1 //===- Operation.cpp - Operation support code -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/Operation.h" 10 #include "mlir/IR/BlockAndValueMapping.h" 11 #include "mlir/IR/Dialect.h" 12 #include "mlir/IR/OpImplementation.h" 13 #include "mlir/IR/PatternMatch.h" 14 #include "mlir/IR/StandardTypes.h" 15 #include "mlir/IR/TypeUtilities.h" 16 #include <numeric> 17 18 using namespace mlir; 19 20 OpAsmParser::~OpAsmParser() {} 21 22 //===----------------------------------------------------------------------===// 23 // OperationName 24 //===----------------------------------------------------------------------===// 25 26 /// Form the OperationName for an op with the specified string. This either is 27 /// a reference to an AbstractOperation if one is known, or a uniqued Identifier 28 /// if not. 29 OperationName::OperationName(StringRef name, MLIRContext *context) { 30 if (auto *op = AbstractOperation::lookup(name, context)) 31 representation = op; 32 else 33 representation = Identifier::get(name, context); 34 } 35 36 /// Return the name of the dialect this operation is registered to. 37 StringRef OperationName::getDialect() const { 38 return getStringRef().split('.').first; 39 } 40 41 /// Return the name of this operation. This always succeeds. 42 StringRef OperationName::getStringRef() const { 43 if (auto *op = representation.dyn_cast<const AbstractOperation *>()) 44 return op->name; 45 return representation.get<Identifier>().strref(); 46 } 47 48 const AbstractOperation *OperationName::getAbstractOperation() const { 49 return representation.dyn_cast<const AbstractOperation *>(); 50 } 51 52 OperationName OperationName::getFromOpaquePointer(void *pointer) { 53 return OperationName(RepresentationUnion::getFromOpaqueValue(pointer)); 54 } 55 56 //===----------------------------------------------------------------------===// 57 // Operation 58 //===----------------------------------------------------------------------===// 59 60 /// Create a new Operation with the specific fields. 61 Operation *Operation::create(Location location, OperationName name, 62 ArrayRef<Type> resultTypes, 63 ArrayRef<Value> operands, 64 ArrayRef<NamedAttribute> attributes, 65 ArrayRef<Block *> successors, 66 unsigned numRegions) { 67 return create(location, name, resultTypes, operands, 68 MutableDictionaryAttr(attributes), successors, numRegions); 69 } 70 71 /// Create a new Operation from operation state. 72 Operation *Operation::create(const OperationState &state) { 73 return Operation::create(state.location, state.name, state.types, 74 state.operands, state.attributes, state.successors, 75 state.regions); 76 } 77 78 /// Create a new Operation with the specific fields. 79 Operation *Operation::create(Location location, OperationName name, 80 ArrayRef<Type> resultTypes, 81 ArrayRef<Value> operands, 82 MutableDictionaryAttr attributes, 83 ArrayRef<Block *> successors, 84 RegionRange regions) { 85 unsigned numRegions = regions.size(); 86 Operation *op = create(location, name, resultTypes, operands, attributes, 87 successors, numRegions); 88 for (unsigned i = 0; i < numRegions; ++i) 89 if (regions[i]) 90 op->getRegion(i).takeBody(*regions[i]); 91 return op; 92 } 93 94 /// Overload of create that takes an existing MutableDictionaryAttr to avoid 95 /// unnecessarily uniquing a list of attributes. 96 Operation *Operation::create(Location location, OperationName name, 97 ArrayRef<Type> resultTypes, 98 ArrayRef<Value> operands, 99 MutableDictionaryAttr attributes, 100 ArrayRef<Block *> successors, 101 unsigned numRegions) { 102 // We only need to allocate additional memory for a subset of results. 103 unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size()); 104 unsigned numInlineResults = OpResult::getNumInline(resultTypes.size()); 105 unsigned numSuccessors = successors.size(); 106 unsigned numOperands = operands.size(); 107 108 // If the operation is known to have no operands, don't allocate an operand 109 // storage. 110 bool needsOperandStorage = true; 111 if (operands.empty()) { 112 if (const AbstractOperation *abstractOp = name.getAbstractOperation()) 113 needsOperandStorage = !abstractOp->hasTrait<OpTrait::ZeroOperands>(); 114 } 115 116 // Compute the byte size for the operation and the operand storage. 117 auto byteSize = 118 totalSizeToAlloc<detail::InLineOpResult, detail::TrailingOpResult, 119 BlockOperand, Region, detail::OperandStorage>( 120 numInlineResults, numTrailingResults, numSuccessors, numRegions, 121 needsOperandStorage ? 1 : 0); 122 byteSize += 123 llvm::alignTo(detail::OperandStorage::additionalAllocSize(numOperands), 124 alignof(Operation)); 125 void *rawMem = malloc(byteSize); 126 127 // Create the new Operation. 128 Operation *op = 129 ::new (rawMem) Operation(location, name, resultTypes, numSuccessors, 130 numRegions, attributes, needsOperandStorage); 131 132 assert((numSuccessors == 0 || !op->isKnownNonTerminator()) && 133 "unexpected successors in a non-terminator operation"); 134 135 // Initialize the results. 136 for (unsigned i = 0; i < numInlineResults; ++i) 137 new (op->getInlineResult(i)) detail::InLineOpResult(); 138 for (unsigned i = 0; i < numTrailingResults; ++i) 139 new (op->getTrailingResult(i)) detail::TrailingOpResult(i); 140 141 // Initialize the regions. 142 for (unsigned i = 0; i != numRegions; ++i) 143 new (&op->getRegion(i)) Region(op); 144 145 // Initialize the operands. 146 if (needsOperandStorage) 147 new (&op->getOperandStorage()) detail::OperandStorage(op, operands); 148 149 // Initialize the successors. 150 auto blockOperands = op->getBlockOperands(); 151 for (unsigned i = 0; i != numSuccessors; ++i) 152 new (&blockOperands[i]) BlockOperand(op, successors[i]); 153 154 return op; 155 } 156 157 Operation::Operation(Location location, OperationName name, 158 ArrayRef<Type> resultTypes, unsigned numSuccessors, 159 unsigned numRegions, 160 const MutableDictionaryAttr &attributes, 161 bool hasOperandStorage) 162 : location(location), numSuccs(numSuccessors), numRegions(numRegions), 163 hasOperandStorage(hasOperandStorage), hasSingleResult(false), name(name), 164 attrs(attributes) { 165 if (!resultTypes.empty()) { 166 // If there is a single result it is stored in-place, otherwise use a tuple. 167 hasSingleResult = resultTypes.size() == 1; 168 if (hasSingleResult) 169 resultType = resultTypes.front(); 170 else 171 resultType = TupleType::get(resultTypes, location->getContext()); 172 } 173 } 174 175 // Operations are deleted through the destroy() member because they are 176 // allocated via malloc. 177 Operation::~Operation() { 178 assert(block == nullptr && "operation destroyed but still in a block"); 179 180 // Explicitly run the destructors for the operands. 181 if (hasOperandStorage) 182 getOperandStorage().~OperandStorage(); 183 184 // Explicitly run the destructors for the successors. 185 for (auto &successor : getBlockOperands()) 186 successor.~BlockOperand(); 187 188 // Explicitly destroy the regions. 189 for (auto ®ion : getRegions()) 190 region.~Region(); 191 } 192 193 /// Destroy this operation or one of its subclasses. 194 void Operation::destroy() { 195 this->~Operation(); 196 free(this); 197 } 198 199 /// Return the context this operation is associated with. 200 MLIRContext *Operation::getContext() { return location->getContext(); } 201 202 /// Return the dialect this operation is associated with, or nullptr if the 203 /// associated dialect is not registered. 204 Dialect *Operation::getDialect() { 205 if (auto *abstractOp = getAbstractOperation()) 206 return &abstractOp->dialect; 207 208 // If this operation hasn't been registered or doesn't have abstract 209 // operation, try looking up the dialect name in the context. 210 return getContext()->getRegisteredDialect(getName().getDialect()); 211 } 212 213 Region *Operation::getParentRegion() { 214 return block ? block->getParent() : nullptr; 215 } 216 217 Operation *Operation::getParentOp() { 218 return block ? block->getParentOp() : nullptr; 219 } 220 221 /// Return true if this operation is a proper ancestor of the `other` 222 /// operation. 223 bool Operation::isProperAncestor(Operation *other) { 224 while ((other = other->getParentOp())) 225 if (this == other) 226 return true; 227 return false; 228 } 229 230 /// Replace any uses of 'from' with 'to' within this operation. 231 void Operation::replaceUsesOfWith(Value from, Value to) { 232 if (from == to) 233 return; 234 for (auto &operand : getOpOperands()) 235 if (operand.get() == from) 236 operand.set(to); 237 } 238 239 /// Replace the current operands of this operation with the ones provided in 240 /// 'operands'. 241 void Operation::setOperands(ValueRange operands) { 242 if (LLVM_LIKELY(hasOperandStorage)) 243 return getOperandStorage().setOperands(this, operands); 244 assert(operands.empty() && "setting operands without an operand storage"); 245 } 246 247 /// Replace the operands beginning at 'start' and ending at 'start' + 'length' 248 /// with the ones provided in 'operands'. 'operands' may be smaller or larger 249 /// than the range pointed to by 'start'+'length'. 250 void Operation::setOperands(unsigned start, unsigned length, 251 ValueRange operands) { 252 assert((start + length) <= getNumOperands() && 253 "invalid operand range specified"); 254 if (LLVM_LIKELY(hasOperandStorage)) 255 return getOperandStorage().setOperands(this, start, length, operands); 256 assert(operands.empty() && "setting operands without an operand storage"); 257 } 258 259 /// Insert the given operands into the operand list at the given 'index'. 260 void Operation::insertOperands(unsigned index, ValueRange operands) { 261 if (LLVM_LIKELY(hasOperandStorage)) 262 return setOperands(index, /*length=*/0, operands); 263 assert(operands.empty() && "inserting operands without an operand storage"); 264 } 265 266 //===----------------------------------------------------------------------===// 267 // Diagnostics 268 //===----------------------------------------------------------------------===// 269 270 /// Emit an error about fatal conditions with this operation, reporting up to 271 /// any diagnostic handlers that may be listening. 272 InFlightDiagnostic Operation::emitError(const Twine &message) { 273 InFlightDiagnostic diag = mlir::emitError(getLoc(), message); 274 if (getContext()->shouldPrintOpOnDiagnostic()) { 275 // Print out the operation explicitly here so that we can print the generic 276 // form. 277 // TODO(riverriddle) It would be nice if we could instead provide the 278 // specific printing flags when adding the operation as an argument to the 279 // diagnostic. 280 std::string printedOp; 281 { 282 llvm::raw_string_ostream os(printedOp); 283 print(os, OpPrintingFlags().printGenericOpForm().useLocalScope()); 284 } 285 diag.attachNote(getLoc()) << "see current operation: " << printedOp; 286 } 287 return diag; 288 } 289 290 /// Emit a warning about this operation, reporting up to any diagnostic 291 /// handlers that may be listening. 292 InFlightDiagnostic Operation::emitWarning(const Twine &message) { 293 InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message); 294 if (getContext()->shouldPrintOpOnDiagnostic()) 295 diag.attachNote(getLoc()) << "see current operation: " << *this; 296 return diag; 297 } 298 299 /// Emit a remark about this operation, reporting up to any diagnostic 300 /// handlers that may be listening. 301 InFlightDiagnostic Operation::emitRemark(const Twine &message) { 302 InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message); 303 if (getContext()->shouldPrintOpOnDiagnostic()) 304 diag.attachNote(getLoc()) << "see current operation: " << *this; 305 return diag; 306 } 307 308 //===----------------------------------------------------------------------===// 309 // Operation Ordering 310 //===----------------------------------------------------------------------===// 311 312 constexpr unsigned Operation::kInvalidOrderIdx; 313 constexpr unsigned Operation::kOrderStride; 314 315 /// Given an operation 'other' that is within the same parent block, return 316 /// whether the current operation is before 'other' in the operation list 317 /// of the parent block. 318 /// Note: This function has an average complexity of O(1), but worst case may 319 /// take O(N) where N is the number of operations within the parent block. 320 bool Operation::isBeforeInBlock(Operation *other) { 321 assert(block && "Operations without parent blocks have no order."); 322 assert(other && other->block == block && 323 "Expected other operation to have the same parent block."); 324 // If the order of the block is already invalid, directly recompute the 325 // parent. 326 if (!block->isOpOrderValid()) { 327 block->recomputeOpOrder(); 328 } else { 329 // Update the order either operation if necessary. 330 updateOrderIfNecessary(); 331 other->updateOrderIfNecessary(); 332 } 333 334 return orderIndex < other->orderIndex; 335 } 336 337 /// Update the order index of this operation of this operation if necessary, 338 /// potentially recomputing the order of the parent block. 339 void Operation::updateOrderIfNecessary() { 340 assert(block && "expected valid parent"); 341 342 // If the order is valid for this operation there is nothing to do. 343 if (hasValidOrder()) 344 return; 345 Operation *blockFront = &block->front(); 346 Operation *blockBack = &block->back(); 347 348 // This method is expected to only be invoked on blocks with more than one 349 // operation. 350 assert(blockFront != blockBack && "expected more than one operation"); 351 352 // If the operation is at the end of the block. 353 if (this == blockBack) { 354 Operation *prevNode = getPrevNode(); 355 if (!prevNode->hasValidOrder()) 356 return block->recomputeOpOrder(); 357 358 // Add the stride to the previous operation. 359 orderIndex = prevNode->orderIndex + kOrderStride; 360 return; 361 } 362 363 // If this is the first operation try to use the next operation to compute the 364 // ordering. 365 if (this == blockFront) { 366 Operation *nextNode = getNextNode(); 367 if (!nextNode->hasValidOrder()) 368 return block->recomputeOpOrder(); 369 // There is no order to give this operation. 370 if (nextNode->orderIndex == 0) 371 return block->recomputeOpOrder(); 372 373 // If we can't use the stride, just take the middle value left. This is safe 374 // because we know there is at least one valid index to assign to. 375 if (nextNode->orderIndex <= kOrderStride) 376 orderIndex = (nextNode->orderIndex / 2); 377 else 378 orderIndex = kOrderStride; 379 return; 380 } 381 382 // Otherwise, this operation is between two others. Place this operation in 383 // the middle of the previous and next if possible. 384 Operation *prevNode = getPrevNode(), *nextNode = getNextNode(); 385 if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder()) 386 return block->recomputeOpOrder(); 387 unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex; 388 389 // Check to see if there is a valid order between the two. 390 if (prevOrder + 1 == nextOrder) 391 return block->recomputeOpOrder(); 392 orderIndex = prevOrder + 1 + ((nextOrder - prevOrder) / 2); 393 } 394 395 //===----------------------------------------------------------------------===// 396 // ilist_traits for Operation 397 //===----------------------------------------------------------------------===// 398 399 auto llvm::ilist_detail::SpecificNodeAccess< 400 typename llvm::ilist_detail::compute_node_options< 401 ::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * { 402 return NodeAccess::getNodePtr<OptionsT>(N); 403 } 404 405 auto llvm::ilist_detail::SpecificNodeAccess< 406 typename llvm::ilist_detail::compute_node_options< 407 ::mlir::Operation>::type>::getNodePtr(const_pointer N) 408 -> const node_type * { 409 return NodeAccess::getNodePtr<OptionsT>(N); 410 } 411 412 auto llvm::ilist_detail::SpecificNodeAccess< 413 typename llvm::ilist_detail::compute_node_options< 414 ::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer { 415 return NodeAccess::getValuePtr<OptionsT>(N); 416 } 417 418 auto llvm::ilist_detail::SpecificNodeAccess< 419 typename llvm::ilist_detail::compute_node_options< 420 ::mlir::Operation>::type>::getValuePtr(const node_type *N) 421 -> const_pointer { 422 return NodeAccess::getValuePtr<OptionsT>(N); 423 } 424 425 void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) { 426 op->destroy(); 427 } 428 429 Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() { 430 size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr)))); 431 iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this)); 432 return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset); 433 } 434 435 /// This is a trait method invoked when an operation is added to a block. We 436 /// keep the block pointer up to date. 437 void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) { 438 assert(!op->getBlock() && "already in an operation block!"); 439 op->block = getContainingBlock(); 440 441 // Invalidate the order on the operation. 442 op->orderIndex = Operation::kInvalidOrderIdx; 443 } 444 445 /// This is a trait method invoked when an operation is removed from a block. 446 /// We keep the block pointer up to date. 447 void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) { 448 assert(op->block && "not already in an operation block!"); 449 op->block = nullptr; 450 } 451 452 /// This is a trait method invoked when an operation is moved from one block 453 /// to another. We keep the block pointer up to date. 454 void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList( 455 ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) { 456 Block *curParent = getContainingBlock(); 457 458 // Invalidate the ordering of the parent block. 459 curParent->invalidateOpOrder(); 460 461 // If we are transferring operations within the same block, the block 462 // pointer doesn't need to be updated. 463 if (curParent == otherList.getContainingBlock()) 464 return; 465 466 // Update the 'block' member of each operation. 467 for (; first != last; ++first) 468 first->block = curParent; 469 } 470 471 /// Remove this operation (and its descendants) from its Block and delete 472 /// all of them. 473 void Operation::erase() { 474 if (auto *parent = getBlock()) 475 parent->getOperations().erase(this); 476 else 477 destroy(); 478 } 479 480 /// Unlink this operation from its current block and insert it right before 481 /// `existingOp` which may be in the same or another block in the same 482 /// function. 483 void Operation::moveBefore(Operation *existingOp) { 484 moveBefore(existingOp->getBlock(), existingOp->getIterator()); 485 } 486 487 /// Unlink this operation from its current basic block and insert it right 488 /// before `iterator` in the specified basic block. 489 void Operation::moveBefore(Block *block, 490 llvm::iplist<Operation>::iterator iterator) { 491 block->getOperations().splice(iterator, getBlock()->getOperations(), 492 getIterator()); 493 } 494 495 /// Unlink this operation from its current block and insert it right after 496 /// `existingOp` which may be in the same or another block in the same function. 497 void Operation::moveAfter(Operation *existingOp) { 498 moveAfter(existingOp->getBlock(), existingOp->getIterator()); 499 } 500 501 /// Unlink this operation from its current block and insert it right after 502 /// `iterator` in the specified block. 503 void Operation::moveAfter(Block *block, 504 llvm::iplist<Operation>::iterator iterator) { 505 assert(iterator != block->end() && "cannot move after end of block"); 506 moveBefore(&*std::next(iterator)); 507 } 508 509 /// This drops all operand uses from this operation, which is an essential 510 /// step in breaking cyclic dependences between references when they are to 511 /// be deleted. 512 void Operation::dropAllReferences() { 513 for (auto &op : getOpOperands()) 514 op.drop(); 515 516 for (auto ®ion : getRegions()) 517 region.dropAllReferences(); 518 519 for (auto &dest : getBlockOperands()) 520 dest.drop(); 521 } 522 523 /// This drops all uses of any values defined by this operation or its nested 524 /// regions, wherever they are located. 525 void Operation::dropAllDefinedValueUses() { 526 dropAllUses(); 527 528 for (auto ®ion : getRegions()) 529 for (auto &block : region) 530 block.dropAllDefinedValueUses(); 531 } 532 533 /// Return the number of results held by this operation. 534 unsigned Operation::getNumResults() { 535 if (!resultType) 536 return 0; 537 return hasSingleResult ? 1 : resultType.cast<TupleType>().size(); 538 } 539 540 auto Operation::getResultTypes() -> result_type_range { 541 if (!resultType) 542 return llvm::None; 543 if (hasSingleResult) 544 return resultType; 545 return resultType.cast<TupleType>().getTypes(); 546 } 547 548 void Operation::setSuccessor(Block *block, unsigned index) { 549 assert(index < getNumSuccessors()); 550 getBlockOperands()[index].set(block); 551 } 552 553 /// Attempt to fold this operation using the Op's registered foldHook. 554 LogicalResult Operation::fold(ArrayRef<Attribute> operands, 555 SmallVectorImpl<OpFoldResult> &results) { 556 // If we have a registered operation definition matching this one, use it to 557 // try to constant fold the operation. 558 auto *abstractOp = getAbstractOperation(); 559 if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results))) 560 return success(); 561 562 // Otherwise, fall back on the dialect hook to handle it. 563 Dialect *dialect = getDialect(); 564 if (!dialect) 565 return failure(); 566 567 SmallVector<Attribute, 8> constants; 568 if (failed(dialect->constantFoldHook(this, operands, constants))) 569 return failure(); 570 results.assign(constants.begin(), constants.end()); 571 return success(); 572 } 573 574 /// Emit an error with the op name prefixed, like "'dim' op " which is 575 /// convenient for verifiers. 576 InFlightDiagnostic Operation::emitOpError(const Twine &message) { 577 return emitError() << "'" << getName() << "' op " << message; 578 } 579 580 //===----------------------------------------------------------------------===// 581 // Operation Cloning 582 //===----------------------------------------------------------------------===// 583 584 /// Create a deep copy of this operation but keep the operation regions empty. 585 /// Operands are remapped using `mapper` (if present), and `mapper` is updated 586 /// to contain the results. 587 Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) { 588 SmallVector<Value, 8> operands; 589 SmallVector<Block *, 2> successors; 590 591 // Remap the operands. 592 operands.reserve(getNumOperands()); 593 for (auto opValue : getOperands()) 594 operands.push_back(mapper.lookupOrDefault(opValue)); 595 596 // Remap the successors. 597 successors.reserve(getNumSuccessors()); 598 for (Block *successor : getSuccessors()) 599 successors.push_back(mapper.lookupOrDefault(successor)); 600 601 // Create the new operation. 602 auto *newOp = Operation::create(getLoc(), getName(), getResultTypes(), 603 operands, attrs, successors, getNumRegions()); 604 605 // Remember the mapping of any results. 606 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 607 mapper.map(getResult(i), newOp->getResult(i)); 608 609 return newOp; 610 } 611 612 Operation *Operation::cloneWithoutRegions() { 613 BlockAndValueMapping mapper; 614 return cloneWithoutRegions(mapper); 615 } 616 617 /// Create a deep copy of this operation, remapping any operands that use 618 /// values outside of the operation using the map that is provided (leaving 619 /// them alone if no entry is present). Replaces references to cloned 620 /// sub-operations to the corresponding operation that is copied, and adds 621 /// those mappings to the map. 622 Operation *Operation::clone(BlockAndValueMapping &mapper) { 623 auto *newOp = cloneWithoutRegions(mapper); 624 625 // Clone the regions. 626 for (unsigned i = 0; i != numRegions; ++i) 627 getRegion(i).cloneInto(&newOp->getRegion(i), mapper); 628 629 return newOp; 630 } 631 632 Operation *Operation::clone() { 633 BlockAndValueMapping mapper; 634 return clone(mapper); 635 } 636 637 //===----------------------------------------------------------------------===// 638 // OpState trait class. 639 //===----------------------------------------------------------------------===// 640 641 // The fallback for the parser is to reject the custom assembly form. 642 ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) { 643 return parser.emitError(parser.getNameLoc(), "has no custom assembly form"); 644 } 645 646 // The fallback for the printer is to print in the generic assembly form. 647 void OpState::print(OpAsmPrinter &p) { p.printGenericOp(getOperation()); } 648 649 /// Emit an error about fatal conditions with this operation, reporting up to 650 /// any diagnostic handlers that may be listening. 651 InFlightDiagnostic OpState::emitError(const Twine &message) { 652 return getOperation()->emitError(message); 653 } 654 655 /// Emit an error with the op name prefixed, like "'dim' op " which is 656 /// convenient for verifiers. 657 InFlightDiagnostic OpState::emitOpError(const Twine &message) { 658 return getOperation()->emitOpError(message); 659 } 660 661 /// Emit a warning about this operation, reporting up to any diagnostic 662 /// handlers that may be listening. 663 InFlightDiagnostic OpState::emitWarning(const Twine &message) { 664 return getOperation()->emitWarning(message); 665 } 666 667 /// Emit a remark about this operation, reporting up to any diagnostic 668 /// handlers that may be listening. 669 InFlightDiagnostic OpState::emitRemark(const Twine &message) { 670 return getOperation()->emitRemark(message); 671 } 672 673 //===----------------------------------------------------------------------===// 674 // Op Trait implementations 675 //===----------------------------------------------------------------------===// 676 677 LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) { 678 if (op->getNumOperands() != 0) 679 return op->emitOpError() << "requires zero operands"; 680 return success(); 681 } 682 683 LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) { 684 if (op->getNumOperands() != 1) 685 return op->emitOpError() << "requires a single operand"; 686 return success(); 687 } 688 689 LogicalResult OpTrait::impl::verifyNOperands(Operation *op, 690 unsigned numOperands) { 691 if (op->getNumOperands() != numOperands) { 692 return op->emitOpError() << "expected " << numOperands 693 << " operands, but found " << op->getNumOperands(); 694 } 695 return success(); 696 } 697 698 LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op, 699 unsigned numOperands) { 700 if (op->getNumOperands() < numOperands) 701 return op->emitOpError() 702 << "expected " << numOperands << " or more operands"; 703 return success(); 704 } 705 706 /// If this is a vector type, or a tensor type, return the scalar element type 707 /// that it is built around, otherwise return the type unmodified. 708 static Type getTensorOrVectorElementType(Type type) { 709 if (auto vec = type.dyn_cast<VectorType>()) 710 return vec.getElementType(); 711 712 // Look through tensor<vector<...>> to find the underlying element type. 713 if (auto tensor = type.dyn_cast<TensorType>()) 714 return getTensorOrVectorElementType(tensor.getElementType()); 715 return type; 716 } 717 718 LogicalResult 719 OpTrait::impl::verifyOperandsAreSignlessIntegerLike(Operation *op) { 720 for (auto opType : op->getOperandTypes()) { 721 auto type = getTensorOrVectorElementType(opType); 722 if (!type.isSignlessIntOrIndex()) 723 return op->emitOpError() << "requires an integer or index type"; 724 } 725 return success(); 726 } 727 728 LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) { 729 for (auto opType : op->getOperandTypes()) { 730 auto type = getTensorOrVectorElementType(opType); 731 if (!type.isa<FloatType>()) 732 return op->emitOpError("requires a float type"); 733 } 734 return success(); 735 } 736 737 LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) { 738 // Zero or one operand always have the "same" type. 739 unsigned nOperands = op->getNumOperands(); 740 if (nOperands < 2) 741 return success(); 742 743 auto type = op->getOperand(0).getType(); 744 for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) 745 if (opType != type) 746 return op->emitOpError() << "requires all operands to have the same type"; 747 return success(); 748 } 749 750 LogicalResult OpTrait::impl::verifyZeroRegion(Operation *op) { 751 if (op->getNumRegions() != 0) 752 return op->emitOpError() << "requires zero regions"; 753 return success(); 754 } 755 756 LogicalResult OpTrait::impl::verifyOneRegion(Operation *op) { 757 if (op->getNumRegions() != 1) 758 return op->emitOpError() << "requires one region"; 759 return success(); 760 } 761 762 LogicalResult OpTrait::impl::verifyNRegions(Operation *op, 763 unsigned numRegions) { 764 if (op->getNumRegions() != numRegions) 765 return op->emitOpError() << "expected " << numRegions << " regions"; 766 return success(); 767 } 768 769 LogicalResult OpTrait::impl::verifyAtLeastNRegions(Operation *op, 770 unsigned numRegions) { 771 if (op->getNumRegions() < numRegions) 772 return op->emitOpError() << "expected " << numRegions << " or more regions"; 773 return success(); 774 } 775 776 LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) { 777 if (op->getNumResults() != 0) 778 return op->emitOpError() << "requires zero results"; 779 return success(); 780 } 781 782 LogicalResult OpTrait::impl::verifyOneResult(Operation *op) { 783 if (op->getNumResults() != 1) 784 return op->emitOpError() << "requires one result"; 785 return success(); 786 } 787 788 LogicalResult OpTrait::impl::verifyNResults(Operation *op, 789 unsigned numOperands) { 790 if (op->getNumResults() != numOperands) 791 return op->emitOpError() << "expected " << numOperands << " results"; 792 return success(); 793 } 794 795 LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op, 796 unsigned numOperands) { 797 if (op->getNumResults() < numOperands) 798 return op->emitOpError() 799 << "expected " << numOperands << " or more results"; 800 return success(); 801 } 802 803 LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) { 804 if (failed(verifyAtLeastNOperands(op, 1))) 805 return failure(); 806 807 auto type = op->getOperand(0).getType(); 808 for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) { 809 if (failed(verifyCompatibleShape(opType, type))) 810 return op->emitOpError() << "requires the same shape for all operands"; 811 } 812 return success(); 813 } 814 815 LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) { 816 if (failed(verifyAtLeastNOperands(op, 1)) || 817 failed(verifyAtLeastNResults(op, 1))) 818 return failure(); 819 820 auto type = op->getOperand(0).getType(); 821 for (auto resultType : op->getResultTypes()) { 822 if (failed(verifyCompatibleShape(resultType, type))) 823 return op->emitOpError() 824 << "requires the same shape for all operands and results"; 825 } 826 for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) { 827 if (failed(verifyCompatibleShape(opType, type))) 828 return op->emitOpError() 829 << "requires the same shape for all operands and results"; 830 } 831 return success(); 832 } 833 834 LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) { 835 if (failed(verifyAtLeastNOperands(op, 1))) 836 return failure(); 837 auto elementType = getElementTypeOrSelf(op->getOperand(0)); 838 839 for (auto operand : llvm::drop_begin(op->getOperands(), 1)) { 840 if (getElementTypeOrSelf(operand) != elementType) 841 return op->emitOpError("requires the same element type for all operands"); 842 } 843 844 return success(); 845 } 846 847 LogicalResult 848 OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) { 849 if (failed(verifyAtLeastNOperands(op, 1)) || 850 failed(verifyAtLeastNResults(op, 1))) 851 return failure(); 852 853 auto elementType = getElementTypeOrSelf(op->getResult(0)); 854 855 // Verify result element type matches first result's element type. 856 for (auto result : llvm::drop_begin(op->getResults(), 1)) { 857 if (getElementTypeOrSelf(result) != elementType) 858 return op->emitOpError( 859 "requires the same element type for all operands and results"); 860 } 861 862 // Verify operand's element type matches first result's element type. 863 for (auto operand : op->getOperands()) { 864 if (getElementTypeOrSelf(operand) != elementType) 865 return op->emitOpError( 866 "requires the same element type for all operands and results"); 867 } 868 869 return success(); 870 } 871 872 LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) { 873 if (failed(verifyAtLeastNOperands(op, 1)) || 874 failed(verifyAtLeastNResults(op, 1))) 875 return failure(); 876 877 auto type = op->getResult(0).getType(); 878 auto elementType = getElementTypeOrSelf(type); 879 for (auto resultType : op->getResultTypes().drop_front(1)) { 880 if (getElementTypeOrSelf(resultType) != elementType || 881 failed(verifyCompatibleShape(resultType, type))) 882 return op->emitOpError() 883 << "requires the same type for all operands and results"; 884 } 885 for (auto opType : op->getOperandTypes()) { 886 if (getElementTypeOrSelf(opType) != elementType || 887 failed(verifyCompatibleShape(opType, type))) 888 return op->emitOpError() 889 << "requires the same type for all operands and results"; 890 } 891 return success(); 892 } 893 894 LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) { 895 Block *block = op->getBlock(); 896 // Verify that the operation is at the end of the respective parent block. 897 if (!block || &block->back() != op) 898 return op->emitOpError("must be the last operation in the parent block"); 899 return success(); 900 } 901 902 static LogicalResult verifyTerminatorSuccessors(Operation *op) { 903 auto *parent = op->getParentRegion(); 904 905 // Verify that the operands lines up with the BB arguments in the successor. 906 for (Block *succ : op->getSuccessors()) 907 if (succ->getParent() != parent) 908 return op->emitError("reference to block defined in another region"); 909 return success(); 910 } 911 912 LogicalResult OpTrait::impl::verifyZeroSuccessor(Operation *op) { 913 if (op->getNumSuccessors() != 0) { 914 return op->emitOpError("requires 0 successors but found ") 915 << op->getNumSuccessors(); 916 } 917 return success(); 918 } 919 920 LogicalResult OpTrait::impl::verifyOneSuccessor(Operation *op) { 921 if (op->getNumSuccessors() != 1) { 922 return op->emitOpError("requires 1 successor but found ") 923 << op->getNumSuccessors(); 924 } 925 return verifyTerminatorSuccessors(op); 926 } 927 LogicalResult OpTrait::impl::verifyNSuccessors(Operation *op, 928 unsigned numSuccessors) { 929 if (op->getNumSuccessors() != numSuccessors) { 930 return op->emitOpError("requires ") 931 << numSuccessors << " successors but found " 932 << op->getNumSuccessors(); 933 } 934 return verifyTerminatorSuccessors(op); 935 } 936 LogicalResult OpTrait::impl::verifyAtLeastNSuccessors(Operation *op, 937 unsigned numSuccessors) { 938 if (op->getNumSuccessors() < numSuccessors) { 939 return op->emitOpError("requires at least ") 940 << numSuccessors << " successors but found " 941 << op->getNumSuccessors(); 942 } 943 return verifyTerminatorSuccessors(op); 944 } 945 946 LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) { 947 for (auto resultType : op->getResultTypes()) { 948 auto elementType = getTensorOrVectorElementType(resultType); 949 bool isBoolType = elementType.isInteger(1); 950 if (!isBoolType) 951 return op->emitOpError() << "requires a bool result type"; 952 } 953 954 return success(); 955 } 956 957 LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) { 958 for (auto resultType : op->getResultTypes()) 959 if (!getTensorOrVectorElementType(resultType).isa<FloatType>()) 960 return op->emitOpError() << "requires a floating point type"; 961 962 return success(); 963 } 964 965 LogicalResult 966 OpTrait::impl::verifyResultsAreSignlessIntegerLike(Operation *op) { 967 for (auto resultType : op->getResultTypes()) 968 if (!getTensorOrVectorElementType(resultType).isSignlessIntOrIndex()) 969 return op->emitOpError() << "requires an integer or index type"; 970 return success(); 971 } 972 973 static LogicalResult verifyValueSizeAttr(Operation *op, StringRef attrName, 974 bool isOperand) { 975 auto sizeAttr = op->getAttrOfType<DenseIntElementsAttr>(attrName); 976 if (!sizeAttr) 977 return op->emitOpError("requires 1D vector attribute '") << attrName << "'"; 978 979 auto sizeAttrType = sizeAttr.getType().dyn_cast<VectorType>(); 980 if (!sizeAttrType || sizeAttrType.getRank() != 1) 981 return op->emitOpError("requires 1D vector attribute '") << attrName << "'"; 982 983 if (llvm::any_of(sizeAttr.getIntValues(), [](const APInt &element) { 984 return !element.isNonNegative(); 985 })) 986 return op->emitOpError("'") 987 << attrName << "' attribute cannot have negative elements"; 988 989 size_t totalCount = std::accumulate( 990 sizeAttr.begin(), sizeAttr.end(), 0, 991 [](unsigned all, APInt one) { return all + one.getZExtValue(); }); 992 993 if (isOperand && totalCount != op->getNumOperands()) 994 return op->emitOpError("operand count (") 995 << op->getNumOperands() << ") does not match with the total size (" 996 << totalCount << ") specified in attribute '" << attrName << "'"; 997 else if (!isOperand && totalCount != op->getNumResults()) 998 return op->emitOpError("result count (") 999 << op->getNumResults() << ") does not match with the total size (" 1000 << totalCount << ") specified in attribute '" << attrName << "'"; 1001 return success(); 1002 } 1003 1004 LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op, 1005 StringRef attrName) { 1006 return verifyValueSizeAttr(op, attrName, /*isOperand=*/true); 1007 } 1008 1009 LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op, 1010 StringRef attrName) { 1011 return verifyValueSizeAttr(op, attrName, /*isOperand=*/false); 1012 } 1013 1014 //===----------------------------------------------------------------------===// 1015 // BinaryOp implementation 1016 //===----------------------------------------------------------------------===// 1017 1018 // These functions are out-of-line implementations of the methods in BinaryOp, 1019 // which avoids them being template instantiated/duplicated. 1020 1021 void impl::buildBinaryOp(OpBuilder &builder, OperationState &result, Value lhs, 1022 Value rhs) { 1023 assert(lhs.getType() == rhs.getType()); 1024 result.addOperands({lhs, rhs}); 1025 result.types.push_back(lhs.getType()); 1026 } 1027 1028 ParseResult impl::parseOneResultSameOperandTypeOp(OpAsmParser &parser, 1029 OperationState &result) { 1030 SmallVector<OpAsmParser::OperandType, 2> ops; 1031 Type type; 1032 return failure(parser.parseOperandList(ops) || 1033 parser.parseOptionalAttrDict(result.attributes) || 1034 parser.parseColonType(type) || 1035 parser.resolveOperands(ops, type, result.operands) || 1036 parser.addTypeToList(type, result.types)); 1037 } 1038 1039 void impl::printOneResultOp(Operation *op, OpAsmPrinter &p) { 1040 assert(op->getNumResults() == 1 && "op should have one result"); 1041 1042 // If not all the operand and result types are the same, just use the 1043 // generic assembly form to avoid omitting information in printing. 1044 auto resultType = op->getResult(0).getType(); 1045 if (llvm::any_of(op->getOperandTypes(), 1046 [&](Type type) { return type != resultType; })) { 1047 p.printGenericOp(op); 1048 return; 1049 } 1050 1051 p << op->getName() << ' '; 1052 p.printOperands(op->getOperands()); 1053 p.printOptionalAttrDict(op->getAttrs()); 1054 // Now we can output only one type for all operands and the result. 1055 p << " : " << resultType; 1056 } 1057 1058 //===----------------------------------------------------------------------===// 1059 // CastOp implementation 1060 //===----------------------------------------------------------------------===// 1061 1062 void impl::buildCastOp(OpBuilder &builder, OperationState &result, Value source, 1063 Type destType) { 1064 result.addOperands(source); 1065 result.addTypes(destType); 1066 } 1067 1068 ParseResult impl::parseCastOp(OpAsmParser &parser, OperationState &result) { 1069 OpAsmParser::OperandType srcInfo; 1070 Type srcType, dstType; 1071 return failure(parser.parseOperand(srcInfo) || 1072 parser.parseOptionalAttrDict(result.attributes) || 1073 parser.parseColonType(srcType) || 1074 parser.resolveOperand(srcInfo, srcType, result.operands) || 1075 parser.parseKeywordType("to", dstType) || 1076 parser.addTypeToList(dstType, result.types)); 1077 } 1078 1079 void impl::printCastOp(Operation *op, OpAsmPrinter &p) { 1080 p << op->getName() << ' ' << op->getOperand(0); 1081 p.printOptionalAttrDict(op->getAttrs()); 1082 p << " : " << op->getOperand(0).getType() << " to " 1083 << op->getResult(0).getType(); 1084 } 1085 1086 Value impl::foldCastOp(Operation *op) { 1087 // Identity cast 1088 if (op->getOperand(0).getType() == op->getResult(0).getType()) 1089 return op->getOperand(0); 1090 return nullptr; 1091 } 1092 1093 //===----------------------------------------------------------------------===// 1094 // Misc. utils 1095 //===----------------------------------------------------------------------===// 1096 1097 /// Insert an operation, generated by `buildTerminatorOp`, at the end of the 1098 /// region's only block if it does not have a terminator already. If the region 1099 /// is empty, insert a new block first. `buildTerminatorOp` should return the 1100 /// terminator operation to insert. 1101 void impl::ensureRegionTerminator( 1102 Region ®ion, OpBuilder &builder, Location loc, 1103 function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) { 1104 OpBuilder::InsertionGuard guard(builder); 1105 if (region.empty()) 1106 builder.createBlock(®ion); 1107 1108 Block &block = region.back(); 1109 if (!block.empty() && block.back().isKnownTerminator()) 1110 return; 1111 1112 builder.setInsertionPointToEnd(&block); 1113 builder.insert(buildTerminatorOp(builder, loc)); 1114 } 1115 1116 /// Create a simple OpBuilder and forward to the OpBuilder version of this 1117 /// function. 1118 void impl::ensureRegionTerminator( 1119 Region ®ion, Builder &builder, Location loc, 1120 function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) { 1121 OpBuilder opBuilder(builder.getContext()); 1122 ensureRegionTerminator(region, opBuilder, loc, buildTerminatorOp); 1123 } 1124 1125 //===----------------------------------------------------------------------===// 1126 // UseIterator 1127 //===----------------------------------------------------------------------===// 1128 1129 Operation::UseIterator::UseIterator(Operation *op, bool end) 1130 : op(op), res(end ? op->result_end() : op->result_begin()) { 1131 // Only initialize current use if there are results/can be uses. 1132 if (op->getNumResults()) 1133 skipOverResultsWithNoUsers(); 1134 } 1135 1136 Operation::UseIterator &Operation::UseIterator::operator++() { 1137 // We increment over uses, if we reach the last use then move to next 1138 // result. 1139 if (use != (*res).use_end()) 1140 ++use; 1141 if (use == (*res).use_end()) { 1142 ++res; 1143 skipOverResultsWithNoUsers(); 1144 } 1145 return *this; 1146 } 1147 1148 void Operation::UseIterator::skipOverResultsWithNoUsers() { 1149 while (res != op->result_end() && (*res).use_empty()) 1150 ++res; 1151 1152 // If we are at the last result, then set use to first use of 1153 // first result (sentinel value used for end). 1154 if (res == op->result_end()) 1155 use = {}; 1156 else 1157 use = (*res).use_begin(); 1158 } 1159