1 //===- OperationSupport.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains out-of-line implementations of the support types that 10 // Operation and related classes build on top of. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/IR/OperationSupport.h" 15 #include "mlir/IR/Block.h" 16 #include "mlir/IR/OpDefinition.h" 17 #include "mlir/IR/Operation.h" 18 #include "mlir/IR/StandardTypes.h" 19 using namespace mlir; 20 21 //===----------------------------------------------------------------------===// 22 // NamedAttrList 23 //===----------------------------------------------------------------------===// 24 25 NamedAttrList::NamedAttrList(ArrayRef<NamedAttribute> attributes) { 26 assign(attributes.begin(), attributes.end()); 27 } 28 29 NamedAttrList::NamedAttrList(const_iterator in_start, const_iterator in_end) { 30 assign(in_start, in_end); 31 } 32 33 ArrayRef<NamedAttribute> NamedAttrList::getAttrs() const { return attrs; } 34 35 DictionaryAttr NamedAttrList::getDictionary(MLIRContext *context) const { 36 if (!isSorted()) { 37 DictionaryAttr::sortInPlace(attrs); 38 dictionarySorted.setPointerAndInt(nullptr, true); 39 } 40 if (!dictionarySorted.getPointer()) 41 dictionarySorted.setPointer(DictionaryAttr::getWithSorted(attrs, context)); 42 return dictionarySorted.getPointer().cast<DictionaryAttr>(); 43 } 44 45 NamedAttrList::operator MutableDictionaryAttr() const { 46 if (attrs.empty()) 47 return MutableDictionaryAttr(); 48 return getDictionary(attrs.front().second.getContext()); 49 } 50 51 /// Add an attribute with the specified name. 52 void NamedAttrList::append(StringRef name, Attribute attr) { 53 append(Identifier::get(name, attr.getContext()), attr); 54 } 55 56 /// Add an attribute with the specified name. 57 void NamedAttrList::append(Identifier name, Attribute attr) { 58 push_back({name, attr}); 59 } 60 61 /// Add an array of named attributes. 62 void NamedAttrList::append(ArrayRef<NamedAttribute> newAttributes) { 63 append(newAttributes.begin(), newAttributes.end()); 64 } 65 66 /// Add a range of named attributes. 67 void NamedAttrList::append(const_iterator in_start, const_iterator in_end) { 68 // TODO: expand to handle case where values appended are in order & after 69 // end of current list. 70 dictionarySorted.setPointerAndInt(nullptr, false); 71 attrs.append(in_start, in_end); 72 } 73 74 /// Replaces the attributes with new list of attributes. 75 void NamedAttrList::assign(const_iterator in_start, const_iterator in_end) { 76 DictionaryAttr::sort(ArrayRef<NamedAttribute>{in_start, in_end}, attrs); 77 dictionarySorted.setPointerAndInt(nullptr, true); 78 } 79 80 void NamedAttrList::push_back(NamedAttribute newAttribute) { 81 if (isSorted()) 82 dictionarySorted.setInt( 83 attrs.empty() || 84 strcmp(attrs.back().first.data(), newAttribute.first.data()) < 0); 85 dictionarySorted.setPointer(nullptr); 86 attrs.push_back(newAttribute); 87 } 88 89 /// Helper function to find attribute in possible sorted vector of 90 /// NamedAttributes. 91 template <typename T> 92 static auto *findAttr(SmallVectorImpl<NamedAttribute> &attrs, T name, 93 bool sorted) { 94 if (!sorted) { 95 return llvm::find_if( 96 attrs, [name](NamedAttribute attr) { return attr.first == name; }); 97 } 98 99 auto *it = llvm::lower_bound(attrs, name); 100 if (it == attrs.end() || it->first != name) 101 return attrs.end(); 102 return it; 103 } 104 105 /// Return the specified attribute if present, null otherwise. 106 Attribute NamedAttrList::get(StringRef name) const { 107 auto *it = findAttr(attrs, name, isSorted()); 108 return it != attrs.end() ? it->second : nullptr; 109 } 110 111 /// Return the specified attribute if present, null otherwise. 112 Attribute NamedAttrList::get(Identifier name) const { 113 auto *it = findAttr(attrs, name, isSorted()); 114 return it != attrs.end() ? it->second : nullptr; 115 } 116 117 /// Return the specified named attribute if present, None otherwise. 118 Optional<NamedAttribute> NamedAttrList::getNamed(StringRef name) const { 119 auto *it = findAttr(attrs, name, isSorted()); 120 return it != attrs.end() ? *it : Optional<NamedAttribute>(); 121 } 122 Optional<NamedAttribute> NamedAttrList::getNamed(Identifier name) const { 123 auto *it = findAttr(attrs, name, isSorted()); 124 return it != attrs.end() ? *it : Optional<NamedAttribute>(); 125 } 126 127 /// If the an attribute exists with the specified name, change it to the new 128 /// value. Otherwise, add a new attribute with the specified name/value. 129 void NamedAttrList::set(Identifier name, Attribute value) { 130 assert(value && "attributes may never be null"); 131 132 // Look for an existing value for the given name, and set it in-place. 133 auto *it = findAttr(attrs, name, isSorted()); 134 if (it != attrs.end()) { 135 // Bail out early if the value is the same as what we already have. 136 if (it->second == value) 137 return; 138 dictionarySorted.setPointer(nullptr); 139 it->second = value; 140 return; 141 } 142 143 // Otherwise, insert the new attribute into its sorted position. 144 it = llvm::lower_bound(attrs, name); 145 dictionarySorted.setPointer(nullptr); 146 attrs.insert(it, {name, value}); 147 } 148 void NamedAttrList::set(StringRef name, Attribute value) { 149 assert(value && "setting null attribute not supported"); 150 return set(mlir::Identifier::get(name, value.getContext()), value); 151 } 152 153 NamedAttrList & 154 NamedAttrList::operator=(const SmallVectorImpl<NamedAttribute> &rhs) { 155 assign(rhs.begin(), rhs.end()); 156 return *this; 157 } 158 159 NamedAttrList::operator ArrayRef<NamedAttribute>() const { return attrs; } 160 161 //===----------------------------------------------------------------------===// 162 // OperationState 163 //===----------------------------------------------------------------------===// 164 165 OperationState::OperationState(Location location, StringRef name) 166 : location(location), name(name, location->getContext()) {} 167 168 OperationState::OperationState(Location location, OperationName name) 169 : location(location), name(name) {} 170 171 OperationState::OperationState(Location location, StringRef name, 172 ValueRange operands, TypeRange types, 173 ArrayRef<NamedAttribute> attributes, 174 BlockRange successors, 175 MutableArrayRef<std::unique_ptr<Region>> regions) 176 : location(location), name(name, location->getContext()), 177 operands(operands.begin(), operands.end()), 178 types(types.begin(), types.end()), 179 attributes(attributes.begin(), attributes.end()), 180 successors(successors.begin(), successors.end()) { 181 for (std::unique_ptr<Region> &r : regions) 182 this->regions.push_back(std::move(r)); 183 } 184 185 void OperationState::addOperands(ValueRange newOperands) { 186 operands.append(newOperands.begin(), newOperands.end()); 187 } 188 189 void OperationState::addSuccessors(BlockRange newSuccessors) { 190 successors.append(newSuccessors.begin(), newSuccessors.end()); 191 } 192 193 Region *OperationState::addRegion() { 194 regions.emplace_back(new Region); 195 return regions.back().get(); 196 } 197 198 void OperationState::addRegion(std::unique_ptr<Region> &®ion) { 199 regions.push_back(std::move(region)); 200 } 201 202 void OperationState::addRegions( 203 MutableArrayRef<std::unique_ptr<Region>> regions) { 204 for (std::unique_ptr<Region> ®ion : regions) 205 addRegion(std::move(region)); 206 } 207 208 //===----------------------------------------------------------------------===// 209 // OperandStorage 210 //===----------------------------------------------------------------------===// 211 212 detail::OperandStorage::OperandStorage(Operation *owner, ValueRange values) 213 : representation(0) { 214 auto &inlineStorage = getInlineStorage(); 215 inlineStorage.numOperands = inlineStorage.capacity = values.size(); 216 auto *operandPtrBegin = getTrailingObjects<OpOperand>(); 217 for (unsigned i = 0, e = inlineStorage.numOperands; i < e; ++i) 218 new (&operandPtrBegin[i]) OpOperand(owner, values[i]); 219 } 220 221 detail::OperandStorage::~OperandStorage() { 222 // Destruct the current storage container. 223 if (isDynamicStorage()) { 224 TrailingOperandStorage &storage = getDynamicStorage(); 225 storage.~TrailingOperandStorage(); 226 free(&storage); 227 } else { 228 getInlineStorage().~TrailingOperandStorage(); 229 } 230 } 231 232 /// Replace the operands contained in the storage with the ones provided in 233 /// 'values'. 234 void detail::OperandStorage::setOperands(Operation *owner, ValueRange values) { 235 MutableArrayRef<OpOperand> storageOperands = resize(owner, values.size()); 236 for (unsigned i = 0, e = values.size(); i != e; ++i) 237 storageOperands[i].set(values[i]); 238 } 239 240 /// Replace the operands beginning at 'start' and ending at 'start' + 'length' 241 /// with the ones provided in 'operands'. 'operands' may be smaller or larger 242 /// than the range pointed to by 'start'+'length'. 243 void detail::OperandStorage::setOperands(Operation *owner, unsigned start, 244 unsigned length, ValueRange operands) { 245 // If the new size is the same, we can update inplace. 246 unsigned newSize = operands.size(); 247 if (newSize == length) { 248 MutableArrayRef<OpOperand> storageOperands = getOperands(); 249 for (unsigned i = 0, e = length; i != e; ++i) 250 storageOperands[start + i].set(operands[i]); 251 return; 252 } 253 // If the new size is greater, remove the extra operands and set the rest 254 // inplace. 255 if (newSize < length) { 256 eraseOperands(start + operands.size(), length - newSize); 257 setOperands(owner, start, newSize, operands); 258 return; 259 } 260 // Otherwise, the new size is greater so we need to grow the storage. 261 auto storageOperands = resize(owner, size() + (newSize - length)); 262 263 // Shift operands to the right to make space for the new operands. 264 unsigned rotateSize = storageOperands.size() - (start + length); 265 auto rbegin = storageOperands.rbegin(); 266 std::rotate(rbegin, std::next(rbegin, newSize - length), rbegin + rotateSize); 267 268 // Update the operands inplace. 269 for (unsigned i = 0, e = operands.size(); i != e; ++i) 270 storageOperands[start + i].set(operands[i]); 271 } 272 273 /// Erase an operand held by the storage. 274 void detail::OperandStorage::eraseOperands(unsigned start, unsigned length) { 275 TrailingOperandStorage &storage = getStorage(); 276 MutableArrayRef<OpOperand> operands = storage.getOperands(); 277 assert((start + length) <= operands.size()); 278 storage.numOperands -= length; 279 280 // Shift all operands down if the operand to remove is not at the end. 281 if (start != storage.numOperands) { 282 auto *indexIt = std::next(operands.begin(), start); 283 std::rotate(indexIt, std::next(indexIt, length), operands.end()); 284 } 285 for (unsigned i = 0; i != length; ++i) 286 operands[storage.numOperands + i].~OpOperand(); 287 } 288 289 /// Resize the storage to the given size. Returns the array containing the new 290 /// operands. 291 MutableArrayRef<OpOperand> detail::OperandStorage::resize(Operation *owner, 292 unsigned newSize) { 293 TrailingOperandStorage &storage = getStorage(); 294 295 // If the number of operands is less than or equal to the current amount, we 296 // can just update in place. 297 unsigned &numOperands = storage.numOperands; 298 MutableArrayRef<OpOperand> operands = storage.getOperands(); 299 if (newSize <= numOperands) { 300 // If the number of new size is less than the current, remove any extra 301 // operands. 302 for (unsigned i = newSize; i != numOperands; ++i) 303 operands[i].~OpOperand(); 304 numOperands = newSize; 305 return operands.take_front(newSize); 306 } 307 308 // If the new size is within the original inline capacity, grow inplace. 309 if (newSize <= storage.capacity) { 310 OpOperand *opBegin = operands.data(); 311 for (unsigned e = newSize; numOperands != e; ++numOperands) 312 new (&opBegin[numOperands]) OpOperand(owner); 313 return MutableArrayRef<OpOperand>(opBegin, newSize); 314 } 315 316 // Otherwise, we need to allocate a new storage. 317 unsigned newCapacity = 318 std::max(unsigned(llvm::NextPowerOf2(storage.capacity + 2)), newSize); 319 auto *newStorageMem = 320 malloc(TrailingOperandStorage::totalSizeToAlloc<OpOperand>(newCapacity)); 321 auto *newStorage = ::new (newStorageMem) TrailingOperandStorage(); 322 newStorage->numOperands = newSize; 323 newStorage->capacity = newCapacity; 324 325 // Move the current operands to the new storage. 326 MutableArrayRef<OpOperand> newOperands = newStorage->getOperands(); 327 std::uninitialized_copy(std::make_move_iterator(operands.begin()), 328 std::make_move_iterator(operands.end()), 329 newOperands.begin()); 330 331 // Destroy the original operands. 332 for (auto &operand : operands) 333 operand.~OpOperand(); 334 335 // Initialize any new operands. 336 for (unsigned e = newSize; numOperands != e; ++numOperands) 337 new (&newOperands[numOperands]) OpOperand(owner); 338 339 // If the current storage is also dynamic, free it. 340 if (isDynamicStorage()) 341 free(&storage); 342 343 // Update the storage representation to use the new dynamic storage. 344 representation = reinterpret_cast<intptr_t>(newStorage); 345 representation |= DynamicStorageBit; 346 return newOperands; 347 } 348 349 //===----------------------------------------------------------------------===// 350 // ResultStorage 351 //===----------------------------------------------------------------------===// 352 353 /// Returns the parent operation of this trailing result. 354 Operation *detail::TrailingOpResult::getOwner() { 355 // We need to do some arithmetic to get the operation pointer. Move the 356 // trailing owner to the start of the array. 357 TrailingOpResult *trailingIt = this - trailingResultNumber; 358 359 // Move the owner past the inline op results to get to the operation. 360 auto *inlineResultIt = reinterpret_cast<InLineOpResult *>(trailingIt) - 361 OpResult::getMaxInlineResults(); 362 return reinterpret_cast<Operation *>(inlineResultIt) - 1; 363 } 364 365 //===----------------------------------------------------------------------===// 366 // Operation Value-Iterators 367 //===----------------------------------------------------------------------===// 368 369 //===----------------------------------------------------------------------===// 370 // OperandRange 371 372 OperandRange::OperandRange(Operation *op) 373 : OperandRange(op->getOpOperands().data(), op->getNumOperands()) {} 374 375 /// Return the operand index of the first element of this range. The range 376 /// must not be empty. 377 unsigned OperandRange::getBeginOperandIndex() const { 378 assert(!empty() && "range must not be empty"); 379 return base->getOperandNumber(); 380 } 381 382 //===----------------------------------------------------------------------===// 383 // MutableOperandRange 384 385 /// Construct a new mutable range from the given operand, operand start index, 386 /// and range length. 387 MutableOperandRange::MutableOperandRange( 388 Operation *owner, unsigned start, unsigned length, 389 ArrayRef<OperandSegment> operandSegments) 390 : owner(owner), start(start), length(length), 391 operandSegments(operandSegments.begin(), operandSegments.end()) { 392 assert((start + length) <= owner->getNumOperands() && "invalid range"); 393 } 394 MutableOperandRange::MutableOperandRange(Operation *owner) 395 : MutableOperandRange(owner, /*start=*/0, owner->getNumOperands()) {} 396 397 /// Slice this range into a sub range, with the additional operand segment. 398 MutableOperandRange 399 MutableOperandRange::slice(unsigned subStart, unsigned subLen, 400 Optional<OperandSegment> segment) { 401 assert((subStart + subLen) <= length && "invalid sub-range"); 402 MutableOperandRange subSlice(owner, start + subStart, subLen, 403 operandSegments); 404 if (segment) 405 subSlice.operandSegments.push_back(*segment); 406 return subSlice; 407 } 408 409 /// Append the given values to the range. 410 void MutableOperandRange::append(ValueRange values) { 411 if (values.empty()) 412 return; 413 owner->insertOperands(start + length, values); 414 updateLength(length + values.size()); 415 } 416 417 /// Assign this range to the given values. 418 void MutableOperandRange::assign(ValueRange values) { 419 owner->setOperands(start, length, values); 420 if (length != values.size()) 421 updateLength(/*newLength=*/values.size()); 422 } 423 424 /// Assign the range to the given value. 425 void MutableOperandRange::assign(Value value) { 426 if (length == 1) { 427 owner->setOperand(start, value); 428 } else { 429 owner->setOperands(start, length, value); 430 updateLength(/*newLength=*/1); 431 } 432 } 433 434 /// Erase the operands within the given sub-range. 435 void MutableOperandRange::erase(unsigned subStart, unsigned subLen) { 436 assert((subStart + subLen) <= length && "invalid sub-range"); 437 if (length == 0) 438 return; 439 owner->eraseOperands(start + subStart, subLen); 440 updateLength(length - subLen); 441 } 442 443 /// Clear this range and erase all of the operands. 444 void MutableOperandRange::clear() { 445 if (length != 0) { 446 owner->eraseOperands(start, length); 447 updateLength(/*newLength=*/0); 448 } 449 } 450 451 /// Allow implicit conversion to an OperandRange. 452 MutableOperandRange::operator OperandRange() const { 453 return owner->getOperands().slice(start, length); 454 } 455 456 /// Update the length of this range to the one provided. 457 void MutableOperandRange::updateLength(unsigned newLength) { 458 int32_t diff = int32_t(newLength) - int32_t(length); 459 length = newLength; 460 461 // Update any of the provided segment attributes. 462 for (OperandSegment &segment : operandSegments) { 463 auto attr = segment.second.second.cast<DenseIntElementsAttr>(); 464 SmallVector<int32_t, 8> segments(attr.getValues<int32_t>()); 465 segments[segment.first] += diff; 466 segment.second.second = DenseIntElementsAttr::get(attr.getType(), segments); 467 owner->setAttr(segment.second.first, segment.second.second); 468 } 469 } 470 471 //===----------------------------------------------------------------------===// 472 // ResultRange 473 474 ResultRange::ResultRange(Operation *op) 475 : ResultRange(op, /*startIndex=*/0, op->getNumResults()) {} 476 477 ArrayRef<Type> ResultRange::getTypes() const { 478 return getBase()->getResultTypes().slice(getStartIndex(), size()); 479 } 480 481 /// See `llvm::indexed_accessor_range` for details. 482 OpResult ResultRange::dereference(Operation *op, ptrdiff_t index) { 483 return op->getResult(index); 484 } 485 486 //===----------------------------------------------------------------------===// 487 // ValueRange 488 489 ValueRange::ValueRange(ArrayRef<Value> values) 490 : ValueRange(values.data(), values.size()) {} 491 ValueRange::ValueRange(OperandRange values) 492 : ValueRange(values.begin().getBase(), values.size()) {} 493 ValueRange::ValueRange(ResultRange values) 494 : ValueRange( 495 {values.getBase(), static_cast<unsigned>(values.getStartIndex())}, 496 values.size()) {} 497 498 /// See `llvm::detail::indexed_accessor_range_base` for details. 499 ValueRange::OwnerT ValueRange::offset_base(const OwnerT &owner, 500 ptrdiff_t index) { 501 if (auto *value = owner.ptr.dyn_cast<const Value *>()) 502 return {value + index}; 503 if (auto *operand = owner.ptr.dyn_cast<OpOperand *>()) 504 return {operand + index}; 505 Operation *operation = reinterpret_cast<Operation *>(owner.ptr.get<void *>()); 506 return {operation, owner.startIndex + static_cast<unsigned>(index)}; 507 } 508 /// See `llvm::detail::indexed_accessor_range_base` for details. 509 Value ValueRange::dereference_iterator(const OwnerT &owner, ptrdiff_t index) { 510 if (auto *value = owner.ptr.dyn_cast<const Value *>()) 511 return value[index]; 512 if (auto *operand = owner.ptr.dyn_cast<OpOperand *>()) 513 return operand[index].get(); 514 Operation *operation = reinterpret_cast<Operation *>(owner.ptr.get<void *>()); 515 return operation->getResult(owner.startIndex + index); 516 } 517 518 //===----------------------------------------------------------------------===// 519 // Operation Equivalency 520 //===----------------------------------------------------------------------===// 521 522 llvm::hash_code OperationEquivalence::computeHash(Operation *op, Flags flags) { 523 // Hash operations based upon their: 524 // - Operation Name 525 // - Attributes 526 llvm::hash_code hash = 527 llvm::hash_combine(op->getName(), op->getMutableAttrDict()); 528 529 // - Result Types 530 ArrayRef<Type> resultTypes = op->getResultTypes(); 531 switch (resultTypes.size()) { 532 case 0: 533 // We don't need to add anything to the hash. 534 break; 535 case 1: 536 // Add in the result type. 537 hash = llvm::hash_combine(hash, resultTypes.front()); 538 break; 539 default: 540 // Use the type buffer as the hash, as we can guarantee it is the same for 541 // any given range of result types. This takes advantage of the fact the 542 // result types >1 are stored in a TupleType and uniqued. 543 hash = llvm::hash_combine(hash, resultTypes.data()); 544 break; 545 } 546 547 // - Operands 548 bool ignoreOperands = flags & Flags::IgnoreOperands; 549 if (!ignoreOperands) { 550 // TODO: Allow commutative operations to have different ordering. 551 hash = llvm::hash_combine( 552 hash, llvm::hash_combine_range(op->operand_begin(), op->operand_end())); 553 } 554 return hash; 555 } 556 557 bool OperationEquivalence::isEquivalentTo(Operation *lhs, Operation *rhs, 558 Flags flags) { 559 if (lhs == rhs) 560 return true; 561 562 // Compare the operation name. 563 if (lhs->getName() != rhs->getName()) 564 return false; 565 // Check operand counts. 566 if (lhs->getNumOperands() != rhs->getNumOperands()) 567 return false; 568 // Compare attributes. 569 if (lhs->getMutableAttrDict() != rhs->getMutableAttrDict()) 570 return false; 571 // Compare result types. 572 ArrayRef<Type> lhsResultTypes = lhs->getResultTypes(); 573 ArrayRef<Type> rhsResultTypes = rhs->getResultTypes(); 574 if (lhsResultTypes.size() != rhsResultTypes.size()) 575 return false; 576 switch (lhsResultTypes.size()) { 577 case 0: 578 break; 579 case 1: 580 // Compare the single result type. 581 if (lhsResultTypes.front() != rhsResultTypes.front()) 582 return false; 583 break; 584 default: 585 // Use the type buffer for the comparison, as we can guarantee it is the 586 // same for any given range of result types. This takes advantage of the 587 // fact the result types >1 are stored in a TupleType and uniqued. 588 if (lhsResultTypes.data() != rhsResultTypes.data()) 589 return false; 590 break; 591 } 592 // Compare operands. 593 bool ignoreOperands = flags & Flags::IgnoreOperands; 594 if (ignoreOperands) 595 return true; 596 // TODO: Allow commutative operations to have different ordering. 597 return std::equal(lhs->operand_begin(), lhs->operand_end(), 598 rhs->operand_begin()); 599 } 600