and mod are high 2753 /// precedence binary ops, i.e., parse a 2754 /// expr_1 op_1 expr_2 op_2 ... expr_n 2755 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). 2756 /// All affine binary ops are left associative. 2757 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is 2758 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is 2759 /// null. llhsOpLoc is the location of the llhsOp token that will be used to 2760 /// report an error for non-conforming expressions. 2761 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, 2762 AffineHighPrecOp llhsOp, 2763 SMLoc llhsOpLoc) { 2764 AffineExpr lhs = parseAffineOperandExpr(llhs); 2765 if (!lhs) 2766 return nullptr; 2767 2768 // Found an LHS. Parse the remaining expression. 2769 auto opLoc = getToken().getLoc(); 2770 if (AffineHighPrecOp op = consumeIfHighPrecOp()) { 2771 if (llhs) { 2772 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); 2773 if (!expr) 2774 return nullptr; 2775 return parseAffineHighPrecOpExpr(expr, op, opLoc); 2776 } 2777 // No LLHS, get RHS 2778 return parseAffineHighPrecOpExpr(lhs, op, opLoc); 2779 } 2780 2781 // This is the last operand in this expression. 2782 if (llhs) 2783 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); 2784 2785 // No llhs, 'lhs' itself is the expression. 2786 return lhs; 2787 } 2788 2789 /// Parse an affine expression inside parentheses. 2790 /// 2791 /// affine-expr ::= `(` affine-expr `)` 2792 AffineExpr AffineParser::parseParentheticalExpr() { 2793 if (parseToken(Token::l_paren, "expected '('")) 2794 return nullptr; 2795 if (getToken().is(Token::r_paren)) 2796 return (emitError("no expression inside parentheses"), nullptr); 2797 2798 auto expr = parseAffineExpr(); 2799 if (!expr) 2800 return nullptr; 2801 if (parseToken(Token::r_paren, "expected ')'")) 2802 return nullptr; 2803 2804 return expr; 2805 } 2806 2807 /// Parse the negation expression. 2808 /// 2809 /// affine-expr ::= `-` affine-expr 2810 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { 2811 if (parseToken(Token::minus, "expected '-'")) 2812 return nullptr; 2813 2814 AffineExpr operand = parseAffineOperandExpr(lhs); 2815 // Since negation has the highest precedence of all ops (including high 2816 // precedence ops) but lower than parentheses, we are only going to use 2817 // parseAffineOperandExpr instead of parseAffineExpr here. 2818 if (!operand) 2819 // Extra error message although parseAffineOperandExpr would have 2820 // complained. Leads to a better diagnostic. 2821 return (emitError("missing operand of negation"), nullptr); 2822 return (-1) * operand; 2823 } 2824 2825 /// Parse a bare id that may appear in an affine expression. 2826 /// 2827 /// affine-expr ::= bare-id 2828 AffineExpr AffineParser::parseBareIdExpr() { 2829 if (getToken().isNot(Token::bare_identifier)) 2830 return (emitError("expected bare identifier"), nullptr); 2831 2832 StringRef sRef = getTokenSpelling(); 2833 for (auto entry : dimsAndSymbols) { 2834 if (entry.first == sRef) { 2835 consumeToken(Token::bare_identifier); 2836 return entry.second; 2837 } 2838 } 2839 2840 return (emitError("use of undeclared identifier"), nullptr); 2841 } 2842 2843 /// Parse an SSA id which may appear in an affine expression. 2844 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) { 2845 if (!allowParsingSSAIds) 2846 return (emitError("unexpected ssa identifier"), nullptr); 2847 if (getToken().isNot(Token::percent_identifier)) 2848 return (emitError("expected ssa identifier"), nullptr); 2849 auto name = getTokenSpelling(); 2850 // Check if we already parsed this SSA id. 2851 for (auto entry : dimsAndSymbols) { 2852 if (entry.first == name) { 2853 consumeToken(Token::percent_identifier); 2854 return entry.second; 2855 } 2856 } 2857 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it. 2858 if (parseElement(isSymbol)) 2859 return (emitError("failed to parse ssa identifier"), nullptr); 2860 auto idExpr = isSymbol 2861 ? getAffineSymbolExpr(numSymbolOperands++, getContext()) 2862 : getAffineDimExpr(numDimOperands++, getContext()); 2863 dimsAndSymbols.push_back({name, idExpr}); 2864 return idExpr; 2865 } 2866 2867 AffineExpr AffineParser::parseSymbolSSAIdExpr() { 2868 if (parseToken(Token::kw_symbol, "expected symbol keyword") || 2869 parseToken(Token::l_paren, "expected '(' at start of SSA symbol")) 2870 return nullptr; 2871 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true); 2872 if (!symbolExpr) 2873 return nullptr; 2874 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol")) 2875 return nullptr; 2876 return symbolExpr; 2877 } 2878 2879 /// Parse a positive integral constant appearing in an affine expression. 2880 /// 2881 /// affine-expr ::= integer-literal 2882 AffineExpr AffineParser::parseIntegerExpr() { 2883 auto val = getToken().getUInt64IntegerValue(); 2884 if (!val.hasValue() || (int64_t)val.getValue() < 0) 2885 return (emitError("constant too large for index"), nullptr); 2886 2887 consumeToken(Token::integer); 2888 return builder.getAffineConstantExpr((int64_t)val.getValue()); 2889 } 2890 2891 /// Parses an expression that can be a valid operand of an affine expression. 2892 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary 2893 /// operator, the rhs of which is being parsed. This is used to determine 2894 /// whether an error should be emitted for a missing right operand. 2895 // Eg: for an expression without parentheses (like i + j + k + l), each 2896 // of the four identifiers is an operand. For i + j*k + l, j*k is not an 2897 // operand expression, it's an op expression and will be parsed via 2898 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and 2899 // -l are valid operands that will be parsed by this function. 2900 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { 2901 switch (getToken().getKind()) { 2902 case Token::bare_identifier: 2903 return parseBareIdExpr(); 2904 case Token::kw_symbol: 2905 return parseSymbolSSAIdExpr(); 2906 case Token::percent_identifier: 2907 return parseSSAIdExpr(/*isSymbol=*/false); 2908 case Token::integer: 2909 return parseIntegerExpr(); 2910 case Token::l_paren: 2911 return parseParentheticalExpr(); 2912 case Token::minus: 2913 return parseNegateExpression(lhs); 2914 case Token::kw_ceildiv: 2915 case Token::kw_floordiv: 2916 case Token::kw_mod: 2917 case Token::plus: 2918 case Token::star: 2919 if (lhs) 2920 emitError("missing right operand of binary operator"); 2921 else 2922 emitError("missing left operand of binary operator"); 2923 return nullptr; 2924 default: 2925 if (lhs) 2926 emitError("missing right operand of binary operator"); 2927 else 2928 emitError("expected affine expression"); 2929 return nullptr; 2930 } 2931 } 2932 2933 /// Parse affine expressions that are bare-id's, integer constants, 2934 /// parenthetical affine expressions, and affine op expressions that are a 2935 /// composition of those. 2936 /// 2937 /// All binary op's associate from left to right. 2938 /// 2939 /// {add, sub} have lower precedence than {mul, div, and mod}. 2940 /// 2941 /// Add, sub'are themselves at the same precedence level. Mul, floordiv, 2942 /// ceildiv, and mod are at the same higher precedence level. Negation has 2943 /// higher precedence than any binary op. 2944 /// 2945 /// llhs: the affine expression appearing on the left of the one being parsed. 2946 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, 2947 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned 2948 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left 2949 /// associativity. 2950 /// 2951 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function 2952 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where 2953 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). 2954 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, 2955 AffineLowPrecOp llhsOp) { 2956 AffineExpr lhs; 2957 if (!(lhs = parseAffineOperandExpr(llhs))) 2958 return nullptr; 2959 2960 // Found an LHS. Deal with the ops. 2961 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { 2962 if (llhs) { 2963 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2964 return parseAffineLowPrecOpExpr(sum, lOp); 2965 } 2966 // No LLHS, get RHS and form the expression. 2967 return parseAffineLowPrecOpExpr(lhs, lOp); 2968 } 2969 auto opLoc = getToken().getLoc(); 2970 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { 2971 // We have a higher precedence op here. Get the rhs operand for the llhs 2972 // through parseAffineHighPrecOpExpr. 2973 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); 2974 if (!highRes) 2975 return nullptr; 2976 2977 // If llhs is null, the product forms the first operand of the yet to be 2978 // found expression. If non-null, the op to associate with llhs is llhsOp. 2979 AffineExpr expr = 2980 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; 2981 2982 // Recurse for subsequent low prec op's after the affine high prec op 2983 // expression. 2984 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) 2985 return parseAffineLowPrecOpExpr(expr, nextOp); 2986 return expr; 2987 } 2988 // Last operand in the expression list. 2989 if (llhs) 2990 return getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2991 // No llhs, 'lhs' itself is the expression. 2992 return lhs; 2993 } 2994 2995 /// Parse an affine expression. 2996 /// affine-expr ::= `(` affine-expr `)` 2997 /// | `-` affine-expr 2998 /// | affine-expr `+` affine-expr 2999 /// | affine-expr `-` affine-expr 3000 /// | affine-expr `*` affine-expr 3001 /// | affine-expr `floordiv` affine-expr 3002 /// | affine-expr `ceildiv` affine-expr 3003 /// | affine-expr `mod` affine-expr 3004 /// | bare-id 3005 /// | integer-literal 3006 /// 3007 /// Additional conditions are checked depending on the production. For eg., 3008 /// one of the operands for `*` has to be either constant/symbolic; the second 3009 /// operand for floordiv, ceildiv, and mod has to be a positive integer. 3010 AffineExpr AffineParser::parseAffineExpr() { 3011 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); 3012 } 3013 3014 /// Parse a dim or symbol from the lists appearing before the actual 3015 /// expressions of the affine map. Update our state to store the 3016 /// dimensional/symbolic identifier. 3017 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { 3018 if (getToken().isNot(Token::bare_identifier)) 3019 return emitError("expected bare identifier"); 3020 3021 auto name = getTokenSpelling(); 3022 for (auto entry : dimsAndSymbols) { 3023 if (entry.first == name) 3024 return emitError("redefinition of identifier '" + name + "'"); 3025 } 3026 consumeToken(Token::bare_identifier); 3027 3028 dimsAndSymbols.push_back({name, idExpr}); 3029 return success(); 3030 } 3031 3032 /// Parse the list of dimensional identifiers to an affine map. 3033 ParseResult AffineParser::parseDimIdList(unsigned &numDims) { 3034 if (parseToken(Token::l_paren, 3035 "expected '(' at start of dimensional identifiers list")) { 3036 return failure(); 3037 } 3038 3039 auto parseElt = [&]() -> ParseResult { 3040 auto dimension = getAffineDimExpr(numDims++, getContext()); 3041 return parseIdentifierDefinition(dimension); 3042 }; 3043 return parseCommaSeparatedListUntil(Token::r_paren, parseElt); 3044 } 3045 3046 /// Parse the list of symbolic identifiers to an affine map. 3047 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { 3048 consumeToken(Token::l_square); 3049 auto parseElt = [&]() -> ParseResult { 3050 auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); 3051 return parseIdentifierDefinition(symbol); 3052 }; 3053 return parseCommaSeparatedListUntil(Token::r_square, parseElt); 3054 } 3055 3056 /// Parse the list of symbolic identifiers to an affine map. 3057 ParseResult 3058 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, 3059 unsigned &numSymbols) { 3060 if (parseDimIdList(numDims)) { 3061 return failure(); 3062 } 3063 if (!getToken().is(Token::l_square)) { 3064 numSymbols = 0; 3065 return success(); 3066 } 3067 return parseSymbolIdList(numSymbols); 3068 } 3069 3070 /// Parses an ambiguous affine map or integer set definition inline. 3071 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, 3072 IntegerSet &set) { 3073 unsigned numDims = 0, numSymbols = 0; 3074 3075 // List of dimensional and optional symbol identifiers. 3076 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { 3077 return failure(); 3078 } 3079 3080 // This is needed for parsing attributes as we wouldn't know whether we would 3081 // be parsing an integer set attribute or an affine map attribute. 3082 bool isArrow = getToken().is(Token::arrow); 3083 bool isColon = getToken().is(Token::colon); 3084 if (!isArrow && !isColon) { 3085 return emitError("expected '->' or ':'"); 3086 } else if (isArrow) { 3087 parseToken(Token::arrow, "expected '->' or '['"); 3088 map = parseAffineMapRange(numDims, numSymbols); 3089 return map ? success() : failure(); 3090 } else if (parseToken(Token::colon, "expected ':' or '['")) { 3091 return failure(); 3092 } 3093 3094 if ((set = parseIntegerSetConstraints(numDims, numSymbols))) 3095 return success(); 3096 3097 return failure(); 3098 } 3099 3100 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 3101 ParseResult 3102 AffineParser::parseAffineMapOfSSAIds(AffineMap &map, 3103 OpAsmParser::Delimiter delimiter) { 3104 Token::Kind rightToken; 3105 switch (delimiter) { 3106 case OpAsmParser::Delimiter::Square: 3107 if (parseToken(Token::l_square, "expected '['")) 3108 return failure(); 3109 rightToken = Token::r_square; 3110 break; 3111 case OpAsmParser::Delimiter::Paren: 3112 if (parseToken(Token::l_paren, "expected '('")) 3113 return failure(); 3114 rightToken = Token::r_paren; 3115 break; 3116 default: 3117 return emitError("unexpected delimiter"); 3118 } 3119 3120 SmallVector<AffineExpr, 4> exprs; 3121 auto parseElt = [&]() -> ParseResult { 3122 auto elt = parseAffineExpr(); 3123 exprs.push_back(elt); 3124 return elt ? success() : failure(); 3125 }; 3126 3127 // Parse a multi-dimensional affine expression (a comma-separated list of 3128 // 1-d affine expressions); the list can be empty. Grammar: 3129 // multi-dim-affine-expr ::= `(` `)` 3130 // | `(` affine-expr (`,` affine-expr)* `)` 3131 if (parseCommaSeparatedListUntil(rightToken, parseElt, 3132 /*allowEmptyList=*/true)) 3133 return failure(); 3134 // Parsed a valid affine map. 3135 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 3136 exprs, getContext()); 3137 return success(); 3138 } 3139 3140 /// Parse the range and sizes affine map definition inline. 3141 /// 3142 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr 3143 /// 3144 /// multi-dim-affine-expr ::= `(` `)` 3145 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)` 3146 AffineMap AffineParser::parseAffineMapRange(unsigned numDims, 3147 unsigned numSymbols) { 3148 parseToken(Token::l_paren, "expected '(' at start of affine map range"); 3149 3150 SmallVector<AffineExpr, 4> exprs; 3151 auto parseElt = [&]() -> ParseResult { 3152 auto elt = parseAffineExpr(); 3153 ParseResult res = elt ? success() : failure(); 3154 exprs.push_back(elt); 3155 return res; 3156 }; 3157 3158 // Parse a multi-dimensional affine expression (a comma-separated list of 3159 // 1-d affine expressions). Grammar: 3160 // multi-dim-affine-expr ::= `(` `)` 3161 // | `(` affine-expr (`,` affine-expr)* `)` 3162 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3163 return AffineMap(); 3164 3165 // Parsed a valid affine map. 3166 return AffineMap::get(numDims, numSymbols, exprs, getContext()); 3167 } 3168 3169 /// Parse an affine constraint. 3170 /// affine-constraint ::= affine-expr `>=` `0` 3171 /// | affine-expr `==` `0` 3172 /// 3173 /// isEq is set to true if the parsed constraint is an equality, false if it 3174 /// is an inequality (greater than or equal). 3175 /// 3176 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { 3177 AffineExpr expr = parseAffineExpr(); 3178 if (!expr) 3179 return nullptr; 3180 3181 if (consumeIf(Token::greater) && consumeIf(Token::equal) && 3182 getToken().is(Token::integer)) { 3183 auto dim = getToken().getUnsignedIntegerValue(); 3184 if (dim.hasValue() && dim.getValue() == 0) { 3185 consumeToken(Token::integer); 3186 *isEq = false; 3187 return expr; 3188 } 3189 return (emitError("expected '0' after '>='"), nullptr); 3190 } 3191 3192 if (consumeIf(Token::equal) && consumeIf(Token::equal) && 3193 getToken().is(Token::integer)) { 3194 auto dim = getToken().getUnsignedIntegerValue(); 3195 if (dim.hasValue() && dim.getValue() == 0) { 3196 consumeToken(Token::integer); 3197 *isEq = true; 3198 return expr; 3199 } 3200 return (emitError("expected '0' after '=='"), nullptr); 3201 } 3202 3203 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), 3204 nullptr); 3205 } 3206 3207 /// Parse the constraints that are part of an integer set definition. 3208 /// integer-set-inline 3209 /// ::= dim-and-symbol-id-lists `:` 3210 /// '(' affine-constraint-conjunction? ')' 3211 /// affine-constraint-conjunction ::= affine-constraint (`,` 3212 /// affine-constraint)* 3213 /// 3214 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, 3215 unsigned numSymbols) { 3216 if (parseToken(Token::l_paren, 3217 "expected '(' at start of integer set constraint list")) 3218 return IntegerSet(); 3219 3220 SmallVector<AffineExpr, 4> constraints; 3221 SmallVector<bool, 4> isEqs; 3222 auto parseElt = [&]() -> ParseResult { 3223 bool isEq; 3224 auto elt = parseAffineConstraint(&isEq); 3225 ParseResult res = elt ? success() : failure(); 3226 if (elt) { 3227 constraints.push_back(elt); 3228 isEqs.push_back(isEq); 3229 } 3230 return res; 3231 }; 3232 3233 // Parse a list of affine constraints (comma-separated). 3234 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3235 return IntegerSet(); 3236 3237 // If no constraints were parsed, then treat this as a degenerate 'true' case. 3238 if (constraints.empty()) { 3239 /* 0 == 0 */ 3240 auto zero = getAffineConstantExpr(0, getContext()); 3241 return IntegerSet::get(numDims, numSymbols, zero, true); 3242 } 3243 3244 // Parsed a valid integer set. 3245 return IntegerSet::get(numDims, numSymbols, constraints, isEqs); 3246 } 3247 3248 /// Parse an ambiguous reference to either and affine map or an integer set. 3249 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, 3250 IntegerSet &set) { 3251 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); 3252 } 3253 ParseResult Parser::parseAffineMapReference(AffineMap &map) { 3254 llvm::SMLoc curLoc = getToken().getLoc(); 3255 IntegerSet set; 3256 if (parseAffineMapOrIntegerSetReference(map, set)) 3257 return failure(); 3258 if (set) 3259 return emitError(curLoc, "expected AffineMap, but got IntegerSet"); 3260 return success(); 3261 } 3262 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) { 3263 llvm::SMLoc curLoc = getToken().getLoc(); 3264 AffineMap map; 3265 if (parseAffineMapOrIntegerSetReference(map, set)) 3266 return failure(); 3267 if (map) 3268 return emitError(curLoc, "expected IntegerSet, but got AffineMap"); 3269 return success(); 3270 } 3271 3272 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to 3273 /// parse SSA value uses encountered while parsing affine expressions. 3274 ParseResult 3275 Parser::parseAffineMapOfSSAIds(AffineMap &map, 3276 function_ref<ParseResult(bool)> parseElement, 3277 OpAsmParser::Delimiter delimiter) { 3278 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement) 3279 .parseAffineMapOfSSAIds(map, delimiter); 3280 } 3281 3282 //===----------------------------------------------------------------------===// 3283 // OperationParser 3284 //===----------------------------------------------------------------------===// 3285 3286 namespace { 3287 /// This class provides support for parsing operations and regions of 3288 /// operations. 3289 class OperationParser : public Parser { 3290 public: 3291 OperationParser(ParserState &state, ModuleOp moduleOp) 3292 : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) { 3293 } 3294 3295 ~OperationParser(); 3296 3297 /// After parsing is finished, this function must be called to see if there 3298 /// are any remaining issues. 3299 ParseResult finalize(); 3300 3301 //===--------------------------------------------------------------------===// 3302 // SSA Value Handling 3303 //===--------------------------------------------------------------------===// 3304 3305 /// This represents a use of an SSA value in the program. The first two 3306 /// entries in the tuple are the name and result number of a reference. The 3307 /// third is the location of the reference, which is used in case this ends 3308 /// up being a use of an undefined value. 3309 struct SSAUseInfo { 3310 StringRef name; // Value name, e.g. %42 or %abc 3311 unsigned number; // Number, specified with #12 3312 SMLoc loc; // Location of first definition or use. 3313 }; 3314 3315 /// Push a new SSA name scope to the parser. 3316 void pushSSANameScope(bool isIsolated); 3317 3318 /// Pop the last SSA name scope from the parser. 3319 ParseResult popSSANameScope(); 3320 3321 /// Register a definition of a value with the symbol table. 3322 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 3323 3324 /// Parse an optional list of SSA uses into 'results'. 3325 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 3326 3327 /// Parse a single SSA use into 'result'. 3328 ParseResult parseSSAUse(SSAUseInfo &result); 3329 3330 /// Given a reference to an SSA value and its type, return a reference. This 3331 /// returns null on failure. 3332 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 3333 3334 ParseResult parseSSADefOrUseAndType( 3335 const std::function<ParseResult(SSAUseInfo, Type)> &action); 3336 3337 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 3338 3339 /// Return the location of the value identified by its name and number if it 3340 /// has been already reference. 3341 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 3342 auto &values = isolatedNameScopes.back().values; 3343 if (!values.count(name) || number >= values[name].size()) 3344 return {}; 3345 if (values[name][number].first) 3346 return values[name][number].second; 3347 return {}; 3348 } 3349 3350 //===--------------------------------------------------------------------===// 3351 // Operation Parsing 3352 //===--------------------------------------------------------------------===// 3353 3354 /// Parse an operation instance. 3355 ParseResult parseOperation(); 3356 3357 /// Parse a single operation successor. 3358 ParseResult parseSuccessor(Block *&dest); 3359 3360 /// Parse a comma-separated list of operation successors in brackets. 3361 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations); 3362 3363 /// Parse an operation instance that is in the generic form. 3364 Operation *parseGenericOperation(); 3365 3366 /// Parse an operation instance that is in the generic form and insert it at 3367 /// the provided insertion point. 3368 Operation *parseGenericOperation(Block *insertBlock, 3369 Block::iterator insertPt); 3370 3371 /// This is the structure of a result specifier in the assembly syntax, 3372 /// including the name, number of results, and location. 3373 typedef std::tuple<StringRef, unsigned, SMLoc> ResultRecord; 3374 3375 /// Parse an operation instance that is in the op-defined custom form. 3376 /// resultInfo specifies information about the "%name =" specifiers. 3377 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultInfo); 3378 3379 //===--------------------------------------------------------------------===// 3380 // Region Parsing 3381 //===--------------------------------------------------------------------===// 3382 3383 /// Parse a region into 'region' with the provided entry block arguments. 3384 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 3385 /// isolated from those above. 3386 ParseResult parseRegion(Region ®ion, 3387 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 3388 bool isIsolatedNameScope = false); 3389 3390 /// Parse a region body into 'region'. 3391 ParseResult parseRegionBody(Region ®ion); 3392 3393 //===--------------------------------------------------------------------===// 3394 // Block Parsing 3395 //===--------------------------------------------------------------------===// 3396 3397 /// Parse a new block into 'block'. 3398 ParseResult parseBlock(Block *&block); 3399 3400 /// Parse a list of operations into 'block'. 3401 ParseResult parseBlockBody(Block *block); 3402 3403 /// Parse a (possibly empty) list of block arguments. 3404 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results, 3405 Block *owner); 3406 3407 /// Get the block with the specified name, creating it if it doesn't 3408 /// already exist. The location specified is the point of use, which allows 3409 /// us to diagnose references to blocks that are not defined precisely. 3410 Block *getBlockNamed(StringRef name, SMLoc loc); 3411 3412 /// Define the block with the specified name. Returns the Block* or nullptr in 3413 /// the case of redefinition. 3414 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 3415 3416 private: 3417 /// Returns the info for a block at the current scope for the given name. 3418 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 3419 return blocksByName.back()[name]; 3420 } 3421 3422 /// Insert a new forward reference to the given block. 3423 void insertForwardRef(Block *block, SMLoc loc) { 3424 forwardRef.back().try_emplace(block, loc); 3425 } 3426 3427 /// Erase any forward reference to the given block. 3428 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 3429 3430 /// Record that a definition was added at the current scope. 3431 void recordDefinition(StringRef def); 3432 3433 /// Get the value entry for the given SSA name. 3434 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name); 3435 3436 /// Create a forward reference placeholder value with the given location and 3437 /// result type. 3438 Value createForwardRefPlaceholder(SMLoc loc, Type type); 3439 3440 /// Return true if this is a forward reference. 3441 bool isForwardRefPlaceholder(Value value) { 3442 return forwardRefPlaceholders.count(value); 3443 } 3444 3445 /// This struct represents an isolated SSA name scope. This scope may contain 3446 /// other nested non-isolated scopes. These scopes are used for operations 3447 /// that are known to be isolated to allow for reusing names within their 3448 /// regions, even if those names are used above. 3449 struct IsolatedSSANameScope { 3450 /// Record that a definition was added at the current scope. 3451 void recordDefinition(StringRef def) { 3452 definitionsPerScope.back().insert(def); 3453 } 3454 3455 /// Push a nested name scope. 3456 void pushSSANameScope() { definitionsPerScope.push_back({}); } 3457 3458 /// Pop a nested name scope. 3459 void popSSANameScope() { 3460 for (auto &def : definitionsPerScope.pop_back_val()) 3461 values.erase(def.getKey()); 3462 } 3463 3464 /// This keeps track of all of the SSA values we are tracking for each name 3465 /// scope, indexed by their name. This has one entry per result number. 3466 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values; 3467 3468 /// This keeps track of all of the values defined by a specific name scope. 3469 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 3470 }; 3471 3472 /// A list of isolated name scopes. 3473 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 3474 3475 /// This keeps track of the block names as well as the location of the first 3476 /// reference for each nested name scope. This is used to diagnose invalid 3477 /// block references and memorize them. 3478 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 3479 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 3480 3481 /// These are all of the placeholders we've made along with the location of 3482 /// their first reference, to allow checking for use of undefined values. 3483 DenseMap<Value, SMLoc> forwardRefPlaceholders; 3484 3485 /// The builder used when creating parsed operation instances. 3486 OpBuilder opBuilder; 3487 3488 /// The top level module operation. 3489 ModuleOp moduleOp; 3490 }; 3491 } // end anonymous namespace 3492 3493 OperationParser::~OperationParser() { 3494 for (auto &fwd : forwardRefPlaceholders) { 3495 // Drop all uses of undefined forward declared reference and destroy 3496 // defining operation. 3497 fwd.first.dropAllUses(); 3498 fwd.first.getDefiningOp()->destroy(); 3499 } 3500 } 3501 3502 /// After parsing is finished, this function must be called to see if there are 3503 /// any remaining issues. 3504 ParseResult OperationParser::finalize() { 3505 // Check for any forward references that are left. If we find any, error 3506 // out. 3507 if (!forwardRefPlaceholders.empty()) { 3508 SmallVector<std::pair<const char *, Value>, 4> errors; 3509 // Iteration over the map isn't deterministic, so sort by source location. 3510 for (auto entry : forwardRefPlaceholders) 3511 errors.push_back({entry.second.getPointer(), entry.first}); 3512 llvm::array_pod_sort(errors.begin(), errors.end()); 3513 3514 for (auto entry : errors) { 3515 auto loc = SMLoc::getFromPointer(entry.first); 3516 emitError(loc, "use of undeclared SSA value name"); 3517 } 3518 return failure(); 3519 } 3520 3521 return success(); 3522 } 3523 3524 //===----------------------------------------------------------------------===// 3525 // SSA Value Handling 3526 //===----------------------------------------------------------------------===// 3527 3528 void OperationParser::pushSSANameScope(bool isIsolated) { 3529 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 3530 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 3531 3532 // Push back a new name definition scope. 3533 if (isIsolated) 3534 isolatedNameScopes.push_back({}); 3535 isolatedNameScopes.back().pushSSANameScope(); 3536 } 3537 3538 ParseResult OperationParser::popSSANameScope() { 3539 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 3540 3541 // Verify that all referenced blocks were defined. 3542 if (!forwardRefInCurrentScope.empty()) { 3543 SmallVector<std::pair<const char *, Block *>, 4> errors; 3544 // Iteration over the map isn't deterministic, so sort by source location. 3545 for (auto entry : forwardRefInCurrentScope) { 3546 errors.push_back({entry.second.getPointer(), entry.first}); 3547 // Add this block to the top-level region to allow for automatic cleanup. 3548 moduleOp.getOperation()->getRegion(0).push_back(entry.first); 3549 } 3550 llvm::array_pod_sort(errors.begin(), errors.end()); 3551 3552 for (auto entry : errors) { 3553 auto loc = SMLoc::getFromPointer(entry.first); 3554 emitError(loc, "reference to an undefined block"); 3555 } 3556 return failure(); 3557 } 3558 3559 // Pop the next nested namescope. If there is only one internal namescope, 3560 // just pop the isolated scope. 3561 auto ¤tNameScope = isolatedNameScopes.back(); 3562 if (currentNameScope.definitionsPerScope.size() == 1) 3563 isolatedNameScopes.pop_back(); 3564 else 3565 currentNameScope.popSSANameScope(); 3566 3567 blocksByName.pop_back(); 3568 return success(); 3569 } 3570 3571 /// Register a definition of a value with the symbol table. 3572 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 3573 auto &entries = getSSAValueEntry(useInfo.name); 3574 3575 // Make sure there is a slot for this value. 3576 if (entries.size() <= useInfo.number) 3577 entries.resize(useInfo.number + 1); 3578 3579 // If we already have an entry for this, check to see if it was a definition 3580 // or a forward reference. 3581 if (auto existing = entries[useInfo.number].first) { 3582 if (!isForwardRefPlaceholder(existing)) { 3583 return emitError(useInfo.loc) 3584 .append("redefinition of SSA value '", useInfo.name, "'") 3585 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3586 .append("previously defined here"); 3587 } 3588 3589 // If it was a forward reference, update everything that used it to use 3590 // the actual definition instead, delete the forward ref, and remove it 3591 // from our set of forward references we track. 3592 existing.replaceAllUsesWith(value); 3593 existing.getDefiningOp()->destroy(); 3594 forwardRefPlaceholders.erase(existing); 3595 } 3596 3597 /// Record this definition for the current scope. 3598 entries[useInfo.number] = {value, useInfo.loc}; 3599 recordDefinition(useInfo.name); 3600 return success(); 3601 } 3602 3603 /// Parse a (possibly empty) list of SSA operands. 3604 /// 3605 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 3606 /// ssa-use-list-opt ::= ssa-use-list? 3607 /// 3608 ParseResult 3609 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 3610 if (getToken().isNot(Token::percent_identifier)) 3611 return success(); 3612 return parseCommaSeparatedList([&]() -> ParseResult { 3613 SSAUseInfo result; 3614 if (parseSSAUse(result)) 3615 return failure(); 3616 results.push_back(result); 3617 return success(); 3618 }); 3619 } 3620 3621 /// Parse a SSA operand for an operation. 3622 /// 3623 /// ssa-use ::= ssa-id 3624 /// 3625 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 3626 result.name = getTokenSpelling(); 3627 result.number = 0; 3628 result.loc = getToken().getLoc(); 3629 if (parseToken(Token::percent_identifier, "expected SSA operand")) 3630 return failure(); 3631 3632 // If we have an attribute ID, it is a result number. 3633 if (getToken().is(Token::hash_identifier)) { 3634 if (auto value = getToken().getHashIdentifierNumber()) 3635 result.number = value.getValue(); 3636 else 3637 return emitError("invalid SSA value result number"); 3638 consumeToken(Token::hash_identifier); 3639 } 3640 3641 return success(); 3642 } 3643 3644 /// Given an unbound reference to an SSA value and its type, return the value 3645 /// it specifies. This returns null on failure. 3646 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 3647 auto &entries = getSSAValueEntry(useInfo.name); 3648 3649 // If we have already seen a value of this name, return it. 3650 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 3651 auto result = entries[useInfo.number].first; 3652 // Check that the type matches the other uses. 3653 if (result.getType() == type) 3654 return result; 3655 3656 emitError(useInfo.loc, "use of value '") 3657 .append(useInfo.name, 3658 "' expects different type than prior uses: ", type, " vs ", 3659 result.getType()) 3660 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3661 .append("prior use here"); 3662 return nullptr; 3663 } 3664 3665 // Make sure we have enough slots for this. 3666 if (entries.size() <= useInfo.number) 3667 entries.resize(useInfo.number + 1); 3668 3669 // If the value has already been defined and this is an overly large result 3670 // number, diagnose that. 3671 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 3672 return (emitError(useInfo.loc, "reference to invalid result number"), 3673 nullptr); 3674 3675 // Otherwise, this is a forward reference. Create a placeholder and remember 3676 // that we did so. 3677 auto result = createForwardRefPlaceholder(useInfo.loc, type); 3678 entries[useInfo.number].first = result; 3679 entries[useInfo.number].second = useInfo.loc; 3680 return result; 3681 } 3682 3683 /// Parse an SSA use with an associated type. 3684 /// 3685 /// ssa-use-and-type ::= ssa-use `:` type 3686 ParseResult OperationParser::parseSSADefOrUseAndType( 3687 const std::function<ParseResult(SSAUseInfo, Type)> &action) { 3688 SSAUseInfo useInfo; 3689 if (parseSSAUse(useInfo) || 3690 parseToken(Token::colon, "expected ':' and type for SSA operand")) 3691 return failure(); 3692 3693 auto type = parseType(); 3694 if (!type) 3695 return failure(); 3696 3697 return action(useInfo, type); 3698 } 3699 3700 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 3701 /// followed by a type list. 3702 /// 3703 /// ssa-use-and-type-list 3704 /// ::= ssa-use-list ':' type-list-no-parens 3705 /// 3706 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 3707 SmallVectorImpl<Value> &results) { 3708 SmallVector<SSAUseInfo, 4> valueIDs; 3709 if (parseOptionalSSAUseList(valueIDs)) 3710 return failure(); 3711 3712 // If there were no operands, then there is no colon or type lists. 3713 if (valueIDs.empty()) 3714 return success(); 3715 3716 SmallVector<Type, 4> types; 3717 if (parseToken(Token::colon, "expected ':' in operand list") || 3718 parseTypeListNoParens(types)) 3719 return failure(); 3720 3721 if (valueIDs.size() != types.size()) 3722 return emitError("expected ") 3723 << valueIDs.size() << " types to match operand list"; 3724 3725 results.reserve(valueIDs.size()); 3726 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 3727 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 3728 results.push_back(value); 3729 else 3730 return failure(); 3731 } 3732 3733 return success(); 3734 } 3735 3736 /// Record that a definition was added at the current scope. 3737 void OperationParser::recordDefinition(StringRef def) { 3738 isolatedNameScopes.back().recordDefinition(def); 3739 } 3740 3741 /// Get the value entry for the given SSA name. 3742 SmallVectorImpl<std::pair<Value, SMLoc>> & 3743 OperationParser::getSSAValueEntry(StringRef name) { 3744 return isolatedNameScopes.back().values[name]; 3745 } 3746 3747 /// Create and remember a new placeholder for a forward reference. 3748 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 3749 // Forward references are always created as operations, because we just need 3750 // something with a def/use chain. 3751 // 3752 // We create these placeholders as having an empty name, which we know 3753 // cannot be created through normal user input, allowing us to distinguish 3754 // them. 3755 auto name = OperationName("placeholder", getContext()); 3756 auto *op = Operation::create( 3757 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 3758 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0, 3759 /*resizableOperandList=*/false); 3760 forwardRefPlaceholders[op->getResult(0)] = loc; 3761 return op->getResult(0); 3762 } 3763 3764 //===----------------------------------------------------------------------===// 3765 // Operation Parsing 3766 //===----------------------------------------------------------------------===// 3767 3768 /// Parse an operation. 3769 /// 3770 /// operation ::= op-result-list? 3771 /// (generic-operation | custom-operation) 3772 /// trailing-location? 3773 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 3774 /// successor-list? (`(` region-list `)`)? 3775 /// attribute-dict? `:` function-type 3776 /// custom-operation ::= bare-id custom-operation-format 3777 /// op-result-list ::= op-result (`,` op-result)* `=` 3778 /// op-result ::= ssa-id (`:` integer-literal) 3779 /// 3780 ParseResult OperationParser::parseOperation() { 3781 auto loc = getToken().getLoc(); 3782 SmallVector<ResultRecord, 1> resultIDs; 3783 size_t numExpectedResults = 0; 3784 if (getToken().is(Token::percent_identifier)) { 3785 // Parse the group of result ids. 3786 auto parseNextResult = [&]() -> ParseResult { 3787 // Parse the next result id. 3788 if (!getToken().is(Token::percent_identifier)) 3789 return emitError("expected valid ssa identifier"); 3790 3791 Token nameTok = getToken(); 3792 consumeToken(Token::percent_identifier); 3793 3794 // If the next token is a ':', we parse the expected result count. 3795 size_t expectedSubResults = 1; 3796 if (consumeIf(Token::colon)) { 3797 // Check that the next token is an integer. 3798 if (!getToken().is(Token::integer)) 3799 return emitError("expected integer number of results"); 3800 3801 // Check that number of results is > 0. 3802 auto val = getToken().getUInt64IntegerValue(); 3803 if (!val.hasValue() || val.getValue() < 1) 3804 return emitError("expected named operation to have atleast 1 result"); 3805 consumeToken(Token::integer); 3806 expectedSubResults = *val; 3807 } 3808 3809 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 3810 nameTok.getLoc()); 3811 numExpectedResults += expectedSubResults; 3812 return success(); 3813 }; 3814 if (parseCommaSeparatedList(parseNextResult)) 3815 return failure(); 3816 3817 if (parseToken(Token::equal, "expected '=' after SSA name")) 3818 return failure(); 3819 } 3820 3821 Operation *op; 3822 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 3823 op = parseCustomOperation(resultIDs); 3824 else if (getToken().is(Token::string)) 3825 op = parseGenericOperation(); 3826 else 3827 return emitError("expected operation name in quotes"); 3828 3829 // If parsing of the basic operation failed, then this whole thing fails. 3830 if (!op) 3831 return failure(); 3832 3833 // If the operation had a name, register it. 3834 if (!resultIDs.empty()) { 3835 if (op->getNumResults() == 0) 3836 return emitError(loc, "cannot name an operation with no results"); 3837 if (numExpectedResults != op->getNumResults()) 3838 return emitError(loc, "operation defines ") 3839 << op->getNumResults() << " results but was provided " 3840 << numExpectedResults << " to bind"; 3841 3842 // Add definitions for each of the result groups. 3843 unsigned opResI = 0; 3844 for (ResultRecord &resIt : resultIDs) { 3845 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 3846 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 3847 op->getResult(opResI++))) 3848 return failure(); 3849 } 3850 } 3851 } 3852 3853 return success(); 3854 } 3855 3856 /// Parse a single operation successor. 3857 /// 3858 /// successor ::= block-id 3859 /// 3860 ParseResult OperationParser::parseSuccessor(Block *&dest) { 3861 // Verify branch is identifier and get the matching block. 3862 if (!getToken().is(Token::caret_identifier)) 3863 return emitError("expected block name"); 3864 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 3865 consumeToken(); 3866 return success(); 3867 } 3868 3869 /// Parse a comma-separated list of operation successors in brackets. 3870 /// 3871 /// successor-list ::= `[` successor (`,` successor )* `]` 3872 /// 3873 ParseResult 3874 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) { 3875 if (parseToken(Token::l_square, "expected '['")) 3876 return failure(); 3877 3878 auto parseElt = [this, &destinations] { 3879 Block *dest; 3880 ParseResult res = parseSuccessor(dest); 3881 destinations.push_back(dest); 3882 return res; 3883 }; 3884 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 3885 /*allowEmptyList=*/false); 3886 } 3887 3888 namespace { 3889 // RAII-style guard for cleaning up the regions in the operation state before 3890 // deleting them. Within the parser, regions may get deleted if parsing failed, 3891 // and other errors may be present, in particular undominated uses. This makes 3892 // sure such uses are deleted. 3893 struct CleanupOpStateRegions { 3894 ~CleanupOpStateRegions() { 3895 SmallVector<Region *, 4> regionsToClean; 3896 regionsToClean.reserve(state.regions.size()); 3897 for (auto ®ion : state.regions) 3898 if (region) 3899 for (auto &block : *region) 3900 block.dropAllDefinedValueUses(); 3901 } 3902 OperationState &state; 3903 }; 3904 } // namespace 3905 3906 Operation *OperationParser::parseGenericOperation() { 3907 // Get location information for the operation. 3908 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 3909 3910 auto name = getToken().getStringValue(); 3911 if (name.empty()) 3912 return (emitError("empty operation name is invalid"), nullptr); 3913 if (name.find('\0') != StringRef::npos) 3914 return (emitError("null character not allowed in operation name"), nullptr); 3915 3916 consumeToken(Token::string); 3917 3918 OperationState result(srcLocation, name); 3919 3920 // Generic operations have a resizable operation list. 3921 result.setOperandListToResizable(); 3922 3923 // Parse the operand list. 3924 SmallVector<SSAUseInfo, 8> operandInfos; 3925 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 3926 parseOptionalSSAUseList(operandInfos) || 3927 parseToken(Token::r_paren, "expected ')' to end operand list")) { 3928 return nullptr; 3929 } 3930 3931 // Parse the successor list. 3932 if (getToken().is(Token::l_square)) { 3933 // Check if the operation is a known terminator. 3934 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 3935 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) 3936 return emitError("successors in non-terminator"), nullptr; 3937 3938 SmallVector<Block *, 2> successors; 3939 if (parseSuccessors(successors)) 3940 return nullptr; 3941 result.addSuccessors(successors); 3942 } 3943 3944 // Parse the region list. 3945 CleanupOpStateRegions guard{result}; 3946 if (consumeIf(Token::l_paren)) { 3947 do { 3948 // Create temporary regions with the top level region as parent. 3949 result.regions.emplace_back(new Region(moduleOp)); 3950 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 3951 return nullptr; 3952 } while (consumeIf(Token::comma)); 3953 if (parseToken(Token::r_paren, "expected ')' to end region list")) 3954 return nullptr; 3955 } 3956 3957 if (getToken().is(Token::l_brace)) { 3958 if (parseAttributeDict(result.attributes)) 3959 return nullptr; 3960 } 3961 3962 if (parseToken(Token::colon, "expected ':' followed by operation type")) 3963 return nullptr; 3964 3965 auto typeLoc = getToken().getLoc(); 3966 auto type = parseType(); 3967 if (!type) 3968 return nullptr; 3969 auto fnType = type.dyn_cast<FunctionType>(); 3970 if (!fnType) 3971 return (emitError(typeLoc, "expected function type"), nullptr); 3972 3973 result.addTypes(fnType.getResults()); 3974 3975 // Check that we have the right number of types for the operands. 3976 auto operandTypes = fnType.getInputs(); 3977 if (operandTypes.size() != operandInfos.size()) { 3978 auto plural = "s"[operandInfos.size() == 1]; 3979 return (emitError(typeLoc, "expected ") 3980 << operandInfos.size() << " operand type" << plural 3981 << " but had " << operandTypes.size(), 3982 nullptr); 3983 } 3984 3985 // Resolve all of the operands. 3986 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 3987 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 3988 if (!result.operands.back()) 3989 return nullptr; 3990 } 3991 3992 // Parse a location if one is present. 3993 if (parseOptionalTrailingLocation(result.location)) 3994 return nullptr; 3995 3996 return opBuilder.createOperation(result); 3997 } 3998 3999 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 4000 Block::iterator insertPt) { 4001 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 4002 opBuilder.setInsertionPoint(insertBlock, insertPt); 4003 return parseGenericOperation(); 4004 } 4005 4006 namespace { 4007 class CustomOpAsmParser : public OpAsmParser { 4008 public: 4009 CustomOpAsmParser(SMLoc nameLoc, 4010 ArrayRef<OperationParser::ResultRecord> resultIDs, 4011 const AbstractOperation *opDefinition, 4012 OperationParser &parser) 4013 : nameLoc(nameLoc), resultIDs(resultIDs), opDefinition(opDefinition), 4014 parser(parser) {} 4015 4016 /// Parse an instance of the operation described by 'opDefinition' into the 4017 /// provided operation state. 4018 ParseResult parseOperation(OperationState &opState) { 4019 if (opDefinition->parseAssembly(*this, opState)) 4020 return failure(); 4021 return success(); 4022 } 4023 4024 Operation *parseGenericOperation(Block *insertBlock, 4025 Block::iterator insertPt) final { 4026 return parser.parseGenericOperation(insertBlock, insertPt); 4027 } 4028 4029 //===--------------------------------------------------------------------===// 4030 // Utilities 4031 //===--------------------------------------------------------------------===// 4032 4033 /// Return if any errors were emitted during parsing. 4034 bool didEmitError() const { return emittedError; } 4035 4036 /// Emit a diagnostic at the specified location and return failure. 4037 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 4038 emittedError = true; 4039 return parser.emitError(loc, "custom op '" + opDefinition->name + "' " + 4040 message); 4041 } 4042 4043 llvm::SMLoc getCurrentLocation() override { 4044 return parser.getToken().getLoc(); 4045 } 4046 4047 Builder &getBuilder() const override { return parser.builder; } 4048 4049 /// Return the name of the specified result in the specified syntax, as well 4050 /// as the subelement in the name. For example, in this operation: 4051 /// 4052 /// %x, %y:2, %z = foo.op 4053 /// 4054 /// getResultName(0) == {"x", 0 } 4055 /// getResultName(1) == {"y", 0 } 4056 /// getResultName(2) == {"y", 1 } 4057 /// getResultName(3) == {"z", 0 } 4058 std::pair<StringRef, unsigned> 4059 getResultName(unsigned resultNo) const override { 4060 // Scan for the resultID that contains this result number. 4061 for (unsigned nameID = 0, e = resultIDs.size(); nameID != e; ++nameID) { 4062 const auto &entry = resultIDs[nameID]; 4063 if (resultNo < std::get<1>(entry)) { 4064 // Don't pass on the leading %. 4065 StringRef name = std::get<0>(entry).drop_front(); 4066 return {name, resultNo}; 4067 } 4068 resultNo -= std::get<1>(entry); 4069 } 4070 4071 // Invalid result number. 4072 return {"", ~0U}; 4073 } 4074 4075 /// Return the number of declared SSA results. This returns 4 for the foo.op 4076 /// example in the comment for getResultName. 4077 size_t getNumResults() const override { 4078 size_t count = 0; 4079 for (auto &entry : resultIDs) 4080 count += std::get<1>(entry); 4081 return count; 4082 } 4083 4084 llvm::SMLoc getNameLoc() const override { return nameLoc; } 4085 4086 //===--------------------------------------------------------------------===// 4087 // Token Parsing 4088 //===--------------------------------------------------------------------===// 4089 4090 /// Parse a `->` token. 4091 ParseResult parseArrow() override { 4092 return parser.parseToken(Token::arrow, "expected '->'"); 4093 } 4094 4095 /// Parses a `->` if present. 4096 ParseResult parseOptionalArrow() override { 4097 return success(parser.consumeIf(Token::arrow)); 4098 } 4099 4100 /// Parse a `:` token. 4101 ParseResult parseColon() override { 4102 return parser.parseToken(Token::colon, "expected ':'"); 4103 } 4104 4105 /// Parse a `:` token if present. 4106 ParseResult parseOptionalColon() override { 4107 return success(parser.consumeIf(Token::colon)); 4108 } 4109 4110 /// Parse a `,` token. 4111 ParseResult parseComma() override { 4112 return parser.parseToken(Token::comma, "expected ','"); 4113 } 4114 4115 /// Parse a `,` token if present. 4116 ParseResult parseOptionalComma() override { 4117 return success(parser.consumeIf(Token::comma)); 4118 } 4119 4120 /// Parses a `...` if present. 4121 ParseResult parseOptionalEllipsis() override { 4122 return success(parser.consumeIf(Token::ellipsis)); 4123 } 4124 4125 /// Parse a `=` token. 4126 ParseResult parseEqual() override { 4127 return parser.parseToken(Token::equal, "expected '='"); 4128 } 4129 4130 /// Parse a '<' token. 4131 ParseResult parseLess() override { 4132 return parser.parseToken(Token::less, "expected '<'"); 4133 } 4134 4135 /// Parse a '>' token. 4136 ParseResult parseGreater() override { 4137 return parser.parseToken(Token::greater, "expected '>'"); 4138 } 4139 4140 /// Parse a `(` token. 4141 ParseResult parseLParen() override { 4142 return parser.parseToken(Token::l_paren, "expected '('"); 4143 } 4144 4145 /// Parses a '(' if present. 4146 ParseResult parseOptionalLParen() override { 4147 return success(parser.consumeIf(Token::l_paren)); 4148 } 4149 4150 /// Parse a `)` token. 4151 ParseResult parseRParen() override { 4152 return parser.parseToken(Token::r_paren, "expected ')'"); 4153 } 4154 4155 /// Parses a ')' if present. 4156 ParseResult parseOptionalRParen() override { 4157 return success(parser.consumeIf(Token::r_paren)); 4158 } 4159 4160 /// Parse a `[` token. 4161 ParseResult parseLSquare() override { 4162 return parser.parseToken(Token::l_square, "expected '['"); 4163 } 4164 4165 /// Parses a '[' if present. 4166 ParseResult parseOptionalLSquare() override { 4167 return success(parser.consumeIf(Token::l_square)); 4168 } 4169 4170 /// Parse a `]` token. 4171 ParseResult parseRSquare() override { 4172 return parser.parseToken(Token::r_square, "expected ']'"); 4173 } 4174 4175 /// Parses a ']' if present. 4176 ParseResult parseOptionalRSquare() override { 4177 return success(parser.consumeIf(Token::r_square)); 4178 } 4179 4180 //===--------------------------------------------------------------------===// 4181 // Attribute Parsing 4182 //===--------------------------------------------------------------------===// 4183 4184 /// Parse an arbitrary attribute of a given type and return it in result. This 4185 /// also adds the attribute to the specified attribute list with the specified 4186 /// name. 4187 ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName, 4188 SmallVectorImpl<NamedAttribute> &attrs) override { 4189 result = parser.parseAttribute(type); 4190 if (!result) 4191 return failure(); 4192 4193 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 4194 return success(); 4195 } 4196 4197 /// Parse a named dictionary into 'result' if it is present. 4198 ParseResult 4199 parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override { 4200 if (parser.getToken().isNot(Token::l_brace)) 4201 return success(); 4202 return parser.parseAttributeDict(result); 4203 } 4204 4205 /// Parse a named dictionary into 'result' if the `attributes` keyword is 4206 /// present. 4207 ParseResult parseOptionalAttrDictWithKeyword( 4208 SmallVectorImpl<NamedAttribute> &result) override { 4209 if (failed(parseOptionalKeyword("attributes"))) 4210 return success(); 4211 return parser.parseAttributeDict(result); 4212 } 4213 4214 /// Parse an affine map instance into 'map'. 4215 ParseResult parseAffineMap(AffineMap &map) override { 4216 return parser.parseAffineMapReference(map); 4217 } 4218 4219 /// Parse an integer set instance into 'set'. 4220 ParseResult printIntegerSet(IntegerSet &set) override { 4221 return parser.parseIntegerSetReference(set); 4222 } 4223 4224 //===--------------------------------------------------------------------===// 4225 // Identifier Parsing 4226 //===--------------------------------------------------------------------===// 4227 4228 /// Returns if the current token corresponds to a keyword. 4229 bool isCurrentTokenAKeyword() const { 4230 return parser.getToken().is(Token::bare_identifier) || 4231 parser.getToken().isKeyword(); 4232 } 4233 4234 /// Parse the given keyword if present. 4235 ParseResult parseOptionalKeyword(StringRef keyword) override { 4236 // Check that the current token has the same spelling. 4237 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 4238 return failure(); 4239 parser.consumeToken(); 4240 return success(); 4241 } 4242 4243 /// Parse a keyword, if present, into 'keyword'. 4244 ParseResult parseOptionalKeyword(StringRef *keyword) override { 4245 // Check that the current token is a keyword. 4246 if (!isCurrentTokenAKeyword()) 4247 return failure(); 4248 4249 *keyword = parser.getTokenSpelling(); 4250 parser.consumeToken(); 4251 return success(); 4252 } 4253 4254 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 4255 /// string attribute named 'attrName'. 4256 ParseResult 4257 parseOptionalSymbolName(StringAttr &result, StringRef attrName, 4258 SmallVectorImpl<NamedAttribute> &attrs) override { 4259 Token atToken = parser.getToken(); 4260 if (atToken.isNot(Token::at_identifier)) 4261 return failure(); 4262 4263 result = getBuilder().getStringAttr(extractSymbolReference(atToken)); 4264 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 4265 parser.consumeToken(); 4266 return success(); 4267 } 4268 4269 //===--------------------------------------------------------------------===// 4270 // Operand Parsing 4271 //===--------------------------------------------------------------------===// 4272 4273 /// Parse a single operand. 4274 ParseResult parseOperand(OperandType &result) override { 4275 OperationParser::SSAUseInfo useInfo; 4276 if (parser.parseSSAUse(useInfo)) 4277 return failure(); 4278 4279 result = {useInfo.loc, useInfo.name, useInfo.number}; 4280 return success(); 4281 } 4282 4283 /// Parse a single operand if present. 4284 OptionalParseResult parseOptionalOperand(OperandType &result) override { 4285 if (parser.getToken().is(Token::percent_identifier)) 4286 return parseOperand(result); 4287 return llvm::None; 4288 } 4289 4290 /// Parse zero or more SSA comma-separated operand references with a specified 4291 /// surrounding delimiter, and an optional required operand count. 4292 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 4293 int requiredOperandCount = -1, 4294 Delimiter delimiter = Delimiter::None) override { 4295 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 4296 requiredOperandCount, delimiter); 4297 } 4298 4299 /// Parse zero or more SSA comma-separated operand or region arguments with 4300 /// optional surrounding delimiter and required operand count. 4301 ParseResult 4302 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 4303 bool isOperandList, int requiredOperandCount = -1, 4304 Delimiter delimiter = Delimiter::None) { 4305 auto startLoc = parser.getToken().getLoc(); 4306 4307 // Handle delimiters. 4308 switch (delimiter) { 4309 case Delimiter::None: 4310 // Don't check for the absence of a delimiter if the number of operands 4311 // is unknown (and hence the operand list could be empty). 4312 if (requiredOperandCount == -1) 4313 break; 4314 // Token already matches an identifier and so can't be a delimiter. 4315 if (parser.getToken().is(Token::percent_identifier)) 4316 break; 4317 // Test against known delimiters. 4318 if (parser.getToken().is(Token::l_paren) || 4319 parser.getToken().is(Token::l_square)) 4320 return emitError(startLoc, "unexpected delimiter"); 4321 return emitError(startLoc, "invalid operand"); 4322 case Delimiter::OptionalParen: 4323 if (parser.getToken().isNot(Token::l_paren)) 4324 return success(); 4325 LLVM_FALLTHROUGH; 4326 case Delimiter::Paren: 4327 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 4328 return failure(); 4329 break; 4330 case Delimiter::OptionalSquare: 4331 if (parser.getToken().isNot(Token::l_square)) 4332 return success(); 4333 LLVM_FALLTHROUGH; 4334 case Delimiter::Square: 4335 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 4336 return failure(); 4337 break; 4338 } 4339 4340 // Check for zero operands. 4341 if (parser.getToken().is(Token::percent_identifier)) { 4342 do { 4343 OperandType operandOrArg; 4344 if (isOperandList ? parseOperand(operandOrArg) 4345 : parseRegionArgument(operandOrArg)) 4346 return failure(); 4347 result.push_back(operandOrArg); 4348 } while (parser.consumeIf(Token::comma)); 4349 } 4350 4351 // Handle delimiters. If we reach here, the optional delimiters were 4352 // present, so we need to parse their closing one. 4353 switch (delimiter) { 4354 case Delimiter::None: 4355 break; 4356 case Delimiter::OptionalParen: 4357 case Delimiter::Paren: 4358 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 4359 return failure(); 4360 break; 4361 case Delimiter::OptionalSquare: 4362 case Delimiter::Square: 4363 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 4364 return failure(); 4365 break; 4366 } 4367 4368 if (requiredOperandCount != -1 && 4369 result.size() != static_cast<size_t>(requiredOperandCount)) 4370 return emitError(startLoc, "expected ") 4371 << requiredOperandCount << " operands"; 4372 return success(); 4373 } 4374 4375 /// Parse zero or more trailing SSA comma-separated trailing operand 4376 /// references with a specified surrounding delimiter, and an optional 4377 /// required operand count. A leading comma is expected before the operands. 4378 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 4379 int requiredOperandCount, 4380 Delimiter delimiter) override { 4381 if (parser.getToken().is(Token::comma)) { 4382 parseComma(); 4383 return parseOperandList(result, requiredOperandCount, delimiter); 4384 } 4385 if (requiredOperandCount != -1) 4386 return emitError(parser.getToken().getLoc(), "expected ") 4387 << requiredOperandCount << " operands"; 4388 return success(); 4389 } 4390 4391 /// Resolve an operand to an SSA value, emitting an error on failure. 4392 ParseResult resolveOperand(const OperandType &operand, Type type, 4393 SmallVectorImpl<Value> &result) override { 4394 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4395 operand.location}; 4396 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 4397 result.push_back(value); 4398 return success(); 4399 } 4400 return failure(); 4401 } 4402 4403 /// Parse an AffineMap of SSA ids. 4404 ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 4405 Attribute &mapAttr, StringRef attrName, 4406 SmallVectorImpl<NamedAttribute> &attrs, 4407 Delimiter delimiter) override { 4408 SmallVector<OperandType, 2> dimOperands; 4409 SmallVector<OperandType, 1> symOperands; 4410 4411 auto parseElement = [&](bool isSymbol) -> ParseResult { 4412 OperandType operand; 4413 if (parseOperand(operand)) 4414 return failure(); 4415 if (isSymbol) 4416 symOperands.push_back(operand); 4417 else 4418 dimOperands.push_back(operand); 4419 return success(); 4420 }; 4421 4422 AffineMap map; 4423 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 4424 return failure(); 4425 // Add AffineMap attribute. 4426 if (map) { 4427 mapAttr = AffineMapAttr::get(map); 4428 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 4429 } 4430 4431 // Add dim operands before symbol operands in 'operands'. 4432 operands.assign(dimOperands.begin(), dimOperands.end()); 4433 operands.append(symOperands.begin(), symOperands.end()); 4434 return success(); 4435 } 4436 4437 //===--------------------------------------------------------------------===// 4438 // Region Parsing 4439 //===--------------------------------------------------------------------===// 4440 4441 /// Parse a region that takes `arguments` of `argTypes` types. This 4442 /// effectively defines the SSA values of `arguments` and assigns their type. 4443 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 4444 ArrayRef<Type> argTypes, 4445 bool enableNameShadowing) override { 4446 assert(arguments.size() == argTypes.size() && 4447 "mismatching number of arguments and types"); 4448 4449 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 4450 regionArguments; 4451 for (auto pair : llvm::zip(arguments, argTypes)) { 4452 const OperandType &operand = std::get<0>(pair); 4453 Type type = std::get<1>(pair); 4454 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4455 operand.location}; 4456 regionArguments.emplace_back(operandInfo, type); 4457 } 4458 4459 // Try to parse the region. 4460 assert((!enableNameShadowing || 4461 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) && 4462 "name shadowing is only allowed on isolated regions"); 4463 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 4464 return failure(); 4465 return success(); 4466 } 4467 4468 /// Parses a region if present. 4469 ParseResult parseOptionalRegion(Region ®ion, 4470 ArrayRef<OperandType> arguments, 4471 ArrayRef<Type> argTypes, 4472 bool enableNameShadowing) override { 4473 if (parser.getToken().isNot(Token::l_brace)) 4474 return success(); 4475 return parseRegion(region, arguments, argTypes, enableNameShadowing); 4476 } 4477 4478 /// Parse a region argument. The type of the argument will be resolved later 4479 /// by a call to `parseRegion`. 4480 ParseResult parseRegionArgument(OperandType &argument) override { 4481 return parseOperand(argument); 4482 } 4483 4484 /// Parse a region argument if present. 4485 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 4486 if (parser.getToken().isNot(Token::percent_identifier)) 4487 return success(); 4488 return parseRegionArgument(argument); 4489 } 4490 4491 ParseResult 4492 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 4493 int requiredOperandCount = -1, 4494 Delimiter delimiter = Delimiter::None) override { 4495 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 4496 requiredOperandCount, delimiter); 4497 } 4498 4499 //===--------------------------------------------------------------------===// 4500 // Successor Parsing 4501 //===--------------------------------------------------------------------===// 4502 4503 /// Parse a single operation successor. 4504 ParseResult parseSuccessor(Block *&dest) override { 4505 return parser.parseSuccessor(dest); 4506 } 4507 4508 /// Parse an optional operation successor and its operand list. 4509 OptionalParseResult parseOptionalSuccessor(Block *&dest) override { 4510 if (parser.getToken().isNot(Token::caret_identifier)) 4511 return llvm::None; 4512 return parseSuccessor(dest); 4513 } 4514 4515 /// Parse a single operation successor and its operand list. 4516 ParseResult 4517 parseSuccessorAndUseList(Block *&dest, 4518 SmallVectorImpl<Value> &operands) override { 4519 if (parseSuccessor(dest)) 4520 return failure(); 4521 4522 // Handle optional arguments. 4523 if (succeeded(parseOptionalLParen()) && 4524 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) { 4525 return failure(); 4526 } 4527 return success(); 4528 } 4529 4530 //===--------------------------------------------------------------------===// 4531 // Type Parsing 4532 //===--------------------------------------------------------------------===// 4533 4534 /// Parse a type. 4535 ParseResult parseType(Type &result) override { 4536 return failure(!(result = parser.parseType())); 4537 } 4538 4539 /// Parse an optional type. 4540 OptionalParseResult parseOptionalType(Type &result) override { 4541 return parser.parseOptionalType(result); 4542 } 4543 4544 /// Parse an arrow followed by a type list. 4545 ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override { 4546 if (parseArrow() || parser.parseFunctionResultTypes(result)) 4547 return failure(); 4548 return success(); 4549 } 4550 4551 /// Parse an optional arrow followed by a type list. 4552 ParseResult 4553 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 4554 if (!parser.consumeIf(Token::arrow)) 4555 return success(); 4556 return parser.parseFunctionResultTypes(result); 4557 } 4558 4559 /// Parse a colon followed by a type. 4560 ParseResult parseColonType(Type &result) override { 4561 return failure(parser.parseToken(Token::colon, "expected ':'") || 4562 !(result = parser.parseType())); 4563 } 4564 4565 /// Parse a colon followed by a type list, which must have at least one type. 4566 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 4567 if (parser.parseToken(Token::colon, "expected ':'")) 4568 return failure(); 4569 return parser.parseTypeListNoParens(result); 4570 } 4571 4572 /// Parse an optional colon followed by a type list, which if present must 4573 /// have at least one type. 4574 ParseResult 4575 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 4576 if (!parser.consumeIf(Token::colon)) 4577 return success(); 4578 return parser.parseTypeListNoParens(result); 4579 } 4580 4581 /// Parse a list of assignments of the form 4582 /// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...). 4583 /// The list must contain at least one entry 4584 ParseResult parseAssignmentList(SmallVectorImpl<OperandType> &lhs, 4585 SmallVectorImpl<OperandType> &rhs) override { 4586 auto parseElt = [&]() -> ParseResult { 4587 OperandType regionArg, operand; 4588 if (parseRegionArgument(regionArg) || parseEqual() || 4589 parseOperand(operand)) 4590 return failure(); 4591 lhs.push_back(regionArg); 4592 rhs.push_back(operand); 4593 return success(); 4594 }; 4595 if (parseLParen()) 4596 return failure(); 4597 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 4598 } 4599 4600 private: 4601 /// The source location of the operation name. 4602 SMLoc nameLoc; 4603 4604 /// Information about the result name specifiers. 4605 ArrayRef<OperationParser::ResultRecord> resultIDs; 4606 4607 /// The abstract information of the operation. 4608 const AbstractOperation *opDefinition; 4609 4610 /// The main operation parser. 4611 OperationParser &parser; 4612 4613 /// A flag that indicates if any errors were emitted during parsing. 4614 bool emittedError = false; 4615 }; 4616 } // end anonymous namespace. 4617 4618 Operation * 4619 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) { 4620 auto opLoc = getToken().getLoc(); 4621 auto opName = getTokenSpelling(); 4622 4623 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 4624 if (!opDefinition && !opName.contains('.')) { 4625 // If the operation name has no namespace prefix we treat it as a standard 4626 // operation and prefix it with "std". 4627 // TODO: Would it be better to just build a mapping of the registered 4628 // operations in the standard dialect? 4629 opDefinition = 4630 AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); 4631 } 4632 4633 if (!opDefinition) { 4634 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 4635 return nullptr; 4636 } 4637 4638 consumeToken(); 4639 4640 // If the custom op parser crashes, produce some indication to help 4641 // debugging. 4642 std::string opNameStr = opName.str(); 4643 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 4644 opNameStr.c_str()); 4645 4646 // Get location information for the operation. 4647 auto srcLocation = getEncodedSourceLocation(opLoc); 4648 4649 // Have the op implementation take a crack and parsing this. 4650 OperationState opState(srcLocation, opDefinition->name); 4651 CleanupOpStateRegions guard{opState}; 4652 CustomOpAsmParser opAsmParser(opLoc, resultIDs, opDefinition, *this); 4653 if (opAsmParser.parseOperation(opState)) 4654 return nullptr; 4655 4656 // If it emitted an error, we failed. 4657 if (opAsmParser.didEmitError()) 4658 return nullptr; 4659 4660 // Parse a location if one is present. 4661 if (parseOptionalTrailingLocation(opState.location)) 4662 return nullptr; 4663 4664 // Otherwise, we succeeded. Use the state it parsed as our op information. 4665 return opBuilder.createOperation(opState); 4666 } 4667 4668 //===----------------------------------------------------------------------===// 4669 // Region Parsing 4670 //===----------------------------------------------------------------------===// 4671 4672 /// Region. 4673 /// 4674 /// region ::= '{' region-body 4675 /// 4676 ParseResult OperationParser::parseRegion( 4677 Region ®ion, 4678 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 4679 bool isIsolatedNameScope) { 4680 // Parse the '{'. 4681 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 4682 return failure(); 4683 4684 // Check for an empty region. 4685 if (entryArguments.empty() && consumeIf(Token::r_brace)) 4686 return success(); 4687 auto currentPt = opBuilder.saveInsertionPoint(); 4688 4689 // Push a new named value scope. 4690 pushSSANameScope(isIsolatedNameScope); 4691 4692 // Parse the first block directly to allow for it to be unnamed. 4693 Block *block = new Block(); 4694 4695 // Add arguments to the entry block. 4696 if (!entryArguments.empty()) { 4697 for (auto &placeholderArgPair : entryArguments) { 4698 auto &argInfo = placeholderArgPair.first; 4699 // Ensure that the argument was not already defined. 4700 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 4701 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 4702 "' is already in use") 4703 .attachNote(getEncodedSourceLocation(*defLoc)) 4704 << "previously referenced here"; 4705 } 4706 if (addDefinition(placeholderArgPair.first, 4707 block->addArgument(placeholderArgPair.second))) { 4708 delete block; 4709 return failure(); 4710 } 4711 } 4712 4713 // If we had named arguments, then don't allow a block name. 4714 if (getToken().is(Token::caret_identifier)) 4715 return emitError("invalid block name in region with named arguments"); 4716 } 4717 4718 if (parseBlock(block)) { 4719 delete block; 4720 return failure(); 4721 } 4722 4723 // Verify that no other arguments were parsed. 4724 if (!entryArguments.empty() && 4725 block->getNumArguments() > entryArguments.size()) { 4726 delete block; 4727 return emitError("entry block arguments were already defined"); 4728 } 4729 4730 // Parse the rest of the region. 4731 region.push_back(block); 4732 if (parseRegionBody(region)) 4733 return failure(); 4734 4735 // Pop the SSA value scope for this region. 4736 if (popSSANameScope()) 4737 return failure(); 4738 4739 // Reset the original insertion point. 4740 opBuilder.restoreInsertionPoint(currentPt); 4741 return success(); 4742 } 4743 4744 /// Region. 4745 /// 4746 /// region-body ::= block* '}' 4747 /// 4748 ParseResult OperationParser::parseRegionBody(Region ®ion) { 4749 // Parse the list of blocks. 4750 while (!consumeIf(Token::r_brace)) { 4751 Block *newBlock = nullptr; 4752 if (parseBlock(newBlock)) 4753 return failure(); 4754 region.push_back(newBlock); 4755 } 4756 return success(); 4757 } 4758 4759 //===----------------------------------------------------------------------===// 4760 // Block Parsing 4761 //===----------------------------------------------------------------------===// 4762 4763 /// Block declaration. 4764 /// 4765 /// block ::= block-label? operation* 4766 /// block-label ::= block-id block-arg-list? `:` 4767 /// block-id ::= caret-id 4768 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 4769 /// 4770 ParseResult OperationParser::parseBlock(Block *&block) { 4771 // The first block of a region may already exist, if it does the caret 4772 // identifier is optional. 4773 if (block && getToken().isNot(Token::caret_identifier)) 4774 return parseBlockBody(block); 4775 4776 SMLoc nameLoc = getToken().getLoc(); 4777 auto name = getTokenSpelling(); 4778 if (parseToken(Token::caret_identifier, "expected block name")) 4779 return failure(); 4780 4781 block = defineBlockNamed(name, nameLoc, block); 4782 4783 // Fail if the block was already defined. 4784 if (!block) 4785 return emitError(nameLoc, "redefinition of block '") << name << "'"; 4786 4787 // If an argument list is present, parse it. 4788 if (consumeIf(Token::l_paren)) { 4789 SmallVector<BlockArgument, 8> bbArgs; 4790 if (parseOptionalBlockArgList(bbArgs, block) || 4791 parseToken(Token::r_paren, "expected ')' to end argument list")) 4792 return failure(); 4793 } 4794 4795 if (parseToken(Token::colon, "expected ':' after block name")) 4796 return failure(); 4797 4798 return parseBlockBody(block); 4799 } 4800 4801 ParseResult OperationParser::parseBlockBody(Block *block) { 4802 // Set the insertion point to the end of the block to parse. 4803 opBuilder.setInsertionPointToEnd(block); 4804 4805 // Parse the list of operations that make up the body of the block. 4806 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 4807 if (parseOperation()) 4808 return failure(); 4809 4810 return success(); 4811 } 4812 4813 /// Get the block with the specified name, creating it if it doesn't already 4814 /// exist. The location specified is the point of use, which allows 4815 /// us to diagnose references to blocks that are not defined precisely. 4816 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 4817 auto &blockAndLoc = getBlockInfoByName(name); 4818 if (!blockAndLoc.first) { 4819 blockAndLoc = {new Block(), loc}; 4820 insertForwardRef(blockAndLoc.first, loc); 4821 } 4822 4823 return blockAndLoc.first; 4824 } 4825 4826 /// Define the block with the specified name. Returns the Block* or nullptr in 4827 /// the case of redefinition. 4828 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 4829 Block *existing) { 4830 auto &blockAndLoc = getBlockInfoByName(name); 4831 if (!blockAndLoc.first) { 4832 // If the caller provided a block, use it. Otherwise create a new one. 4833 if (!existing) 4834 existing = new Block(); 4835 blockAndLoc.first = existing; 4836 blockAndLoc.second = loc; 4837 return blockAndLoc.first; 4838 } 4839 4840 // Forward declarations are removed once defined, so if we are defining a 4841 // existing block and it is not a forward declaration, then it is a 4842 // redeclaration. 4843 if (!eraseForwardRef(blockAndLoc.first)) 4844 return nullptr; 4845 return blockAndLoc.first; 4846 } 4847 4848 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 4849 /// 4850 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 4851 /// 4852 ParseResult OperationParser::parseOptionalBlockArgList( 4853 SmallVectorImpl<BlockArgument> &results, Block *owner) { 4854 if (getToken().is(Token::r_brace)) 4855 return success(); 4856 4857 // If the block already has arguments, then we're handling the entry block. 4858 // Parse and register the names for the arguments, but do not add them. 4859 bool definingExistingArgs = owner->getNumArguments() != 0; 4860 unsigned nextArgument = 0; 4861 4862 return parseCommaSeparatedList([&]() -> ParseResult { 4863 return parseSSADefOrUseAndType( 4864 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 4865 // If this block did not have existing arguments, define a new one. 4866 if (!definingExistingArgs) 4867 return addDefinition(useInfo, owner->addArgument(type)); 4868 4869 // Otherwise, ensure that this argument has already been created. 4870 if (nextArgument >= owner->getNumArguments()) 4871 return emitError("too many arguments specified in argument list"); 4872 4873 // Finally, make sure the existing argument has the correct type. 4874 auto arg = owner->getArgument(nextArgument++); 4875 if (arg.getType() != type) 4876 return emitError("argument and block argument type mismatch"); 4877 return addDefinition(useInfo, arg); 4878 }); 4879 }); 4880 } 4881 4882 //===----------------------------------------------------------------------===// 4883 // Top-level entity parsing. 4884 //===----------------------------------------------------------------------===// 4885 4886 namespace { 4887 /// This parser handles entities that are only valid at the top level of the 4888 /// file. 4889 class ModuleParser : public Parser { 4890 public: 4891 explicit ModuleParser(ParserState &state) : Parser(state) {} 4892 4893 ParseResult parseModule(ModuleOp module); 4894 4895 private: 4896 /// Parse an attribute alias declaration. 4897 ParseResult parseAttributeAliasDef(); 4898 4899 /// Parse an attribute alias declaration. 4900 ParseResult parseTypeAliasDef(); 4901 }; 4902 } // end anonymous namespace 4903 4904 /// Parses an attribute alias declaration. 4905 /// 4906 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 4907 /// 4908 ParseResult ModuleParser::parseAttributeAliasDef() { 4909 assert(getToken().is(Token::hash_identifier)); 4910 StringRef aliasName = getTokenSpelling().drop_front(); 4911 4912 // Check for redefinitions. 4913 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 4914 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 4915 4916 // Make sure this isn't invading the dialect attribute namespace. 4917 if (aliasName.contains('.')) 4918 return emitError("attribute names with a '.' are reserved for " 4919 "dialect-defined names"); 4920 4921 consumeToken(Token::hash_identifier); 4922 4923 // Parse the '='. 4924 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 4925 return failure(); 4926 4927 // Parse the attribute value. 4928 Attribute attr = parseAttribute(); 4929 if (!attr) 4930 return failure(); 4931 4932 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 4933 return success(); 4934 } 4935 4936 /// Parse a type alias declaration. 4937 /// 4938 /// type-alias-def ::= '!' alias-name `=` 'type' type 4939 /// 4940 ParseResult ModuleParser::parseTypeAliasDef() { 4941 assert(getToken().is(Token::exclamation_identifier)); 4942 StringRef aliasName = getTokenSpelling().drop_front(); 4943 4944 // Check for redefinitions. 4945 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 4946 return emitError("redefinition of type alias id '" + aliasName + "'"); 4947 4948 // Make sure this isn't invading the dialect type namespace. 4949 if (aliasName.contains('.')) 4950 return emitError("type names with a '.' are reserved for " 4951 "dialect-defined names"); 4952 4953 consumeToken(Token::exclamation_identifier); 4954 4955 // Parse the '=' and 'type'. 4956 if (parseToken(Token::equal, "expected '=' in type alias definition") || 4957 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 4958 return failure(); 4959 4960 // Parse the type. 4961 Type aliasedType = parseType(); 4962 if (!aliasedType) 4963 return failure(); 4964 4965 // Register this alias with the parser state. 4966 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 4967 return success(); 4968 } 4969 4970 /// This is the top-level module parser. 4971 ParseResult ModuleParser::parseModule(ModuleOp module) { 4972 OperationParser opParser(getState(), module); 4973 4974 // Module itself is a name scope. 4975 opParser.pushSSANameScope(/*isIsolated=*/true); 4976 4977 while (true) { 4978 switch (getToken().getKind()) { 4979 default: 4980 // Parse a top-level operation. 4981 if (opParser.parseOperation()) 4982 return failure(); 4983 break; 4984 4985 // If we got to the end of the file, then we're done. 4986 case Token::eof: { 4987 if (opParser.finalize()) 4988 return failure(); 4989 4990 // Handle the case where the top level module was explicitly defined. 4991 auto &bodyBlocks = module.getBodyRegion().getBlocks(); 4992 auto &operations = bodyBlocks.front().getOperations(); 4993 assert(!operations.empty() && "expected a valid module terminator"); 4994 4995 // Check that the first operation is a module, and it is the only 4996 // non-terminator operation. 4997 ModuleOp nested = dyn_cast<ModuleOp>(operations.front()); 4998 if (nested && std::next(operations.begin(), 2) == operations.end()) { 4999 // Merge the data of the nested module operation into 'module'. 5000 module.setLoc(nested.getLoc()); 5001 module.setAttrs(nested.getOperation()->getAttrList()); 5002 bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks()); 5003 5004 // Erase the original module body. 5005 bodyBlocks.pop_front(); 5006 } 5007 5008 return opParser.popSSANameScope(); 5009 } 5010 5011 // If we got an error token, then the lexer already emitted an error, just 5012 // stop. Someday we could introduce error recovery if there was demand 5013 // for it. 5014 case Token::error: 5015 return failure(); 5016 5017 // Parse an attribute alias. 5018 case Token::hash_identifier: 5019 if (parseAttributeAliasDef()) 5020 return failure(); 5021 break; 5022 5023 // Parse a type alias. 5024 case Token::exclamation_identifier: 5025 if (parseTypeAliasDef()) 5026 return failure(); 5027 break; 5028 } 5029 } 5030 } 5031 5032 //===----------------------------------------------------------------------===// 5033 5034 /// This parses the file specified by the indicated SourceMgr and returns an 5035 /// MLIR module if it was valid. If not, it emits diagnostics and returns 5036 /// null. 5037 OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 5038 MLIRContext *context) { 5039 auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 5040 5041 // This is the result module we are parsing into. 5042 OwningModuleRef module(ModuleOp::create(FileLineColLoc::get( 5043 sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context))); 5044 5045 SymbolState aliasState; 5046 ParserState state(sourceMgr, context, aliasState); 5047 if (ModuleParser(state).parseModule(*module)) 5048 return nullptr; 5049 5050 // Make sure the parse module has no other structural problems detected by 5051 // the verifier. 5052 if (failed(verify(*module))) 5053 return nullptr; 5054 5055 return module; 5056 } 5057 5058 /// This parses the file specified by the indicated filename and returns an 5059 /// MLIR module if it was valid. If not, the error message is emitted through 5060 /// the error handler registered in the context, and a null pointer is returned. 5061 OwningModuleRef mlir::parseSourceFile(StringRef filename, 5062 MLIRContext *context) { 5063 llvm::SourceMgr sourceMgr; 5064 return parseSourceFile(filename, sourceMgr, context); 5065 } 5066 5067 /// This parses the file specified by the indicated filename using the provided 5068 /// SourceMgr and returns an MLIR module if it was valid. If not, the error 5069 /// message is emitted through the error handler registered in the context, and 5070 /// a null pointer is returned. 5071 OwningModuleRef mlir::parseSourceFile(StringRef filename, 5072 llvm::SourceMgr &sourceMgr, 5073 MLIRContext *context) { 5074 if (sourceMgr.getNumBuffers() != 0) { 5075 // TODO(b/136086478): Extend to support multiple buffers. 5076 emitError(mlir::UnknownLoc::get(context), 5077 "only main buffer parsed at the moment"); 5078 return nullptr; 5079 } 5080 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 5081 if (std::error_code error = file_or_err.getError()) { 5082 emitError(mlir::UnknownLoc::get(context), 5083 "could not open input file " + filename); 5084 return nullptr; 5085 } 5086 5087 // Load the MLIR module. 5088 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 5089 return parseSourceFile(sourceMgr, context); 5090 } 5091 5092 /// This parses the program string to a MLIR module if it was valid. If not, 5093 /// it emits diagnostics and returns null. 5094 OwningModuleRef mlir::parseSourceString(StringRef moduleStr, 5095 MLIRContext *context) { 5096 auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); 5097 if (!memBuffer) 5098 return nullptr; 5099 5100 SourceMgr sourceMgr; 5101 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 5102 return parseSourceFile(sourceMgr, context); 5103 } 5104 5105 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 5106 /// parsing failed, nullptr is returned. The number of bytes read from the input 5107 /// string is returned in 'numRead'. 5108 template <typename T, typename ParserFn> 5109 static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead, 5110 ParserFn &&parserFn) { 5111 SymbolState aliasState; 5112 return parseSymbol<T>( 5113 inputStr, context, aliasState, 5114 [&](Parser &parser) { 5115 SourceMgrDiagnosticHandler handler( 5116 const_cast<llvm::SourceMgr &>(parser.getSourceMgr()), 5117 parser.getContext()); 5118 return parserFn(parser); 5119 }, 5120 &numRead); 5121 } 5122 5123 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) { 5124 size_t numRead = 0; 5125 return parseAttribute(attrStr, context, numRead); 5126 } 5127 Attribute mlir::parseAttribute(StringRef attrStr, Type type) { 5128 size_t numRead = 0; 5129 return parseAttribute(attrStr, type, numRead); 5130 } 5131 5132 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context, 5133 size_t &numRead) { 5134 return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) { 5135 return parser.parseAttribute(); 5136 }); 5137 } 5138 Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) { 5139 return parseSymbol<Attribute>( 5140 attrStr, type.getContext(), numRead, 5141 [type](Parser &parser) { return parser.parseAttribute(type); }); 5142 } 5143 5144 Type mlir::parseType(StringRef typeStr, MLIRContext *context) { 5145 size_t numRead = 0; 5146 return parseType(typeStr, context, numRead); 5147 } 5148 5149 Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) { 5150 return parseSymbol<Type>(typeStr, context, numRead, 5151 [](Parser &parser) { return parser.parseType(); }); 5152 } 5153