1 //===- Parser.cpp - MLIR Parser Implementation ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parser for the MLIR textual form. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Parser.h" 14 #include "Lexer.h" 15 #include "mlir/Analysis/Verifier.h" 16 #include "mlir/IR/AffineExpr.h" 17 #include "mlir/IR/AffineMap.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/Dialect.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/IntegerSet.h" 23 #include "mlir/IR/Location.h" 24 #include "mlir/IR/MLIRContext.h" 25 #include "mlir/IR/Module.h" 26 #include "mlir/IR/OpImplementation.h" 27 #include "mlir/IR/StandardTypes.h" 28 #include "mlir/Support/STLExtras.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/bit.h" 34 #include "llvm/Support/PrettyStackTrace.h" 35 #include "llvm/Support/SMLoc.h" 36 #include "llvm/Support/SourceMgr.h" 37 #include <algorithm> 38 using namespace mlir; 39 using llvm::MemoryBuffer; 40 using llvm::SMLoc; 41 using llvm::SourceMgr; 42 43 namespace { 44 class Parser; 45 46 //===----------------------------------------------------------------------===// 47 // SymbolState 48 //===----------------------------------------------------------------------===// 49 50 /// This class contains record of any parsed top-level symbols. 51 struct SymbolState { 52 // A map from attribute alias identifier to Attribute. 53 llvm::StringMap<Attribute> attributeAliasDefinitions; 54 55 // A map from type alias identifier to Type. 56 llvm::StringMap<Type> typeAliasDefinitions; 57 58 /// A set of locations into the main parser memory buffer for each of the 59 /// active nested parsers. Given that some nested parsers, i.e. custom dialect 60 /// parsers, operate on a temporary memory buffer, this provides an anchor 61 /// point for emitting diagnostics. 62 SmallVector<llvm::SMLoc, 1> nestedParserLocs; 63 64 /// The top-level lexer that contains the original memory buffer provided by 65 /// the user. This is used by nested parsers to get a properly encoded source 66 /// location. 67 Lexer *topLevelLexer = nullptr; 68 }; 69 70 //===----------------------------------------------------------------------===// 71 // ParserState 72 //===----------------------------------------------------------------------===// 73 74 /// This class refers to all of the state maintained globally by the parser, 75 /// such as the current lexer position etc. 76 struct ParserState { 77 ParserState(const llvm::SourceMgr &sourceMgr, MLIRContext *ctx, 78 SymbolState &symbols) 79 : context(ctx), lex(sourceMgr, ctx), curToken(lex.lexToken()), 80 symbols(symbols), parserDepth(symbols.nestedParserLocs.size()) { 81 // Set the top level lexer for the symbol state if one doesn't exist. 82 if (!symbols.topLevelLexer) 83 symbols.topLevelLexer = &lex; 84 } 85 ~ParserState() { 86 // Reset the top level lexer if it refers the lexer in our state. 87 if (symbols.topLevelLexer == &lex) 88 symbols.topLevelLexer = nullptr; 89 } 90 ParserState(const ParserState &) = delete; 91 void operator=(const ParserState &) = delete; 92 93 /// The context we're parsing into. 94 MLIRContext *const context; 95 96 /// The lexer for the source file we're parsing. 97 Lexer lex; 98 99 /// This is the next token that hasn't been consumed yet. 100 Token curToken; 101 102 /// The current state for symbol parsing. 103 SymbolState &symbols; 104 105 /// The depth of this parser in the nested parsing stack. 106 size_t parserDepth; 107 }; 108 109 //===----------------------------------------------------------------------===// 110 // Parser 111 //===----------------------------------------------------------------------===// 112 113 /// This class implement support for parsing global entities like types and 114 /// shared entities like SSA names. It is intended to be subclassed by 115 /// specialized subparsers that include state, e.g. when a local symbol table. 116 class Parser { 117 public: 118 Builder builder; 119 120 Parser(ParserState &state) : builder(state.context), state(state) {} 121 122 // Helper methods to get stuff from the parser-global state. 123 ParserState &getState() const { return state; } 124 MLIRContext *getContext() const { return state.context; } 125 const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } 126 127 /// Parse a comma-separated list of elements up until the specified end token. 128 ParseResult 129 parseCommaSeparatedListUntil(Token::Kind rightToken, 130 const std::function<ParseResult()> &parseElement, 131 bool allowEmptyList = true); 132 133 /// Parse a comma separated list of elements that must have at least one entry 134 /// in it. 135 ParseResult 136 parseCommaSeparatedList(const std::function<ParseResult()> &parseElement); 137 138 ParseResult parsePrettyDialectSymbolName(StringRef &prettyName); 139 140 // We have two forms of parsing methods - those that return a non-null 141 // pointer on success, and those that return a ParseResult to indicate whether 142 // they returned a failure. The second class fills in by-reference arguments 143 // as the results of their action. 144 145 //===--------------------------------------------------------------------===// 146 // Error Handling 147 //===--------------------------------------------------------------------===// 148 149 /// Emit an error and return failure. 150 InFlightDiagnostic emitError(const Twine &message = {}) { 151 return emitError(state.curToken.getLoc(), message); 152 } 153 InFlightDiagnostic emitError(SMLoc loc, const Twine &message = {}); 154 155 /// Encode the specified source location information into an attribute for 156 /// attachment to the IR. 157 Location getEncodedSourceLocation(llvm::SMLoc loc) { 158 // If there are no active nested parsers, we can get the encoded source 159 // location directly. 160 if (state.parserDepth == 0) 161 return state.lex.getEncodedSourceLocation(loc); 162 // Otherwise, we need to re-encode it to point to the top level buffer. 163 return state.symbols.topLevelLexer->getEncodedSourceLocation( 164 remapLocationToTopLevelBuffer(loc)); 165 } 166 167 /// Remaps the given SMLoc to the top level lexer of the parser. This is used 168 /// to adjust locations of potentially nested parsers to ensure that they can 169 /// be emitted properly as diagnostics. 170 llvm::SMLoc remapLocationToTopLevelBuffer(llvm::SMLoc loc) { 171 // If there are no active nested parsers, we can return location directly. 172 SymbolState &symbols = state.symbols; 173 if (state.parserDepth == 0) 174 return loc; 175 assert(symbols.topLevelLexer && "expected valid top-level lexer"); 176 177 // Otherwise, we need to remap the location to the main parser. This is 178 // simply offseting the location onto the location of the last nested 179 // parser. 180 size_t offset = loc.getPointer() - state.lex.getBufferBegin(); 181 auto *rawLoc = 182 symbols.nestedParserLocs[state.parserDepth - 1].getPointer() + offset; 183 return llvm::SMLoc::getFromPointer(rawLoc); 184 } 185 186 //===--------------------------------------------------------------------===// 187 // Token Parsing 188 //===--------------------------------------------------------------------===// 189 190 /// Return the current token the parser is inspecting. 191 const Token &getToken() const { return state.curToken; } 192 StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } 193 194 /// If the current token has the specified kind, consume it and return true. 195 /// If not, return false. 196 bool consumeIf(Token::Kind kind) { 197 if (state.curToken.isNot(kind)) 198 return false; 199 consumeToken(kind); 200 return true; 201 } 202 203 /// Advance the current lexer onto the next token. 204 void consumeToken() { 205 assert(state.curToken.isNot(Token::eof, Token::error) && 206 "shouldn't advance past EOF or errors"); 207 state.curToken = state.lex.lexToken(); 208 } 209 210 /// Advance the current lexer onto the next token, asserting what the expected 211 /// current token is. This is preferred to the above method because it leads 212 /// to more self-documenting code with better checking. 213 void consumeToken(Token::Kind kind) { 214 assert(state.curToken.is(kind) && "consumed an unexpected token"); 215 consumeToken(); 216 } 217 218 /// Consume the specified token if present and return success. On failure, 219 /// output a diagnostic and return failure. 220 ParseResult parseToken(Token::Kind expectedToken, const Twine &message); 221 222 //===--------------------------------------------------------------------===// 223 // Type Parsing 224 //===--------------------------------------------------------------------===// 225 226 ParseResult parseFunctionResultTypes(SmallVectorImpl<Type> &elements); 227 ParseResult parseTypeListNoParens(SmallVectorImpl<Type> &elements); 228 ParseResult parseTypeListParens(SmallVectorImpl<Type> &elements); 229 230 /// Optionally parse a type. 231 OptionalParseResult parseOptionalType(Type &type); 232 233 /// Parse an arbitrary type. 234 Type parseType(); 235 236 /// Parse a complex type. 237 Type parseComplexType(); 238 239 /// Parse an extended type. 240 Type parseExtendedType(); 241 242 /// Parse a function type. 243 Type parseFunctionType(); 244 245 /// Parse a memref type. 246 Type parseMemRefType(); 247 248 /// Parse a non function type. 249 Type parseNonFunctionType(); 250 251 /// Parse a tensor type. 252 Type parseTensorType(); 253 254 /// Parse a tuple type. 255 Type parseTupleType(); 256 257 /// Parse a vector type. 258 VectorType parseVectorType(); 259 ParseResult parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 260 bool allowDynamic = true); 261 ParseResult parseXInDimensionList(); 262 263 /// Parse strided layout specification. 264 ParseResult parseStridedLayout(int64_t &offset, 265 SmallVectorImpl<int64_t> &strides); 266 267 // Parse a brace-delimiter list of comma-separated integers with `?` as an 268 // unknown marker. 269 ParseResult parseStrideList(SmallVectorImpl<int64_t> &dimensions); 270 271 //===--------------------------------------------------------------------===// 272 // Attribute Parsing 273 //===--------------------------------------------------------------------===// 274 275 /// Parse an arbitrary attribute with an optional type. 276 Attribute parseAttribute(Type type = {}); 277 278 /// Parse an attribute dictionary. 279 ParseResult parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes); 280 281 /// Parse an extended attribute. 282 Attribute parseExtendedAttr(Type type); 283 284 /// Parse a float attribute. 285 Attribute parseFloatAttr(Type type, bool isNegative); 286 287 /// Parse a decimal or a hexadecimal literal, which can be either an integer 288 /// or a float attribute. 289 Attribute parseDecOrHexAttr(Type type, bool isNegative); 290 291 /// Parse an opaque elements attribute. 292 Attribute parseOpaqueElementsAttr(Type attrType); 293 294 /// Parse a dense elements attribute. 295 Attribute parseDenseElementsAttr(Type attrType); 296 ShapedType parseElementsLiteralType(Type type); 297 298 /// Parse a sparse elements attribute. 299 Attribute parseSparseElementsAttr(Type attrType); 300 301 //===--------------------------------------------------------------------===// 302 // Location Parsing 303 //===--------------------------------------------------------------------===// 304 305 /// Parse an inline location. 306 ParseResult parseLocation(LocationAttr &loc); 307 308 /// Parse a raw location instance. 309 ParseResult parseLocationInstance(LocationAttr &loc); 310 311 /// Parse a callsite location instance. 312 ParseResult parseCallSiteLocation(LocationAttr &loc); 313 314 /// Parse a fused location instance. 315 ParseResult parseFusedLocation(LocationAttr &loc); 316 317 /// Parse a name or FileLineCol location instance. 318 ParseResult parseNameOrFileLineColLocation(LocationAttr &loc); 319 320 /// Parse an optional trailing location. 321 /// 322 /// trailing-location ::= (`loc` `(` location `)`)? 323 /// 324 ParseResult parseOptionalTrailingLocation(Location &loc) { 325 // If there is a 'loc' we parse a trailing location. 326 if (!getToken().is(Token::kw_loc)) 327 return success(); 328 329 // Parse the location. 330 LocationAttr directLoc; 331 if (parseLocation(directLoc)) 332 return failure(); 333 loc = directLoc; 334 return success(); 335 } 336 337 //===--------------------------------------------------------------------===// 338 // Affine Parsing 339 //===--------------------------------------------------------------------===// 340 341 /// Parse a reference to either an affine map, or an integer set. 342 ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, 343 IntegerSet &set); 344 ParseResult parseAffineMapReference(AffineMap &map); 345 ParseResult parseIntegerSetReference(IntegerSet &set); 346 347 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 348 ParseResult 349 parseAffineMapOfSSAIds(AffineMap &map, 350 function_ref<ParseResult(bool)> parseElement, 351 OpAsmParser::Delimiter delimiter); 352 353 private: 354 /// The Parser is subclassed and reinstantiated. Do not add additional 355 /// non-trivial state here, add it to the ParserState class. 356 ParserState &state; 357 }; 358 } // end anonymous namespace 359 360 //===----------------------------------------------------------------------===// 361 // Helper methods. 362 //===----------------------------------------------------------------------===// 363 364 /// Parse a comma separated list of elements that must have at least one entry 365 /// in it. 366 ParseResult Parser::parseCommaSeparatedList( 367 const std::function<ParseResult()> &parseElement) { 368 // Non-empty case starts with an element. 369 if (parseElement()) 370 return failure(); 371 372 // Otherwise we have a list of comma separated elements. 373 while (consumeIf(Token::comma)) { 374 if (parseElement()) 375 return failure(); 376 } 377 return success(); 378 } 379 380 /// Parse a comma-separated list of elements, terminated with an arbitrary 381 /// token. This allows empty lists if allowEmptyList is true. 382 /// 383 /// abstract-list ::= rightToken // if allowEmptyList == true 384 /// abstract-list ::= element (',' element)* rightToken 385 /// 386 ParseResult Parser::parseCommaSeparatedListUntil( 387 Token::Kind rightToken, const std::function<ParseResult()> &parseElement, 388 bool allowEmptyList) { 389 // Handle the empty case. 390 if (getToken().is(rightToken)) { 391 if (!allowEmptyList) 392 return emitError("expected list element"); 393 consumeToken(rightToken); 394 return success(); 395 } 396 397 if (parseCommaSeparatedList(parseElement) || 398 parseToken(rightToken, "expected ',' or '" + 399 Token::getTokenSpelling(rightToken) + "'")) 400 return failure(); 401 402 return success(); 403 } 404 405 //===----------------------------------------------------------------------===// 406 // DialectAsmParser 407 //===----------------------------------------------------------------------===// 408 409 namespace { 410 /// This class provides the main implementation of the DialectAsmParser that 411 /// allows for dialects to parse attributes and types. This allows for dialect 412 /// hooking into the main MLIR parsing logic. 413 class CustomDialectAsmParser : public DialectAsmParser { 414 public: 415 CustomDialectAsmParser(StringRef fullSpec, Parser &parser) 416 : fullSpec(fullSpec), nameLoc(parser.getToken().getLoc()), 417 parser(parser) {} 418 ~CustomDialectAsmParser() override {} 419 420 /// Emit a diagnostic at the specified location and return failure. 421 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 422 return parser.emitError(loc, message); 423 } 424 425 /// Return a builder which provides useful access to MLIRContext, global 426 /// objects like types and attributes. 427 Builder &getBuilder() const override { return parser.builder; } 428 429 /// Get the location of the next token and store it into the argument. This 430 /// always succeeds. 431 llvm::SMLoc getCurrentLocation() override { 432 return parser.getToken().getLoc(); 433 } 434 435 /// Return the location of the original name token. 436 llvm::SMLoc getNameLoc() const override { return nameLoc; } 437 438 /// Re-encode the given source location as an MLIR location and return it. 439 Location getEncodedSourceLoc(llvm::SMLoc loc) override { 440 return parser.getEncodedSourceLocation(loc); 441 } 442 443 /// Returns the full specification of the symbol being parsed. This allows 444 /// for using a separate parser if necessary. 445 StringRef getFullSymbolSpec() const override { return fullSpec; } 446 447 /// Parse a floating point value from the stream. 448 ParseResult parseFloat(double &result) override { 449 bool negative = parser.consumeIf(Token::minus); 450 Token curTok = parser.getToken(); 451 452 // Check for a floating point value. 453 if (curTok.is(Token::floatliteral)) { 454 auto val = curTok.getFloatingPointValue(); 455 if (!val.hasValue()) 456 return emitError(curTok.getLoc(), "floating point value too large"); 457 parser.consumeToken(Token::floatliteral); 458 result = negative ? -*val : *val; 459 return success(); 460 } 461 462 // TODO(riverriddle) support hex floating point values. 463 return emitError(getCurrentLocation(), "expected floating point literal"); 464 } 465 466 /// Parse an optional integer value from the stream. 467 OptionalParseResult parseOptionalInteger(uint64_t &result) override { 468 Token curToken = parser.getToken(); 469 if (curToken.isNot(Token::integer, Token::minus)) 470 return llvm::None; 471 472 bool negative = parser.consumeIf(Token::minus); 473 Token curTok = parser.getToken(); 474 if (parser.parseToken(Token::integer, "expected integer value")) 475 return failure(); 476 477 auto val = curTok.getUInt64IntegerValue(); 478 if (!val) 479 return emitError(curTok.getLoc(), "integer value too large"); 480 result = negative ? -*val : *val; 481 return success(); 482 } 483 484 //===--------------------------------------------------------------------===// 485 // Token Parsing 486 //===--------------------------------------------------------------------===// 487 488 /// Parse a `->` token. 489 ParseResult parseArrow() override { 490 return parser.parseToken(Token::arrow, "expected '->'"); 491 } 492 493 /// Parses a `->` if present. 494 ParseResult parseOptionalArrow() override { 495 return success(parser.consumeIf(Token::arrow)); 496 } 497 498 /// Parse a '{' token. 499 ParseResult parseLBrace() override { 500 return parser.parseToken(Token::l_brace, "expected '{'"); 501 } 502 503 /// Parse a '{' token if present 504 ParseResult parseOptionalLBrace() override { 505 return success(parser.consumeIf(Token::l_brace)); 506 } 507 508 /// Parse a `}` token. 509 ParseResult parseRBrace() override { 510 return parser.parseToken(Token::r_brace, "expected '}'"); 511 } 512 513 /// Parse a `}` token if present 514 ParseResult parseOptionalRBrace() override { 515 return success(parser.consumeIf(Token::r_brace)); 516 } 517 518 /// Parse a `:` token. 519 ParseResult parseColon() override { 520 return parser.parseToken(Token::colon, "expected ':'"); 521 } 522 523 /// Parse a `:` token if present. 524 ParseResult parseOptionalColon() override { 525 return success(parser.consumeIf(Token::colon)); 526 } 527 528 /// Parse a `,` token. 529 ParseResult parseComma() override { 530 return parser.parseToken(Token::comma, "expected ','"); 531 } 532 533 /// Parse a `,` token if present. 534 ParseResult parseOptionalComma() override { 535 return success(parser.consumeIf(Token::comma)); 536 } 537 538 /// Parses a `...` if present. 539 ParseResult parseOptionalEllipsis() override { 540 return success(parser.consumeIf(Token::ellipsis)); 541 } 542 543 /// Parse a `=` token. 544 ParseResult parseEqual() override { 545 return parser.parseToken(Token::equal, "expected '='"); 546 } 547 548 /// Parse a '<' token. 549 ParseResult parseLess() override { 550 return parser.parseToken(Token::less, "expected '<'"); 551 } 552 553 /// Parse a `<` token if present. 554 ParseResult parseOptionalLess() override { 555 return success(parser.consumeIf(Token::less)); 556 } 557 558 /// Parse a '>' token. 559 ParseResult parseGreater() override { 560 return parser.parseToken(Token::greater, "expected '>'"); 561 } 562 563 /// Parse a `>` token if present. 564 ParseResult parseOptionalGreater() override { 565 return success(parser.consumeIf(Token::greater)); 566 } 567 568 /// Parse a `(` token. 569 ParseResult parseLParen() override { 570 return parser.parseToken(Token::l_paren, "expected '('"); 571 } 572 573 /// Parses a '(' if present. 574 ParseResult parseOptionalLParen() override { 575 return success(parser.consumeIf(Token::l_paren)); 576 } 577 578 /// Parse a `)` token. 579 ParseResult parseRParen() override { 580 return parser.parseToken(Token::r_paren, "expected ')'"); 581 } 582 583 /// Parses a ')' if present. 584 ParseResult parseOptionalRParen() override { 585 return success(parser.consumeIf(Token::r_paren)); 586 } 587 588 /// Parse a `[` token. 589 ParseResult parseLSquare() override { 590 return parser.parseToken(Token::l_square, "expected '['"); 591 } 592 593 /// Parses a '[' if present. 594 ParseResult parseOptionalLSquare() override { 595 return success(parser.consumeIf(Token::l_square)); 596 } 597 598 /// Parse a `]` token. 599 ParseResult parseRSquare() override { 600 return parser.parseToken(Token::r_square, "expected ']'"); 601 } 602 603 /// Parses a ']' if present. 604 ParseResult parseOptionalRSquare() override { 605 return success(parser.consumeIf(Token::r_square)); 606 } 607 608 /// Parses a '?' if present. 609 ParseResult parseOptionalQuestion() override { 610 return success(parser.consumeIf(Token::question)); 611 } 612 613 /// Parses a '*' if present. 614 ParseResult parseOptionalStar() override { 615 return success(parser.consumeIf(Token::star)); 616 } 617 618 /// Returns if the current token corresponds to a keyword. 619 bool isCurrentTokenAKeyword() const { 620 return parser.getToken().is(Token::bare_identifier) || 621 parser.getToken().isKeyword(); 622 } 623 624 /// Parse the given keyword if present. 625 ParseResult parseOptionalKeyword(StringRef keyword) override { 626 // Check that the current token has the same spelling. 627 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 628 return failure(); 629 parser.consumeToken(); 630 return success(); 631 } 632 633 /// Parse a keyword, if present, into 'keyword'. 634 ParseResult parseOptionalKeyword(StringRef *keyword) override { 635 // Check that the current token is a keyword. 636 if (!isCurrentTokenAKeyword()) 637 return failure(); 638 639 *keyword = parser.getTokenSpelling(); 640 parser.consumeToken(); 641 return success(); 642 } 643 644 //===--------------------------------------------------------------------===// 645 // Attribute Parsing 646 //===--------------------------------------------------------------------===// 647 648 /// Parse an arbitrary attribute and return it in result. 649 ParseResult parseAttribute(Attribute &result, Type type) override { 650 result = parser.parseAttribute(type); 651 return success(static_cast<bool>(result)); 652 } 653 654 /// Parse an affine map instance into 'map'. 655 ParseResult parseAffineMap(AffineMap &map) override { 656 return parser.parseAffineMapReference(map); 657 } 658 659 /// Parse an integer set instance into 'set'. 660 ParseResult printIntegerSet(IntegerSet &set) override { 661 return parser.parseIntegerSetReference(set); 662 } 663 664 //===--------------------------------------------------------------------===// 665 // Type Parsing 666 //===--------------------------------------------------------------------===// 667 668 ParseResult parseType(Type &result) override { 669 result = parser.parseType(); 670 return success(static_cast<bool>(result)); 671 } 672 673 ParseResult parseDimensionList(SmallVectorImpl<int64_t> &dimensions, 674 bool allowDynamic) override { 675 return parser.parseDimensionListRanked(dimensions, allowDynamic); 676 } 677 678 private: 679 /// The full symbol specification. 680 StringRef fullSpec; 681 682 /// The source location of the dialect symbol. 683 SMLoc nameLoc; 684 685 /// The main parser. 686 Parser &parser; 687 }; 688 } // namespace 689 690 /// Parse the body of a pretty dialect symbol, which starts and ends with <>'s, 691 /// and may be recursive. Return with the 'prettyName' StringRef encompassing 692 /// the entire pretty name. 693 /// 694 /// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>' 695 /// pretty-dialect-sym-contents ::= pretty-dialect-sym-body 696 /// | '(' pretty-dialect-sym-contents+ ')' 697 /// | '[' pretty-dialect-sym-contents+ ']' 698 /// | '{' pretty-dialect-sym-contents+ '}' 699 /// | '[^[<({>\])}\0]+' 700 /// 701 ParseResult Parser::parsePrettyDialectSymbolName(StringRef &prettyName) { 702 // Pretty symbol names are a relatively unstructured format that contains a 703 // series of properly nested punctuation, with anything else in the middle. 704 // Scan ahead to find it and consume it if successful, otherwise emit an 705 // error. 706 auto *curPtr = getTokenSpelling().data(); 707 708 SmallVector<char, 8> nestedPunctuation; 709 710 // Scan over the nested punctuation, bailing out on error and consuming until 711 // we find the end. We know that we're currently looking at the '<', so we 712 // can go until we find the matching '>' character. 713 assert(*curPtr == '<'); 714 do { 715 char c = *curPtr++; 716 switch (c) { 717 case '\0': 718 // This also handles the EOF case. 719 return emitError("unexpected nul or EOF in pretty dialect name"); 720 case '<': 721 case '[': 722 case '(': 723 case '{': 724 nestedPunctuation.push_back(c); 725 continue; 726 727 case '-': 728 // The sequence `->` is treated as special token. 729 if (*curPtr == '>') 730 ++curPtr; 731 continue; 732 733 case '>': 734 if (nestedPunctuation.pop_back_val() != '<') 735 return emitError("unbalanced '>' character in pretty dialect name"); 736 break; 737 case ']': 738 if (nestedPunctuation.pop_back_val() != '[') 739 return emitError("unbalanced ']' character in pretty dialect name"); 740 break; 741 case ')': 742 if (nestedPunctuation.pop_back_val() != '(') 743 return emitError("unbalanced ')' character in pretty dialect name"); 744 break; 745 case '}': 746 if (nestedPunctuation.pop_back_val() != '{') 747 return emitError("unbalanced '}' character in pretty dialect name"); 748 break; 749 750 default: 751 continue; 752 } 753 } while (!nestedPunctuation.empty()); 754 755 // Ok, we succeeded, remember where we stopped, reset the lexer to know it is 756 // consuming all this stuff, and return. 757 state.lex.resetPointer(curPtr); 758 759 unsigned length = curPtr - prettyName.begin(); 760 prettyName = StringRef(prettyName.begin(), length); 761 consumeToken(); 762 return success(); 763 } 764 765 /// Parse an extended dialect symbol. 766 template <typename Symbol, typename SymbolAliasMap, typename CreateFn> 767 static Symbol parseExtendedSymbol(Parser &p, Token::Kind identifierTok, 768 SymbolAliasMap &aliases, 769 CreateFn &&createSymbol) { 770 // Parse the dialect namespace. 771 StringRef identifier = p.getTokenSpelling().drop_front(); 772 auto loc = p.getToken().getLoc(); 773 p.consumeToken(identifierTok); 774 775 // If there is no '<' token following this, and if the typename contains no 776 // dot, then we are parsing a symbol alias. 777 if (p.getToken().isNot(Token::less) && !identifier.contains('.')) { 778 // Check for an alias for this type. 779 auto aliasIt = aliases.find(identifier); 780 if (aliasIt == aliases.end()) 781 return (p.emitError("undefined symbol alias id '" + identifier + "'"), 782 nullptr); 783 return aliasIt->second; 784 } 785 786 // Otherwise, we are parsing a dialect-specific symbol. If the name contains 787 // a dot, then this is the "pretty" form. If not, it is the verbose form that 788 // looks like <"...">. 789 std::string symbolData; 790 auto dialectName = identifier; 791 792 // Handle the verbose form, where "identifier" is a simple dialect name. 793 if (!identifier.contains('.')) { 794 // Consume the '<'. 795 if (p.parseToken(Token::less, "expected '<' in dialect type")) 796 return nullptr; 797 798 // Parse the symbol specific data. 799 if (p.getToken().isNot(Token::string)) 800 return (p.emitError("expected string literal data in dialect symbol"), 801 nullptr); 802 symbolData = p.getToken().getStringValue(); 803 loc = llvm::SMLoc::getFromPointer(p.getToken().getLoc().getPointer() + 1); 804 p.consumeToken(Token::string); 805 806 // Consume the '>'. 807 if (p.parseToken(Token::greater, "expected '>' in dialect symbol")) 808 return nullptr; 809 } else { 810 // Ok, the dialect name is the part of the identifier before the dot, the 811 // part after the dot is the dialect's symbol, or the start thereof. 812 auto dotHalves = identifier.split('.'); 813 dialectName = dotHalves.first; 814 auto prettyName = dotHalves.second; 815 loc = llvm::SMLoc::getFromPointer(prettyName.data()); 816 817 // If the dialect's symbol is followed immediately by a <, then lex the body 818 // of it into prettyName. 819 if (p.getToken().is(Token::less) && 820 prettyName.bytes_end() == p.getTokenSpelling().bytes_begin()) { 821 if (p.parsePrettyDialectSymbolName(prettyName)) 822 return nullptr; 823 } 824 825 symbolData = prettyName.str(); 826 } 827 828 // Record the name location of the type remapped to the top level buffer. 829 llvm::SMLoc locInTopLevelBuffer = p.remapLocationToTopLevelBuffer(loc); 830 p.getState().symbols.nestedParserLocs.push_back(locInTopLevelBuffer); 831 832 // Call into the provided symbol construction function. 833 Symbol sym = createSymbol(dialectName, symbolData, loc); 834 835 // Pop the last parser location. 836 p.getState().symbols.nestedParserLocs.pop_back(); 837 return sym; 838 } 839 840 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 841 /// parsing failed, nullptr is returned. The number of bytes read from the input 842 /// string is returned in 'numRead'. 843 template <typename T, typename ParserFn> 844 static T parseSymbol(StringRef inputStr, MLIRContext *context, 845 SymbolState &symbolState, ParserFn &&parserFn, 846 size_t *numRead = nullptr) { 847 SourceMgr sourceMgr; 848 auto memBuffer = MemoryBuffer::getMemBuffer( 849 inputStr, /*BufferName=*/"<mlir_parser_buffer>", 850 /*RequiresNullTerminator=*/false); 851 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 852 ParserState state(sourceMgr, context, symbolState); 853 Parser parser(state); 854 855 Token startTok = parser.getToken(); 856 T symbol = parserFn(parser); 857 if (!symbol) 858 return T(); 859 860 // If 'numRead' is valid, then provide the number of bytes that were read. 861 Token endTok = parser.getToken(); 862 if (numRead) { 863 *numRead = static_cast<size_t>(endTok.getLoc().getPointer() - 864 startTok.getLoc().getPointer()); 865 866 // Otherwise, ensure that all of the tokens were parsed. 867 } else if (startTok.getLoc() != endTok.getLoc() && endTok.isNot(Token::eof)) { 868 parser.emitError(endTok.getLoc(), "encountered unexpected token"); 869 return T(); 870 } 871 return symbol; 872 } 873 874 //===----------------------------------------------------------------------===// 875 // Error Handling 876 //===----------------------------------------------------------------------===// 877 878 InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) { 879 auto diag = mlir::emitError(getEncodedSourceLocation(loc), message); 880 881 // If we hit a parse error in response to a lexer error, then the lexer 882 // already reported the error. 883 if (getToken().is(Token::error)) 884 diag.abandon(); 885 return diag; 886 } 887 888 //===----------------------------------------------------------------------===// 889 // Token Parsing 890 //===----------------------------------------------------------------------===// 891 892 /// Consume the specified token if present and return success. On failure, 893 /// output a diagnostic and return failure. 894 ParseResult Parser::parseToken(Token::Kind expectedToken, 895 const Twine &message) { 896 if (consumeIf(expectedToken)) 897 return success(); 898 return emitError(message); 899 } 900 901 //===----------------------------------------------------------------------===// 902 // Type Parsing 903 //===----------------------------------------------------------------------===// 904 905 /// Optionally parse a type. 906 OptionalParseResult Parser::parseOptionalType(Type &type) { 907 // There are many different starting tokens for a type, check them here. 908 switch (getToken().getKind()) { 909 case Token::l_paren: 910 case Token::kw_memref: 911 case Token::kw_tensor: 912 case Token::kw_complex: 913 case Token::kw_tuple: 914 case Token::kw_vector: 915 case Token::inttype: 916 case Token::kw_bf16: 917 case Token::kw_f16: 918 case Token::kw_f32: 919 case Token::kw_f64: 920 case Token::kw_index: 921 case Token::kw_none: 922 case Token::exclamation_identifier: 923 return failure(!(type = parseType())); 924 925 default: 926 return llvm::None; 927 } 928 } 929 930 /// Parse an arbitrary type. 931 /// 932 /// type ::= function-type 933 /// | non-function-type 934 /// 935 Type Parser::parseType() { 936 if (getToken().is(Token::l_paren)) 937 return parseFunctionType(); 938 return parseNonFunctionType(); 939 } 940 941 /// Parse a function result type. 942 /// 943 /// function-result-type ::= type-list-parens 944 /// | non-function-type 945 /// 946 ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl<Type> &elements) { 947 if (getToken().is(Token::l_paren)) 948 return parseTypeListParens(elements); 949 950 Type t = parseNonFunctionType(); 951 if (!t) 952 return failure(); 953 elements.push_back(t); 954 return success(); 955 } 956 957 /// Parse a list of types without an enclosing parenthesis. The list must have 958 /// at least one member. 959 /// 960 /// type-list-no-parens ::= type (`,` type)* 961 /// 962 ParseResult Parser::parseTypeListNoParens(SmallVectorImpl<Type> &elements) { 963 auto parseElt = [&]() -> ParseResult { 964 auto elt = parseType(); 965 elements.push_back(elt); 966 return elt ? success() : failure(); 967 }; 968 969 return parseCommaSeparatedList(parseElt); 970 } 971 972 /// Parse a parenthesized list of types. 973 /// 974 /// type-list-parens ::= `(` `)` 975 /// | `(` type-list-no-parens `)` 976 /// 977 ParseResult Parser::parseTypeListParens(SmallVectorImpl<Type> &elements) { 978 if (parseToken(Token::l_paren, "expected '('")) 979 return failure(); 980 981 // Handle empty lists. 982 if (getToken().is(Token::r_paren)) 983 return consumeToken(), success(); 984 985 if (parseTypeListNoParens(elements) || 986 parseToken(Token::r_paren, "expected ')'")) 987 return failure(); 988 return success(); 989 } 990 991 /// Parse a complex type. 992 /// 993 /// complex-type ::= `complex` `<` type `>` 994 /// 995 Type Parser::parseComplexType() { 996 consumeToken(Token::kw_complex); 997 998 // Parse the '<'. 999 if (parseToken(Token::less, "expected '<' in complex type")) 1000 return nullptr; 1001 1002 llvm::SMLoc elementTypeLoc = getToken().getLoc(); 1003 auto elementType = parseType(); 1004 if (!elementType || 1005 parseToken(Token::greater, "expected '>' in complex type")) 1006 return nullptr; 1007 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) 1008 return emitError(elementTypeLoc, "invalid element type for complex"), 1009 nullptr; 1010 1011 return ComplexType::get(elementType); 1012 } 1013 1014 /// Parse an extended type. 1015 /// 1016 /// extended-type ::= (dialect-type | type-alias) 1017 /// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>` 1018 /// dialect-type ::= `!` alias-name pretty-dialect-attribute-body? 1019 /// type-alias ::= `!` alias-name 1020 /// 1021 Type Parser::parseExtendedType() { 1022 return parseExtendedSymbol<Type>( 1023 *this, Token::exclamation_identifier, state.symbols.typeAliasDefinitions, 1024 [&](StringRef dialectName, StringRef symbolData, 1025 llvm::SMLoc loc) -> Type { 1026 // If we found a registered dialect, then ask it to parse the type. 1027 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1028 return parseSymbol<Type>( 1029 symbolData, state.context, state.symbols, [&](Parser &parser) { 1030 CustomDialectAsmParser customParser(symbolData, parser); 1031 return dialect->parseType(customParser); 1032 }); 1033 } 1034 1035 // Otherwise, form a new opaque type. 1036 return OpaqueType::getChecked( 1037 Identifier::get(dialectName, state.context), symbolData, 1038 state.context, getEncodedSourceLocation(loc)); 1039 }); 1040 } 1041 1042 /// Parse a function type. 1043 /// 1044 /// function-type ::= type-list-parens `->` function-result-type 1045 /// 1046 Type Parser::parseFunctionType() { 1047 assert(getToken().is(Token::l_paren)); 1048 1049 SmallVector<Type, 4> arguments, results; 1050 if (parseTypeListParens(arguments) || 1051 parseToken(Token::arrow, "expected '->' in function type") || 1052 parseFunctionResultTypes(results)) 1053 return nullptr; 1054 1055 return builder.getFunctionType(arguments, results); 1056 } 1057 1058 /// Parse the offset and strides from a strided layout specification. 1059 /// 1060 /// strided-layout ::= `offset:` dimension `,` `strides: ` stride-list 1061 /// 1062 ParseResult Parser::parseStridedLayout(int64_t &offset, 1063 SmallVectorImpl<int64_t> &strides) { 1064 // Parse offset. 1065 consumeToken(Token::kw_offset); 1066 if (!consumeIf(Token::colon)) 1067 return emitError("expected colon after `offset` keyword"); 1068 auto maybeOffset = getToken().getUnsignedIntegerValue(); 1069 bool question = getToken().is(Token::question); 1070 if (!maybeOffset && !question) 1071 return emitError("invalid offset"); 1072 offset = maybeOffset ? static_cast<int64_t>(maybeOffset.getValue()) 1073 : MemRefType::getDynamicStrideOrOffset(); 1074 consumeToken(); 1075 1076 if (!consumeIf(Token::comma)) 1077 return emitError("expected comma after offset value"); 1078 1079 // Parse stride list. 1080 if (!consumeIf(Token::kw_strides)) 1081 return emitError("expected `strides` keyword after offset specification"); 1082 if (!consumeIf(Token::colon)) 1083 return emitError("expected colon after `strides` keyword"); 1084 if (failed(parseStrideList(strides))) 1085 return emitError("invalid braces-enclosed stride list"); 1086 if (llvm::any_of(strides, [](int64_t st) { return st == 0; })) 1087 return emitError("invalid memref stride"); 1088 1089 return success(); 1090 } 1091 1092 /// Parse a memref type. 1093 /// 1094 /// memref-type ::= ranked-memref-type | unranked-memref-type 1095 /// 1096 /// ranked-memref-type ::= `memref` `<` dimension-list-ranked type 1097 /// (`,` semi-affine-map-composition)? (`,` 1098 /// memory-space)? `>` 1099 /// 1100 /// unranked-memref-type ::= `memref` `<*x` type (`,` memory-space)? `>` 1101 /// 1102 /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map 1103 /// memory-space ::= integer-literal /* | TODO: address-space-id */ 1104 /// 1105 Type Parser::parseMemRefType() { 1106 consumeToken(Token::kw_memref); 1107 1108 if (parseToken(Token::less, "expected '<' in memref type")) 1109 return nullptr; 1110 1111 bool isUnranked; 1112 SmallVector<int64_t, 4> dimensions; 1113 1114 if (consumeIf(Token::star)) { 1115 // This is an unranked memref type. 1116 isUnranked = true; 1117 if (parseXInDimensionList()) 1118 return nullptr; 1119 1120 } else { 1121 isUnranked = false; 1122 if (parseDimensionListRanked(dimensions)) 1123 return nullptr; 1124 } 1125 1126 // Parse the element type. 1127 auto typeLoc = getToken().getLoc(); 1128 auto elementType = parseType(); 1129 if (!elementType) 1130 return nullptr; 1131 1132 // Check that memref is formed from allowed types. 1133 if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>() && 1134 !elementType.isa<ComplexType>()) 1135 return emitError(typeLoc, "invalid memref element type"), nullptr; 1136 1137 // Parse semi-affine-map-composition. 1138 SmallVector<AffineMap, 2> affineMapComposition; 1139 Optional<unsigned> memorySpace; 1140 unsigned numDims = dimensions.size(); 1141 1142 auto parseElt = [&]() -> ParseResult { 1143 // Check for the memory space. 1144 if (getToken().is(Token::integer)) { 1145 if (memorySpace) 1146 return emitError("multiple memory spaces specified in memref type"); 1147 memorySpace = getToken().getUnsignedIntegerValue(); 1148 if (!memorySpace.hasValue()) 1149 return emitError("invalid memory space in memref type"); 1150 consumeToken(Token::integer); 1151 return success(); 1152 } 1153 if (isUnranked) 1154 return emitError("cannot have affine map for unranked memref type"); 1155 if (memorySpace) 1156 return emitError("expected memory space to be last in memref type"); 1157 1158 AffineMap map; 1159 llvm::SMLoc mapLoc = getToken().getLoc(); 1160 if (getToken().is(Token::kw_offset)) { 1161 int64_t offset; 1162 SmallVector<int64_t, 4> strides; 1163 if (failed(parseStridedLayout(offset, strides))) 1164 return failure(); 1165 // Construct strided affine map. 1166 map = makeStridedLinearLayoutMap(strides, offset, state.context); 1167 } else { 1168 // Parse an affine map attribute. 1169 auto affineMap = parseAttribute(); 1170 if (!affineMap) 1171 return failure(); 1172 auto affineMapAttr = affineMap.dyn_cast<AffineMapAttr>(); 1173 if (!affineMapAttr) 1174 return emitError("expected affine map in memref type"); 1175 map = affineMapAttr.getValue(); 1176 } 1177 1178 if (map.getNumDims() != numDims) { 1179 size_t i = affineMapComposition.size(); 1180 return emitError(mapLoc, "memref affine map dimension mismatch between ") 1181 << (i == 0 ? Twine("memref rank") : "affine map " + Twine(i)) 1182 << " and affine map" << i + 1 << ": " << numDims 1183 << " != " << map.getNumDims(); 1184 } 1185 numDims = map.getNumResults(); 1186 affineMapComposition.push_back(map); 1187 return success(); 1188 }; 1189 1190 // Parse a list of mappings and address space if present. 1191 if (!consumeIf(Token::greater)) { 1192 // Parse comma separated list of affine maps, followed by memory space. 1193 if (parseToken(Token::comma, "expected ',' or '>' in memref type") || 1194 parseCommaSeparatedListUntil(Token::greater, parseElt, 1195 /*allowEmptyList=*/false)) { 1196 return nullptr; 1197 } 1198 } 1199 1200 if (isUnranked) 1201 return UnrankedMemRefType::get(elementType, memorySpace.getValueOr(0)); 1202 1203 return MemRefType::get(dimensions, elementType, affineMapComposition, 1204 memorySpace.getValueOr(0)); 1205 } 1206 1207 /// Parse any type except the function type. 1208 /// 1209 /// non-function-type ::= integer-type 1210 /// | index-type 1211 /// | float-type 1212 /// | extended-type 1213 /// | vector-type 1214 /// | tensor-type 1215 /// | memref-type 1216 /// | complex-type 1217 /// | tuple-type 1218 /// | none-type 1219 /// 1220 /// index-type ::= `index` 1221 /// float-type ::= `f16` | `bf16` | `f32` | `f64` 1222 /// none-type ::= `none` 1223 /// 1224 Type Parser::parseNonFunctionType() { 1225 switch (getToken().getKind()) { 1226 default: 1227 return (emitError("expected non-function type"), nullptr); 1228 case Token::kw_memref: 1229 return parseMemRefType(); 1230 case Token::kw_tensor: 1231 return parseTensorType(); 1232 case Token::kw_complex: 1233 return parseComplexType(); 1234 case Token::kw_tuple: 1235 return parseTupleType(); 1236 case Token::kw_vector: 1237 return parseVectorType(); 1238 // integer-type 1239 case Token::inttype: { 1240 auto width = getToken().getIntTypeBitwidth(); 1241 if (!width.hasValue()) 1242 return (emitError("invalid integer width"), nullptr); 1243 if (width.getValue() > IntegerType::kMaxWidth) { 1244 emitError(getToken().getLoc(), "integer bitwidth is limited to ") 1245 << IntegerType::kMaxWidth << " bits"; 1246 return nullptr; 1247 } 1248 1249 IntegerType::SignednessSemantics signSemantics = IntegerType::Signless; 1250 if (Optional<bool> signedness = getToken().getIntTypeSignedness()) 1251 signSemantics = *signedness ? IntegerType::Signed : IntegerType::Unsigned; 1252 1253 auto loc = getEncodedSourceLocation(getToken().getLoc()); 1254 consumeToken(Token::inttype); 1255 return IntegerType::getChecked(width.getValue(), signSemantics, loc); 1256 } 1257 1258 // float-type 1259 case Token::kw_bf16: 1260 consumeToken(Token::kw_bf16); 1261 return builder.getBF16Type(); 1262 case Token::kw_f16: 1263 consumeToken(Token::kw_f16); 1264 return builder.getF16Type(); 1265 case Token::kw_f32: 1266 consumeToken(Token::kw_f32); 1267 return builder.getF32Type(); 1268 case Token::kw_f64: 1269 consumeToken(Token::kw_f64); 1270 return builder.getF64Type(); 1271 1272 // index-type 1273 case Token::kw_index: 1274 consumeToken(Token::kw_index); 1275 return builder.getIndexType(); 1276 1277 // none-type 1278 case Token::kw_none: 1279 consumeToken(Token::kw_none); 1280 return builder.getNoneType(); 1281 1282 // extended type 1283 case Token::exclamation_identifier: 1284 return parseExtendedType(); 1285 } 1286 } 1287 1288 /// Parse a tensor type. 1289 /// 1290 /// tensor-type ::= `tensor` `<` dimension-list type `>` 1291 /// dimension-list ::= dimension-list-ranked | `*x` 1292 /// 1293 Type Parser::parseTensorType() { 1294 consumeToken(Token::kw_tensor); 1295 1296 if (parseToken(Token::less, "expected '<' in tensor type")) 1297 return nullptr; 1298 1299 bool isUnranked; 1300 SmallVector<int64_t, 4> dimensions; 1301 1302 if (consumeIf(Token::star)) { 1303 // This is an unranked tensor type. 1304 isUnranked = true; 1305 1306 if (parseXInDimensionList()) 1307 return nullptr; 1308 1309 } else { 1310 isUnranked = false; 1311 if (parseDimensionListRanked(dimensions)) 1312 return nullptr; 1313 } 1314 1315 // Parse the element type. 1316 auto elementTypeLoc = getToken().getLoc(); 1317 auto elementType = parseType(); 1318 if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) 1319 return nullptr; 1320 if (!TensorType::isValidElementType(elementType)) 1321 return emitError(elementTypeLoc, "invalid tensor element type"), nullptr; 1322 1323 if (isUnranked) 1324 return UnrankedTensorType::get(elementType); 1325 return RankedTensorType::get(dimensions, elementType); 1326 } 1327 1328 /// Parse a tuple type. 1329 /// 1330 /// tuple-type ::= `tuple` `<` (type (`,` type)*)? `>` 1331 /// 1332 Type Parser::parseTupleType() { 1333 consumeToken(Token::kw_tuple); 1334 1335 // Parse the '<'. 1336 if (parseToken(Token::less, "expected '<' in tuple type")) 1337 return nullptr; 1338 1339 // Check for an empty tuple by directly parsing '>'. 1340 if (consumeIf(Token::greater)) 1341 return TupleType::get(getContext()); 1342 1343 // Parse the element types and the '>'. 1344 SmallVector<Type, 4> types; 1345 if (parseTypeListNoParens(types) || 1346 parseToken(Token::greater, "expected '>' in tuple type")) 1347 return nullptr; 1348 1349 return TupleType::get(types, getContext()); 1350 } 1351 1352 /// Parse a vector type. 1353 /// 1354 /// vector-type ::= `vector` `<` non-empty-static-dimension-list type `>` 1355 /// non-empty-static-dimension-list ::= decimal-literal `x` 1356 /// static-dimension-list 1357 /// static-dimension-list ::= (decimal-literal `x`)* 1358 /// 1359 VectorType Parser::parseVectorType() { 1360 consumeToken(Token::kw_vector); 1361 1362 if (parseToken(Token::less, "expected '<' in vector type")) 1363 return nullptr; 1364 1365 SmallVector<int64_t, 4> dimensions; 1366 if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) 1367 return nullptr; 1368 if (dimensions.empty()) 1369 return (emitError("expected dimension size in vector type"), nullptr); 1370 if (any_of(dimensions, [](int64_t i) { return i <= 0; })) 1371 return emitError(getToken().getLoc(), 1372 "vector types must have positive constant sizes"), 1373 nullptr; 1374 1375 // Parse the element type. 1376 auto typeLoc = getToken().getLoc(); 1377 auto elementType = parseType(); 1378 if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) 1379 return nullptr; 1380 if (!VectorType::isValidElementType(elementType)) 1381 return emitError(typeLoc, "vector elements must be int or float type"), 1382 nullptr; 1383 1384 return VectorType::get(dimensions, elementType); 1385 } 1386 1387 /// Parse a dimension list of a tensor or memref type. This populates the 1388 /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and 1389 /// errors out on `?` otherwise. 1390 /// 1391 /// dimension-list-ranked ::= (dimension `x`)* 1392 /// dimension ::= `?` | decimal-literal 1393 /// 1394 /// When `allowDynamic` is not set, this is used to parse: 1395 /// 1396 /// static-dimension-list ::= (decimal-literal `x`)* 1397 ParseResult 1398 Parser::parseDimensionListRanked(SmallVectorImpl<int64_t> &dimensions, 1399 bool allowDynamic) { 1400 while (getToken().isAny(Token::integer, Token::question)) { 1401 if (consumeIf(Token::question)) { 1402 if (!allowDynamic) 1403 return emitError("expected static shape"); 1404 dimensions.push_back(-1); 1405 } else { 1406 // Hexadecimal integer literals (starting with `0x`) are not allowed in 1407 // aggregate type declarations. Therefore, `0xf32` should be processed as 1408 // a sequence of separate elements `0`, `x`, `f32`. 1409 if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { 1410 // We can get here only if the token is an integer literal. Hexadecimal 1411 // integer literals can only start with `0x` (`1x` wouldn't lex as a 1412 // literal, just `1` would, at which point we don't get into this 1413 // branch). 1414 assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); 1415 dimensions.push_back(0); 1416 state.lex.resetPointer(getTokenSpelling().data() + 1); 1417 consumeToken(); 1418 } else { 1419 // Make sure this integer value is in bound and valid. 1420 auto dimension = getToken().getUnsignedIntegerValue(); 1421 if (!dimension.hasValue()) 1422 return emitError("invalid dimension"); 1423 dimensions.push_back((int64_t)dimension.getValue()); 1424 consumeToken(Token::integer); 1425 } 1426 } 1427 1428 // Make sure we have an 'x' or something like 'xbf32'. 1429 if (parseXInDimensionList()) 1430 return failure(); 1431 } 1432 1433 return success(); 1434 } 1435 1436 /// Parse an 'x' token in a dimension list, handling the case where the x is 1437 /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next 1438 /// token. 1439 ParseResult Parser::parseXInDimensionList() { 1440 if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') 1441 return emitError("expected 'x' in dimension list"); 1442 1443 // If we had a prefix of 'x', lex the next token immediately after the 'x'. 1444 if (getTokenSpelling().size() != 1) 1445 state.lex.resetPointer(getTokenSpelling().data() + 1); 1446 1447 // Consume the 'x'. 1448 consumeToken(Token::bare_identifier); 1449 1450 return success(); 1451 } 1452 1453 // Parse a comma-separated list of dimensions, possibly empty: 1454 // stride-list ::= `[` (dimension (`,` dimension)*)? `]` 1455 ParseResult Parser::parseStrideList(SmallVectorImpl<int64_t> &dimensions) { 1456 if (!consumeIf(Token::l_square)) 1457 return failure(); 1458 // Empty list early exit. 1459 if (consumeIf(Token::r_square)) 1460 return success(); 1461 while (true) { 1462 if (consumeIf(Token::question)) { 1463 dimensions.push_back(MemRefType::getDynamicStrideOrOffset()); 1464 } else { 1465 // This must be an integer value. 1466 int64_t val; 1467 if (getToken().getSpelling().getAsInteger(10, val)) 1468 return emitError("invalid integer value: ") << getToken().getSpelling(); 1469 // Make sure it is not the one value for `?`. 1470 if (ShapedType::isDynamic(val)) 1471 return emitError("invalid integer value: ") 1472 << getToken().getSpelling() 1473 << ", use `?` to specify a dynamic dimension"; 1474 dimensions.push_back(val); 1475 consumeToken(Token::integer); 1476 } 1477 if (!consumeIf(Token::comma)) 1478 break; 1479 } 1480 if (!consumeIf(Token::r_square)) 1481 return failure(); 1482 return success(); 1483 } 1484 1485 //===----------------------------------------------------------------------===// 1486 // Attribute parsing. 1487 //===----------------------------------------------------------------------===// 1488 1489 /// Return the symbol reference referred to by the given token, that is known to 1490 /// be an @-identifier. 1491 static std::string extractSymbolReference(Token tok) { 1492 assert(tok.is(Token::at_identifier) && "expected valid @-identifier"); 1493 StringRef nameStr = tok.getSpelling().drop_front(); 1494 1495 // Check to see if the reference is a string literal, or a bare identifier. 1496 if (nameStr.front() == '"') 1497 return tok.getStringValue(); 1498 return std::string(nameStr); 1499 } 1500 1501 /// Parse an arbitrary attribute. 1502 /// 1503 /// attribute-value ::= `unit` 1504 /// | bool-literal 1505 /// | integer-literal (`:` (index-type | integer-type))? 1506 /// | float-literal (`:` float-type)? 1507 /// | string-literal (`:` type)? 1508 /// | type 1509 /// | `[` (attribute-value (`,` attribute-value)*)? `]` 1510 /// | `{` (attribute-entry (`,` attribute-entry)*)? `}` 1511 /// | symbol-ref-id (`::` symbol-ref-id)* 1512 /// | `dense` `<` attribute-value `>` `:` 1513 /// (tensor-type | vector-type) 1514 /// | `sparse` `<` attribute-value `,` attribute-value `>` 1515 /// `:` (tensor-type | vector-type) 1516 /// | `opaque` `<` dialect-namespace `,` hex-string-literal 1517 /// `>` `:` (tensor-type | vector-type) 1518 /// | extended-attribute 1519 /// 1520 Attribute Parser::parseAttribute(Type type) { 1521 switch (getToken().getKind()) { 1522 // Parse an AffineMap or IntegerSet attribute. 1523 case Token::kw_affine_map: { 1524 consumeToken(Token::kw_affine_map); 1525 1526 AffineMap map; 1527 if (parseToken(Token::less, "expected '<' in affine map") || 1528 parseAffineMapReference(map) || 1529 parseToken(Token::greater, "expected '>' in affine map")) 1530 return Attribute(); 1531 return AffineMapAttr::get(map); 1532 } 1533 case Token::kw_affine_set: { 1534 consumeToken(Token::kw_affine_set); 1535 1536 IntegerSet set; 1537 if (parseToken(Token::less, "expected '<' in integer set") || 1538 parseIntegerSetReference(set) || 1539 parseToken(Token::greater, "expected '>' in integer set")) 1540 return Attribute(); 1541 return IntegerSetAttr::get(set); 1542 } 1543 1544 // Parse an array attribute. 1545 case Token::l_square: { 1546 consumeToken(Token::l_square); 1547 1548 SmallVector<Attribute, 4> elements; 1549 auto parseElt = [&]() -> ParseResult { 1550 elements.push_back(parseAttribute()); 1551 return elements.back() ? success() : failure(); 1552 }; 1553 1554 if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) 1555 return nullptr; 1556 return builder.getArrayAttr(elements); 1557 } 1558 1559 // Parse a boolean attribute. 1560 case Token::kw_false: 1561 consumeToken(Token::kw_false); 1562 return builder.getBoolAttr(false); 1563 case Token::kw_true: 1564 consumeToken(Token::kw_true); 1565 return builder.getBoolAttr(true); 1566 1567 // Parse a dense elements attribute. 1568 case Token::kw_dense: 1569 return parseDenseElementsAttr(type); 1570 1571 // Parse a dictionary attribute. 1572 case Token::l_brace: { 1573 SmallVector<NamedAttribute, 4> elements; 1574 if (parseAttributeDict(elements)) 1575 return nullptr; 1576 return builder.getDictionaryAttr(elements); 1577 } 1578 1579 // Parse an extended attribute, i.e. alias or dialect attribute. 1580 case Token::hash_identifier: 1581 return parseExtendedAttr(type); 1582 1583 // Parse floating point and integer attributes. 1584 case Token::floatliteral: 1585 return parseFloatAttr(type, /*isNegative=*/false); 1586 case Token::integer: 1587 return parseDecOrHexAttr(type, /*isNegative=*/false); 1588 case Token::minus: { 1589 consumeToken(Token::minus); 1590 if (getToken().is(Token::integer)) 1591 return parseDecOrHexAttr(type, /*isNegative=*/true); 1592 if (getToken().is(Token::floatliteral)) 1593 return parseFloatAttr(type, /*isNegative=*/true); 1594 1595 return (emitError("expected constant integer or floating point value"), 1596 nullptr); 1597 } 1598 1599 // Parse a location attribute. 1600 case Token::kw_loc: { 1601 LocationAttr attr; 1602 return failed(parseLocation(attr)) ? Attribute() : attr; 1603 } 1604 1605 // Parse an opaque elements attribute. 1606 case Token::kw_opaque: 1607 return parseOpaqueElementsAttr(type); 1608 1609 // Parse a sparse elements attribute. 1610 case Token::kw_sparse: 1611 return parseSparseElementsAttr(type); 1612 1613 // Parse a string attribute. 1614 case Token::string: { 1615 auto val = getToken().getStringValue(); 1616 consumeToken(Token::string); 1617 // Parse the optional trailing colon type if one wasn't explicitly provided. 1618 if (!type && consumeIf(Token::colon) && !(type = parseType())) 1619 return Attribute(); 1620 1621 return type ? StringAttr::get(val, type) 1622 : StringAttr::get(val, getContext()); 1623 } 1624 1625 // Parse a symbol reference attribute. 1626 case Token::at_identifier: { 1627 std::string nameStr = extractSymbolReference(getToken()); 1628 consumeToken(Token::at_identifier); 1629 1630 // Parse any nested references. 1631 std::vector<FlatSymbolRefAttr> nestedRefs; 1632 while (getToken().is(Token::colon)) { 1633 // Check for the '::' prefix. 1634 const char *curPointer = getToken().getLoc().getPointer(); 1635 consumeToken(Token::colon); 1636 if (!consumeIf(Token::colon)) { 1637 state.lex.resetPointer(curPointer); 1638 consumeToken(); 1639 break; 1640 } 1641 // Parse the reference itself. 1642 auto curLoc = getToken().getLoc(); 1643 if (getToken().isNot(Token::at_identifier)) { 1644 emitError(curLoc, "expected nested symbol reference identifier"); 1645 return Attribute(); 1646 } 1647 1648 std::string nameStr = extractSymbolReference(getToken()); 1649 consumeToken(Token::at_identifier); 1650 nestedRefs.push_back(SymbolRefAttr::get(nameStr, getContext())); 1651 } 1652 1653 return builder.getSymbolRefAttr(nameStr, nestedRefs); 1654 } 1655 1656 // Parse a 'unit' attribute. 1657 case Token::kw_unit: 1658 consumeToken(Token::kw_unit); 1659 return builder.getUnitAttr(); 1660 1661 default: 1662 // Parse a type attribute. 1663 if (Type type = parseType()) 1664 return TypeAttr::get(type); 1665 return nullptr; 1666 } 1667 } 1668 1669 /// Attribute dictionary. 1670 /// 1671 /// attribute-dict ::= `{` `}` 1672 /// | `{` attribute-entry (`,` attribute-entry)* `}` 1673 /// attribute-entry ::= (bare-id | string-literal) `=` attribute-value 1674 /// 1675 ParseResult 1676 Parser::parseAttributeDict(SmallVectorImpl<NamedAttribute> &attributes) { 1677 if (parseToken(Token::l_brace, "expected '{' in attribute dictionary")) 1678 return failure(); 1679 1680 auto parseElt = [&]() -> ParseResult { 1681 // The name of an attribute can either be a bare identifier, or a string. 1682 Optional<Identifier> nameId; 1683 if (getToken().is(Token::string)) 1684 nameId = builder.getIdentifier(getToken().getStringValue()); 1685 else if (getToken().isAny(Token::bare_identifier, Token::inttype) || 1686 getToken().isKeyword()) 1687 nameId = builder.getIdentifier(getTokenSpelling()); 1688 else 1689 return emitError("expected attribute name"); 1690 consumeToken(); 1691 1692 // Try to parse the '=' for the attribute value. 1693 if (!consumeIf(Token::equal)) { 1694 // If there is no '=', we treat this as a unit attribute. 1695 attributes.push_back({*nameId, builder.getUnitAttr()}); 1696 return success(); 1697 } 1698 1699 auto attr = parseAttribute(); 1700 if (!attr) 1701 return failure(); 1702 1703 attributes.push_back({*nameId, attr}); 1704 return success(); 1705 }; 1706 1707 if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) 1708 return failure(); 1709 1710 return success(); 1711 } 1712 1713 /// Parse an extended attribute. 1714 /// 1715 /// extended-attribute ::= (dialect-attribute | attribute-alias) 1716 /// dialect-attribute ::= `#` dialect-namespace `<` `"` attr-data `"` `>` 1717 /// dialect-attribute ::= `#` alias-name pretty-dialect-sym-body? 1718 /// attribute-alias ::= `#` alias-name 1719 /// 1720 Attribute Parser::parseExtendedAttr(Type type) { 1721 Attribute attr = parseExtendedSymbol<Attribute>( 1722 *this, Token::hash_identifier, state.symbols.attributeAliasDefinitions, 1723 [&](StringRef dialectName, StringRef symbolData, 1724 llvm::SMLoc loc) -> Attribute { 1725 // Parse an optional trailing colon type. 1726 Type attrType = type; 1727 if (consumeIf(Token::colon) && !(attrType = parseType())) 1728 return Attribute(); 1729 1730 // If we found a registered dialect, then ask it to parse the attribute. 1731 if (auto *dialect = state.context->getRegisteredDialect(dialectName)) { 1732 return parseSymbol<Attribute>( 1733 symbolData, state.context, state.symbols, [&](Parser &parser) { 1734 CustomDialectAsmParser customParser(symbolData, parser); 1735 return dialect->parseAttribute(customParser, attrType); 1736 }); 1737 } 1738 1739 // Otherwise, form a new opaque attribute. 1740 return OpaqueAttr::getChecked( 1741 Identifier::get(dialectName, state.context), symbolData, 1742 attrType ? attrType : NoneType::get(state.context), 1743 getEncodedSourceLocation(loc)); 1744 }); 1745 1746 // Ensure that the attribute has the same type as requested. 1747 if (attr && type && attr.getType() != type) { 1748 emitError("attribute type different than expected: expected ") 1749 << type << ", but got " << attr.getType(); 1750 return nullptr; 1751 } 1752 return attr; 1753 } 1754 1755 /// Parse a float attribute. 1756 Attribute Parser::parseFloatAttr(Type type, bool isNegative) { 1757 auto val = getToken().getFloatingPointValue(); 1758 if (!val.hasValue()) 1759 return (emitError("floating point value too large for attribute"), nullptr); 1760 consumeToken(Token::floatliteral); 1761 if (!type) { 1762 // Default to F64 when no type is specified. 1763 if (!consumeIf(Token::colon)) 1764 type = builder.getF64Type(); 1765 else if (!(type = parseType())) 1766 return nullptr; 1767 } 1768 if (!type.isa<FloatType>()) 1769 return (emitError("floating point value not valid for specified type"), 1770 nullptr); 1771 return FloatAttr::get(type, isNegative ? -val.getValue() : val.getValue()); 1772 } 1773 1774 /// Construct a float attribute bitwise equivalent to the integer literal. 1775 static Optional<APFloat> buildHexadecimalFloatLiteral(Parser *p, FloatType type, 1776 uint64_t value) { 1777 // FIXME: bfloat is currently stored as a double internally because it doesn't 1778 // have valid APFloat semantics. 1779 if (type.isF64() || type.isBF16()) 1780 return APFloat(type.getFloatSemantics(), APInt(/*numBits=*/64, value)); 1781 1782 APInt apInt(type.getWidth(), value); 1783 if (apInt != value) { 1784 p->emitError("hexadecimal float constant out of range for type"); 1785 return llvm::None; 1786 } 1787 return APFloat(type.getFloatSemantics(), apInt); 1788 } 1789 1790 /// Construct an APint from a parsed value, a known attribute type and 1791 /// sign. 1792 static Optional<APInt> buildAttributeAPInt(Type type, bool isNegative, 1793 uint64_t value) { 1794 // We have the integer literal as an uint64_t in val, now convert it into an 1795 // APInt and check that we don't overflow. 1796 int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); 1797 APInt apInt(width, value, isNegative); 1798 if (apInt != value) 1799 return llvm::None; 1800 1801 if (isNegative) { 1802 // The value is negative, we have an overflow if the sign bit is not set 1803 // in the negated apInt. 1804 apInt.negate(); 1805 if (!apInt.isSignBitSet()) 1806 return llvm::None; 1807 } else if ((type.isSignedInteger() || type.isIndex()) && 1808 apInt.isSignBitSet()) { 1809 // The value is a positive signed integer or index, 1810 // we have an overflow if the sign bit is set. 1811 return llvm::None; 1812 } 1813 1814 return apInt; 1815 } 1816 1817 /// Parse a decimal or a hexadecimal literal, which can be either an integer 1818 /// or a float attribute. 1819 Attribute Parser::parseDecOrHexAttr(Type type, bool isNegative) { 1820 auto val = getToken().getUInt64IntegerValue(); 1821 if (!val.hasValue()) 1822 return (emitError("integer constant out of range for attribute"), nullptr); 1823 1824 // Remember if the literal is hexadecimal. 1825 StringRef spelling = getToken().getSpelling(); 1826 auto loc = state.curToken.getLoc(); 1827 bool isHex = spelling.size() > 1 && spelling[1] == 'x'; 1828 1829 consumeToken(Token::integer); 1830 if (!type) { 1831 // Default to i64 if not type is specified. 1832 if (!consumeIf(Token::colon)) 1833 type = builder.getIntegerType(64); 1834 else if (!(type = parseType())) 1835 return nullptr; 1836 } 1837 1838 if (auto floatType = type.dyn_cast<FloatType>()) { 1839 if (isNegative) 1840 return emitError( 1841 loc, 1842 "hexadecimal float literal should not have a leading minus"), 1843 nullptr; 1844 if (!isHex) { 1845 emitError(loc, "unexpected decimal integer literal for a float attribute") 1846 .attachNote() 1847 << "add a trailing dot to make the literal a float"; 1848 return nullptr; 1849 } 1850 1851 // Construct a float attribute bitwise equivalent to the integer literal. 1852 Optional<APFloat> apVal = 1853 buildHexadecimalFloatLiteral(this, floatType, *val); 1854 return apVal ? FloatAttr::get(floatType, *apVal) : Attribute(); 1855 } 1856 1857 if (!type.isa<IntegerType>() && !type.isa<IndexType>()) 1858 return emitError(loc, "integer literal not valid for specified type"), 1859 nullptr; 1860 1861 if (isNegative && type.isUnsignedInteger()) { 1862 emitError(loc, 1863 "negative integer literal not valid for unsigned integer type"); 1864 return nullptr; 1865 } 1866 1867 Optional<APInt> apInt = buildAttributeAPInt(type, isNegative, *val); 1868 1869 if (!apInt) 1870 return emitError(loc, "integer constant out of range for attribute"), 1871 nullptr; 1872 return builder.getIntegerAttr(type, *apInt); 1873 } 1874 1875 /// Parse elements values stored within a hex etring. On success, the values are 1876 /// stored into 'result'. 1877 static ParseResult parseElementAttrHexValues(Parser &parser, Token tok, 1878 std::string &result) { 1879 std::string val = tok.getStringValue(); 1880 if (val.size() < 2 || val[0] != '0' || val[1] != 'x') 1881 return parser.emitError(tok.getLoc(), 1882 "elements hex string should start with '0x'"); 1883 1884 StringRef hexValues = StringRef(val).drop_front(2); 1885 if (!llvm::all_of(hexValues, llvm::isHexDigit)) 1886 return parser.emitError(tok.getLoc(), 1887 "elements hex string only contains hex digits"); 1888 1889 result = llvm::fromHex(hexValues); 1890 return success(); 1891 } 1892 1893 /// Parse an opaque elements attribute. 1894 Attribute Parser::parseOpaqueElementsAttr(Type attrType) { 1895 consumeToken(Token::kw_opaque); 1896 if (parseToken(Token::less, "expected '<' after 'opaque'")) 1897 return nullptr; 1898 1899 if (getToken().isNot(Token::string)) 1900 return (emitError("expected dialect namespace"), nullptr); 1901 1902 auto name = getToken().getStringValue(); 1903 auto *dialect = builder.getContext()->getRegisteredDialect(name); 1904 // TODO(shpeisman): Allow for having an unknown dialect on an opaque 1905 // attribute. Otherwise, it can't be roundtripped without having the dialect 1906 // registered. 1907 if (!dialect) 1908 return (emitError("no registered dialect with namespace '" + name + "'"), 1909 nullptr); 1910 consumeToken(Token::string); 1911 1912 if (parseToken(Token::comma, "expected ','")) 1913 return nullptr; 1914 1915 Token hexTok = getToken(); 1916 if (parseToken(Token::string, "elements hex string should start with '0x'") || 1917 parseToken(Token::greater, "expected '>'")) 1918 return nullptr; 1919 auto type = parseElementsLiteralType(attrType); 1920 if (!type) 1921 return nullptr; 1922 1923 std::string data; 1924 if (parseElementAttrHexValues(*this, hexTok, data)) 1925 return nullptr; 1926 return OpaqueElementsAttr::get(dialect, type, data); 1927 } 1928 1929 namespace { 1930 class TensorLiteralParser { 1931 public: 1932 TensorLiteralParser(Parser &p) : p(p) {} 1933 1934 /// Parse the elements of a tensor literal. If 'allowHex' is true, the parser 1935 /// may also parse a tensor literal that is store as a hex string. 1936 ParseResult parse(bool allowHex); 1937 1938 /// Build a dense attribute instance with the parsed elements and the given 1939 /// shaped type. 1940 DenseElementsAttr getAttr(llvm::SMLoc loc, ShapedType type); 1941 1942 ArrayRef<int64_t> getShape() const { return shape; } 1943 1944 private: 1945 enum class ElementKind { Boolean, Integer, Float }; 1946 1947 /// Return a string to represent the given element kind. 1948 const char *getElementKindStr(ElementKind kind) { 1949 switch (kind) { 1950 case ElementKind::Boolean: 1951 return "'boolean'"; 1952 case ElementKind::Integer: 1953 return "'integer'"; 1954 case ElementKind::Float: 1955 return "'float'"; 1956 } 1957 llvm_unreachable("unknown element kind"); 1958 } 1959 1960 /// Build a Dense Integer attribute for the given type. 1961 DenseElementsAttr getIntAttr(llvm::SMLoc loc, ShapedType type, 1962 IntegerType eltTy); 1963 1964 /// Build a Dense Float attribute for the given type. 1965 DenseElementsAttr getFloatAttr(llvm::SMLoc loc, ShapedType type, 1966 FloatType eltTy); 1967 1968 /// Build a Dense attribute with hex data for the given type. 1969 DenseElementsAttr getHexAttr(llvm::SMLoc loc, ShapedType type); 1970 1971 /// Parse a single element, returning failure if it isn't a valid element 1972 /// literal. For example: 1973 /// parseElement(1) -> Success, 1 1974 /// parseElement([1]) -> Failure 1975 ParseResult parseElement(); 1976 1977 /// Parse a list of either lists or elements, returning the dimensions of the 1978 /// parsed sub-tensors in dims. For example: 1979 /// parseList([1, 2, 3]) -> Success, [3] 1980 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 1981 /// parseList([[1, 2], 3]) -> Failure 1982 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 1983 ParseResult parseList(SmallVectorImpl<int64_t> &dims); 1984 1985 /// Parse a literal that was printed as a hex string. 1986 ParseResult parseHexElements(); 1987 1988 Parser &p; 1989 1990 /// The shape inferred from the parsed elements. 1991 SmallVector<int64_t, 4> shape; 1992 1993 /// Storage used when parsing elements, this is a pair of <is_negated, token>. 1994 std::vector<std::pair<bool, Token>> storage; 1995 1996 /// A flag that indicates the type of elements that have been parsed. 1997 Optional<ElementKind> knownEltKind; 1998 1999 /// Storage used when parsing elements that were stored as hex values. 2000 Optional<Token> hexStorage; 2001 }; 2002 } // namespace 2003 2004 /// Parse the elements of a tensor literal. If 'allowHex' is true, the parser 2005 /// may also parse a tensor literal that is store as a hex string. 2006 ParseResult TensorLiteralParser::parse(bool allowHex) { 2007 // If hex is allowed, check for a string literal. 2008 if (allowHex && p.getToken().is(Token::string)) { 2009 hexStorage = p.getToken(); 2010 p.consumeToken(Token::string); 2011 return success(); 2012 } 2013 // Otherwise, parse a list or an individual element. 2014 if (p.getToken().is(Token::l_square)) 2015 return parseList(shape); 2016 return parseElement(); 2017 } 2018 2019 /// Build a dense attribute instance with the parsed elements and the given 2020 /// shaped type. 2021 DenseElementsAttr TensorLiteralParser::getAttr(llvm::SMLoc loc, 2022 ShapedType type) { 2023 // Check to see if we parsed the literal from a hex string. 2024 if (hexStorage.hasValue()) 2025 return getHexAttr(loc, type); 2026 2027 // Check that the parsed storage size has the same number of elements to the 2028 // type, or is a known splat. 2029 if (!shape.empty() && getShape() != type.getShape()) { 2030 p.emitError(loc) << "inferred shape of elements literal ([" << getShape() 2031 << "]) does not match type ([" << type.getShape() << "])"; 2032 return nullptr; 2033 } 2034 2035 // If the type is an integer, build a set of APInt values from the storage 2036 // with the correct bitwidth. 2037 if (auto intTy = type.getElementType().dyn_cast<IntegerType>()) 2038 return getIntAttr(loc, type, intTy); 2039 2040 // Otherwise, this must be a floating point type. 2041 auto floatTy = type.getElementType().dyn_cast<FloatType>(); 2042 if (!floatTy) { 2043 p.emitError(loc) << "expected floating-point or integer element type, got " 2044 << type.getElementType(); 2045 return nullptr; 2046 } 2047 return getFloatAttr(loc, type, floatTy); 2048 } 2049 2050 /// Build a Dense Integer attribute for the given type. 2051 DenseElementsAttr TensorLiteralParser::getIntAttr(llvm::SMLoc loc, 2052 ShapedType type, 2053 IntegerType eltTy) { 2054 std::vector<APInt> intElements; 2055 intElements.reserve(storage.size()); 2056 auto isUintType = type.getElementType().isUnsignedInteger(); 2057 for (const auto &signAndToken : storage) { 2058 bool isNegative = signAndToken.first; 2059 const Token &token = signAndToken.second; 2060 auto tokenLoc = token.getLoc(); 2061 2062 if (isNegative && isUintType) { 2063 p.emitError(tokenLoc) 2064 << "expected unsigned integer elements, but parsed negative value"; 2065 return nullptr; 2066 } 2067 2068 // Check to see if floating point values were parsed. 2069 if (token.is(Token::floatliteral)) { 2070 p.emitError(tokenLoc) 2071 << "expected integer elements, but parsed floating-point"; 2072 return nullptr; 2073 } 2074 2075 assert(token.isAny(Token::integer, Token::kw_true, Token::kw_false) && 2076 "unexpected token type"); 2077 if (token.isAny(Token::kw_true, Token::kw_false)) { 2078 if (!eltTy.isInteger(1)) 2079 p.emitError(tokenLoc) 2080 << "expected i1 type for 'true' or 'false' values"; 2081 APInt apInt(eltTy.getWidth(), token.is(Token::kw_true), 2082 /*isSigned=*/false); 2083 intElements.push_back(apInt); 2084 continue; 2085 } 2086 2087 // Create APInt values for each element with the correct bitwidth. 2088 auto val = token.getUInt64IntegerValue(); 2089 if (!val.hasValue()) { 2090 p.emitError(tokenLoc, "integer constant out of range for attribute"); 2091 return nullptr; 2092 } 2093 Optional<APInt> apInt = buildAttributeAPInt(eltTy, isNegative, *val); 2094 if (!apInt) 2095 return (p.emitError(tokenLoc, "integer constant out of range for type"), 2096 nullptr); 2097 intElements.push_back(*apInt); 2098 } 2099 2100 return DenseElementsAttr::get(type, intElements); 2101 } 2102 2103 /// Build a Dense Float attribute for the given type. 2104 DenseElementsAttr TensorLiteralParser::getFloatAttr(llvm::SMLoc loc, 2105 ShapedType type, 2106 FloatType eltTy) { 2107 std::vector<APFloat> floatValues; 2108 floatValues.reserve(storage.size()); 2109 for (const auto &signAndToken : storage) { 2110 bool isNegative = signAndToken.first; 2111 const Token &token = signAndToken.second; 2112 2113 // Handle hexadecimal float literals. 2114 if (token.is(Token::integer) && token.getSpelling().startswith("0x")) { 2115 if (isNegative) { 2116 p.emitError(token.getLoc()) 2117 << "hexadecimal float literal should not have a leading minus"; 2118 return nullptr; 2119 } 2120 auto val = token.getUInt64IntegerValue(); 2121 if (!val.hasValue()) { 2122 p.emitError("hexadecimal float constant out of range for attribute"); 2123 return nullptr; 2124 } 2125 Optional<APFloat> apVal = buildHexadecimalFloatLiteral(&p, eltTy, *val); 2126 if (!apVal) 2127 return nullptr; 2128 floatValues.push_back(*apVal); 2129 continue; 2130 } 2131 2132 // Check to see if any decimal integers or booleans were parsed. 2133 if (!token.is(Token::floatliteral)) { 2134 p.emitError() << "expected floating-point elements, but parsed integer"; 2135 return nullptr; 2136 } 2137 2138 // Build the float values from tokens. 2139 auto val = token.getFloatingPointValue(); 2140 if (!val.hasValue()) { 2141 p.emitError("floating point value too large for attribute"); 2142 return nullptr; 2143 } 2144 // Treat BF16 as double because it is not supported in LLVM's APFloat. 2145 APFloat apVal(isNegative ? -*val : *val); 2146 if (!eltTy.isBF16() && !eltTy.isF64()) { 2147 bool unused; 2148 apVal.convert(eltTy.getFloatSemantics(), APFloat::rmNearestTiesToEven, 2149 &unused); 2150 } 2151 floatValues.push_back(apVal); 2152 } 2153 2154 return DenseElementsAttr::get(type, floatValues); 2155 } 2156 2157 /// Build a Dense attribute with hex data for the given type. 2158 DenseElementsAttr TensorLiteralParser::getHexAttr(llvm::SMLoc loc, 2159 ShapedType type) { 2160 Type elementType = type.getElementType(); 2161 if (!elementType.isa<FloatType>() && !elementType.isa<IntegerType>()) { 2162 p.emitError(loc) << "expected floating-point or integer element type, got " 2163 << elementType; 2164 return nullptr; 2165 } 2166 2167 std::string data; 2168 if (parseElementAttrHexValues(p, hexStorage.getValue(), data)) 2169 return nullptr; 2170 2171 // Check that the size of the hex data corresponds to the size of the type, or 2172 // a splat of the type. 2173 // TODO: bf16 is currently stored as a double, this should be removed when 2174 // APFloat properly supports it. 2175 int64_t elementWidth = 2176 elementType.isBF16() ? 64 : elementType.getIntOrFloatBitWidth(); 2177 if (static_cast<int64_t>(data.size() * CHAR_BIT) != 2178 (type.getNumElements() * elementWidth)) { 2179 p.emitError(loc) << "elements hex data size is invalid for provided type: " 2180 << type; 2181 return nullptr; 2182 } 2183 2184 return DenseElementsAttr::getFromRawBuffer( 2185 type, ArrayRef<char>(data.data(), data.size()), /*isSplatBuffer=*/false); 2186 } 2187 2188 ParseResult TensorLiteralParser::parseElement() { 2189 switch (p.getToken().getKind()) { 2190 // Parse a boolean element. 2191 case Token::kw_true: 2192 case Token::kw_false: 2193 case Token::floatliteral: 2194 case Token::integer: 2195 storage.emplace_back(/*isNegative=*/false, p.getToken()); 2196 p.consumeToken(); 2197 break; 2198 2199 // Parse a signed integer or a negative floating-point element. 2200 case Token::minus: 2201 p.consumeToken(Token::minus); 2202 if (!p.getToken().isAny(Token::floatliteral, Token::integer)) 2203 return p.emitError("expected integer or floating point literal"); 2204 storage.emplace_back(/*isNegative=*/true, p.getToken()); 2205 p.consumeToken(); 2206 break; 2207 2208 default: 2209 return p.emitError("expected element literal of primitive type"); 2210 } 2211 2212 return success(); 2213 } 2214 2215 /// Parse a list of either lists or elements, returning the dimensions of the 2216 /// parsed sub-tensors in dims. For example: 2217 /// parseList([1, 2, 3]) -> Success, [3] 2218 /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] 2219 /// parseList([[1, 2], 3]) -> Failure 2220 /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure 2221 ParseResult TensorLiteralParser::parseList(SmallVectorImpl<int64_t> &dims) { 2222 p.consumeToken(Token::l_square); 2223 2224 auto checkDims = [&](const SmallVectorImpl<int64_t> &prevDims, 2225 const SmallVectorImpl<int64_t> &newDims) -> ParseResult { 2226 if (prevDims == newDims) 2227 return success(); 2228 return p.emitError("tensor literal is invalid; ranks are not consistent " 2229 "between elements"); 2230 }; 2231 2232 bool first = true; 2233 SmallVector<int64_t, 4> newDims; 2234 unsigned size = 0; 2235 auto parseCommaSeparatedList = [&]() -> ParseResult { 2236 SmallVector<int64_t, 4> thisDims; 2237 if (p.getToken().getKind() == Token::l_square) { 2238 if (parseList(thisDims)) 2239 return failure(); 2240 } else if (parseElement()) { 2241 return failure(); 2242 } 2243 ++size; 2244 if (!first) 2245 return checkDims(newDims, thisDims); 2246 newDims = thisDims; 2247 first = false; 2248 return success(); 2249 }; 2250 if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) 2251 return failure(); 2252 2253 // Return the sublists' dimensions with 'size' prepended. 2254 dims.clear(); 2255 dims.push_back(size); 2256 dims.append(newDims.begin(), newDims.end()); 2257 return success(); 2258 } 2259 2260 /// Parse a dense elements attribute. 2261 Attribute Parser::parseDenseElementsAttr(Type attrType) { 2262 consumeToken(Token::kw_dense); 2263 if (parseToken(Token::less, "expected '<' after 'dense'")) 2264 return nullptr; 2265 2266 // Parse the literal data. 2267 TensorLiteralParser literalParser(*this); 2268 if (literalParser.parse(/*allowHex=*/true)) 2269 return nullptr; 2270 2271 if (parseToken(Token::greater, "expected '>'")) 2272 return nullptr; 2273 2274 auto typeLoc = getToken().getLoc(); 2275 auto type = parseElementsLiteralType(attrType); 2276 if (!type) 2277 return nullptr; 2278 return literalParser.getAttr(typeLoc, type); 2279 } 2280 2281 /// Shaped type for elements attribute. 2282 /// 2283 /// elements-literal-type ::= vector-type | ranked-tensor-type 2284 /// 2285 /// This method also checks the type has static shape. 2286 ShapedType Parser::parseElementsLiteralType(Type type) { 2287 // If the user didn't provide a type, parse the colon type for the literal. 2288 if (!type) { 2289 if (parseToken(Token::colon, "expected ':'")) 2290 return nullptr; 2291 if (!(type = parseType())) 2292 return nullptr; 2293 } 2294 2295 if (!type.isa<RankedTensorType>() && !type.isa<VectorType>()) { 2296 emitError("elements literal must be a ranked tensor or vector type"); 2297 return nullptr; 2298 } 2299 2300 auto sType = type.cast<ShapedType>(); 2301 if (!sType.hasStaticShape()) 2302 return (emitError("elements literal type must have static shape"), nullptr); 2303 2304 return sType; 2305 } 2306 2307 /// Parse a sparse elements attribute. 2308 Attribute Parser::parseSparseElementsAttr(Type attrType) { 2309 consumeToken(Token::kw_sparse); 2310 if (parseToken(Token::less, "Expected '<' after 'sparse'")) 2311 return nullptr; 2312 2313 /// Parse the indices. We don't allow hex values here as we may need to use 2314 /// the inferred shape. 2315 auto indicesLoc = getToken().getLoc(); 2316 TensorLiteralParser indiceParser(*this); 2317 if (indiceParser.parse(/*allowHex=*/false)) 2318 return nullptr; 2319 2320 if (parseToken(Token::comma, "expected ','")) 2321 return nullptr; 2322 2323 /// Parse the values. 2324 auto valuesLoc = getToken().getLoc(); 2325 TensorLiteralParser valuesParser(*this); 2326 if (valuesParser.parse(/*allowHex=*/true)) 2327 return nullptr; 2328 2329 if (parseToken(Token::greater, "expected '>'")) 2330 return nullptr; 2331 2332 auto type = parseElementsLiteralType(attrType); 2333 if (!type) 2334 return nullptr; 2335 2336 // If the indices are a splat, i.e. the literal parser parsed an element and 2337 // not a list, we set the shape explicitly. The indices are represented by a 2338 // 2-dimensional shape where the second dimension is the rank of the type. 2339 // Given that the parsed indices is a splat, we know that we only have one 2340 // indice and thus one for the first dimension. 2341 auto indiceEltType = builder.getIntegerType(64); 2342 ShapedType indicesType; 2343 if (indiceParser.getShape().empty()) { 2344 indicesType = RankedTensorType::get({1, type.getRank()}, indiceEltType); 2345 } else { 2346 // Otherwise, set the shape to the one parsed by the literal parser. 2347 indicesType = RankedTensorType::get(indiceParser.getShape(), indiceEltType); 2348 } 2349 auto indices = indiceParser.getAttr(indicesLoc, indicesType); 2350 2351 // If the values are a splat, set the shape explicitly based on the number of 2352 // indices. The number of indices is encoded in the first dimension of the 2353 // indice shape type. 2354 auto valuesEltType = type.getElementType(); 2355 ShapedType valuesType = 2356 valuesParser.getShape().empty() 2357 ? RankedTensorType::get({indicesType.getDimSize(0)}, valuesEltType) 2358 : RankedTensorType::get(valuesParser.getShape(), valuesEltType); 2359 auto values = valuesParser.getAttr(valuesLoc, valuesType); 2360 2361 /// Sanity check. 2362 if (valuesType.getRank() != 1) 2363 return (emitError("expected 1-d tensor for values"), nullptr); 2364 2365 auto sameShape = (indicesType.getRank() == 1) || 2366 (type.getRank() == indicesType.getDimSize(1)); 2367 auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); 2368 if (!sameShape || !sameElementNum) { 2369 emitError() << "expected shape ([" << type.getShape() 2370 << "]); inferred shape of indices literal ([" 2371 << indicesType.getShape() 2372 << "]); inferred shape of values literal ([" 2373 << valuesType.getShape() << "])"; 2374 return nullptr; 2375 } 2376 2377 // Build the sparse elements attribute by the indices and values. 2378 return SparseElementsAttr::get(type, indices, values); 2379 } 2380 2381 //===----------------------------------------------------------------------===// 2382 // Location parsing. 2383 //===----------------------------------------------------------------------===// 2384 2385 /// Parse a location. 2386 /// 2387 /// location ::= `loc` inline-location 2388 /// inline-location ::= '(' location-inst ')' 2389 /// 2390 ParseResult Parser::parseLocation(LocationAttr &loc) { 2391 // Check for 'loc' identifier. 2392 if (parseToken(Token::kw_loc, "expected 'loc' keyword")) 2393 return emitError(); 2394 2395 // Parse the inline-location. 2396 if (parseToken(Token::l_paren, "expected '(' in inline location") || 2397 parseLocationInstance(loc) || 2398 parseToken(Token::r_paren, "expected ')' in inline location")) 2399 return failure(); 2400 return success(); 2401 } 2402 2403 /// Specific location instances. 2404 /// 2405 /// location-inst ::= filelinecol-location | 2406 /// name-location | 2407 /// callsite-location | 2408 /// fused-location | 2409 /// unknown-location 2410 /// filelinecol-location ::= string-literal ':' integer-literal 2411 /// ':' integer-literal 2412 /// name-location ::= string-literal 2413 /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' 2414 /// fused-location ::= fused ('<' attribute-value '>')? 2415 /// '[' location-inst (location-inst ',')* ']' 2416 /// unknown-location ::= 'unknown' 2417 /// 2418 ParseResult Parser::parseCallSiteLocation(LocationAttr &loc) { 2419 consumeToken(Token::bare_identifier); 2420 2421 // Parse the '('. 2422 if (parseToken(Token::l_paren, "expected '(' in callsite location")) 2423 return failure(); 2424 2425 // Parse the callee location. 2426 LocationAttr calleeLoc; 2427 if (parseLocationInstance(calleeLoc)) 2428 return failure(); 2429 2430 // Parse the 'at'. 2431 if (getToken().isNot(Token::bare_identifier) || 2432 getToken().getSpelling() != "at") 2433 return emitError("expected 'at' in callsite location"); 2434 consumeToken(Token::bare_identifier); 2435 2436 // Parse the caller location. 2437 LocationAttr callerLoc; 2438 if (parseLocationInstance(callerLoc)) 2439 return failure(); 2440 2441 // Parse the ')'. 2442 if (parseToken(Token::r_paren, "expected ')' in callsite location")) 2443 return failure(); 2444 2445 // Return the callsite location. 2446 loc = CallSiteLoc::get(calleeLoc, callerLoc); 2447 return success(); 2448 } 2449 2450 ParseResult Parser::parseFusedLocation(LocationAttr &loc) { 2451 consumeToken(Token::bare_identifier); 2452 2453 // Try to parse the optional metadata. 2454 Attribute metadata; 2455 if (consumeIf(Token::less)) { 2456 metadata = parseAttribute(); 2457 if (!metadata) 2458 return emitError("expected valid attribute metadata"); 2459 // Parse the '>' token. 2460 if (parseToken(Token::greater, 2461 "expected '>' after fused location metadata")) 2462 return failure(); 2463 } 2464 2465 SmallVector<Location, 4> locations; 2466 auto parseElt = [&] { 2467 LocationAttr newLoc; 2468 if (parseLocationInstance(newLoc)) 2469 return failure(); 2470 locations.push_back(newLoc); 2471 return success(); 2472 }; 2473 2474 if (parseToken(Token::l_square, "expected '[' in fused location") || 2475 parseCommaSeparatedList(parseElt) || 2476 parseToken(Token::r_square, "expected ']' in fused location")) 2477 return failure(); 2478 2479 // Return the fused location. 2480 loc = FusedLoc::get(locations, metadata, getContext()); 2481 return success(); 2482 } 2483 2484 ParseResult Parser::parseNameOrFileLineColLocation(LocationAttr &loc) { 2485 auto *ctx = getContext(); 2486 auto str = getToken().getStringValue(); 2487 consumeToken(Token::string); 2488 2489 // If the next token is ':' this is a filelinecol location. 2490 if (consumeIf(Token::colon)) { 2491 // Parse the line number. 2492 if (getToken().isNot(Token::integer)) 2493 return emitError("expected integer line number in FileLineColLoc"); 2494 auto line = getToken().getUnsignedIntegerValue(); 2495 if (!line.hasValue()) 2496 return emitError("expected integer line number in FileLineColLoc"); 2497 consumeToken(Token::integer); 2498 2499 // Parse the ':'. 2500 if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) 2501 return failure(); 2502 2503 // Parse the column number. 2504 if (getToken().isNot(Token::integer)) 2505 return emitError("expected integer column number in FileLineColLoc"); 2506 auto column = getToken().getUnsignedIntegerValue(); 2507 if (!column.hasValue()) 2508 return emitError("expected integer column number in FileLineColLoc"); 2509 consumeToken(Token::integer); 2510 2511 loc = FileLineColLoc::get(str, line.getValue(), column.getValue(), ctx); 2512 return success(); 2513 } 2514 2515 // Otherwise, this is a NameLoc. 2516 2517 // Check for a child location. 2518 if (consumeIf(Token::l_paren)) { 2519 auto childSourceLoc = getToken().getLoc(); 2520 2521 // Parse the child location. 2522 LocationAttr childLoc; 2523 if (parseLocationInstance(childLoc)) 2524 return failure(); 2525 2526 // The child must not be another NameLoc. 2527 if (childLoc.isa<NameLoc>()) 2528 return emitError(childSourceLoc, 2529 "child of NameLoc cannot be another NameLoc"); 2530 loc = NameLoc::get(Identifier::get(str, ctx), childLoc); 2531 2532 // Parse the closing ')'. 2533 if (parseToken(Token::r_paren, 2534 "expected ')' after child location of NameLoc")) 2535 return failure(); 2536 } else { 2537 loc = NameLoc::get(Identifier::get(str, ctx), ctx); 2538 } 2539 2540 return success(); 2541 } 2542 2543 ParseResult Parser::parseLocationInstance(LocationAttr &loc) { 2544 // Handle either name or filelinecol locations. 2545 if (getToken().is(Token::string)) 2546 return parseNameOrFileLineColLocation(loc); 2547 2548 // Bare tokens required for other cases. 2549 if (!getToken().is(Token::bare_identifier)) 2550 return emitError("expected location instance"); 2551 2552 // Check for the 'callsite' signifying a callsite location. 2553 if (getToken().getSpelling() == "callsite") 2554 return parseCallSiteLocation(loc); 2555 2556 // If the token is 'fused', then this is a fused location. 2557 if (getToken().getSpelling() == "fused") 2558 return parseFusedLocation(loc); 2559 2560 // Check for a 'unknown' for an unknown location. 2561 if (getToken().getSpelling() == "unknown") { 2562 consumeToken(Token::bare_identifier); 2563 loc = UnknownLoc::get(getContext()); 2564 return success(); 2565 } 2566 2567 return emitError("expected location instance"); 2568 } 2569 2570 //===----------------------------------------------------------------------===// 2571 // Affine parsing. 2572 //===----------------------------------------------------------------------===// 2573 2574 /// Lower precedence ops (all at the same precedence level). LNoOp is false in 2575 /// the boolean sense. 2576 enum AffineLowPrecOp { 2577 /// Null value. 2578 LNoOp, 2579 Add, 2580 Sub 2581 }; 2582 2583 /// Higher precedence ops - all at the same precedence level. HNoOp is false 2584 /// in the boolean sense. 2585 enum AffineHighPrecOp { 2586 /// Null value. 2587 HNoOp, 2588 Mul, 2589 FloorDiv, 2590 CeilDiv, 2591 Mod 2592 }; 2593 2594 namespace { 2595 /// This is a specialized parser for affine structures (affine maps, affine 2596 /// expressions, and integer sets), maintaining the state transient to their 2597 /// bodies. 2598 class AffineParser : public Parser { 2599 public: 2600 AffineParser(ParserState &state, bool allowParsingSSAIds = false, 2601 function_ref<ParseResult(bool)> parseElement = nullptr) 2602 : Parser(state), allowParsingSSAIds(allowParsingSSAIds), 2603 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {} 2604 2605 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); 2606 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); 2607 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); 2608 ParseResult parseAffineMapOfSSAIds(AffineMap &map, 2609 OpAsmParser::Delimiter delimiter); 2610 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds, 2611 unsigned &numDims); 2612 2613 private: 2614 // Binary affine op parsing. 2615 AffineLowPrecOp consumeIfLowPrecOp(); 2616 AffineHighPrecOp consumeIfHighPrecOp(); 2617 2618 // Identifier lists for polyhedral structures. 2619 ParseResult parseDimIdList(unsigned &numDims); 2620 ParseResult parseSymbolIdList(unsigned &numSymbols); 2621 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, 2622 unsigned &numSymbols); 2623 ParseResult parseIdentifierDefinition(AffineExpr idExpr); 2624 2625 AffineExpr parseAffineExpr(); 2626 AffineExpr parseParentheticalExpr(); 2627 AffineExpr parseNegateExpression(AffineExpr lhs); 2628 AffineExpr parseIntegerExpr(); 2629 AffineExpr parseBareIdExpr(); 2630 AffineExpr parseSSAIdExpr(bool isSymbol); 2631 AffineExpr parseSymbolSSAIdExpr(); 2632 2633 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, 2634 AffineExpr rhs, SMLoc opLoc); 2635 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, 2636 AffineExpr rhs); 2637 AffineExpr parseAffineOperandExpr(AffineExpr lhs); 2638 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); 2639 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, 2640 SMLoc llhsOpLoc); 2641 AffineExpr parseAffineConstraint(bool *isEq); 2642 2643 private: 2644 bool allowParsingSSAIds; 2645 function_ref<ParseResult(bool)> parseElement; 2646 unsigned numDimOperands; 2647 unsigned numSymbolOperands; 2648 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols; 2649 }; 2650 } // end anonymous namespace 2651 2652 /// Create an affine binary high precedence op expression (mul's, div's, mod). 2653 /// opLoc is the location of the op token to be used to report errors 2654 /// for non-conforming expressions. 2655 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, 2656 AffineExpr lhs, AffineExpr rhs, 2657 SMLoc opLoc) { 2658 // TODO: make the error location info accurate. 2659 switch (op) { 2660 case Mul: 2661 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { 2662 emitError(opLoc, "non-affine expression: at least one of the multiply " 2663 "operands has to be either a constant or symbolic"); 2664 return nullptr; 2665 } 2666 return lhs * rhs; 2667 case FloorDiv: 2668 if (!rhs.isSymbolicOrConstant()) { 2669 emitError(opLoc, "non-affine expression: right operand of floordiv " 2670 "has to be either a constant or symbolic"); 2671 return nullptr; 2672 } 2673 return lhs.floorDiv(rhs); 2674 case CeilDiv: 2675 if (!rhs.isSymbolicOrConstant()) { 2676 emitError(opLoc, "non-affine expression: right operand of ceildiv " 2677 "has to be either a constant or symbolic"); 2678 return nullptr; 2679 } 2680 return lhs.ceilDiv(rhs); 2681 case Mod: 2682 if (!rhs.isSymbolicOrConstant()) { 2683 emitError(opLoc, "non-affine expression: right operand of mod " 2684 "has to be either a constant or symbolic"); 2685 return nullptr; 2686 } 2687 return lhs % rhs; 2688 case HNoOp: 2689 llvm_unreachable("can't create affine expression for null high prec op"); 2690 return nullptr; 2691 } 2692 llvm_unreachable("Unknown AffineHighPrecOp"); 2693 } 2694 2695 /// Create an affine binary low precedence op expression (add, sub). 2696 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, 2697 AffineExpr lhs, AffineExpr rhs) { 2698 switch (op) { 2699 case AffineLowPrecOp::Add: 2700 return lhs + rhs; 2701 case AffineLowPrecOp::Sub: 2702 return lhs - rhs; 2703 case AffineLowPrecOp::LNoOp: 2704 llvm_unreachable("can't create affine expression for null low prec op"); 2705 return nullptr; 2706 } 2707 llvm_unreachable("Unknown AffineLowPrecOp"); 2708 } 2709 2710 /// Consume this token if it is a lower precedence affine op (there are only 2711 /// two precedence levels). 2712 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { 2713 switch (getToken().getKind()) { 2714 case Token::plus: 2715 consumeToken(Token::plus); 2716 return AffineLowPrecOp::Add; 2717 case Token::minus: 2718 consumeToken(Token::minus); 2719 return AffineLowPrecOp::Sub; 2720 default: 2721 return AffineLowPrecOp::LNoOp; 2722 } 2723 } 2724 2725 /// Consume this token if it is a higher precedence affine op (there are only 2726 /// two precedence levels) 2727 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { 2728 switch (getToken().getKind()) { 2729 case Token::star: 2730 consumeToken(Token::star); 2731 return Mul; 2732 case Token::kw_floordiv: 2733 consumeToken(Token::kw_floordiv); 2734 return FloorDiv; 2735 case Token::kw_ceildiv: 2736 consumeToken(Token::kw_ceildiv); 2737 return CeilDiv; 2738 case Token::kw_mod: 2739 consumeToken(Token::kw_mod); 2740 return Mod; 2741 default: 2742 return HNoOp; 2743 } 2744 } 2745 2746 /// Parse a high precedence op expression list: mul, div, and mod are high 2747 /// precedence binary ops, i.e., parse a 2748 /// expr_1 op_1 expr_2 op_2 ... expr_n 2749 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). 2750 /// All affine binary ops are left associative. 2751 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is 2752 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is 2753 /// null. llhsOpLoc is the location of the llhsOp token that will be used to 2754 /// report an error for non-conforming expressions. 2755 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, 2756 AffineHighPrecOp llhsOp, 2757 SMLoc llhsOpLoc) { 2758 AffineExpr lhs = parseAffineOperandExpr(llhs); 2759 if (!lhs) 2760 return nullptr; 2761 2762 // Found an LHS. Parse the remaining expression. 2763 auto opLoc = getToken().getLoc(); 2764 if (AffineHighPrecOp op = consumeIfHighPrecOp()) { 2765 if (llhs) { 2766 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); 2767 if (!expr) 2768 return nullptr; 2769 return parseAffineHighPrecOpExpr(expr, op, opLoc); 2770 } 2771 // No LLHS, get RHS 2772 return parseAffineHighPrecOpExpr(lhs, op, opLoc); 2773 } 2774 2775 // This is the last operand in this expression. 2776 if (llhs) 2777 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); 2778 2779 // No llhs, 'lhs' itself is the expression. 2780 return lhs; 2781 } 2782 2783 /// Parse an affine expression inside parentheses. 2784 /// 2785 /// affine-expr ::= `(` affine-expr `)` 2786 AffineExpr AffineParser::parseParentheticalExpr() { 2787 if (parseToken(Token::l_paren, "expected '('")) 2788 return nullptr; 2789 if (getToken().is(Token::r_paren)) 2790 return (emitError("no expression inside parentheses"), nullptr); 2791 2792 auto expr = parseAffineExpr(); 2793 if (!expr) 2794 return nullptr; 2795 if (parseToken(Token::r_paren, "expected ')'")) 2796 return nullptr; 2797 2798 return expr; 2799 } 2800 2801 /// Parse the negation expression. 2802 /// 2803 /// affine-expr ::= `-` affine-expr 2804 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { 2805 if (parseToken(Token::minus, "expected '-'")) 2806 return nullptr; 2807 2808 AffineExpr operand = parseAffineOperandExpr(lhs); 2809 // Since negation has the highest precedence of all ops (including high 2810 // precedence ops) but lower than parentheses, we are only going to use 2811 // parseAffineOperandExpr instead of parseAffineExpr here. 2812 if (!operand) 2813 // Extra error message although parseAffineOperandExpr would have 2814 // complained. Leads to a better diagnostic. 2815 return (emitError("missing operand of negation"), nullptr); 2816 return (-1) * operand; 2817 } 2818 2819 /// Parse a bare id that may appear in an affine expression. 2820 /// 2821 /// affine-expr ::= bare-id 2822 AffineExpr AffineParser::parseBareIdExpr() { 2823 if (getToken().isNot(Token::bare_identifier)) 2824 return (emitError("expected bare identifier"), nullptr); 2825 2826 StringRef sRef = getTokenSpelling(); 2827 for (auto entry : dimsAndSymbols) { 2828 if (entry.first == sRef) { 2829 consumeToken(Token::bare_identifier); 2830 return entry.second; 2831 } 2832 } 2833 2834 return (emitError("use of undeclared identifier"), nullptr); 2835 } 2836 2837 /// Parse an SSA id which may appear in an affine expression. 2838 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) { 2839 if (!allowParsingSSAIds) 2840 return (emitError("unexpected ssa identifier"), nullptr); 2841 if (getToken().isNot(Token::percent_identifier)) 2842 return (emitError("expected ssa identifier"), nullptr); 2843 auto name = getTokenSpelling(); 2844 // Check if we already parsed this SSA id. 2845 for (auto entry : dimsAndSymbols) { 2846 if (entry.first == name) { 2847 consumeToken(Token::percent_identifier); 2848 return entry.second; 2849 } 2850 } 2851 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it. 2852 if (parseElement(isSymbol)) 2853 return (emitError("failed to parse ssa identifier"), nullptr); 2854 auto idExpr = isSymbol 2855 ? getAffineSymbolExpr(numSymbolOperands++, getContext()) 2856 : getAffineDimExpr(numDimOperands++, getContext()); 2857 dimsAndSymbols.push_back({name, idExpr}); 2858 return idExpr; 2859 } 2860 2861 AffineExpr AffineParser::parseSymbolSSAIdExpr() { 2862 if (parseToken(Token::kw_symbol, "expected symbol keyword") || 2863 parseToken(Token::l_paren, "expected '(' at start of SSA symbol")) 2864 return nullptr; 2865 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true); 2866 if (!symbolExpr) 2867 return nullptr; 2868 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol")) 2869 return nullptr; 2870 return symbolExpr; 2871 } 2872 2873 /// Parse a positive integral constant appearing in an affine expression. 2874 /// 2875 /// affine-expr ::= integer-literal 2876 AffineExpr AffineParser::parseIntegerExpr() { 2877 auto val = getToken().getUInt64IntegerValue(); 2878 if (!val.hasValue() || (int64_t)val.getValue() < 0) 2879 return (emitError("constant too large for index"), nullptr); 2880 2881 consumeToken(Token::integer); 2882 return builder.getAffineConstantExpr((int64_t)val.getValue()); 2883 } 2884 2885 /// Parses an expression that can be a valid operand of an affine expression. 2886 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary 2887 /// operator, the rhs of which is being parsed. This is used to determine 2888 /// whether an error should be emitted for a missing right operand. 2889 // Eg: for an expression without parentheses (like i + j + k + l), each 2890 // of the four identifiers is an operand. For i + j*k + l, j*k is not an 2891 // operand expression, it's an op expression and will be parsed via 2892 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and 2893 // -l are valid operands that will be parsed by this function. 2894 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { 2895 switch (getToken().getKind()) { 2896 case Token::bare_identifier: 2897 return parseBareIdExpr(); 2898 case Token::kw_symbol: 2899 return parseSymbolSSAIdExpr(); 2900 case Token::percent_identifier: 2901 return parseSSAIdExpr(/*isSymbol=*/false); 2902 case Token::integer: 2903 return parseIntegerExpr(); 2904 case Token::l_paren: 2905 return parseParentheticalExpr(); 2906 case Token::minus: 2907 return parseNegateExpression(lhs); 2908 case Token::kw_ceildiv: 2909 case Token::kw_floordiv: 2910 case Token::kw_mod: 2911 case Token::plus: 2912 case Token::star: 2913 if (lhs) 2914 emitError("missing right operand of binary operator"); 2915 else 2916 emitError("missing left operand of binary operator"); 2917 return nullptr; 2918 default: 2919 if (lhs) 2920 emitError("missing right operand of binary operator"); 2921 else 2922 emitError("expected affine expression"); 2923 return nullptr; 2924 } 2925 } 2926 2927 /// Parse affine expressions that are bare-id's, integer constants, 2928 /// parenthetical affine expressions, and affine op expressions that are a 2929 /// composition of those. 2930 /// 2931 /// All binary op's associate from left to right. 2932 /// 2933 /// {add, sub} have lower precedence than {mul, div, and mod}. 2934 /// 2935 /// Add, sub'are themselves at the same precedence level. Mul, floordiv, 2936 /// ceildiv, and mod are at the same higher precedence level. Negation has 2937 /// higher precedence than any binary op. 2938 /// 2939 /// llhs: the affine expression appearing on the left of the one being parsed. 2940 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, 2941 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned 2942 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left 2943 /// associativity. 2944 /// 2945 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function 2946 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where 2947 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). 2948 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, 2949 AffineLowPrecOp llhsOp) { 2950 AffineExpr lhs; 2951 if (!(lhs = parseAffineOperandExpr(llhs))) 2952 return nullptr; 2953 2954 // Found an LHS. Deal with the ops. 2955 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { 2956 if (llhs) { 2957 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2958 return parseAffineLowPrecOpExpr(sum, lOp); 2959 } 2960 // No LLHS, get RHS and form the expression. 2961 return parseAffineLowPrecOpExpr(lhs, lOp); 2962 } 2963 auto opLoc = getToken().getLoc(); 2964 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { 2965 // We have a higher precedence op here. Get the rhs operand for the llhs 2966 // through parseAffineHighPrecOpExpr. 2967 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); 2968 if (!highRes) 2969 return nullptr; 2970 2971 // If llhs is null, the product forms the first operand of the yet to be 2972 // found expression. If non-null, the op to associate with llhs is llhsOp. 2973 AffineExpr expr = 2974 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; 2975 2976 // Recurse for subsequent low prec op's after the affine high prec op 2977 // expression. 2978 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) 2979 return parseAffineLowPrecOpExpr(expr, nextOp); 2980 return expr; 2981 } 2982 // Last operand in the expression list. 2983 if (llhs) 2984 return getAffineBinaryOpExpr(llhsOp, llhs, lhs); 2985 // No llhs, 'lhs' itself is the expression. 2986 return lhs; 2987 } 2988 2989 /// Parse an affine expression. 2990 /// affine-expr ::= `(` affine-expr `)` 2991 /// | `-` affine-expr 2992 /// | affine-expr `+` affine-expr 2993 /// | affine-expr `-` affine-expr 2994 /// | affine-expr `*` affine-expr 2995 /// | affine-expr `floordiv` affine-expr 2996 /// | affine-expr `ceildiv` affine-expr 2997 /// | affine-expr `mod` affine-expr 2998 /// | bare-id 2999 /// | integer-literal 3000 /// 3001 /// Additional conditions are checked depending on the production. For eg., 3002 /// one of the operands for `*` has to be either constant/symbolic; the second 3003 /// operand for floordiv, ceildiv, and mod has to be a positive integer. 3004 AffineExpr AffineParser::parseAffineExpr() { 3005 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); 3006 } 3007 3008 /// Parse a dim or symbol from the lists appearing before the actual 3009 /// expressions of the affine map. Update our state to store the 3010 /// dimensional/symbolic identifier. 3011 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { 3012 if (getToken().isNot(Token::bare_identifier)) 3013 return emitError("expected bare identifier"); 3014 3015 auto name = getTokenSpelling(); 3016 for (auto entry : dimsAndSymbols) { 3017 if (entry.first == name) 3018 return emitError("redefinition of identifier '" + name + "'"); 3019 } 3020 consumeToken(Token::bare_identifier); 3021 3022 dimsAndSymbols.push_back({name, idExpr}); 3023 return success(); 3024 } 3025 3026 /// Parse the list of dimensional identifiers to an affine map. 3027 ParseResult AffineParser::parseDimIdList(unsigned &numDims) { 3028 if (parseToken(Token::l_paren, 3029 "expected '(' at start of dimensional identifiers list")) { 3030 return failure(); 3031 } 3032 3033 auto parseElt = [&]() -> ParseResult { 3034 auto dimension = getAffineDimExpr(numDims++, getContext()); 3035 return parseIdentifierDefinition(dimension); 3036 }; 3037 return parseCommaSeparatedListUntil(Token::r_paren, parseElt); 3038 } 3039 3040 /// Parse the list of symbolic identifiers to an affine map. 3041 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { 3042 consumeToken(Token::l_square); 3043 auto parseElt = [&]() -> ParseResult { 3044 auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); 3045 return parseIdentifierDefinition(symbol); 3046 }; 3047 return parseCommaSeparatedListUntil(Token::r_square, parseElt); 3048 } 3049 3050 /// Parse the list of symbolic identifiers to an affine map. 3051 ParseResult 3052 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, 3053 unsigned &numSymbols) { 3054 if (parseDimIdList(numDims)) { 3055 return failure(); 3056 } 3057 if (!getToken().is(Token::l_square)) { 3058 numSymbols = 0; 3059 return success(); 3060 } 3061 return parseSymbolIdList(numSymbols); 3062 } 3063 3064 /// Parses an ambiguous affine map or integer set definition inline. 3065 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, 3066 IntegerSet &set) { 3067 unsigned numDims = 0, numSymbols = 0; 3068 3069 // List of dimensional and optional symbol identifiers. 3070 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { 3071 return failure(); 3072 } 3073 3074 // This is needed for parsing attributes as we wouldn't know whether we would 3075 // be parsing an integer set attribute or an affine map attribute. 3076 bool isArrow = getToken().is(Token::arrow); 3077 bool isColon = getToken().is(Token::colon); 3078 if (!isArrow && !isColon) { 3079 return emitError("expected '->' or ':'"); 3080 } else if (isArrow) { 3081 parseToken(Token::arrow, "expected '->' or '['"); 3082 map = parseAffineMapRange(numDims, numSymbols); 3083 return map ? success() : failure(); 3084 } else if (parseToken(Token::colon, "expected ':' or '['")) { 3085 return failure(); 3086 } 3087 3088 if ((set = parseIntegerSetConstraints(numDims, numSymbols))) 3089 return success(); 3090 3091 return failure(); 3092 } 3093 3094 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids. 3095 ParseResult 3096 AffineParser::parseAffineMapOfSSAIds(AffineMap &map, 3097 OpAsmParser::Delimiter delimiter) { 3098 Token::Kind rightToken; 3099 switch (delimiter) { 3100 case OpAsmParser::Delimiter::Square: 3101 if (parseToken(Token::l_square, "expected '['")) 3102 return failure(); 3103 rightToken = Token::r_square; 3104 break; 3105 case OpAsmParser::Delimiter::Paren: 3106 if (parseToken(Token::l_paren, "expected '('")) 3107 return failure(); 3108 rightToken = Token::r_paren; 3109 break; 3110 default: 3111 return emitError("unexpected delimiter"); 3112 } 3113 3114 SmallVector<AffineExpr, 4> exprs; 3115 auto parseElt = [&]() -> ParseResult { 3116 auto elt = parseAffineExpr(); 3117 exprs.push_back(elt); 3118 return elt ? success() : failure(); 3119 }; 3120 3121 // Parse a multi-dimensional affine expression (a comma-separated list of 3122 // 1-d affine expressions); the list can be empty. Grammar: 3123 // multi-dim-affine-expr ::= `(` `)` 3124 // | `(` affine-expr (`,` affine-expr)* `)` 3125 if (parseCommaSeparatedListUntil(rightToken, parseElt, 3126 /*allowEmptyList=*/true)) 3127 return failure(); 3128 // Parsed a valid affine map. 3129 if (exprs.empty()) 3130 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 3131 getContext()); 3132 else 3133 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands, 3134 exprs); 3135 return success(); 3136 } 3137 3138 /// Parse the range and sizes affine map definition inline. 3139 /// 3140 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr 3141 /// 3142 /// multi-dim-affine-expr ::= `(` `)` 3143 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)` 3144 AffineMap AffineParser::parseAffineMapRange(unsigned numDims, 3145 unsigned numSymbols) { 3146 parseToken(Token::l_paren, "expected '(' at start of affine map range"); 3147 3148 SmallVector<AffineExpr, 4> exprs; 3149 auto parseElt = [&]() -> ParseResult { 3150 auto elt = parseAffineExpr(); 3151 ParseResult res = elt ? success() : failure(); 3152 exprs.push_back(elt); 3153 return res; 3154 }; 3155 3156 // Parse a multi-dimensional affine expression (a comma-separated list of 3157 // 1-d affine expressions). Grammar: 3158 // multi-dim-affine-expr ::= `(` `)` 3159 // | `(` affine-expr (`,` affine-expr)* `)` 3160 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3161 return AffineMap(); 3162 3163 if (exprs.empty()) 3164 return AffineMap::get(numDims, numSymbols, getContext()); 3165 3166 // Parsed a valid affine map. 3167 return AffineMap::get(numDims, numSymbols, exprs); 3168 } 3169 3170 /// Parse an affine constraint. 3171 /// affine-constraint ::= affine-expr `>=` `0` 3172 /// | affine-expr `==` `0` 3173 /// 3174 /// isEq is set to true if the parsed constraint is an equality, false if it 3175 /// is an inequality (greater than or equal). 3176 /// 3177 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { 3178 AffineExpr expr = parseAffineExpr(); 3179 if (!expr) 3180 return nullptr; 3181 3182 if (consumeIf(Token::greater) && consumeIf(Token::equal) && 3183 getToken().is(Token::integer)) { 3184 auto dim = getToken().getUnsignedIntegerValue(); 3185 if (dim.hasValue() && dim.getValue() == 0) { 3186 consumeToken(Token::integer); 3187 *isEq = false; 3188 return expr; 3189 } 3190 return (emitError("expected '0' after '>='"), nullptr); 3191 } 3192 3193 if (consumeIf(Token::equal) && consumeIf(Token::equal) && 3194 getToken().is(Token::integer)) { 3195 auto dim = getToken().getUnsignedIntegerValue(); 3196 if (dim.hasValue() && dim.getValue() == 0) { 3197 consumeToken(Token::integer); 3198 *isEq = true; 3199 return expr; 3200 } 3201 return (emitError("expected '0' after '=='"), nullptr); 3202 } 3203 3204 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), 3205 nullptr); 3206 } 3207 3208 /// Parse the constraints that are part of an integer set definition. 3209 /// integer-set-inline 3210 /// ::= dim-and-symbol-id-lists `:` 3211 /// '(' affine-constraint-conjunction? ')' 3212 /// affine-constraint-conjunction ::= affine-constraint (`,` 3213 /// affine-constraint)* 3214 /// 3215 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, 3216 unsigned numSymbols) { 3217 if (parseToken(Token::l_paren, 3218 "expected '(' at start of integer set constraint list")) 3219 return IntegerSet(); 3220 3221 SmallVector<AffineExpr, 4> constraints; 3222 SmallVector<bool, 4> isEqs; 3223 auto parseElt = [&]() -> ParseResult { 3224 bool isEq; 3225 auto elt = parseAffineConstraint(&isEq); 3226 ParseResult res = elt ? success() : failure(); 3227 if (elt) { 3228 constraints.push_back(elt); 3229 isEqs.push_back(isEq); 3230 } 3231 return res; 3232 }; 3233 3234 // Parse a list of affine constraints (comma-separated). 3235 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) 3236 return IntegerSet(); 3237 3238 // If no constraints were parsed, then treat this as a degenerate 'true' case. 3239 if (constraints.empty()) { 3240 /* 0 == 0 */ 3241 auto zero = getAffineConstantExpr(0, getContext()); 3242 return IntegerSet::get(numDims, numSymbols, zero, true); 3243 } 3244 3245 // Parsed a valid integer set. 3246 return IntegerSet::get(numDims, numSymbols, constraints, isEqs); 3247 } 3248 3249 /// Parse an ambiguous reference to either and affine map or an integer set. 3250 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, 3251 IntegerSet &set) { 3252 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); 3253 } 3254 ParseResult Parser::parseAffineMapReference(AffineMap &map) { 3255 llvm::SMLoc curLoc = getToken().getLoc(); 3256 IntegerSet set; 3257 if (parseAffineMapOrIntegerSetReference(map, set)) 3258 return failure(); 3259 if (set) 3260 return emitError(curLoc, "expected AffineMap, but got IntegerSet"); 3261 return success(); 3262 } 3263 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) { 3264 llvm::SMLoc curLoc = getToken().getLoc(); 3265 AffineMap map; 3266 if (parseAffineMapOrIntegerSetReference(map, set)) 3267 return failure(); 3268 if (map) 3269 return emitError(curLoc, "expected IntegerSet, but got AffineMap"); 3270 return success(); 3271 } 3272 3273 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to 3274 /// parse SSA value uses encountered while parsing affine expressions. 3275 ParseResult 3276 Parser::parseAffineMapOfSSAIds(AffineMap &map, 3277 function_ref<ParseResult(bool)> parseElement, 3278 OpAsmParser::Delimiter delimiter) { 3279 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement) 3280 .parseAffineMapOfSSAIds(map, delimiter); 3281 } 3282 3283 //===----------------------------------------------------------------------===// 3284 // OperationParser 3285 //===----------------------------------------------------------------------===// 3286 3287 namespace { 3288 /// This class provides support for parsing operations and regions of 3289 /// operations. 3290 class OperationParser : public Parser { 3291 public: 3292 OperationParser(ParserState &state, ModuleOp moduleOp) 3293 : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) { 3294 } 3295 3296 ~OperationParser(); 3297 3298 /// After parsing is finished, this function must be called to see if there 3299 /// are any remaining issues. 3300 ParseResult finalize(); 3301 3302 //===--------------------------------------------------------------------===// 3303 // SSA Value Handling 3304 //===--------------------------------------------------------------------===// 3305 3306 /// This represents a use of an SSA value in the program. The first two 3307 /// entries in the tuple are the name and result number of a reference. The 3308 /// third is the location of the reference, which is used in case this ends 3309 /// up being a use of an undefined value. 3310 struct SSAUseInfo { 3311 StringRef name; // Value name, e.g. %42 or %abc 3312 unsigned number; // Number, specified with #12 3313 SMLoc loc; // Location of first definition or use. 3314 }; 3315 3316 /// Push a new SSA name scope to the parser. 3317 void pushSSANameScope(bool isIsolated); 3318 3319 /// Pop the last SSA name scope from the parser. 3320 ParseResult popSSANameScope(); 3321 3322 /// Register a definition of a value with the symbol table. 3323 ParseResult addDefinition(SSAUseInfo useInfo, Value value); 3324 3325 /// Parse an optional list of SSA uses into 'results'. 3326 ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results); 3327 3328 /// Parse a single SSA use into 'result'. 3329 ParseResult parseSSAUse(SSAUseInfo &result); 3330 3331 /// Given a reference to an SSA value and its type, return a reference. This 3332 /// returns null on failure. 3333 Value resolveSSAUse(SSAUseInfo useInfo, Type type); 3334 3335 ParseResult parseSSADefOrUseAndType( 3336 const std::function<ParseResult(SSAUseInfo, Type)> &action); 3337 3338 ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results); 3339 3340 /// Return the location of the value identified by its name and number if it 3341 /// has been already reference. 3342 Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) { 3343 auto &values = isolatedNameScopes.back().values; 3344 if (!values.count(name) || number >= values[name].size()) 3345 return {}; 3346 if (values[name][number].first) 3347 return values[name][number].second; 3348 return {}; 3349 } 3350 3351 //===--------------------------------------------------------------------===// 3352 // Operation Parsing 3353 //===--------------------------------------------------------------------===// 3354 3355 /// Parse an operation instance. 3356 ParseResult parseOperation(); 3357 3358 /// Parse a single operation successor. 3359 ParseResult parseSuccessor(Block *&dest); 3360 3361 /// Parse a comma-separated list of operation successors in brackets. 3362 ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations); 3363 3364 /// Parse an operation instance that is in the generic form. 3365 Operation *parseGenericOperation(); 3366 3367 /// Parse an operation instance that is in the generic form and insert it at 3368 /// the provided insertion point. 3369 Operation *parseGenericOperation(Block *insertBlock, 3370 Block::iterator insertPt); 3371 3372 /// This is the structure of a result specifier in the assembly syntax, 3373 /// including the name, number of results, and location. 3374 typedef std::tuple<StringRef, unsigned, SMLoc> ResultRecord; 3375 3376 /// Parse an operation instance that is in the op-defined custom form. 3377 /// resultInfo specifies information about the "%name =" specifiers. 3378 Operation *parseCustomOperation(ArrayRef<ResultRecord> resultInfo); 3379 3380 //===--------------------------------------------------------------------===// 3381 // Region Parsing 3382 //===--------------------------------------------------------------------===// 3383 3384 /// Parse a region into 'region' with the provided entry block arguments. 3385 /// 'isIsolatedNameScope' indicates if the naming scope of this region is 3386 /// isolated from those above. 3387 ParseResult parseRegion(Region ®ion, 3388 ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments, 3389 bool isIsolatedNameScope = false); 3390 3391 /// Parse a region body into 'region'. 3392 ParseResult parseRegionBody(Region ®ion); 3393 3394 //===--------------------------------------------------------------------===// 3395 // Block Parsing 3396 //===--------------------------------------------------------------------===// 3397 3398 /// Parse a new block into 'block'. 3399 ParseResult parseBlock(Block *&block); 3400 3401 /// Parse a list of operations into 'block'. 3402 ParseResult parseBlockBody(Block *block); 3403 3404 /// Parse a (possibly empty) list of block arguments. 3405 ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results, 3406 Block *owner); 3407 3408 /// Get the block with the specified name, creating it if it doesn't 3409 /// already exist. The location specified is the point of use, which allows 3410 /// us to diagnose references to blocks that are not defined precisely. 3411 Block *getBlockNamed(StringRef name, SMLoc loc); 3412 3413 /// Define the block with the specified name. Returns the Block* or nullptr in 3414 /// the case of redefinition. 3415 Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); 3416 3417 private: 3418 /// Returns the info for a block at the current scope for the given name. 3419 std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) { 3420 return blocksByName.back()[name]; 3421 } 3422 3423 /// Insert a new forward reference to the given block. 3424 void insertForwardRef(Block *block, SMLoc loc) { 3425 forwardRef.back().try_emplace(block, loc); 3426 } 3427 3428 /// Erase any forward reference to the given block. 3429 bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); } 3430 3431 /// Record that a definition was added at the current scope. 3432 void recordDefinition(StringRef def); 3433 3434 /// Get the value entry for the given SSA name. 3435 SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name); 3436 3437 /// Create a forward reference placeholder value with the given location and 3438 /// result type. 3439 Value createForwardRefPlaceholder(SMLoc loc, Type type); 3440 3441 /// Return true if this is a forward reference. 3442 bool isForwardRefPlaceholder(Value value) { 3443 return forwardRefPlaceholders.count(value); 3444 } 3445 3446 /// This struct represents an isolated SSA name scope. This scope may contain 3447 /// other nested non-isolated scopes. These scopes are used for operations 3448 /// that are known to be isolated to allow for reusing names within their 3449 /// regions, even if those names are used above. 3450 struct IsolatedSSANameScope { 3451 /// Record that a definition was added at the current scope. 3452 void recordDefinition(StringRef def) { 3453 definitionsPerScope.back().insert(def); 3454 } 3455 3456 /// Push a nested name scope. 3457 void pushSSANameScope() { definitionsPerScope.push_back({}); } 3458 3459 /// Pop a nested name scope. 3460 void popSSANameScope() { 3461 for (auto &def : definitionsPerScope.pop_back_val()) 3462 values.erase(def.getKey()); 3463 } 3464 3465 /// This keeps track of all of the SSA values we are tracking for each name 3466 /// scope, indexed by their name. This has one entry per result number. 3467 llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values; 3468 3469 /// This keeps track of all of the values defined by a specific name scope. 3470 SmallVector<llvm::StringSet<>, 2> definitionsPerScope; 3471 }; 3472 3473 /// A list of isolated name scopes. 3474 SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes; 3475 3476 /// This keeps track of the block names as well as the location of the first 3477 /// reference for each nested name scope. This is used to diagnose invalid 3478 /// block references and memorize them. 3479 SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName; 3480 SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef; 3481 3482 /// These are all of the placeholders we've made along with the location of 3483 /// their first reference, to allow checking for use of undefined values. 3484 DenseMap<Value, SMLoc> forwardRefPlaceholders; 3485 3486 /// The builder used when creating parsed operation instances. 3487 OpBuilder opBuilder; 3488 3489 /// The top level module operation. 3490 ModuleOp moduleOp; 3491 }; 3492 } // end anonymous namespace 3493 3494 OperationParser::~OperationParser() { 3495 for (auto &fwd : forwardRefPlaceholders) { 3496 // Drop all uses of undefined forward declared reference and destroy 3497 // defining operation. 3498 fwd.first.dropAllUses(); 3499 fwd.first.getDefiningOp()->destroy(); 3500 } 3501 } 3502 3503 /// After parsing is finished, this function must be called to see if there are 3504 /// any remaining issues. 3505 ParseResult OperationParser::finalize() { 3506 // Check for any forward references that are left. If we find any, error 3507 // out. 3508 if (!forwardRefPlaceholders.empty()) { 3509 SmallVector<std::pair<const char *, Value>, 4> errors; 3510 // Iteration over the map isn't deterministic, so sort by source location. 3511 for (auto entry : forwardRefPlaceholders) 3512 errors.push_back({entry.second.getPointer(), entry.first}); 3513 llvm::array_pod_sort(errors.begin(), errors.end()); 3514 3515 for (auto entry : errors) { 3516 auto loc = SMLoc::getFromPointer(entry.first); 3517 emitError(loc, "use of undeclared SSA value name"); 3518 } 3519 return failure(); 3520 } 3521 3522 return success(); 3523 } 3524 3525 //===----------------------------------------------------------------------===// 3526 // SSA Value Handling 3527 //===----------------------------------------------------------------------===// 3528 3529 void OperationParser::pushSSANameScope(bool isIsolated) { 3530 blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>()); 3531 forwardRef.push_back(DenseMap<Block *, SMLoc>()); 3532 3533 // Push back a new name definition scope. 3534 if (isIsolated) 3535 isolatedNameScopes.push_back({}); 3536 isolatedNameScopes.back().pushSSANameScope(); 3537 } 3538 3539 ParseResult OperationParser::popSSANameScope() { 3540 auto forwardRefInCurrentScope = forwardRef.pop_back_val(); 3541 3542 // Verify that all referenced blocks were defined. 3543 if (!forwardRefInCurrentScope.empty()) { 3544 SmallVector<std::pair<const char *, Block *>, 4> errors; 3545 // Iteration over the map isn't deterministic, so sort by source location. 3546 for (auto entry : forwardRefInCurrentScope) { 3547 errors.push_back({entry.second.getPointer(), entry.first}); 3548 // Add this block to the top-level region to allow for automatic cleanup. 3549 moduleOp.getOperation()->getRegion(0).push_back(entry.first); 3550 } 3551 llvm::array_pod_sort(errors.begin(), errors.end()); 3552 3553 for (auto entry : errors) { 3554 auto loc = SMLoc::getFromPointer(entry.first); 3555 emitError(loc, "reference to an undefined block"); 3556 } 3557 return failure(); 3558 } 3559 3560 // Pop the next nested namescope. If there is only one internal namescope, 3561 // just pop the isolated scope. 3562 auto ¤tNameScope = isolatedNameScopes.back(); 3563 if (currentNameScope.definitionsPerScope.size() == 1) 3564 isolatedNameScopes.pop_back(); 3565 else 3566 currentNameScope.popSSANameScope(); 3567 3568 blocksByName.pop_back(); 3569 return success(); 3570 } 3571 3572 /// Register a definition of a value with the symbol table. 3573 ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) { 3574 auto &entries = getSSAValueEntry(useInfo.name); 3575 3576 // Make sure there is a slot for this value. 3577 if (entries.size() <= useInfo.number) 3578 entries.resize(useInfo.number + 1); 3579 3580 // If we already have an entry for this, check to see if it was a definition 3581 // or a forward reference. 3582 if (auto existing = entries[useInfo.number].first) { 3583 if (!isForwardRefPlaceholder(existing)) { 3584 return emitError(useInfo.loc) 3585 .append("redefinition of SSA value '", useInfo.name, "'") 3586 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3587 .append("previously defined here"); 3588 } 3589 3590 // If it was a forward reference, update everything that used it to use 3591 // the actual definition instead, delete the forward ref, and remove it 3592 // from our set of forward references we track. 3593 existing.replaceAllUsesWith(value); 3594 existing.getDefiningOp()->destroy(); 3595 forwardRefPlaceholders.erase(existing); 3596 } 3597 3598 /// Record this definition for the current scope. 3599 entries[useInfo.number] = {value, useInfo.loc}; 3600 recordDefinition(useInfo.name); 3601 return success(); 3602 } 3603 3604 /// Parse a (possibly empty) list of SSA operands. 3605 /// 3606 /// ssa-use-list ::= ssa-use (`,` ssa-use)* 3607 /// ssa-use-list-opt ::= ssa-use-list? 3608 /// 3609 ParseResult 3610 OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) { 3611 if (getToken().isNot(Token::percent_identifier)) 3612 return success(); 3613 return parseCommaSeparatedList([&]() -> ParseResult { 3614 SSAUseInfo result; 3615 if (parseSSAUse(result)) 3616 return failure(); 3617 results.push_back(result); 3618 return success(); 3619 }); 3620 } 3621 3622 /// Parse a SSA operand for an operation. 3623 /// 3624 /// ssa-use ::= ssa-id 3625 /// 3626 ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) { 3627 result.name = getTokenSpelling(); 3628 result.number = 0; 3629 result.loc = getToken().getLoc(); 3630 if (parseToken(Token::percent_identifier, "expected SSA operand")) 3631 return failure(); 3632 3633 // If we have an attribute ID, it is a result number. 3634 if (getToken().is(Token::hash_identifier)) { 3635 if (auto value = getToken().getHashIdentifierNumber()) 3636 result.number = value.getValue(); 3637 else 3638 return emitError("invalid SSA value result number"); 3639 consumeToken(Token::hash_identifier); 3640 } 3641 3642 return success(); 3643 } 3644 3645 /// Given an unbound reference to an SSA value and its type, return the value 3646 /// it specifies. This returns null on failure. 3647 Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { 3648 auto &entries = getSSAValueEntry(useInfo.name); 3649 3650 // If we have already seen a value of this name, return it. 3651 if (useInfo.number < entries.size() && entries[useInfo.number].first) { 3652 auto result = entries[useInfo.number].first; 3653 // Check that the type matches the other uses. 3654 if (result.getType() == type) 3655 return result; 3656 3657 emitError(useInfo.loc, "use of value '") 3658 .append(useInfo.name, 3659 "' expects different type than prior uses: ", type, " vs ", 3660 result.getType()) 3661 .attachNote(getEncodedSourceLocation(entries[useInfo.number].second)) 3662 .append("prior use here"); 3663 return nullptr; 3664 } 3665 3666 // Make sure we have enough slots for this. 3667 if (entries.size() <= useInfo.number) 3668 entries.resize(useInfo.number + 1); 3669 3670 // If the value has already been defined and this is an overly large result 3671 // number, diagnose that. 3672 if (entries[0].first && !isForwardRefPlaceholder(entries[0].first)) 3673 return (emitError(useInfo.loc, "reference to invalid result number"), 3674 nullptr); 3675 3676 // Otherwise, this is a forward reference. Create a placeholder and remember 3677 // that we did so. 3678 auto result = createForwardRefPlaceholder(useInfo.loc, type); 3679 entries[useInfo.number].first = result; 3680 entries[useInfo.number].second = useInfo.loc; 3681 return result; 3682 } 3683 3684 /// Parse an SSA use with an associated type. 3685 /// 3686 /// ssa-use-and-type ::= ssa-use `:` type 3687 ParseResult OperationParser::parseSSADefOrUseAndType( 3688 const std::function<ParseResult(SSAUseInfo, Type)> &action) { 3689 SSAUseInfo useInfo; 3690 if (parseSSAUse(useInfo) || 3691 parseToken(Token::colon, "expected ':' and type for SSA operand")) 3692 return failure(); 3693 3694 auto type = parseType(); 3695 if (!type) 3696 return failure(); 3697 3698 return action(useInfo, type); 3699 } 3700 3701 /// Parse a (possibly empty) list of SSA operands, followed by a colon, then 3702 /// followed by a type list. 3703 /// 3704 /// ssa-use-and-type-list 3705 /// ::= ssa-use-list ':' type-list-no-parens 3706 /// 3707 ParseResult OperationParser::parseOptionalSSAUseAndTypeList( 3708 SmallVectorImpl<Value> &results) { 3709 SmallVector<SSAUseInfo, 4> valueIDs; 3710 if (parseOptionalSSAUseList(valueIDs)) 3711 return failure(); 3712 3713 // If there were no operands, then there is no colon or type lists. 3714 if (valueIDs.empty()) 3715 return success(); 3716 3717 SmallVector<Type, 4> types; 3718 if (parseToken(Token::colon, "expected ':' in operand list") || 3719 parseTypeListNoParens(types)) 3720 return failure(); 3721 3722 if (valueIDs.size() != types.size()) 3723 return emitError("expected ") 3724 << valueIDs.size() << " types to match operand list"; 3725 3726 results.reserve(valueIDs.size()); 3727 for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { 3728 if (auto value = resolveSSAUse(valueIDs[i], types[i])) 3729 results.push_back(value); 3730 else 3731 return failure(); 3732 } 3733 3734 return success(); 3735 } 3736 3737 /// Record that a definition was added at the current scope. 3738 void OperationParser::recordDefinition(StringRef def) { 3739 isolatedNameScopes.back().recordDefinition(def); 3740 } 3741 3742 /// Get the value entry for the given SSA name. 3743 SmallVectorImpl<std::pair<Value, SMLoc>> & 3744 OperationParser::getSSAValueEntry(StringRef name) { 3745 return isolatedNameScopes.back().values[name]; 3746 } 3747 3748 /// Create and remember a new placeholder for a forward reference. 3749 Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) { 3750 // Forward references are always created as operations, because we just need 3751 // something with a def/use chain. 3752 // 3753 // We create these placeholders as having an empty name, which we know 3754 // cannot be created through normal user input, allowing us to distinguish 3755 // them. 3756 auto name = OperationName("placeholder", getContext()); 3757 auto *op = Operation::create( 3758 getEncodedSourceLocation(loc), name, type, /*operands=*/{}, 3759 /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0, 3760 /*resizableOperandList=*/false); 3761 forwardRefPlaceholders[op->getResult(0)] = loc; 3762 return op->getResult(0); 3763 } 3764 3765 //===----------------------------------------------------------------------===// 3766 // Operation Parsing 3767 //===----------------------------------------------------------------------===// 3768 3769 /// Parse an operation. 3770 /// 3771 /// operation ::= op-result-list? 3772 /// (generic-operation | custom-operation) 3773 /// trailing-location? 3774 /// generic-operation ::= string-literal `(` ssa-use-list? `)` 3775 /// successor-list? (`(` region-list `)`)? 3776 /// attribute-dict? `:` function-type 3777 /// custom-operation ::= bare-id custom-operation-format 3778 /// op-result-list ::= op-result (`,` op-result)* `=` 3779 /// op-result ::= ssa-id (`:` integer-literal) 3780 /// 3781 ParseResult OperationParser::parseOperation() { 3782 auto loc = getToken().getLoc(); 3783 SmallVector<ResultRecord, 1> resultIDs; 3784 size_t numExpectedResults = 0; 3785 if (getToken().is(Token::percent_identifier)) { 3786 // Parse the group of result ids. 3787 auto parseNextResult = [&]() -> ParseResult { 3788 // Parse the next result id. 3789 if (!getToken().is(Token::percent_identifier)) 3790 return emitError("expected valid ssa identifier"); 3791 3792 Token nameTok = getToken(); 3793 consumeToken(Token::percent_identifier); 3794 3795 // If the next token is a ':', we parse the expected result count. 3796 size_t expectedSubResults = 1; 3797 if (consumeIf(Token::colon)) { 3798 // Check that the next token is an integer. 3799 if (!getToken().is(Token::integer)) 3800 return emitError("expected integer number of results"); 3801 3802 // Check that number of results is > 0. 3803 auto val = getToken().getUInt64IntegerValue(); 3804 if (!val.hasValue() || val.getValue() < 1) 3805 return emitError("expected named operation to have atleast 1 result"); 3806 consumeToken(Token::integer); 3807 expectedSubResults = *val; 3808 } 3809 3810 resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults, 3811 nameTok.getLoc()); 3812 numExpectedResults += expectedSubResults; 3813 return success(); 3814 }; 3815 if (parseCommaSeparatedList(parseNextResult)) 3816 return failure(); 3817 3818 if (parseToken(Token::equal, "expected '=' after SSA name")) 3819 return failure(); 3820 } 3821 3822 Operation *op; 3823 if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) 3824 op = parseCustomOperation(resultIDs); 3825 else if (getToken().is(Token::string)) 3826 op = parseGenericOperation(); 3827 else 3828 return emitError("expected operation name in quotes"); 3829 3830 // If parsing of the basic operation failed, then this whole thing fails. 3831 if (!op) 3832 return failure(); 3833 3834 // If the operation had a name, register it. 3835 if (!resultIDs.empty()) { 3836 if (op->getNumResults() == 0) 3837 return emitError(loc, "cannot name an operation with no results"); 3838 if (numExpectedResults != op->getNumResults()) 3839 return emitError(loc, "operation defines ") 3840 << op->getNumResults() << " results but was provided " 3841 << numExpectedResults << " to bind"; 3842 3843 // Add definitions for each of the result groups. 3844 unsigned opResI = 0; 3845 for (ResultRecord &resIt : resultIDs) { 3846 for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) { 3847 if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)}, 3848 op->getResult(opResI++))) 3849 return failure(); 3850 } 3851 } 3852 } 3853 3854 return success(); 3855 } 3856 3857 /// Parse a single operation successor. 3858 /// 3859 /// successor ::= block-id 3860 /// 3861 ParseResult OperationParser::parseSuccessor(Block *&dest) { 3862 // Verify branch is identifier and get the matching block. 3863 if (!getToken().is(Token::caret_identifier)) 3864 return emitError("expected block name"); 3865 dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); 3866 consumeToken(); 3867 return success(); 3868 } 3869 3870 /// Parse a comma-separated list of operation successors in brackets. 3871 /// 3872 /// successor-list ::= `[` successor (`,` successor )* `]` 3873 /// 3874 ParseResult 3875 OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) { 3876 if (parseToken(Token::l_square, "expected '['")) 3877 return failure(); 3878 3879 auto parseElt = [this, &destinations] { 3880 Block *dest; 3881 ParseResult res = parseSuccessor(dest); 3882 destinations.push_back(dest); 3883 return res; 3884 }; 3885 return parseCommaSeparatedListUntil(Token::r_square, parseElt, 3886 /*allowEmptyList=*/false); 3887 } 3888 3889 namespace { 3890 // RAII-style guard for cleaning up the regions in the operation state before 3891 // deleting them. Within the parser, regions may get deleted if parsing failed, 3892 // and other errors may be present, in particular undominated uses. This makes 3893 // sure such uses are deleted. 3894 struct CleanupOpStateRegions { 3895 ~CleanupOpStateRegions() { 3896 SmallVector<Region *, 4> regionsToClean; 3897 regionsToClean.reserve(state.regions.size()); 3898 for (auto ®ion : state.regions) 3899 if (region) 3900 for (auto &block : *region) 3901 block.dropAllDefinedValueUses(); 3902 } 3903 OperationState &state; 3904 }; 3905 } // namespace 3906 3907 Operation *OperationParser::parseGenericOperation() { 3908 // Get location information for the operation. 3909 auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); 3910 3911 auto name = getToken().getStringValue(); 3912 if (name.empty()) 3913 return (emitError("empty operation name is invalid"), nullptr); 3914 if (name.find('\0') != StringRef::npos) 3915 return (emitError("null character not allowed in operation name"), nullptr); 3916 3917 consumeToken(Token::string); 3918 3919 OperationState result(srcLocation, name); 3920 3921 // Generic operations have a resizable operation list. 3922 result.setOperandListToResizable(); 3923 3924 // Parse the operand list. 3925 SmallVector<SSAUseInfo, 8> operandInfos; 3926 if (parseToken(Token::l_paren, "expected '(' to start operand list") || 3927 parseOptionalSSAUseList(operandInfos) || 3928 parseToken(Token::r_paren, "expected ')' to end operand list")) { 3929 return nullptr; 3930 } 3931 3932 // Parse the successor list. 3933 if (getToken().is(Token::l_square)) { 3934 // Check if the operation is a known terminator. 3935 const AbstractOperation *abstractOp = result.name.getAbstractOperation(); 3936 if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) 3937 return emitError("successors in non-terminator"), nullptr; 3938 3939 SmallVector<Block *, 2> successors; 3940 if (parseSuccessors(successors)) 3941 return nullptr; 3942 result.addSuccessors(successors); 3943 } 3944 3945 // Parse the region list. 3946 CleanupOpStateRegions guard{result}; 3947 if (consumeIf(Token::l_paren)) { 3948 do { 3949 // Create temporary regions with the top level region as parent. 3950 result.regions.emplace_back(new Region(moduleOp)); 3951 if (parseRegion(*result.regions.back(), /*entryArguments=*/{})) 3952 return nullptr; 3953 } while (consumeIf(Token::comma)); 3954 if (parseToken(Token::r_paren, "expected ')' to end region list")) 3955 return nullptr; 3956 } 3957 3958 if (getToken().is(Token::l_brace)) { 3959 if (parseAttributeDict(result.attributes)) 3960 return nullptr; 3961 } 3962 3963 if (parseToken(Token::colon, "expected ':' followed by operation type")) 3964 return nullptr; 3965 3966 auto typeLoc = getToken().getLoc(); 3967 auto type = parseType(); 3968 if (!type) 3969 return nullptr; 3970 auto fnType = type.dyn_cast<FunctionType>(); 3971 if (!fnType) 3972 return (emitError(typeLoc, "expected function type"), nullptr); 3973 3974 result.addTypes(fnType.getResults()); 3975 3976 // Check that we have the right number of types for the operands. 3977 auto operandTypes = fnType.getInputs(); 3978 if (operandTypes.size() != operandInfos.size()) { 3979 auto plural = "s"[operandInfos.size() == 1]; 3980 return (emitError(typeLoc, "expected ") 3981 << operandInfos.size() << " operand type" << plural 3982 << " but had " << operandTypes.size(), 3983 nullptr); 3984 } 3985 3986 // Resolve all of the operands. 3987 for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { 3988 result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); 3989 if (!result.operands.back()) 3990 return nullptr; 3991 } 3992 3993 // Parse a location if one is present. 3994 if (parseOptionalTrailingLocation(result.location)) 3995 return nullptr; 3996 3997 return opBuilder.createOperation(result); 3998 } 3999 4000 Operation *OperationParser::parseGenericOperation(Block *insertBlock, 4001 Block::iterator insertPt) { 4002 OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder); 4003 opBuilder.setInsertionPoint(insertBlock, insertPt); 4004 return parseGenericOperation(); 4005 } 4006 4007 namespace { 4008 class CustomOpAsmParser : public OpAsmParser { 4009 public: 4010 CustomOpAsmParser(SMLoc nameLoc, 4011 ArrayRef<OperationParser::ResultRecord> resultIDs, 4012 const AbstractOperation *opDefinition, 4013 OperationParser &parser) 4014 : nameLoc(nameLoc), resultIDs(resultIDs), opDefinition(opDefinition), 4015 parser(parser) {} 4016 4017 /// Parse an instance of the operation described by 'opDefinition' into the 4018 /// provided operation state. 4019 ParseResult parseOperation(OperationState &opState) { 4020 if (opDefinition->parseAssembly(*this, opState)) 4021 return failure(); 4022 return success(); 4023 } 4024 4025 Operation *parseGenericOperation(Block *insertBlock, 4026 Block::iterator insertPt) final { 4027 return parser.parseGenericOperation(insertBlock, insertPt); 4028 } 4029 4030 //===--------------------------------------------------------------------===// 4031 // Utilities 4032 //===--------------------------------------------------------------------===// 4033 4034 /// Return if any errors were emitted during parsing. 4035 bool didEmitError() const { return emittedError; } 4036 4037 /// Emit a diagnostic at the specified location and return failure. 4038 InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override { 4039 emittedError = true; 4040 return parser.emitError(loc, "custom op '" + opDefinition->name + "' " + 4041 message); 4042 } 4043 4044 llvm::SMLoc getCurrentLocation() override { 4045 return parser.getToken().getLoc(); 4046 } 4047 4048 Builder &getBuilder() const override { return parser.builder; } 4049 4050 /// Return the name of the specified result in the specified syntax, as well 4051 /// as the subelement in the name. For example, in this operation: 4052 /// 4053 /// %x, %y:2, %z = foo.op 4054 /// 4055 /// getResultName(0) == {"x", 0 } 4056 /// getResultName(1) == {"y", 0 } 4057 /// getResultName(2) == {"y", 1 } 4058 /// getResultName(3) == {"z", 0 } 4059 std::pair<StringRef, unsigned> 4060 getResultName(unsigned resultNo) const override { 4061 // Scan for the resultID that contains this result number. 4062 for (unsigned nameID = 0, e = resultIDs.size(); nameID != e; ++nameID) { 4063 const auto &entry = resultIDs[nameID]; 4064 if (resultNo < std::get<1>(entry)) { 4065 // Don't pass on the leading %. 4066 StringRef name = std::get<0>(entry).drop_front(); 4067 return {name, resultNo}; 4068 } 4069 resultNo -= std::get<1>(entry); 4070 } 4071 4072 // Invalid result number. 4073 return {"", ~0U}; 4074 } 4075 4076 /// Return the number of declared SSA results. This returns 4 for the foo.op 4077 /// example in the comment for getResultName. 4078 size_t getNumResults() const override { 4079 size_t count = 0; 4080 for (auto &entry : resultIDs) 4081 count += std::get<1>(entry); 4082 return count; 4083 } 4084 4085 llvm::SMLoc getNameLoc() const override { return nameLoc; } 4086 4087 //===--------------------------------------------------------------------===// 4088 // Token Parsing 4089 //===--------------------------------------------------------------------===// 4090 4091 /// Parse a `->` token. 4092 ParseResult parseArrow() override { 4093 return parser.parseToken(Token::arrow, "expected '->'"); 4094 } 4095 4096 /// Parses a `->` if present. 4097 ParseResult parseOptionalArrow() override { 4098 return success(parser.consumeIf(Token::arrow)); 4099 } 4100 4101 /// Parse a `:` token. 4102 ParseResult parseColon() override { 4103 return parser.parseToken(Token::colon, "expected ':'"); 4104 } 4105 4106 /// Parse a `:` token if present. 4107 ParseResult parseOptionalColon() override { 4108 return success(parser.consumeIf(Token::colon)); 4109 } 4110 4111 /// Parse a `,` token. 4112 ParseResult parseComma() override { 4113 return parser.parseToken(Token::comma, "expected ','"); 4114 } 4115 4116 /// Parse a `,` token if present. 4117 ParseResult parseOptionalComma() override { 4118 return success(parser.consumeIf(Token::comma)); 4119 } 4120 4121 /// Parses a `...` if present. 4122 ParseResult parseOptionalEllipsis() override { 4123 return success(parser.consumeIf(Token::ellipsis)); 4124 } 4125 4126 /// Parse a `=` token. 4127 ParseResult parseEqual() override { 4128 return parser.parseToken(Token::equal, "expected '='"); 4129 } 4130 4131 /// Parse a '<' token. 4132 ParseResult parseLess() override { 4133 return parser.parseToken(Token::less, "expected '<'"); 4134 } 4135 4136 /// Parse a '>' token. 4137 ParseResult parseGreater() override { 4138 return parser.parseToken(Token::greater, "expected '>'"); 4139 } 4140 4141 /// Parse a `(` token. 4142 ParseResult parseLParen() override { 4143 return parser.parseToken(Token::l_paren, "expected '('"); 4144 } 4145 4146 /// Parses a '(' if present. 4147 ParseResult parseOptionalLParen() override { 4148 return success(parser.consumeIf(Token::l_paren)); 4149 } 4150 4151 /// Parse a `)` token. 4152 ParseResult parseRParen() override { 4153 return parser.parseToken(Token::r_paren, "expected ')'"); 4154 } 4155 4156 /// Parses a ')' if present. 4157 ParseResult parseOptionalRParen() override { 4158 return success(parser.consumeIf(Token::r_paren)); 4159 } 4160 4161 /// Parse a `[` token. 4162 ParseResult parseLSquare() override { 4163 return parser.parseToken(Token::l_square, "expected '['"); 4164 } 4165 4166 /// Parses a '[' if present. 4167 ParseResult parseOptionalLSquare() override { 4168 return success(parser.consumeIf(Token::l_square)); 4169 } 4170 4171 /// Parse a `]` token. 4172 ParseResult parseRSquare() override { 4173 return parser.parseToken(Token::r_square, "expected ']'"); 4174 } 4175 4176 /// Parses a ']' if present. 4177 ParseResult parseOptionalRSquare() override { 4178 return success(parser.consumeIf(Token::r_square)); 4179 } 4180 4181 //===--------------------------------------------------------------------===// 4182 // Attribute Parsing 4183 //===--------------------------------------------------------------------===// 4184 4185 /// Parse an arbitrary attribute of a given type and return it in result. This 4186 /// also adds the attribute to the specified attribute list with the specified 4187 /// name. 4188 ParseResult parseAttribute(Attribute &result, Type type, StringRef attrName, 4189 SmallVectorImpl<NamedAttribute> &attrs) override { 4190 result = parser.parseAttribute(type); 4191 if (!result) 4192 return failure(); 4193 4194 attrs.push_back(parser.builder.getNamedAttr(attrName, result)); 4195 return success(); 4196 } 4197 4198 /// Parse a named dictionary into 'result' if it is present. 4199 ParseResult 4200 parseOptionalAttrDict(SmallVectorImpl<NamedAttribute> &result) override { 4201 if (parser.getToken().isNot(Token::l_brace)) 4202 return success(); 4203 return parser.parseAttributeDict(result); 4204 } 4205 4206 /// Parse a named dictionary into 'result' if the `attributes` keyword is 4207 /// present. 4208 ParseResult parseOptionalAttrDictWithKeyword( 4209 SmallVectorImpl<NamedAttribute> &result) override { 4210 if (failed(parseOptionalKeyword("attributes"))) 4211 return success(); 4212 return parser.parseAttributeDict(result); 4213 } 4214 4215 /// Parse an affine map instance into 'map'. 4216 ParseResult parseAffineMap(AffineMap &map) override { 4217 return parser.parseAffineMapReference(map); 4218 } 4219 4220 /// Parse an integer set instance into 'set'. 4221 ParseResult printIntegerSet(IntegerSet &set) override { 4222 return parser.parseIntegerSetReference(set); 4223 } 4224 4225 //===--------------------------------------------------------------------===// 4226 // Identifier Parsing 4227 //===--------------------------------------------------------------------===// 4228 4229 /// Returns if the current token corresponds to a keyword. 4230 bool isCurrentTokenAKeyword() const { 4231 return parser.getToken().is(Token::bare_identifier) || 4232 parser.getToken().isKeyword(); 4233 } 4234 4235 /// Parse the given keyword if present. 4236 ParseResult parseOptionalKeyword(StringRef keyword) override { 4237 // Check that the current token has the same spelling. 4238 if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword) 4239 return failure(); 4240 parser.consumeToken(); 4241 return success(); 4242 } 4243 4244 /// Parse a keyword, if present, into 'keyword'. 4245 ParseResult parseOptionalKeyword(StringRef *keyword) override { 4246 // Check that the current token is a keyword. 4247 if (!isCurrentTokenAKeyword()) 4248 return failure(); 4249 4250 *keyword = parser.getTokenSpelling(); 4251 parser.consumeToken(); 4252 return success(); 4253 } 4254 4255 /// Parse an optional @-identifier and store it (without the '@' symbol) in a 4256 /// string attribute named 'attrName'. 4257 ParseResult 4258 parseOptionalSymbolName(StringAttr &result, StringRef attrName, 4259 SmallVectorImpl<NamedAttribute> &attrs) override { 4260 Token atToken = parser.getToken(); 4261 if (atToken.isNot(Token::at_identifier)) 4262 return failure(); 4263 4264 result = getBuilder().getStringAttr(extractSymbolReference(atToken)); 4265 attrs.push_back(getBuilder().getNamedAttr(attrName, result)); 4266 parser.consumeToken(); 4267 return success(); 4268 } 4269 4270 //===--------------------------------------------------------------------===// 4271 // Operand Parsing 4272 //===--------------------------------------------------------------------===// 4273 4274 /// Parse a single operand. 4275 ParseResult parseOperand(OperandType &result) override { 4276 OperationParser::SSAUseInfo useInfo; 4277 if (parser.parseSSAUse(useInfo)) 4278 return failure(); 4279 4280 result = {useInfo.loc, useInfo.name, useInfo.number}; 4281 return success(); 4282 } 4283 4284 /// Parse a single operand if present. 4285 OptionalParseResult parseOptionalOperand(OperandType &result) override { 4286 if (parser.getToken().is(Token::percent_identifier)) 4287 return parseOperand(result); 4288 return llvm::None; 4289 } 4290 4291 /// Parse zero or more SSA comma-separated operand references with a specified 4292 /// surrounding delimiter, and an optional required operand count. 4293 ParseResult parseOperandList(SmallVectorImpl<OperandType> &result, 4294 int requiredOperandCount = -1, 4295 Delimiter delimiter = Delimiter::None) override { 4296 return parseOperandOrRegionArgList(result, /*isOperandList=*/true, 4297 requiredOperandCount, delimiter); 4298 } 4299 4300 /// Parse zero or more SSA comma-separated operand or region arguments with 4301 /// optional surrounding delimiter and required operand count. 4302 ParseResult 4303 parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result, 4304 bool isOperandList, int requiredOperandCount = -1, 4305 Delimiter delimiter = Delimiter::None) { 4306 auto startLoc = parser.getToken().getLoc(); 4307 4308 // Handle delimiters. 4309 switch (delimiter) { 4310 case Delimiter::None: 4311 // Don't check for the absence of a delimiter if the number of operands 4312 // is unknown (and hence the operand list could be empty). 4313 if (requiredOperandCount == -1) 4314 break; 4315 // Token already matches an identifier and so can't be a delimiter. 4316 if (parser.getToken().is(Token::percent_identifier)) 4317 break; 4318 // Test against known delimiters. 4319 if (parser.getToken().is(Token::l_paren) || 4320 parser.getToken().is(Token::l_square)) 4321 return emitError(startLoc, "unexpected delimiter"); 4322 return emitError(startLoc, "invalid operand"); 4323 case Delimiter::OptionalParen: 4324 if (parser.getToken().isNot(Token::l_paren)) 4325 return success(); 4326 LLVM_FALLTHROUGH; 4327 case Delimiter::Paren: 4328 if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) 4329 return failure(); 4330 break; 4331 case Delimiter::OptionalSquare: 4332 if (parser.getToken().isNot(Token::l_square)) 4333 return success(); 4334 LLVM_FALLTHROUGH; 4335 case Delimiter::Square: 4336 if (parser.parseToken(Token::l_square, "expected '[' in operand list")) 4337 return failure(); 4338 break; 4339 } 4340 4341 // Check for zero operands. 4342 if (parser.getToken().is(Token::percent_identifier)) { 4343 do { 4344 OperandType operandOrArg; 4345 if (isOperandList ? parseOperand(operandOrArg) 4346 : parseRegionArgument(operandOrArg)) 4347 return failure(); 4348 result.push_back(operandOrArg); 4349 } while (parser.consumeIf(Token::comma)); 4350 } 4351 4352 // Handle delimiters. If we reach here, the optional delimiters were 4353 // present, so we need to parse their closing one. 4354 switch (delimiter) { 4355 case Delimiter::None: 4356 break; 4357 case Delimiter::OptionalParen: 4358 case Delimiter::Paren: 4359 if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) 4360 return failure(); 4361 break; 4362 case Delimiter::OptionalSquare: 4363 case Delimiter::Square: 4364 if (parser.parseToken(Token::r_square, "expected ']' in operand list")) 4365 return failure(); 4366 break; 4367 } 4368 4369 if (requiredOperandCount != -1 && 4370 result.size() != static_cast<size_t>(requiredOperandCount)) 4371 return emitError(startLoc, "expected ") 4372 << requiredOperandCount << " operands"; 4373 return success(); 4374 } 4375 4376 /// Parse zero or more trailing SSA comma-separated trailing operand 4377 /// references with a specified surrounding delimiter, and an optional 4378 /// required operand count. A leading comma is expected before the operands. 4379 ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result, 4380 int requiredOperandCount, 4381 Delimiter delimiter) override { 4382 if (parser.getToken().is(Token::comma)) { 4383 parseComma(); 4384 return parseOperandList(result, requiredOperandCount, delimiter); 4385 } 4386 if (requiredOperandCount != -1) 4387 return emitError(parser.getToken().getLoc(), "expected ") 4388 << requiredOperandCount << " operands"; 4389 return success(); 4390 } 4391 4392 /// Resolve an operand to an SSA value, emitting an error on failure. 4393 ParseResult resolveOperand(const OperandType &operand, Type type, 4394 SmallVectorImpl<Value> &result) override { 4395 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4396 operand.location}; 4397 if (auto value = parser.resolveSSAUse(operandInfo, type)) { 4398 result.push_back(value); 4399 return success(); 4400 } 4401 return failure(); 4402 } 4403 4404 /// Parse an AffineMap of SSA ids. 4405 ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands, 4406 Attribute &mapAttr, StringRef attrName, 4407 SmallVectorImpl<NamedAttribute> &attrs, 4408 Delimiter delimiter) override { 4409 SmallVector<OperandType, 2> dimOperands; 4410 SmallVector<OperandType, 1> symOperands; 4411 4412 auto parseElement = [&](bool isSymbol) -> ParseResult { 4413 OperandType operand; 4414 if (parseOperand(operand)) 4415 return failure(); 4416 if (isSymbol) 4417 symOperands.push_back(operand); 4418 else 4419 dimOperands.push_back(operand); 4420 return success(); 4421 }; 4422 4423 AffineMap map; 4424 if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter)) 4425 return failure(); 4426 // Add AffineMap attribute. 4427 if (map) { 4428 mapAttr = AffineMapAttr::get(map); 4429 attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr)); 4430 } 4431 4432 // Add dim operands before symbol operands in 'operands'. 4433 operands.assign(dimOperands.begin(), dimOperands.end()); 4434 operands.append(symOperands.begin(), symOperands.end()); 4435 return success(); 4436 } 4437 4438 //===--------------------------------------------------------------------===// 4439 // Region Parsing 4440 //===--------------------------------------------------------------------===// 4441 4442 /// Parse a region that takes `arguments` of `argTypes` types. This 4443 /// effectively defines the SSA values of `arguments` and assigns their type. 4444 ParseResult parseRegion(Region ®ion, ArrayRef<OperandType> arguments, 4445 ArrayRef<Type> argTypes, 4446 bool enableNameShadowing) override { 4447 assert(arguments.size() == argTypes.size() && 4448 "mismatching number of arguments and types"); 4449 4450 SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2> 4451 regionArguments; 4452 for (auto pair : llvm::zip(arguments, argTypes)) { 4453 const OperandType &operand = std::get<0>(pair); 4454 Type type = std::get<1>(pair); 4455 OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number, 4456 operand.location}; 4457 regionArguments.emplace_back(operandInfo, type); 4458 } 4459 4460 // Try to parse the region. 4461 assert((!enableNameShadowing || 4462 opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) && 4463 "name shadowing is only allowed on isolated regions"); 4464 if (parser.parseRegion(region, regionArguments, enableNameShadowing)) 4465 return failure(); 4466 return success(); 4467 } 4468 4469 /// Parses a region if present. 4470 ParseResult parseOptionalRegion(Region ®ion, 4471 ArrayRef<OperandType> arguments, 4472 ArrayRef<Type> argTypes, 4473 bool enableNameShadowing) override { 4474 if (parser.getToken().isNot(Token::l_brace)) 4475 return success(); 4476 return parseRegion(region, arguments, argTypes, enableNameShadowing); 4477 } 4478 4479 /// Parse a region argument. The type of the argument will be resolved later 4480 /// by a call to `parseRegion`. 4481 ParseResult parseRegionArgument(OperandType &argument) override { 4482 return parseOperand(argument); 4483 } 4484 4485 /// Parse a region argument if present. 4486 ParseResult parseOptionalRegionArgument(OperandType &argument) override { 4487 if (parser.getToken().isNot(Token::percent_identifier)) 4488 return success(); 4489 return parseRegionArgument(argument); 4490 } 4491 4492 ParseResult 4493 parseRegionArgumentList(SmallVectorImpl<OperandType> &result, 4494 int requiredOperandCount = -1, 4495 Delimiter delimiter = Delimiter::None) override { 4496 return parseOperandOrRegionArgList(result, /*isOperandList=*/false, 4497 requiredOperandCount, delimiter); 4498 } 4499 4500 //===--------------------------------------------------------------------===// 4501 // Successor Parsing 4502 //===--------------------------------------------------------------------===// 4503 4504 /// Parse a single operation successor. 4505 ParseResult parseSuccessor(Block *&dest) override { 4506 return parser.parseSuccessor(dest); 4507 } 4508 4509 /// Parse an optional operation successor and its operand list. 4510 OptionalParseResult parseOptionalSuccessor(Block *&dest) override { 4511 if (parser.getToken().isNot(Token::caret_identifier)) 4512 return llvm::None; 4513 return parseSuccessor(dest); 4514 } 4515 4516 /// Parse a single operation successor and its operand list. 4517 ParseResult 4518 parseSuccessorAndUseList(Block *&dest, 4519 SmallVectorImpl<Value> &operands) override { 4520 if (parseSuccessor(dest)) 4521 return failure(); 4522 4523 // Handle optional arguments. 4524 if (succeeded(parseOptionalLParen()) && 4525 (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) { 4526 return failure(); 4527 } 4528 return success(); 4529 } 4530 4531 //===--------------------------------------------------------------------===// 4532 // Type Parsing 4533 //===--------------------------------------------------------------------===// 4534 4535 /// Parse a type. 4536 ParseResult parseType(Type &result) override { 4537 return failure(!(result = parser.parseType())); 4538 } 4539 4540 /// Parse an optional type. 4541 OptionalParseResult parseOptionalType(Type &result) override { 4542 return parser.parseOptionalType(result); 4543 } 4544 4545 /// Parse an arrow followed by a type list. 4546 ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override { 4547 if (parseArrow() || parser.parseFunctionResultTypes(result)) 4548 return failure(); 4549 return success(); 4550 } 4551 4552 /// Parse an optional arrow followed by a type list. 4553 ParseResult 4554 parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override { 4555 if (!parser.consumeIf(Token::arrow)) 4556 return success(); 4557 return parser.parseFunctionResultTypes(result); 4558 } 4559 4560 /// Parse a colon followed by a type. 4561 ParseResult parseColonType(Type &result) override { 4562 return failure(parser.parseToken(Token::colon, "expected ':'") || 4563 !(result = parser.parseType())); 4564 } 4565 4566 /// Parse a colon followed by a type list, which must have at least one type. 4567 ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override { 4568 if (parser.parseToken(Token::colon, "expected ':'")) 4569 return failure(); 4570 return parser.parseTypeListNoParens(result); 4571 } 4572 4573 /// Parse an optional colon followed by a type list, which if present must 4574 /// have at least one type. 4575 ParseResult 4576 parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override { 4577 if (!parser.consumeIf(Token::colon)) 4578 return success(); 4579 return parser.parseTypeListNoParens(result); 4580 } 4581 4582 /// Parse a list of assignments of the form 4583 /// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...). 4584 /// The list must contain at least one entry 4585 ParseResult parseAssignmentList(SmallVectorImpl<OperandType> &lhs, 4586 SmallVectorImpl<OperandType> &rhs) override { 4587 auto parseElt = [&]() -> ParseResult { 4588 OperandType regionArg, operand; 4589 if (parseRegionArgument(regionArg) || parseEqual() || 4590 parseOperand(operand)) 4591 return failure(); 4592 lhs.push_back(regionArg); 4593 rhs.push_back(operand); 4594 return success(); 4595 }; 4596 if (parseLParen()) 4597 return failure(); 4598 return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt); 4599 } 4600 4601 private: 4602 /// The source location of the operation name. 4603 SMLoc nameLoc; 4604 4605 /// Information about the result name specifiers. 4606 ArrayRef<OperationParser::ResultRecord> resultIDs; 4607 4608 /// The abstract information of the operation. 4609 const AbstractOperation *opDefinition; 4610 4611 /// The main operation parser. 4612 OperationParser &parser; 4613 4614 /// A flag that indicates if any errors were emitted during parsing. 4615 bool emittedError = false; 4616 }; 4617 } // end anonymous namespace. 4618 4619 Operation * 4620 OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) { 4621 auto opLoc = getToken().getLoc(); 4622 auto opName = getTokenSpelling(); 4623 4624 auto *opDefinition = AbstractOperation::lookup(opName, getContext()); 4625 if (!opDefinition && !opName.contains('.')) { 4626 // If the operation name has no namespace prefix we treat it as a standard 4627 // operation and prefix it with "std". 4628 // TODO: Would it be better to just build a mapping of the registered 4629 // operations in the standard dialect? 4630 opDefinition = 4631 AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); 4632 } 4633 4634 if (!opDefinition) { 4635 emitError(opLoc) << "custom op '" << opName << "' is unknown"; 4636 return nullptr; 4637 } 4638 4639 consumeToken(); 4640 4641 // If the custom op parser crashes, produce some indication to help 4642 // debugging. 4643 std::string opNameStr = opName.str(); 4644 llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", 4645 opNameStr.c_str()); 4646 4647 // Get location information for the operation. 4648 auto srcLocation = getEncodedSourceLocation(opLoc); 4649 4650 // Have the op implementation take a crack and parsing this. 4651 OperationState opState(srcLocation, opDefinition->name); 4652 CleanupOpStateRegions guard{opState}; 4653 CustomOpAsmParser opAsmParser(opLoc, resultIDs, opDefinition, *this); 4654 if (opAsmParser.parseOperation(opState)) 4655 return nullptr; 4656 4657 // If it emitted an error, we failed. 4658 if (opAsmParser.didEmitError()) 4659 return nullptr; 4660 4661 // Parse a location if one is present. 4662 if (parseOptionalTrailingLocation(opState.location)) 4663 return nullptr; 4664 4665 // Otherwise, we succeeded. Use the state it parsed as our op information. 4666 return opBuilder.createOperation(opState); 4667 } 4668 4669 //===----------------------------------------------------------------------===// 4670 // Region Parsing 4671 //===----------------------------------------------------------------------===// 4672 4673 /// Region. 4674 /// 4675 /// region ::= '{' region-body 4676 /// 4677 ParseResult OperationParser::parseRegion( 4678 Region ®ion, 4679 ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments, 4680 bool isIsolatedNameScope) { 4681 // Parse the '{'. 4682 if (parseToken(Token::l_brace, "expected '{' to begin a region")) 4683 return failure(); 4684 4685 // Check for an empty region. 4686 if (entryArguments.empty() && consumeIf(Token::r_brace)) 4687 return success(); 4688 auto currentPt = opBuilder.saveInsertionPoint(); 4689 4690 // Push a new named value scope. 4691 pushSSANameScope(isIsolatedNameScope); 4692 4693 // Parse the first block directly to allow for it to be unnamed. 4694 Block *block = new Block(); 4695 4696 // Add arguments to the entry block. 4697 if (!entryArguments.empty()) { 4698 for (auto &placeholderArgPair : entryArguments) { 4699 auto &argInfo = placeholderArgPair.first; 4700 // Ensure that the argument was not already defined. 4701 if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) { 4702 return emitError(argInfo.loc, "region entry argument '" + argInfo.name + 4703 "' is already in use") 4704 .attachNote(getEncodedSourceLocation(*defLoc)) 4705 << "previously referenced here"; 4706 } 4707 if (addDefinition(placeholderArgPair.first, 4708 block->addArgument(placeholderArgPair.second))) { 4709 delete block; 4710 return failure(); 4711 } 4712 } 4713 4714 // If we had named arguments, then don't allow a block name. 4715 if (getToken().is(Token::caret_identifier)) 4716 return emitError("invalid block name in region with named arguments"); 4717 } 4718 4719 if (parseBlock(block)) { 4720 delete block; 4721 return failure(); 4722 } 4723 4724 // Verify that no other arguments were parsed. 4725 if (!entryArguments.empty() && 4726 block->getNumArguments() > entryArguments.size()) { 4727 delete block; 4728 return emitError("entry block arguments were already defined"); 4729 } 4730 4731 // Parse the rest of the region. 4732 region.push_back(block); 4733 if (parseRegionBody(region)) 4734 return failure(); 4735 4736 // Pop the SSA value scope for this region. 4737 if (popSSANameScope()) 4738 return failure(); 4739 4740 // Reset the original insertion point. 4741 opBuilder.restoreInsertionPoint(currentPt); 4742 return success(); 4743 } 4744 4745 /// Region. 4746 /// 4747 /// region-body ::= block* '}' 4748 /// 4749 ParseResult OperationParser::parseRegionBody(Region ®ion) { 4750 // Parse the list of blocks. 4751 while (!consumeIf(Token::r_brace)) { 4752 Block *newBlock = nullptr; 4753 if (parseBlock(newBlock)) 4754 return failure(); 4755 region.push_back(newBlock); 4756 } 4757 return success(); 4758 } 4759 4760 //===----------------------------------------------------------------------===// 4761 // Block Parsing 4762 //===----------------------------------------------------------------------===// 4763 4764 /// Block declaration. 4765 /// 4766 /// block ::= block-label? operation* 4767 /// block-label ::= block-id block-arg-list? `:` 4768 /// block-id ::= caret-id 4769 /// block-arg-list ::= `(` ssa-id-and-type-list? `)` 4770 /// 4771 ParseResult OperationParser::parseBlock(Block *&block) { 4772 // The first block of a region may already exist, if it does the caret 4773 // identifier is optional. 4774 if (block && getToken().isNot(Token::caret_identifier)) 4775 return parseBlockBody(block); 4776 4777 SMLoc nameLoc = getToken().getLoc(); 4778 auto name = getTokenSpelling(); 4779 if (parseToken(Token::caret_identifier, "expected block name")) 4780 return failure(); 4781 4782 block = defineBlockNamed(name, nameLoc, block); 4783 4784 // Fail if the block was already defined. 4785 if (!block) 4786 return emitError(nameLoc, "redefinition of block '") << name << "'"; 4787 4788 // If an argument list is present, parse it. 4789 if (consumeIf(Token::l_paren)) { 4790 SmallVector<BlockArgument, 8> bbArgs; 4791 if (parseOptionalBlockArgList(bbArgs, block) || 4792 parseToken(Token::r_paren, "expected ')' to end argument list")) 4793 return failure(); 4794 } 4795 4796 if (parseToken(Token::colon, "expected ':' after block name")) 4797 return failure(); 4798 4799 return parseBlockBody(block); 4800 } 4801 4802 ParseResult OperationParser::parseBlockBody(Block *block) { 4803 // Set the insertion point to the end of the block to parse. 4804 opBuilder.setInsertionPointToEnd(block); 4805 4806 // Parse the list of operations that make up the body of the block. 4807 while (getToken().isNot(Token::caret_identifier, Token::r_brace)) 4808 if (parseOperation()) 4809 return failure(); 4810 4811 return success(); 4812 } 4813 4814 /// Get the block with the specified name, creating it if it doesn't already 4815 /// exist. The location specified is the point of use, which allows 4816 /// us to diagnose references to blocks that are not defined precisely. 4817 Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) { 4818 auto &blockAndLoc = getBlockInfoByName(name); 4819 if (!blockAndLoc.first) { 4820 blockAndLoc = {new Block(), loc}; 4821 insertForwardRef(blockAndLoc.first, loc); 4822 } 4823 4824 return blockAndLoc.first; 4825 } 4826 4827 /// Define the block with the specified name. Returns the Block* or nullptr in 4828 /// the case of redefinition. 4829 Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc, 4830 Block *existing) { 4831 auto &blockAndLoc = getBlockInfoByName(name); 4832 if (!blockAndLoc.first) { 4833 // If the caller provided a block, use it. Otherwise create a new one. 4834 if (!existing) 4835 existing = new Block(); 4836 blockAndLoc.first = existing; 4837 blockAndLoc.second = loc; 4838 return blockAndLoc.first; 4839 } 4840 4841 // Forward declarations are removed once defined, so if we are defining a 4842 // existing block and it is not a forward declaration, then it is a 4843 // redeclaration. 4844 if (!eraseForwardRef(blockAndLoc.first)) 4845 return nullptr; 4846 return blockAndLoc.first; 4847 } 4848 4849 /// Parse a (possibly empty) list of SSA operands with types as block arguments. 4850 /// 4851 /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* 4852 /// 4853 ParseResult OperationParser::parseOptionalBlockArgList( 4854 SmallVectorImpl<BlockArgument> &results, Block *owner) { 4855 if (getToken().is(Token::r_brace)) 4856 return success(); 4857 4858 // If the block already has arguments, then we're handling the entry block. 4859 // Parse and register the names for the arguments, but do not add them. 4860 bool definingExistingArgs = owner->getNumArguments() != 0; 4861 unsigned nextArgument = 0; 4862 4863 return parseCommaSeparatedList([&]() -> ParseResult { 4864 return parseSSADefOrUseAndType( 4865 [&](SSAUseInfo useInfo, Type type) -> ParseResult { 4866 // If this block did not have existing arguments, define a new one. 4867 if (!definingExistingArgs) 4868 return addDefinition(useInfo, owner->addArgument(type)); 4869 4870 // Otherwise, ensure that this argument has already been created. 4871 if (nextArgument >= owner->getNumArguments()) 4872 return emitError("too many arguments specified in argument list"); 4873 4874 // Finally, make sure the existing argument has the correct type. 4875 auto arg = owner->getArgument(nextArgument++); 4876 if (arg.getType() != type) 4877 return emitError("argument and block argument type mismatch"); 4878 return addDefinition(useInfo, arg); 4879 }); 4880 }); 4881 } 4882 4883 //===----------------------------------------------------------------------===// 4884 // Top-level entity parsing. 4885 //===----------------------------------------------------------------------===// 4886 4887 namespace { 4888 /// This parser handles entities that are only valid at the top level of the 4889 /// file. 4890 class ModuleParser : public Parser { 4891 public: 4892 explicit ModuleParser(ParserState &state) : Parser(state) {} 4893 4894 ParseResult parseModule(ModuleOp module); 4895 4896 private: 4897 /// Parse an attribute alias declaration. 4898 ParseResult parseAttributeAliasDef(); 4899 4900 /// Parse an attribute alias declaration. 4901 ParseResult parseTypeAliasDef(); 4902 }; 4903 } // end anonymous namespace 4904 4905 /// Parses an attribute alias declaration. 4906 /// 4907 /// attribute-alias-def ::= '#' alias-name `=` attribute-value 4908 /// 4909 ParseResult ModuleParser::parseAttributeAliasDef() { 4910 assert(getToken().is(Token::hash_identifier)); 4911 StringRef aliasName = getTokenSpelling().drop_front(); 4912 4913 // Check for redefinitions. 4914 if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0) 4915 return emitError("redefinition of attribute alias id '" + aliasName + "'"); 4916 4917 // Make sure this isn't invading the dialect attribute namespace. 4918 if (aliasName.contains('.')) 4919 return emitError("attribute names with a '.' are reserved for " 4920 "dialect-defined names"); 4921 4922 consumeToken(Token::hash_identifier); 4923 4924 // Parse the '='. 4925 if (parseToken(Token::equal, "expected '=' in attribute alias definition")) 4926 return failure(); 4927 4928 // Parse the attribute value. 4929 Attribute attr = parseAttribute(); 4930 if (!attr) 4931 return failure(); 4932 4933 getState().symbols.attributeAliasDefinitions[aliasName] = attr; 4934 return success(); 4935 } 4936 4937 /// Parse a type alias declaration. 4938 /// 4939 /// type-alias-def ::= '!' alias-name `=` 'type' type 4940 /// 4941 ParseResult ModuleParser::parseTypeAliasDef() { 4942 assert(getToken().is(Token::exclamation_identifier)); 4943 StringRef aliasName = getTokenSpelling().drop_front(); 4944 4945 // Check for redefinitions. 4946 if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0) 4947 return emitError("redefinition of type alias id '" + aliasName + "'"); 4948 4949 // Make sure this isn't invading the dialect type namespace. 4950 if (aliasName.contains('.')) 4951 return emitError("type names with a '.' are reserved for " 4952 "dialect-defined names"); 4953 4954 consumeToken(Token::exclamation_identifier); 4955 4956 // Parse the '=' and 'type'. 4957 if (parseToken(Token::equal, "expected '=' in type alias definition") || 4958 parseToken(Token::kw_type, "expected 'type' in type alias definition")) 4959 return failure(); 4960 4961 // Parse the type. 4962 Type aliasedType = parseType(); 4963 if (!aliasedType) 4964 return failure(); 4965 4966 // Register this alias with the parser state. 4967 getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType); 4968 return success(); 4969 } 4970 4971 /// This is the top-level module parser. 4972 ParseResult ModuleParser::parseModule(ModuleOp module) { 4973 OperationParser opParser(getState(), module); 4974 4975 // Module itself is a name scope. 4976 opParser.pushSSANameScope(/*isIsolated=*/true); 4977 4978 while (true) { 4979 switch (getToken().getKind()) { 4980 default: 4981 // Parse a top-level operation. 4982 if (opParser.parseOperation()) 4983 return failure(); 4984 break; 4985 4986 // If we got to the end of the file, then we're done. 4987 case Token::eof: { 4988 if (opParser.finalize()) 4989 return failure(); 4990 4991 // Handle the case where the top level module was explicitly defined. 4992 auto &bodyBlocks = module.getBodyRegion().getBlocks(); 4993 auto &operations = bodyBlocks.front().getOperations(); 4994 assert(!operations.empty() && "expected a valid module terminator"); 4995 4996 // Check that the first operation is a module, and it is the only 4997 // non-terminator operation. 4998 ModuleOp nested = dyn_cast<ModuleOp>(operations.front()); 4999 if (nested && std::next(operations.begin(), 2) == operations.end()) { 5000 // Merge the data of the nested module operation into 'module'. 5001 module.setLoc(nested.getLoc()); 5002 module.setAttrs(nested.getOperation()->getAttrList()); 5003 bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks()); 5004 5005 // Erase the original module body. 5006 bodyBlocks.pop_front(); 5007 } 5008 5009 return opParser.popSSANameScope(); 5010 } 5011 5012 // If we got an error token, then the lexer already emitted an error, just 5013 // stop. Someday we could introduce error recovery if there was demand 5014 // for it. 5015 case Token::error: 5016 return failure(); 5017 5018 // Parse an attribute alias. 5019 case Token::hash_identifier: 5020 if (parseAttributeAliasDef()) 5021 return failure(); 5022 break; 5023 5024 // Parse a type alias. 5025 case Token::exclamation_identifier: 5026 if (parseTypeAliasDef()) 5027 return failure(); 5028 break; 5029 } 5030 } 5031 } 5032 5033 //===----------------------------------------------------------------------===// 5034 5035 /// This parses the file specified by the indicated SourceMgr and returns an 5036 /// MLIR module if it was valid. If not, it emits diagnostics and returns 5037 /// null. 5038 OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, 5039 MLIRContext *context) { 5040 auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID()); 5041 5042 // This is the result module we are parsing into. 5043 OwningModuleRef module(ModuleOp::create(FileLineColLoc::get( 5044 sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context))); 5045 5046 SymbolState aliasState; 5047 ParserState state(sourceMgr, context, aliasState); 5048 if (ModuleParser(state).parseModule(*module)) 5049 return nullptr; 5050 5051 // Make sure the parse module has no other structural problems detected by 5052 // the verifier. 5053 if (failed(verify(*module))) 5054 return nullptr; 5055 5056 return module; 5057 } 5058 5059 /// This parses the file specified by the indicated filename and returns an 5060 /// MLIR module if it was valid. If not, the error message is emitted through 5061 /// the error handler registered in the context, and a null pointer is returned. 5062 OwningModuleRef mlir::parseSourceFile(StringRef filename, 5063 MLIRContext *context) { 5064 llvm::SourceMgr sourceMgr; 5065 return parseSourceFile(filename, sourceMgr, context); 5066 } 5067 5068 /// This parses the file specified by the indicated filename using the provided 5069 /// SourceMgr and returns an MLIR module if it was valid. If not, the error 5070 /// message is emitted through the error handler registered in the context, and 5071 /// a null pointer is returned. 5072 OwningModuleRef mlir::parseSourceFile(StringRef filename, 5073 llvm::SourceMgr &sourceMgr, 5074 MLIRContext *context) { 5075 if (sourceMgr.getNumBuffers() != 0) { 5076 // TODO(b/136086478): Extend to support multiple buffers. 5077 emitError(mlir::UnknownLoc::get(context), 5078 "only main buffer parsed at the moment"); 5079 return nullptr; 5080 } 5081 auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename); 5082 if (std::error_code error = file_or_err.getError()) { 5083 emitError(mlir::UnknownLoc::get(context), 5084 "could not open input file " + filename); 5085 return nullptr; 5086 } 5087 5088 // Load the MLIR module. 5089 sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc()); 5090 return parseSourceFile(sourceMgr, context); 5091 } 5092 5093 /// This parses the program string to a MLIR module if it was valid. If not, 5094 /// it emits diagnostics and returns null. 5095 OwningModuleRef mlir::parseSourceString(StringRef moduleStr, 5096 MLIRContext *context) { 5097 auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); 5098 if (!memBuffer) 5099 return nullptr; 5100 5101 SourceMgr sourceMgr; 5102 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); 5103 return parseSourceFile(sourceMgr, context); 5104 } 5105 5106 /// Parses a symbol, of type 'T', and returns it if parsing was successful. If 5107 /// parsing failed, nullptr is returned. The number of bytes read from the input 5108 /// string is returned in 'numRead'. 5109 template <typename T, typename ParserFn> 5110 static T parseSymbol(StringRef inputStr, MLIRContext *context, size_t &numRead, 5111 ParserFn &&parserFn) { 5112 SymbolState aliasState; 5113 return parseSymbol<T>( 5114 inputStr, context, aliasState, 5115 [&](Parser &parser) { 5116 SourceMgrDiagnosticHandler handler( 5117 const_cast<llvm::SourceMgr &>(parser.getSourceMgr()), 5118 parser.getContext()); 5119 return parserFn(parser); 5120 }, 5121 &numRead); 5122 } 5123 5124 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context) { 5125 size_t numRead = 0; 5126 return parseAttribute(attrStr, context, numRead); 5127 } 5128 Attribute mlir::parseAttribute(StringRef attrStr, Type type) { 5129 size_t numRead = 0; 5130 return parseAttribute(attrStr, type, numRead); 5131 } 5132 5133 Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context, 5134 size_t &numRead) { 5135 return parseSymbol<Attribute>(attrStr, context, numRead, [](Parser &parser) { 5136 return parser.parseAttribute(); 5137 }); 5138 } 5139 Attribute mlir::parseAttribute(StringRef attrStr, Type type, size_t &numRead) { 5140 return parseSymbol<Attribute>( 5141 attrStr, type.getContext(), numRead, 5142 [type](Parser &parser) { return parser.parseAttribute(type); }); 5143 } 5144 5145 Type mlir::parseType(StringRef typeStr, MLIRContext *context) { 5146 size_t numRead = 0; 5147 return parseType(typeStr, context, numRead); 5148 } 5149 5150 Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t &numRead) { 5151 return parseSymbol<Type>(typeStr, context, numRead, 5152 [](Parser &parser) { return parser.parseType(); }); 5153 } 5154