1 //===- Operation.cpp - Operation support code -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/Operation.h"
10 #include "mlir/IR/BlockAndValueMapping.h"
11 #include "mlir/IR/BuiltinTypes.h"
12 #include "mlir/IR/Dialect.h"
13 #include "mlir/IR/OpImplementation.h"
14 #include "mlir/IR/PatternMatch.h"
15 #include "mlir/IR/TypeUtilities.h"
16 #include "mlir/Interfaces/FoldInterfaces.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include <numeric>
19 
20 using namespace mlir;
21 
22 //===----------------------------------------------------------------------===//
23 // Operation
24 //===----------------------------------------------------------------------===//
25 
26 /// Create a new Operation with the specific fields.
27 Operation *Operation::create(Location location, OperationName name,
28                              TypeRange resultTypes, ValueRange operands,
29                              ArrayRef<NamedAttribute> attributes,
30                              BlockRange successors, unsigned numRegions) {
31   return create(location, name, resultTypes, operands,
32                 DictionaryAttr::get(location.getContext(), attributes),
33                 successors, numRegions);
34 }
35 
36 /// Create a new Operation from operation state.
37 Operation *Operation::create(const OperationState &state) {
38   return create(state.location, state.name, state.types, state.operands,
39                 state.attributes.getDictionary(state.getContext()),
40                 state.successors, state.regions);
41 }
42 
43 /// Create a new Operation with the specific fields.
44 Operation *Operation::create(Location location, OperationName name,
45                              TypeRange resultTypes, ValueRange operands,
46                              DictionaryAttr attributes, BlockRange successors,
47                              RegionRange regions) {
48   unsigned numRegions = regions.size();
49   Operation *op = create(location, name, resultTypes, operands, attributes,
50                          successors, numRegions);
51   for (unsigned i = 0; i < numRegions; ++i)
52     if (regions[i])
53       op->getRegion(i).takeBody(*regions[i]);
54   return op;
55 }
56 
57 /// Overload of create that takes an existing DictionaryAttr to avoid
58 /// unnecessarily uniquing a list of attributes.
59 Operation *Operation::create(Location location, OperationName name,
60                              TypeRange resultTypes, ValueRange operands,
61                              DictionaryAttr attributes, BlockRange successors,
62                              unsigned numRegions) {
63   assert(llvm::all_of(resultTypes, [](Type t) { return t; }) &&
64          "unexpected null result type");
65 
66   // We only need to allocate additional memory for a subset of results.
67   unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size());
68   unsigned numInlineResults = OpResult::getNumInline(resultTypes.size());
69   unsigned numSuccessors = successors.size();
70   unsigned numOperands = operands.size();
71   unsigned numResults = resultTypes.size();
72 
73   // If the operation is known to have no operands, don't allocate an operand
74   // storage.
75   bool needsOperandStorage =
76       operands.empty() ? !name.hasTrait<OpTrait::ZeroOperands>() : true;
77 
78   // Compute the byte size for the operation and the operand storage. This takes
79   // into account the size of the operation, its trailing objects, and its
80   // prefixed objects.
81   size_t byteSize =
82       totalSizeToAlloc<detail::OperandStorage, BlockOperand, Region, OpOperand>(
83           needsOperandStorage ? 1 : 0, numSuccessors, numRegions, numOperands);
84   size_t prefixByteSize = llvm::alignTo(
85       Operation::prefixAllocSize(numTrailingResults, numInlineResults),
86       alignof(Operation));
87   char *mallocMem = reinterpret_cast<char *>(malloc(byteSize + prefixByteSize));
88   void *rawMem = mallocMem + prefixByteSize;
89 
90   // Create the new Operation.
91   Operation *op =
92       ::new (rawMem) Operation(location, name, numResults, numSuccessors,
93                                numRegions, attributes, needsOperandStorage);
94 
95   assert((numSuccessors == 0 || op->mightHaveTrait<OpTrait::IsTerminator>()) &&
96          "unexpected successors in a non-terminator operation");
97 
98   // Initialize the results.
99   auto resultTypeIt = resultTypes.begin();
100   for (unsigned i = 0; i < numInlineResults; ++i, ++resultTypeIt)
101     new (op->getInlineOpResult(i)) detail::InlineOpResult(*resultTypeIt, i);
102   for (unsigned i = 0; i < numTrailingResults; ++i, ++resultTypeIt) {
103     new (op->getOutOfLineOpResult(i))
104         detail::OutOfLineOpResult(*resultTypeIt, i);
105   }
106 
107   // Initialize the regions.
108   for (unsigned i = 0; i != numRegions; ++i)
109     new (&op->getRegion(i)) Region(op);
110 
111   // Initialize the operands.
112   if (needsOperandStorage) {
113     new (&op->getOperandStorage()) detail::OperandStorage(
114         op, op->getTrailingObjects<OpOperand>(), operands);
115   }
116 
117   // Initialize the successors.
118   auto blockOperands = op->getBlockOperands();
119   for (unsigned i = 0; i != numSuccessors; ++i)
120     new (&blockOperands[i]) BlockOperand(op, successors[i]);
121 
122   return op;
123 }
124 
125 Operation::Operation(Location location, OperationName name, unsigned numResults,
126                      unsigned numSuccessors, unsigned numRegions,
127                      DictionaryAttr attributes, bool hasOperandStorage)
128     : location(location), numResults(numResults), numSuccs(numSuccessors),
129       numRegions(numRegions), hasOperandStorage(hasOperandStorage), name(name),
130       attrs(attributes) {
131   assert(attributes && "unexpected null attribute dictionary");
132 #ifndef NDEBUG
133   if (!getDialect() && !getContext()->allowsUnregisteredDialects())
134     llvm::report_fatal_error(
135         name.getStringRef() +
136         " created with unregistered dialect. If this is intended, please call "
137         "allowUnregisteredDialects() on the MLIRContext, or use "
138         "-allow-unregistered-dialect with the MLIR tool used.");
139 #endif
140 }
141 
142 // Operations are deleted through the destroy() member because they are
143 // allocated via malloc.
144 Operation::~Operation() {
145   assert(block == nullptr && "operation destroyed but still in a block");
146 #ifndef NDEBUG
147   if (!use_empty()) {
148     {
149       InFlightDiagnostic diag =
150           emitOpError("operation destroyed but still has uses");
151       for (Operation *user : getUsers())
152         diag.attachNote(user->getLoc()) << "- use: " << *user << "\n";
153     }
154     llvm::report_fatal_error("operation destroyed but still has uses");
155   }
156 #endif
157   // Explicitly run the destructors for the operands.
158   if (hasOperandStorage)
159     getOperandStorage().~OperandStorage();
160 
161   // Explicitly run the destructors for the successors.
162   for (auto &successor : getBlockOperands())
163     successor.~BlockOperand();
164 
165   // Explicitly destroy the regions.
166   for (auto &region : getRegions())
167     region.~Region();
168 }
169 
170 /// Destroy this operation or one of its subclasses.
171 void Operation::destroy() {
172   // Operations may have additional prefixed allocation, which needs to be
173   // accounted for here when computing the address to free.
174   char *rawMem = reinterpret_cast<char *>(this) -
175                  llvm::alignTo(prefixAllocSize(), alignof(Operation));
176   this->~Operation();
177   free(rawMem);
178 }
179 
180 /// Return true if this operation is a proper ancestor of the `other`
181 /// operation.
182 bool Operation::isProperAncestor(Operation *other) {
183   while ((other = other->getParentOp()))
184     if (this == other)
185       return true;
186   return false;
187 }
188 
189 /// Replace any uses of 'from' with 'to' within this operation.
190 void Operation::replaceUsesOfWith(Value from, Value to) {
191   if (from == to)
192     return;
193   for (auto &operand : getOpOperands())
194     if (operand.get() == from)
195       operand.set(to);
196 }
197 
198 /// Replace the current operands of this operation with the ones provided in
199 /// 'operands'.
200 void Operation::setOperands(ValueRange operands) {
201   if (LLVM_LIKELY(hasOperandStorage))
202     return getOperandStorage().setOperands(this, operands);
203   assert(operands.empty() && "setting operands without an operand storage");
204 }
205 
206 /// Replace the operands beginning at 'start' and ending at 'start' + 'length'
207 /// with the ones provided in 'operands'. 'operands' may be smaller or larger
208 /// than the range pointed to by 'start'+'length'.
209 void Operation::setOperands(unsigned start, unsigned length,
210                             ValueRange operands) {
211   assert((start + length) <= getNumOperands() &&
212          "invalid operand range specified");
213   if (LLVM_LIKELY(hasOperandStorage))
214     return getOperandStorage().setOperands(this, start, length, operands);
215   assert(operands.empty() && "setting operands without an operand storage");
216 }
217 
218 /// Insert the given operands into the operand list at the given 'index'.
219 void Operation::insertOperands(unsigned index, ValueRange operands) {
220   if (LLVM_LIKELY(hasOperandStorage))
221     return setOperands(index, /*length=*/0, operands);
222   assert(operands.empty() && "inserting operands without an operand storage");
223 }
224 
225 //===----------------------------------------------------------------------===//
226 // Diagnostics
227 //===----------------------------------------------------------------------===//
228 
229 /// Emit an error about fatal conditions with this operation, reporting up to
230 /// any diagnostic handlers that may be listening.
231 InFlightDiagnostic Operation::emitError(const Twine &message) {
232   InFlightDiagnostic diag = mlir::emitError(getLoc(), message);
233   if (getContext()->shouldPrintOpOnDiagnostic()) {
234     diag.attachNote(getLoc())
235         .append("see current operation: ")
236         .appendOp(*this, OpPrintingFlags().printGenericOpForm());
237   }
238   return diag;
239 }
240 
241 /// Emit a warning about this operation, reporting up to any diagnostic
242 /// handlers that may be listening.
243 InFlightDiagnostic Operation::emitWarning(const Twine &message) {
244   InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message);
245   if (getContext()->shouldPrintOpOnDiagnostic())
246     diag.attachNote(getLoc()) << "see current operation: " << *this;
247   return diag;
248 }
249 
250 /// Emit a remark about this operation, reporting up to any diagnostic
251 /// handlers that may be listening.
252 InFlightDiagnostic Operation::emitRemark(const Twine &message) {
253   InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message);
254   if (getContext()->shouldPrintOpOnDiagnostic())
255     diag.attachNote(getLoc()) << "see current operation: " << *this;
256   return diag;
257 }
258 
259 //===----------------------------------------------------------------------===//
260 // Operation Ordering
261 //===----------------------------------------------------------------------===//
262 
263 constexpr unsigned Operation::kInvalidOrderIdx;
264 constexpr unsigned Operation::kOrderStride;
265 
266 /// Given an operation 'other' that is within the same parent block, return
267 /// whether the current operation is before 'other' in the operation list
268 /// of the parent block.
269 /// Note: This function has an average complexity of O(1), but worst case may
270 /// take O(N) where N is the number of operations within the parent block.
271 bool Operation::isBeforeInBlock(Operation *other) {
272   assert(block && "Operations without parent blocks have no order.");
273   assert(other && other->block == block &&
274          "Expected other operation to have the same parent block.");
275   // If the order of the block is already invalid, directly recompute the
276   // parent.
277   if (!block->isOpOrderValid()) {
278     block->recomputeOpOrder();
279   } else {
280     // Update the order either operation if necessary.
281     updateOrderIfNecessary();
282     other->updateOrderIfNecessary();
283   }
284 
285   return orderIndex < other->orderIndex;
286 }
287 
288 /// Update the order index of this operation of this operation if necessary,
289 /// potentially recomputing the order of the parent block.
290 void Operation::updateOrderIfNecessary() {
291   assert(block && "expected valid parent");
292 
293   // If the order is valid for this operation there is nothing to do.
294   if (hasValidOrder())
295     return;
296   Operation *blockFront = &block->front();
297   Operation *blockBack = &block->back();
298 
299   // This method is expected to only be invoked on blocks with more than one
300   // operation.
301   assert(blockFront != blockBack && "expected more than one operation");
302 
303   // If the operation is at the end of the block.
304   if (this == blockBack) {
305     Operation *prevNode = getPrevNode();
306     if (!prevNode->hasValidOrder())
307       return block->recomputeOpOrder();
308 
309     // Add the stride to the previous operation.
310     orderIndex = prevNode->orderIndex + kOrderStride;
311     return;
312   }
313 
314   // If this is the first operation try to use the next operation to compute the
315   // ordering.
316   if (this == blockFront) {
317     Operation *nextNode = getNextNode();
318     if (!nextNode->hasValidOrder())
319       return block->recomputeOpOrder();
320     // There is no order to give this operation.
321     if (nextNode->orderIndex == 0)
322       return block->recomputeOpOrder();
323 
324     // If we can't use the stride, just take the middle value left. This is safe
325     // because we know there is at least one valid index to assign to.
326     if (nextNode->orderIndex <= kOrderStride)
327       orderIndex = (nextNode->orderIndex / 2);
328     else
329       orderIndex = kOrderStride;
330     return;
331   }
332 
333   // Otherwise, this operation is between two others. Place this operation in
334   // the middle of the previous and next if possible.
335   Operation *prevNode = getPrevNode(), *nextNode = getNextNode();
336   if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder())
337     return block->recomputeOpOrder();
338   unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex;
339 
340   // Check to see if there is a valid order between the two.
341   if (prevOrder + 1 == nextOrder)
342     return block->recomputeOpOrder();
343   orderIndex = prevOrder + ((nextOrder - prevOrder) / 2);
344 }
345 
346 //===----------------------------------------------------------------------===//
347 // ilist_traits for Operation
348 //===----------------------------------------------------------------------===//
349 
350 auto llvm::ilist_detail::SpecificNodeAccess<
351     typename llvm::ilist_detail::compute_node_options<
352         ::mlir::Operation>::type>::getNodePtr(pointer n) -> node_type * {
353   return NodeAccess::getNodePtr<OptionsT>(n);
354 }
355 
356 auto llvm::ilist_detail::SpecificNodeAccess<
357     typename llvm::ilist_detail::compute_node_options<
358         ::mlir::Operation>::type>::getNodePtr(const_pointer n)
359     -> const node_type * {
360   return NodeAccess::getNodePtr<OptionsT>(n);
361 }
362 
363 auto llvm::ilist_detail::SpecificNodeAccess<
364     typename llvm::ilist_detail::compute_node_options<
365         ::mlir::Operation>::type>::getValuePtr(node_type *n) -> pointer {
366   return NodeAccess::getValuePtr<OptionsT>(n);
367 }
368 
369 auto llvm::ilist_detail::SpecificNodeAccess<
370     typename llvm::ilist_detail::compute_node_options<
371         ::mlir::Operation>::type>::getValuePtr(const node_type *n)
372     -> const_pointer {
373   return NodeAccess::getValuePtr<OptionsT>(n);
374 }
375 
376 void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
377   op->destroy();
378 }
379 
380 Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
381   size_t offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
382   iplist<Operation> *anchor(static_cast<iplist<Operation> *>(this));
383   return reinterpret_cast<Block *>(reinterpret_cast<char *>(anchor) - offset);
384 }
385 
386 /// This is a trait method invoked when an operation is added to a block.  We
387 /// keep the block pointer up to date.
388 void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
389   assert(!op->getBlock() && "already in an operation block!");
390   op->block = getContainingBlock();
391 
392   // Invalidate the order on the operation.
393   op->orderIndex = Operation::kInvalidOrderIdx;
394 }
395 
396 /// This is a trait method invoked when an operation is removed from a block.
397 /// We keep the block pointer up to date.
398 void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
399   assert(op->block && "not already in an operation block!");
400   op->block = nullptr;
401 }
402 
403 /// This is a trait method invoked when an operation is moved from one block
404 /// to another.  We keep the block pointer up to date.
405 void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
406     ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
407   Block *curParent = getContainingBlock();
408 
409   // Invalidate the ordering of the parent block.
410   curParent->invalidateOpOrder();
411 
412   // If we are transferring operations within the same block, the block
413   // pointer doesn't need to be updated.
414   if (curParent == otherList.getContainingBlock())
415     return;
416 
417   // Update the 'block' member of each operation.
418   for (; first != last; ++first)
419     first->block = curParent;
420 }
421 
422 /// Remove this operation (and its descendants) from its Block and delete
423 /// all of them.
424 void Operation::erase() {
425   if (auto *parent = getBlock())
426     parent->getOperations().erase(this);
427   else
428     destroy();
429 }
430 
431 /// Remove the operation from its parent block, but don't delete it.
432 void Operation::remove() {
433   if (Block *parent = getBlock())
434     parent->getOperations().remove(this);
435 }
436 
437 /// Unlink this operation from its current block and insert it right before
438 /// `existingOp` which may be in the same or another block in the same
439 /// function.
440 void Operation::moveBefore(Operation *existingOp) {
441   moveBefore(existingOp->getBlock(), existingOp->getIterator());
442 }
443 
444 /// Unlink this operation from its current basic block and insert it right
445 /// before `iterator` in the specified basic block.
446 void Operation::moveBefore(Block *block,
447                            llvm::iplist<Operation>::iterator iterator) {
448   block->getOperations().splice(iterator, getBlock()->getOperations(),
449                                 getIterator());
450 }
451 
452 /// Unlink this operation from its current block and insert it right after
453 /// `existingOp` which may be in the same or another block in the same function.
454 void Operation::moveAfter(Operation *existingOp) {
455   moveAfter(existingOp->getBlock(), existingOp->getIterator());
456 }
457 
458 /// Unlink this operation from its current block and insert it right after
459 /// `iterator` in the specified block.
460 void Operation::moveAfter(Block *block,
461                           llvm::iplist<Operation>::iterator iterator) {
462   assert(iterator != block->end() && "cannot move after end of block");
463   moveBefore(block, std::next(iterator));
464 }
465 
466 /// This drops all operand uses from this operation, which is an essential
467 /// step in breaking cyclic dependences between references when they are to
468 /// be deleted.
469 void Operation::dropAllReferences() {
470   for (auto &op : getOpOperands())
471     op.drop();
472 
473   for (auto &region : getRegions())
474     region.dropAllReferences();
475 
476   for (auto &dest : getBlockOperands())
477     dest.drop();
478 }
479 
480 /// This drops all uses of any values defined by this operation or its nested
481 /// regions, wherever they are located.
482 void Operation::dropAllDefinedValueUses() {
483   dropAllUses();
484 
485   for (auto &region : getRegions())
486     for (auto &block : region)
487       block.dropAllDefinedValueUses();
488 }
489 
490 void Operation::setSuccessor(Block *block, unsigned index) {
491   assert(index < getNumSuccessors());
492   getBlockOperands()[index].set(block);
493 }
494 
495 /// Attempt to fold this operation using the Op's registered foldHook.
496 LogicalResult Operation::fold(ArrayRef<Attribute> operands,
497                               SmallVectorImpl<OpFoldResult> &results) {
498   // If we have a registered operation definition matching this one, use it to
499   // try to constant fold the operation.
500   Optional<RegisteredOperationName> info = getRegisteredInfo();
501   if (info && succeeded(info->foldHook(this, operands, results)))
502     return success();
503 
504   // Otherwise, fall back on the dialect hook to handle it.
505   Dialect *dialect = getDialect();
506   if (!dialect)
507     return failure();
508 
509   auto *interface = dyn_cast<DialectFoldInterface>(dialect);
510   if (!interface)
511     return failure();
512 
513   return interface->fold(this, operands, results);
514 }
515 
516 /// Emit an error with the op name prefixed, like "'dim' op " which is
517 /// convenient for verifiers.
518 InFlightDiagnostic Operation::emitOpError(const Twine &message) {
519   return emitError() << "'" << getName() << "' op " << message;
520 }
521 
522 //===----------------------------------------------------------------------===//
523 // Operation Cloning
524 //===----------------------------------------------------------------------===//
525 
526 Operation::CloneOptions::CloneOptions()
527     : cloneRegionsFlag(false), cloneOperandsFlag(false) {}
528 
529 Operation::CloneOptions::CloneOptions(bool cloneRegions, bool cloneOperands)
530     : cloneRegionsFlag(cloneRegions), cloneOperandsFlag(cloneOperands) {}
531 
532 Operation::CloneOptions Operation::CloneOptions::all() {
533   return CloneOptions().cloneRegions().cloneOperands();
534 }
535 
536 Operation::CloneOptions &Operation::CloneOptions::cloneRegions(bool enable) {
537   cloneRegionsFlag = enable;
538   return *this;
539 }
540 
541 Operation::CloneOptions &Operation::CloneOptions::cloneOperands(bool enable) {
542   cloneOperandsFlag = enable;
543   return *this;
544 }
545 
546 /// Create a deep copy of this operation but keep the operation regions empty.
547 /// Operands are remapped using `mapper` (if present), and `mapper` is updated
548 /// to contain the results. The `mapResults` flag specifies whether the results
549 /// of the cloned operation should be added to the map.
550 Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
551   return clone(mapper, CloneOptions::all().cloneRegions(false));
552 }
553 
554 Operation *Operation::cloneWithoutRegions() {
555   BlockAndValueMapping mapper;
556   return cloneWithoutRegions(mapper);
557 }
558 
559 /// Create a deep copy of this operation, remapping any operands that use
560 /// values outside of the operation using the map that is provided (leaving
561 /// them alone if no entry is present).  Replaces references to cloned
562 /// sub-operations to the corresponding operation that is copied, and adds
563 /// those mappings to the map.
564 Operation *Operation::clone(BlockAndValueMapping &mapper,
565                             CloneOptions options) {
566   SmallVector<Value, 8> operands;
567   SmallVector<Block *, 2> successors;
568 
569   // Remap the operands.
570   if (options.shouldCloneOperands()) {
571     operands.reserve(getNumOperands());
572     for (auto opValue : getOperands())
573       operands.push_back(mapper.lookupOrDefault(opValue));
574   }
575 
576   // Remap the successors.
577   successors.reserve(getNumSuccessors());
578   for (Block *successor : getSuccessors())
579     successors.push_back(mapper.lookupOrDefault(successor));
580 
581   // Create the new operation.
582   auto *newOp = create(getLoc(), getName(), getResultTypes(), operands, attrs,
583                        successors, getNumRegions());
584 
585   // Clone the regions.
586   if (options.shouldCloneRegions()) {
587     for (unsigned i = 0; i != numRegions; ++i)
588       getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
589   }
590 
591   // Remember the mapping of any results.
592   for (unsigned i = 0, e = getNumResults(); i != e; ++i)
593     mapper.map(getResult(i), newOp->getResult(i));
594 
595   return newOp;
596 }
597 
598 Operation *Operation::clone(CloneOptions options) {
599   BlockAndValueMapping mapper;
600   return clone(mapper, options);
601 }
602 
603 //===----------------------------------------------------------------------===//
604 // OpState trait class.
605 //===----------------------------------------------------------------------===//
606 
607 // The fallback for the parser is to try for a dialect operation parser.
608 // Otherwise, reject the custom assembly form.
609 ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) {
610   if (auto parseFn = result.name.getDialect()->getParseOperationHook(
611           result.name.getStringRef()))
612     return (*parseFn)(parser, result);
613   return parser.emitError(parser.getNameLoc(), "has no custom assembly form");
614 }
615 
616 // The fallback for the printer is to try for a dialect operation printer.
617 // Otherwise, it prints the generic form.
618 void OpState::print(Operation *op, OpAsmPrinter &p, StringRef defaultDialect) {
619   if (auto printFn = op->getDialect()->getOperationPrinter(op)) {
620     printOpName(op, p, defaultDialect);
621     printFn(op, p);
622   } else {
623     p.printGenericOp(op);
624   }
625 }
626 
627 /// Print an operation name, eliding the dialect prefix if necessary and doesn't
628 /// lead to ambiguities.
629 void OpState::printOpName(Operation *op, OpAsmPrinter &p,
630                           StringRef defaultDialect) {
631   StringRef name = op->getName().getStringRef();
632   if (name.startswith((defaultDialect + ".").str()) && name.count('.') == 1)
633     name = name.drop_front(defaultDialect.size() + 1);
634   p.getStream() << name;
635 }
636 
637 /// Emit an error about fatal conditions with this operation, reporting up to
638 /// any diagnostic handlers that may be listening.
639 InFlightDiagnostic OpState::emitError(const Twine &message) {
640   return getOperation()->emitError(message);
641 }
642 
643 /// Emit an error with the op name prefixed, like "'dim' op " which is
644 /// convenient for verifiers.
645 InFlightDiagnostic OpState::emitOpError(const Twine &message) {
646   return getOperation()->emitOpError(message);
647 }
648 
649 /// Emit a warning about this operation, reporting up to any diagnostic
650 /// handlers that may be listening.
651 InFlightDiagnostic OpState::emitWarning(const Twine &message) {
652   return getOperation()->emitWarning(message);
653 }
654 
655 /// Emit a remark about this operation, reporting up to any diagnostic
656 /// handlers that may be listening.
657 InFlightDiagnostic OpState::emitRemark(const Twine &message) {
658   return getOperation()->emitRemark(message);
659 }
660 
661 //===----------------------------------------------------------------------===//
662 // Op Trait implementations
663 //===----------------------------------------------------------------------===//
664 
665 OpFoldResult OpTrait::impl::foldIdempotent(Operation *op) {
666   if (op->getNumOperands() == 1) {
667     auto *argumentOp = op->getOperand(0).getDefiningOp();
668     if (argumentOp && op->getName() == argumentOp->getName()) {
669       // Replace the outer operation output with the inner operation.
670       return op->getOperand(0);
671     }
672   } else if (op->getOperand(0) == op->getOperand(1)) {
673     return op->getOperand(0);
674   }
675 
676   return {};
677 }
678 
679 OpFoldResult OpTrait::impl::foldInvolution(Operation *op) {
680   auto *argumentOp = op->getOperand(0).getDefiningOp();
681   if (argumentOp && op->getName() == argumentOp->getName()) {
682     // Replace the outer involutions output with inner's input.
683     return argumentOp->getOperand(0);
684   }
685 
686   return {};
687 }
688 
689 LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
690   if (op->getNumOperands() != 0)
691     return op->emitOpError() << "requires zero operands";
692   return success();
693 }
694 
695 LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
696   if (op->getNumOperands() != 1)
697     return op->emitOpError() << "requires a single operand";
698   return success();
699 }
700 
701 LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
702                                              unsigned numOperands) {
703   if (op->getNumOperands() != numOperands) {
704     return op->emitOpError() << "expected " << numOperands
705                              << " operands, but found " << op->getNumOperands();
706   }
707   return success();
708 }
709 
710 LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
711                                                     unsigned numOperands) {
712   if (op->getNumOperands() < numOperands)
713     return op->emitOpError()
714            << "expected " << numOperands << " or more operands, but found "
715            << op->getNumOperands();
716   return success();
717 }
718 
719 /// If this is a vector type, or a tensor type, return the scalar element type
720 /// that it is built around, otherwise return the type unmodified.
721 static Type getTensorOrVectorElementType(Type type) {
722   if (auto vec = type.dyn_cast<VectorType>())
723     return vec.getElementType();
724 
725   // Look through tensor<vector<...>> to find the underlying element type.
726   if (auto tensor = type.dyn_cast<TensorType>())
727     return getTensorOrVectorElementType(tensor.getElementType());
728   return type;
729 }
730 
731 LogicalResult OpTrait::impl::verifyIsIdempotent(Operation *op) {
732   // FIXME: Add back check for no side effects on operation.
733   // Currently adding it would cause the shared library build
734   // to fail since there would be a dependency of IR on SideEffectInterfaces
735   // which is cyclical.
736   return success();
737 }
738 
739 LogicalResult OpTrait::impl::verifyIsInvolution(Operation *op) {
740   // FIXME: Add back check for no side effects on operation.
741   // Currently adding it would cause the shared library build
742   // to fail since there would be a dependency of IR on SideEffectInterfaces
743   // which is cyclical.
744   return success();
745 }
746 
747 LogicalResult
748 OpTrait::impl::verifyOperandsAreSignlessIntegerLike(Operation *op) {
749   for (auto opType : op->getOperandTypes()) {
750     auto type = getTensorOrVectorElementType(opType);
751     if (!type.isSignlessIntOrIndex())
752       return op->emitOpError() << "requires an integer or index type";
753   }
754   return success();
755 }
756 
757 LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
758   for (auto opType : op->getOperandTypes()) {
759     auto type = getTensorOrVectorElementType(opType);
760     if (!type.isa<FloatType>())
761       return op->emitOpError("requires a float type");
762   }
763   return success();
764 }
765 
766 LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
767   // Zero or one operand always have the "same" type.
768   unsigned nOperands = op->getNumOperands();
769   if (nOperands < 2)
770     return success();
771 
772   auto type = op->getOperand(0).getType();
773   for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
774     if (opType != type)
775       return op->emitOpError() << "requires all operands to have the same type";
776   return success();
777 }
778 
779 LogicalResult OpTrait::impl::verifyZeroRegions(Operation *op) {
780   if (op->getNumRegions() != 0)
781     return op->emitOpError() << "requires zero regions";
782   return success();
783 }
784 
785 LogicalResult OpTrait::impl::verifyOneRegion(Operation *op) {
786   if (op->getNumRegions() != 1)
787     return op->emitOpError() << "requires one region";
788   return success();
789 }
790 
791 LogicalResult OpTrait::impl::verifyNRegions(Operation *op,
792                                             unsigned numRegions) {
793   if (op->getNumRegions() != numRegions)
794     return op->emitOpError() << "expected " << numRegions << " regions";
795   return success();
796 }
797 
798 LogicalResult OpTrait::impl::verifyAtLeastNRegions(Operation *op,
799                                                    unsigned numRegions) {
800   if (op->getNumRegions() < numRegions)
801     return op->emitOpError() << "expected " << numRegions << " or more regions";
802   return success();
803 }
804 
805 LogicalResult OpTrait::impl::verifyZeroResults(Operation *op) {
806   if (op->getNumResults() != 0)
807     return op->emitOpError() << "requires zero results";
808   return success();
809 }
810 
811 LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
812   if (op->getNumResults() != 1)
813     return op->emitOpError() << "requires one result";
814   return success();
815 }
816 
817 LogicalResult OpTrait::impl::verifyNResults(Operation *op,
818                                             unsigned numOperands) {
819   if (op->getNumResults() != numOperands)
820     return op->emitOpError() << "expected " << numOperands << " results";
821   return success();
822 }
823 
824 LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
825                                                    unsigned numOperands) {
826   if (op->getNumResults() < numOperands)
827     return op->emitOpError()
828            << "expected " << numOperands << " or more results";
829   return success();
830 }
831 
832 LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) {
833   if (failed(verifyAtLeastNOperands(op, 1)))
834     return failure();
835 
836   if (failed(verifyCompatibleShapes(op->getOperandTypes())))
837     return op->emitOpError() << "requires the same shape for all operands";
838 
839   return success();
840 }
841 
842 LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
843   if (failed(verifyAtLeastNOperands(op, 1)) ||
844       failed(verifyAtLeastNResults(op, 1)))
845     return failure();
846 
847   SmallVector<Type, 8> types(op->getOperandTypes());
848   types.append(llvm::to_vector<4>(op->getResultTypes()));
849 
850   if (failed(verifyCompatibleShapes(types)))
851     return op->emitOpError()
852            << "requires the same shape for all operands and results";
853 
854   return success();
855 }
856 
857 LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) {
858   if (failed(verifyAtLeastNOperands(op, 1)))
859     return failure();
860   auto elementType = getElementTypeOrSelf(op->getOperand(0));
861 
862   for (auto operand : llvm::drop_begin(op->getOperands(), 1)) {
863     if (getElementTypeOrSelf(operand) != elementType)
864       return op->emitOpError("requires the same element type for all operands");
865   }
866 
867   return success();
868 }
869 
870 LogicalResult
871 OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
872   if (failed(verifyAtLeastNOperands(op, 1)) ||
873       failed(verifyAtLeastNResults(op, 1)))
874     return failure();
875 
876   auto elementType = getElementTypeOrSelf(op->getResult(0));
877 
878   // Verify result element type matches first result's element type.
879   for (auto result : llvm::drop_begin(op->getResults(), 1)) {
880     if (getElementTypeOrSelf(result) != elementType)
881       return op->emitOpError(
882           "requires the same element type for all operands and results");
883   }
884 
885   // Verify operand's element type matches first result's element type.
886   for (auto operand : op->getOperands()) {
887     if (getElementTypeOrSelf(operand) != elementType)
888       return op->emitOpError(
889           "requires the same element type for all operands and results");
890   }
891 
892   return success();
893 }
894 
895 LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
896   if (failed(verifyAtLeastNOperands(op, 1)) ||
897       failed(verifyAtLeastNResults(op, 1)))
898     return failure();
899 
900   auto type = op->getResult(0).getType();
901   auto elementType = getElementTypeOrSelf(type);
902   for (auto resultType : llvm::drop_begin(op->getResultTypes())) {
903     if (getElementTypeOrSelf(resultType) != elementType ||
904         failed(verifyCompatibleShape(resultType, type)))
905       return op->emitOpError()
906              << "requires the same type for all operands and results";
907   }
908   for (auto opType : op->getOperandTypes()) {
909     if (getElementTypeOrSelf(opType) != elementType ||
910         failed(verifyCompatibleShape(opType, type)))
911       return op->emitOpError()
912              << "requires the same type for all operands and results";
913   }
914   return success();
915 }
916 
917 LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
918   Block *block = op->getBlock();
919   // Verify that the operation is at the end of the respective parent block.
920   if (!block || &block->back() != op)
921     return op->emitOpError("must be the last operation in the parent block");
922   return success();
923 }
924 
925 static LogicalResult verifyTerminatorSuccessors(Operation *op) {
926   auto *parent = op->getParentRegion();
927 
928   // Verify that the operands lines up with the BB arguments in the successor.
929   for (Block *succ : op->getSuccessors())
930     if (succ->getParent() != parent)
931       return op->emitError("reference to block defined in another region");
932   return success();
933 }
934 
935 LogicalResult OpTrait::impl::verifyZeroSuccessors(Operation *op) {
936   if (op->getNumSuccessors() != 0) {
937     return op->emitOpError("requires 0 successors but found ")
938            << op->getNumSuccessors();
939   }
940   return success();
941 }
942 
943 LogicalResult OpTrait::impl::verifyOneSuccessor(Operation *op) {
944   if (op->getNumSuccessors() != 1) {
945     return op->emitOpError("requires 1 successor but found ")
946            << op->getNumSuccessors();
947   }
948   return verifyTerminatorSuccessors(op);
949 }
950 LogicalResult OpTrait::impl::verifyNSuccessors(Operation *op,
951                                                unsigned numSuccessors) {
952   if (op->getNumSuccessors() != numSuccessors) {
953     return op->emitOpError("requires ")
954            << numSuccessors << " successors but found "
955            << op->getNumSuccessors();
956   }
957   return verifyTerminatorSuccessors(op);
958 }
959 LogicalResult OpTrait::impl::verifyAtLeastNSuccessors(Operation *op,
960                                                       unsigned numSuccessors) {
961   if (op->getNumSuccessors() < numSuccessors) {
962     return op->emitOpError("requires at least ")
963            << numSuccessors << " successors but found "
964            << op->getNumSuccessors();
965   }
966   return verifyTerminatorSuccessors(op);
967 }
968 
969 LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
970   for (auto resultType : op->getResultTypes()) {
971     auto elementType = getTensorOrVectorElementType(resultType);
972     bool isBoolType = elementType.isInteger(1);
973     if (!isBoolType)
974       return op->emitOpError() << "requires a bool result type";
975   }
976 
977   return success();
978 }
979 
980 LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
981   for (auto resultType : op->getResultTypes())
982     if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
983       return op->emitOpError() << "requires a floating point type";
984 
985   return success();
986 }
987 
988 LogicalResult
989 OpTrait::impl::verifyResultsAreSignlessIntegerLike(Operation *op) {
990   for (auto resultType : op->getResultTypes())
991     if (!getTensorOrVectorElementType(resultType).isSignlessIntOrIndex())
992       return op->emitOpError() << "requires an integer or index type";
993   return success();
994 }
995 
996 LogicalResult OpTrait::impl::verifyValueSizeAttr(Operation *op,
997                                                  StringRef attrName,
998                                                  StringRef valueGroupName,
999                                                  size_t expectedCount) {
1000   auto sizeAttr = op->getAttrOfType<DenseIntElementsAttr>(attrName);
1001   if (!sizeAttr)
1002     return op->emitOpError("requires 1D i32 elements attribute '")
1003            << attrName << "'";
1004 
1005   auto sizeAttrType = sizeAttr.getType();
1006   if (sizeAttrType.getRank() != 1 ||
1007       !sizeAttrType.getElementType().isInteger(32))
1008     return op->emitOpError("requires 1D i32 elements attribute '")
1009            << attrName << "'";
1010 
1011   if (llvm::any_of(sizeAttr.getValues<APInt>(), [](const APInt &element) {
1012         return !element.isNonNegative();
1013       }))
1014     return op->emitOpError("'")
1015            << attrName << "' attribute cannot have negative elements";
1016 
1017   size_t totalCount = std::accumulate(
1018       sizeAttr.begin(), sizeAttr.end(), 0,
1019       [](unsigned all, const APInt &one) { return all + one.getZExtValue(); });
1020 
1021   if (totalCount != expectedCount)
1022     return op->emitOpError()
1023            << valueGroupName << " count (" << expectedCount
1024            << ") does not match with the total size (" << totalCount
1025            << ") specified in attribute '" << attrName << "'";
1026   return success();
1027 }
1028 
1029 LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op,
1030                                                    StringRef attrName) {
1031   return verifyValueSizeAttr(op, attrName, "operand", op->getNumOperands());
1032 }
1033 
1034 LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op,
1035                                                   StringRef attrName) {
1036   return verifyValueSizeAttr(op, attrName, "result", op->getNumResults());
1037 }
1038 
1039 LogicalResult OpTrait::impl::verifyNoRegionArguments(Operation *op) {
1040   for (Region &region : op->getRegions()) {
1041     if (region.empty())
1042       continue;
1043 
1044     if (region.getNumArguments() != 0) {
1045       if (op->getNumRegions() > 1)
1046         return op->emitOpError("region #")
1047                << region.getRegionNumber() << " should have no arguments";
1048       return op->emitOpError("region should have no arguments");
1049     }
1050   }
1051   return success();
1052 }
1053 
1054 LogicalResult OpTrait::impl::verifyElementwise(Operation *op) {
1055   auto isMappableType = [](Type type) {
1056     return type.isa<VectorType, TensorType>();
1057   };
1058   auto resultMappableTypes = llvm::to_vector<1>(
1059       llvm::make_filter_range(op->getResultTypes(), isMappableType));
1060   auto operandMappableTypes = llvm::to_vector<2>(
1061       llvm::make_filter_range(op->getOperandTypes(), isMappableType));
1062 
1063   // If the op only has scalar operand/result types, then we have nothing to
1064   // check.
1065   if (resultMappableTypes.empty() && operandMappableTypes.empty())
1066     return success();
1067 
1068   if (!resultMappableTypes.empty() && operandMappableTypes.empty())
1069     return op->emitOpError("if a result is non-scalar, then at least one "
1070                            "operand must be non-scalar");
1071 
1072   assert(!operandMappableTypes.empty());
1073 
1074   if (resultMappableTypes.empty())
1075     return op->emitOpError("if an operand is non-scalar, then there must be at "
1076                            "least one non-scalar result");
1077 
1078   if (resultMappableTypes.size() != op->getNumResults())
1079     return op->emitOpError(
1080         "if an operand is non-scalar, then all results must be non-scalar");
1081 
1082   SmallVector<Type, 4> types = llvm::to_vector<2>(
1083       llvm::concat<Type>(operandMappableTypes, resultMappableTypes));
1084   TypeID expectedBaseTy = types.front().getTypeID();
1085   if (!llvm::all_of(types,
1086                     [&](Type t) { return t.getTypeID() == expectedBaseTy; }) ||
1087       failed(verifyCompatibleShapes(types))) {
1088     return op->emitOpError() << "all non-scalar operands/results must have the "
1089                                 "same shape and base type";
1090   }
1091 
1092   return success();
1093 }
1094 
1095 /// Check for any values used by operations regions attached to the
1096 /// specified "IsIsolatedFromAbove" operation defined outside of it.
1097 LogicalResult OpTrait::impl::verifyIsIsolatedFromAbove(Operation *isolatedOp) {
1098   assert(isolatedOp->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
1099          "Intended to check IsolatedFromAbove ops");
1100 
1101   // List of regions to analyze.  Each region is processed independently, with
1102   // respect to the common `limit` region, so we can look at them in any order.
1103   // Therefore, use a simple vector and push/pop back the current region.
1104   SmallVector<Region *, 8> pendingRegions;
1105   for (auto &region : isolatedOp->getRegions()) {
1106     pendingRegions.push_back(&region);
1107 
1108     // Traverse all operations in the region.
1109     while (!pendingRegions.empty()) {
1110       for (Operation &op : pendingRegions.pop_back_val()->getOps()) {
1111         for (Value operand : op.getOperands()) {
1112           // Check that any value that is used by an operation is defined in the
1113           // same region as either an operation result.
1114           auto *operandRegion = operand.getParentRegion();
1115           if (!operandRegion)
1116             return op.emitError("operation's operand is unlinked");
1117           if (!region.isAncestor(operandRegion)) {
1118             return op.emitOpError("using value defined outside the region")
1119                        .attachNote(isolatedOp->getLoc())
1120                    << "required by region isolation constraints";
1121           }
1122         }
1123 
1124         // Schedule any regions in the operation for further checking.  Don't
1125         // recurse into other IsolatedFromAbove ops, because they will check
1126         // themselves.
1127         if (op.getNumRegions() &&
1128             !op.hasTrait<OpTrait::IsIsolatedFromAbove>()) {
1129           for (Region &subRegion : op.getRegions())
1130             pendingRegions.push_back(&subRegion);
1131         }
1132       }
1133     }
1134   }
1135 
1136   return success();
1137 }
1138 
1139 bool OpTrait::hasElementwiseMappableTraits(Operation *op) {
1140   return op->hasTrait<Elementwise>() && op->hasTrait<Scalarizable>() &&
1141          op->hasTrait<Vectorizable>() && op->hasTrait<Tensorizable>();
1142 }
1143 
1144 //===----------------------------------------------------------------------===//
1145 // CastOpInterface
1146 //===----------------------------------------------------------------------===//
1147 
1148 /// Attempt to fold the given cast operation.
1149 LogicalResult
1150 impl::foldCastInterfaceOp(Operation *op, ArrayRef<Attribute> attrOperands,
1151                           SmallVectorImpl<OpFoldResult> &foldResults) {
1152   OperandRange operands = op->getOperands();
1153   if (operands.empty())
1154     return failure();
1155   ResultRange results = op->getResults();
1156 
1157   // Check for the case where the input and output types match 1-1.
1158   if (operands.getTypes() == results.getTypes()) {
1159     foldResults.append(operands.begin(), operands.end());
1160     return success();
1161   }
1162 
1163   return failure();
1164 }
1165 
1166 /// Attempt to verify the given cast operation.
1167 LogicalResult impl::verifyCastInterfaceOp(
1168     Operation *op, function_ref<bool(TypeRange, TypeRange)> areCastCompatible) {
1169   auto resultTypes = op->getResultTypes();
1170   if (llvm::empty(resultTypes))
1171     return op->emitOpError()
1172            << "expected at least one result for cast operation";
1173 
1174   auto operandTypes = op->getOperandTypes();
1175   if (!areCastCompatible(operandTypes, resultTypes)) {
1176     InFlightDiagnostic diag = op->emitOpError("operand type");
1177     if (llvm::empty(operandTypes))
1178       diag << "s []";
1179     else if (llvm::size(operandTypes) == 1)
1180       diag << " " << *operandTypes.begin();
1181     else
1182       diag << "s " << operandTypes;
1183     return diag << " and result type" << (resultTypes.size() == 1 ? " " : "s ")
1184                 << resultTypes << " are cast incompatible";
1185   }
1186 
1187   return success();
1188 }
1189 
1190 //===----------------------------------------------------------------------===//
1191 // Misc. utils
1192 //===----------------------------------------------------------------------===//
1193 
1194 /// Insert an operation, generated by `buildTerminatorOp`, at the end of the
1195 /// region's only block if it does not have a terminator already. If the region
1196 /// is empty, insert a new block first. `buildTerminatorOp` should return the
1197 /// terminator operation to insert.
1198 void impl::ensureRegionTerminator(
1199     Region &region, OpBuilder &builder, Location loc,
1200     function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
1201   OpBuilder::InsertionGuard guard(builder);
1202   if (region.empty())
1203     builder.createBlock(&region);
1204 
1205   Block &block = region.back();
1206   if (!block.empty() && block.back().hasTrait<OpTrait::IsTerminator>())
1207     return;
1208 
1209   builder.setInsertionPointToEnd(&block);
1210   builder.insert(buildTerminatorOp(builder, loc));
1211 }
1212 
1213 /// Create a simple OpBuilder and forward to the OpBuilder version of this
1214 /// function.
1215 void impl::ensureRegionTerminator(
1216     Region &region, Builder &builder, Location loc,
1217     function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
1218   OpBuilder opBuilder(builder.getContext());
1219   ensureRegionTerminator(region, opBuilder, loc, buildTerminatorOp);
1220 }
1221