1 //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/BuiltinTypes.h"
10 #include "TypeDetail.h"
11 #include "mlir/IR/AffineExpr.h"
12 #include "mlir/IR/AffineMap.h"
13 #include "mlir/IR/BuiltinAttributes.h"
14 #include "mlir/IR/BuiltinDialect.h"
15 #include "mlir/IR/Diagnostics.h"
16 #include "mlir/IR/Dialect.h"
17 #include "mlir/IR/TensorEncoding.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/TypeSwitch.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 //===----------------------------------------------------------------------===//
28 /// Tablegen Type Definitions
29 //===----------------------------------------------------------------------===//
30 
31 #define GET_TYPEDEF_CLASSES
32 #include "mlir/IR/BuiltinTypes.cpp.inc"
33 
34 //===----------------------------------------------------------------------===//
35 /// Tablegen Interface Definitions
36 //===----------------------------------------------------------------------===//
37 
38 #include "mlir/IR/BuiltinTypeInterfaces.cpp.inc"
39 
40 //===----------------------------------------------------------------------===//
41 // BuiltinDialect
42 //===----------------------------------------------------------------------===//
43 
44 void BuiltinDialect::registerTypes() {
45   addTypes<
46 #define GET_TYPEDEF_LIST
47 #include "mlir/IR/BuiltinTypes.cpp.inc"
48       >();
49 }
50 
51 //===----------------------------------------------------------------------===//
52 /// ComplexType
53 //===----------------------------------------------------------------------===//
54 
55 /// Verify the construction of an integer type.
56 LogicalResult ComplexType::verify(function_ref<InFlightDiagnostic()> emitError,
57                                   Type elementType) {
58   if (!elementType.isIntOrFloat())
59     return emitError() << "invalid element type for complex";
60   return success();
61 }
62 
63 //===----------------------------------------------------------------------===//
64 // Integer Type
65 //===----------------------------------------------------------------------===//
66 
67 // static constexpr must have a definition (until in C++17 and inline variable).
68 constexpr unsigned IntegerType::kMaxWidth;
69 
70 /// Verify the construction of an integer type.
71 LogicalResult IntegerType::verify(function_ref<InFlightDiagnostic()> emitError,
72                                   unsigned width,
73                                   SignednessSemantics signedness) {
74   if (width > IntegerType::kMaxWidth) {
75     return emitError() << "integer bitwidth is limited to "
76                        << IntegerType::kMaxWidth << " bits";
77   }
78   return success();
79 }
80 
81 unsigned IntegerType::getWidth() const { return getImpl()->width; }
82 
83 IntegerType::SignednessSemantics IntegerType::getSignedness() const {
84   return getImpl()->signedness;
85 }
86 
87 IntegerType IntegerType::scaleElementBitwidth(unsigned scale) {
88   if (!scale)
89     return IntegerType();
90   return IntegerType::get(getContext(), scale * getWidth(), getSignedness());
91 }
92 
93 //===----------------------------------------------------------------------===//
94 // Float Type
95 //===----------------------------------------------------------------------===//
96 
97 unsigned FloatType::getWidth() {
98   if (isa<Float16Type, BFloat16Type>())
99     return 16;
100   if (isa<Float32Type>())
101     return 32;
102   if (isa<Float64Type>())
103     return 64;
104   if (isa<Float80Type>())
105     return 80;
106   if (isa<Float128Type>())
107     return 128;
108   llvm_unreachable("unexpected float type");
109 }
110 
111 /// Returns the floating semantics for the given type.
112 const llvm::fltSemantics &FloatType::getFloatSemantics() {
113   if (isa<BFloat16Type>())
114     return APFloat::BFloat();
115   if (isa<Float16Type>())
116     return APFloat::IEEEhalf();
117   if (isa<Float32Type>())
118     return APFloat::IEEEsingle();
119   if (isa<Float64Type>())
120     return APFloat::IEEEdouble();
121   if (isa<Float80Type>())
122     return APFloat::x87DoubleExtended();
123   if (isa<Float128Type>())
124     return APFloat::IEEEquad();
125   llvm_unreachable("non-floating point type used");
126 }
127 
128 FloatType FloatType::scaleElementBitwidth(unsigned scale) {
129   if (!scale)
130     return FloatType();
131   MLIRContext *ctx = getContext();
132   if (isF16() || isBF16()) {
133     if (scale == 2)
134       return FloatType::getF32(ctx);
135     if (scale == 4)
136       return FloatType::getF64(ctx);
137   }
138   if (isF32())
139     if (scale == 2)
140       return FloatType::getF64(ctx);
141   return FloatType();
142 }
143 
144 //===----------------------------------------------------------------------===//
145 // FunctionType
146 //===----------------------------------------------------------------------===//
147 
148 unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; }
149 
150 ArrayRef<Type> FunctionType::getInputs() const {
151   return getImpl()->getInputs();
152 }
153 
154 unsigned FunctionType::getNumResults() const { return getImpl()->numResults; }
155 
156 ArrayRef<Type> FunctionType::getResults() const {
157   return getImpl()->getResults();
158 }
159 
160 /// Helper to call a callback once on each index in the range
161 /// [0, `totalIndices`), *except* for the indices given in `indices`.
162 /// `indices` is allowed to have duplicates and can be in any order.
163 inline void iterateIndicesExcept(unsigned totalIndices,
164                                  ArrayRef<unsigned> indices,
165                                  function_ref<void(unsigned)> callback) {
166   llvm::BitVector skipIndices(totalIndices);
167   for (unsigned i : indices)
168     skipIndices.set(i);
169 
170   for (unsigned i = 0; i < totalIndices; ++i)
171     if (!skipIndices.test(i))
172       callback(i);
173 }
174 
175 /// Returns a new function type with the specified arguments and results
176 /// inserted.
177 FunctionType FunctionType::getWithArgsAndResults(
178     ArrayRef<unsigned> argIndices, TypeRange argTypes,
179     ArrayRef<unsigned> resultIndices, TypeRange resultTypes) {
180   assert(argIndices.size() == argTypes.size());
181   assert(resultIndices.size() == resultTypes.size());
182 
183   ArrayRef<Type> newInputTypes = getInputs();
184   SmallVector<Type, 4> newInputTypesBuffer;
185   if (!argIndices.empty()) {
186     const auto *fromIt = newInputTypes.begin();
187     for (auto it : llvm::zip(argIndices, argTypes)) {
188       const auto *toIt = newInputTypes.begin() + std::get<0>(it);
189       newInputTypesBuffer.append(fromIt, toIt);
190       newInputTypesBuffer.push_back(std::get<1>(it));
191       fromIt = toIt;
192     }
193     newInputTypesBuffer.append(fromIt, newInputTypes.end());
194     newInputTypes = newInputTypesBuffer;
195   }
196 
197   ArrayRef<Type> newResultTypes = getResults();
198   SmallVector<Type, 4> newResultTypesBuffer;
199   if (!resultIndices.empty()) {
200     const auto *fromIt = newResultTypes.begin();
201     for (auto it : llvm::zip(resultIndices, resultTypes)) {
202       const auto *toIt = newResultTypes.begin() + std::get<0>(it);
203       newResultTypesBuffer.append(fromIt, toIt);
204       newResultTypesBuffer.push_back(std::get<1>(it));
205       fromIt = toIt;
206     }
207     newResultTypesBuffer.append(fromIt, newResultTypes.end());
208     newResultTypes = newResultTypesBuffer;
209   }
210 
211   return FunctionType::get(getContext(), newInputTypes, newResultTypes);
212 }
213 
214 /// Returns a new function type without the specified arguments and results.
215 FunctionType
216 FunctionType::getWithoutArgsAndResults(ArrayRef<unsigned> argIndices,
217                                        ArrayRef<unsigned> resultIndices) {
218   ArrayRef<Type> newInputTypes = getInputs();
219   SmallVector<Type, 4> newInputTypesBuffer;
220   if (!argIndices.empty()) {
221     unsigned originalNumArgs = getNumInputs();
222     iterateIndicesExcept(originalNumArgs, argIndices, [&](unsigned i) {
223       newInputTypesBuffer.emplace_back(getInput(i));
224     });
225     newInputTypes = newInputTypesBuffer;
226   }
227 
228   ArrayRef<Type> newResultTypes = getResults();
229   SmallVector<Type, 4> newResultTypesBuffer;
230   if (!resultIndices.empty()) {
231     unsigned originalNumResults = getNumResults();
232     iterateIndicesExcept(originalNumResults, resultIndices, [&](unsigned i) {
233       newResultTypesBuffer.emplace_back(getResult(i));
234     });
235     newResultTypes = newResultTypesBuffer;
236   }
237 
238   return get(getContext(), newInputTypes, newResultTypes);
239 }
240 
241 void FunctionType::walkImmediateSubElements(
242     function_ref<void(Attribute)> walkAttrsFn,
243     function_ref<void(Type)> walkTypesFn) const {
244   for (Type type : llvm::concat<const Type>(getInputs(), getResults()))
245     walkTypesFn(type);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // OpaqueType
250 //===----------------------------------------------------------------------===//
251 
252 /// Verify the construction of an opaque type.
253 LogicalResult OpaqueType::verify(function_ref<InFlightDiagnostic()> emitError,
254                                  StringAttr dialect, StringRef typeData) {
255   if (!Dialect::isValidNamespace(dialect.strref()))
256     return emitError() << "invalid dialect namespace '" << dialect << "'";
257 
258   // Check that the dialect is actually registered.
259   MLIRContext *context = dialect.getContext();
260   if (!context->allowsUnregisteredDialects() &&
261       !context->getLoadedDialect(dialect.strref())) {
262     return emitError()
263            << "`!" << dialect << "<\"" << typeData << "\">"
264            << "` type created with unregistered dialect. If this is "
265               "intended, please call allowUnregisteredDialects() on the "
266               "MLIRContext, or use -allow-unregistered-dialect with "
267               "the MLIR opt tool used";
268   }
269 
270   return success();
271 }
272 
273 //===----------------------------------------------------------------------===//
274 // ShapedType
275 //===----------------------------------------------------------------------===//
276 constexpr int64_t ShapedType::kDynamicSize;
277 constexpr int64_t ShapedType::kDynamicStrideOrOffset;
278 
279 ShapedType ShapedType::clone(ArrayRef<int64_t> shape, Type elementType) {
280   if (auto other = dyn_cast<MemRefType>()) {
281     MemRefType::Builder b(other);
282     b.setShape(shape);
283     b.setElementType(elementType);
284     return b;
285   }
286 
287   if (auto other = dyn_cast<UnrankedMemRefType>()) {
288     MemRefType::Builder b(shape, elementType);
289     b.setMemorySpace(other.getMemorySpace());
290     return b;
291   }
292 
293   if (isa<TensorType>())
294     return RankedTensorType::get(shape, elementType);
295 
296   if (isa<VectorType>())
297     return VectorType::get(shape, elementType);
298 
299   llvm_unreachable("Unhandled ShapedType clone case");
300 }
301 
302 ShapedType ShapedType::clone(ArrayRef<int64_t> shape) {
303   if (auto other = dyn_cast<MemRefType>()) {
304     MemRefType::Builder b(other);
305     b.setShape(shape);
306     return b;
307   }
308 
309   if (auto other = dyn_cast<UnrankedMemRefType>()) {
310     MemRefType::Builder b(shape, other.getElementType());
311     b.setShape(shape);
312     b.setMemorySpace(other.getMemorySpace());
313     return b;
314   }
315 
316   if (isa<TensorType>())
317     return RankedTensorType::get(shape, getElementType());
318 
319   if (isa<VectorType>())
320     return VectorType::get(shape, getElementType());
321 
322   llvm_unreachable("Unhandled ShapedType clone case");
323 }
324 
325 ShapedType ShapedType::clone(Type elementType) {
326   if (auto other = dyn_cast<MemRefType>()) {
327     MemRefType::Builder b(other);
328     b.setElementType(elementType);
329     return b;
330   }
331 
332   if (auto other = dyn_cast<UnrankedMemRefType>()) {
333     return UnrankedMemRefType::get(elementType, other.getMemorySpace());
334   }
335 
336   if (isa<TensorType>()) {
337     if (hasRank())
338       return RankedTensorType::get(getShape(), elementType);
339     return UnrankedTensorType::get(elementType);
340   }
341 
342   if (isa<VectorType>())
343     return VectorType::get(getShape(), elementType);
344 
345   llvm_unreachable("Unhandled ShapedType clone hit");
346 }
347 
348 Type ShapedType::getElementType() const {
349   return TypeSwitch<Type, Type>(*this)
350       .Case<VectorType, RankedTensorType, UnrankedTensorType, MemRefType,
351             UnrankedMemRefType>([](auto ty) { return ty.getElementType(); });
352 }
353 
354 unsigned ShapedType::getElementTypeBitWidth() const {
355   return getElementType().getIntOrFloatBitWidth();
356 }
357 
358 int64_t ShapedType::getNumElements() const {
359   assert(hasStaticShape() && "cannot get element count of dynamic shaped type");
360   auto shape = getShape();
361   int64_t num = 1;
362   for (auto dim : shape) {
363     num *= dim;
364     assert(num >= 0 && "integer overflow in element count computation");
365   }
366   return num;
367 }
368 
369 int64_t ShapedType::getRank() const {
370   assert(hasRank() && "cannot query rank of unranked shaped type");
371   return getShape().size();
372 }
373 
374 bool ShapedType::hasRank() const {
375   return !isa<UnrankedMemRefType, UnrankedTensorType>();
376 }
377 
378 int64_t ShapedType::getDimSize(unsigned idx) const {
379   assert(idx < getRank() && "invalid index for shaped type");
380   return getShape()[idx];
381 }
382 
383 bool ShapedType::isDynamicDim(unsigned idx) const {
384   assert(idx < getRank() && "invalid index for shaped type");
385   return isDynamic(getShape()[idx]);
386 }
387 
388 unsigned ShapedType::getDynamicDimIndex(unsigned index) const {
389   assert(index < getRank() && "invalid index");
390   assert(ShapedType::isDynamic(getDimSize(index)) && "invalid index");
391   return llvm::count_if(getShape().take_front(index), ShapedType::isDynamic);
392 }
393 
394 /// Get the number of bits require to store a value of the given shaped type.
395 /// Compute the value recursively since tensors are allowed to have vectors as
396 /// elements.
397 int64_t ShapedType::getSizeInBits() const {
398   assert(hasStaticShape() &&
399          "cannot get the bit size of an aggregate with a dynamic shape");
400 
401   auto elementType = getElementType();
402   if (elementType.isIntOrFloat())
403     return elementType.getIntOrFloatBitWidth() * getNumElements();
404 
405   if (auto complexType = elementType.dyn_cast<ComplexType>()) {
406     elementType = complexType.getElementType();
407     return elementType.getIntOrFloatBitWidth() * getNumElements() * 2;
408   }
409 
410   // Tensors can have vectors and other tensors as elements, other shaped types
411   // cannot.
412   assert(isa<TensorType>() && "unsupported element type");
413   assert((elementType.isa<VectorType, TensorType>()) &&
414          "unsupported tensor element type");
415   return getNumElements() * elementType.cast<ShapedType>().getSizeInBits();
416 }
417 
418 ArrayRef<int64_t> ShapedType::getShape() const {
419   if (auto vectorType = dyn_cast<VectorType>())
420     return vectorType.getShape();
421   if (auto tensorType = dyn_cast<RankedTensorType>())
422     return tensorType.getShape();
423   return cast<MemRefType>().getShape();
424 }
425 
426 int64_t ShapedType::getNumDynamicDims() const {
427   return llvm::count_if(getShape(), isDynamic);
428 }
429 
430 bool ShapedType::hasStaticShape() const {
431   return hasRank() && llvm::none_of(getShape(), isDynamic);
432 }
433 
434 bool ShapedType::hasStaticShape(ArrayRef<int64_t> shape) const {
435   return hasStaticShape() && getShape() == shape;
436 }
437 
438 //===----------------------------------------------------------------------===//
439 // VectorType
440 //===----------------------------------------------------------------------===//
441 
442 LogicalResult VectorType::verify(function_ref<InFlightDiagnostic()> emitError,
443                                  ArrayRef<int64_t> shape, Type elementType) {
444   if (!isValidElementType(elementType))
445     return emitError()
446            << "vector elements must be int/index/float type but got "
447            << elementType;
448 
449   if (any_of(shape, [](int64_t i) { return i <= 0; }))
450     return emitError()
451            << "vector types must have positive constant sizes but got "
452            << shape;
453 
454   return success();
455 }
456 
457 VectorType VectorType::scaleElementBitwidth(unsigned scale) {
458   if (!scale)
459     return VectorType();
460   if (auto et = getElementType().dyn_cast<IntegerType>())
461     if (auto scaledEt = et.scaleElementBitwidth(scale))
462       return VectorType::get(getShape(), scaledEt);
463   if (auto et = getElementType().dyn_cast<FloatType>())
464     if (auto scaledEt = et.scaleElementBitwidth(scale))
465       return VectorType::get(getShape(), scaledEt);
466   return VectorType();
467 }
468 
469 void VectorType::walkImmediateSubElements(
470     function_ref<void(Attribute)> walkAttrsFn,
471     function_ref<void(Type)> walkTypesFn) const {
472   walkTypesFn(getElementType());
473 }
474 
475 //===----------------------------------------------------------------------===//
476 // TensorType
477 //===----------------------------------------------------------------------===//
478 
479 // Check if "elementType" can be an element type of a tensor.
480 static LogicalResult
481 checkTensorElementType(function_ref<InFlightDiagnostic()> emitError,
482                        Type elementType) {
483   if (!TensorType::isValidElementType(elementType))
484     return emitError() << "invalid tensor element type: " << elementType;
485   return success();
486 }
487 
488 /// Return true if the specified element type is ok in a tensor.
489 bool TensorType::isValidElementType(Type type) {
490   // Note: Non standard/builtin types are allowed to exist within tensor
491   // types. Dialects are expected to verify that tensor types have a valid
492   // element type within that dialect.
493   return type.isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType,
494                   IndexType>() ||
495          !llvm::isa<BuiltinDialect>(type.getDialect());
496 }
497 
498 //===----------------------------------------------------------------------===//
499 // RankedTensorType
500 //===----------------------------------------------------------------------===//
501 
502 LogicalResult
503 RankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError,
504                          ArrayRef<int64_t> shape, Type elementType,
505                          Attribute encoding) {
506   for (int64_t s : shape)
507     if (s < -1)
508       return emitError() << "invalid tensor dimension size";
509   if (auto v = encoding.dyn_cast_or_null<VerifiableTensorEncoding>())
510     if (failed(v.verifyEncoding(shape, elementType, emitError)))
511       return failure();
512   return checkTensorElementType(emitError, elementType);
513 }
514 
515 void RankedTensorType::walkImmediateSubElements(
516     function_ref<void(Attribute)> walkAttrsFn,
517     function_ref<void(Type)> walkTypesFn) const {
518   walkTypesFn(getElementType());
519   if (Attribute encoding = getEncoding())
520     walkAttrsFn(encoding);
521 }
522 
523 //===----------------------------------------------------------------------===//
524 // UnrankedTensorType
525 //===----------------------------------------------------------------------===//
526 
527 LogicalResult
528 UnrankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError,
529                            Type elementType) {
530   return checkTensorElementType(emitError, elementType);
531 }
532 
533 void UnrankedTensorType::walkImmediateSubElements(
534     function_ref<void(Attribute)> walkAttrsFn,
535     function_ref<void(Type)> walkTypesFn) const {
536   walkTypesFn(getElementType());
537 }
538 
539 //===----------------------------------------------------------------------===//
540 // BaseMemRefType
541 //===----------------------------------------------------------------------===//
542 
543 Attribute BaseMemRefType::getMemorySpace() const {
544   if (auto rankedMemRefTy = dyn_cast<MemRefType>())
545     return rankedMemRefTy.getMemorySpace();
546   return cast<UnrankedMemRefType>().getMemorySpace();
547 }
548 
549 unsigned BaseMemRefType::getMemorySpaceAsInt() const {
550   if (auto rankedMemRefTy = dyn_cast<MemRefType>())
551     return rankedMemRefTy.getMemorySpaceAsInt();
552   return cast<UnrankedMemRefType>().getMemorySpaceAsInt();
553 }
554 
555 //===----------------------------------------------------------------------===//
556 // MemRefType
557 //===----------------------------------------------------------------------===//
558 
559 /// Given an `originalShape` and a `reducedShape` assumed to be a subset of
560 /// `originalShape` with some `1` entries erased, return the set of indices
561 /// that specifies which of the entries of `originalShape` are dropped to obtain
562 /// `reducedShape`. The returned mask can be applied as a projection to
563 /// `originalShape` to obtain the `reducedShape`. This mask is useful to track
564 /// which dimensions must be kept when e.g. compute MemRef strides under
565 /// rank-reducing operations. Return None if reducedShape cannot be obtained
566 /// by dropping only `1` entries in `originalShape`.
567 llvm::Optional<llvm::SmallDenseSet<unsigned>>
568 mlir::computeRankReductionMask(ArrayRef<int64_t> originalShape,
569                                ArrayRef<int64_t> reducedShape) {
570   size_t originalRank = originalShape.size(), reducedRank = reducedShape.size();
571   llvm::SmallDenseSet<unsigned> unusedDims;
572   unsigned reducedIdx = 0;
573   for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) {
574     // Greedily insert `originalIdx` if no match.
575     if (reducedIdx < reducedRank &&
576         originalShape[originalIdx] == reducedShape[reducedIdx]) {
577       reducedIdx++;
578       continue;
579     }
580 
581     unusedDims.insert(originalIdx);
582     // If no match on `originalIdx`, the `originalShape` at this dimension
583     // must be 1, otherwise we bail.
584     if (originalShape[originalIdx] != 1)
585       return llvm::None;
586   }
587   // The whole reducedShape must be scanned, otherwise we bail.
588   if (reducedIdx != reducedRank)
589     return llvm::None;
590   return unusedDims;
591 }
592 
593 bool mlir::detail::isSupportedMemorySpace(Attribute memorySpace) {
594   // Empty attribute is allowed as default memory space.
595   if (!memorySpace)
596     return true;
597 
598   // Supported built-in attributes.
599   if (memorySpace.isa<IntegerAttr, StringAttr, DictionaryAttr>())
600     return true;
601 
602   // Allow custom dialect attributes.
603   if (!::mlir::isa<BuiltinDialect>(memorySpace.getDialect()))
604     return true;
605 
606   return false;
607 }
608 
609 Attribute mlir::detail::wrapIntegerMemorySpace(unsigned memorySpace,
610                                                MLIRContext *ctx) {
611   if (memorySpace == 0)
612     return nullptr;
613 
614   return IntegerAttr::get(IntegerType::get(ctx, 64), memorySpace);
615 }
616 
617 Attribute mlir::detail::skipDefaultMemorySpace(Attribute memorySpace) {
618   IntegerAttr intMemorySpace = memorySpace.dyn_cast_or_null<IntegerAttr>();
619   if (intMemorySpace && intMemorySpace.getValue() == 0)
620     return nullptr;
621 
622   return memorySpace;
623 }
624 
625 unsigned mlir::detail::getMemorySpaceAsInt(Attribute memorySpace) {
626   if (!memorySpace)
627     return 0;
628 
629   assert(memorySpace.isa<IntegerAttr>() &&
630          "Using `getMemorySpaceInteger` with non-Integer attribute");
631 
632   return static_cast<unsigned>(memorySpace.cast<IntegerAttr>().getInt());
633 }
634 
635 MemRefType::Builder &
636 MemRefType::Builder::setMemorySpace(unsigned newMemorySpace) {
637   memorySpace =
638       wrapIntegerMemorySpace(newMemorySpace, elementType.getContext());
639   return *this;
640 }
641 
642 unsigned MemRefType::getMemorySpaceAsInt() const {
643   return detail::getMemorySpaceAsInt(getMemorySpace());
644 }
645 
646 MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType,
647                            MemRefLayoutAttrInterface layout,
648                            Attribute memorySpace) {
649   // Use default layout for empty attribute.
650   if (!layout)
651     layout = AffineMapAttr::get(AffineMap::getMultiDimIdentityMap(
652         shape.size(), elementType.getContext()));
653 
654   // Drop default memory space value and replace it with empty attribute.
655   memorySpace = skipDefaultMemorySpace(memorySpace);
656 
657   return Base::get(elementType.getContext(), shape, elementType, layout,
658                    memorySpace);
659 }
660 
661 MemRefType MemRefType::getChecked(
662     function_ref<InFlightDiagnostic()> emitErrorFn, ArrayRef<int64_t> shape,
663     Type elementType, MemRefLayoutAttrInterface layout, Attribute memorySpace) {
664 
665   // Use default layout for empty attribute.
666   if (!layout)
667     layout = AffineMapAttr::get(AffineMap::getMultiDimIdentityMap(
668         shape.size(), elementType.getContext()));
669 
670   // Drop default memory space value and replace it with empty attribute.
671   memorySpace = skipDefaultMemorySpace(memorySpace);
672 
673   return Base::getChecked(emitErrorFn, elementType.getContext(), shape,
674                           elementType, layout, memorySpace);
675 }
676 
677 MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType,
678                            AffineMap map, Attribute memorySpace) {
679 
680   // Use default layout for empty map.
681   if (!map)
682     map = AffineMap::getMultiDimIdentityMap(shape.size(),
683                                             elementType.getContext());
684 
685   // Wrap AffineMap into Attribute.
686   Attribute layout = AffineMapAttr::get(map);
687 
688   // Drop default memory space value and replace it with empty attribute.
689   memorySpace = skipDefaultMemorySpace(memorySpace);
690 
691   return Base::get(elementType.getContext(), shape, elementType, layout,
692                    memorySpace);
693 }
694 
695 MemRefType
696 MemRefType::getChecked(function_ref<InFlightDiagnostic()> emitErrorFn,
697                        ArrayRef<int64_t> shape, Type elementType, AffineMap map,
698                        Attribute memorySpace) {
699 
700   // Use default layout for empty map.
701   if (!map)
702     map = AffineMap::getMultiDimIdentityMap(shape.size(),
703                                             elementType.getContext());
704 
705   // Wrap AffineMap into Attribute.
706   Attribute layout = AffineMapAttr::get(map);
707 
708   // Drop default memory space value and replace it with empty attribute.
709   memorySpace = skipDefaultMemorySpace(memorySpace);
710 
711   return Base::getChecked(emitErrorFn, elementType.getContext(), shape,
712                           elementType, layout, memorySpace);
713 }
714 
715 MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType,
716                            AffineMap map, unsigned memorySpaceInd) {
717 
718   // Use default layout for empty map.
719   if (!map)
720     map = AffineMap::getMultiDimIdentityMap(shape.size(),
721                                             elementType.getContext());
722 
723   // Wrap AffineMap into Attribute.
724   Attribute layout = AffineMapAttr::get(map);
725 
726   // Convert deprecated integer-like memory space to Attribute.
727   Attribute memorySpace =
728       wrapIntegerMemorySpace(memorySpaceInd, elementType.getContext());
729 
730   return Base::get(elementType.getContext(), shape, elementType, layout,
731                    memorySpace);
732 }
733 
734 MemRefType
735 MemRefType::getChecked(function_ref<InFlightDiagnostic()> emitErrorFn,
736                        ArrayRef<int64_t> shape, Type elementType, AffineMap map,
737                        unsigned memorySpaceInd) {
738 
739   // Use default layout for empty map.
740   if (!map)
741     map = AffineMap::getMultiDimIdentityMap(shape.size(),
742                                             elementType.getContext());
743 
744   // Wrap AffineMap into Attribute.
745   Attribute layout = AffineMapAttr::get(map);
746 
747   // Convert deprecated integer-like memory space to Attribute.
748   Attribute memorySpace =
749       wrapIntegerMemorySpace(memorySpaceInd, elementType.getContext());
750 
751   return Base::getChecked(emitErrorFn, elementType.getContext(), shape,
752                           elementType, layout, memorySpace);
753 }
754 
755 LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError,
756                                  ArrayRef<int64_t> shape, Type elementType,
757                                  MemRefLayoutAttrInterface layout,
758                                  Attribute memorySpace) {
759   if (!BaseMemRefType::isValidElementType(elementType))
760     return emitError() << "invalid memref element type";
761 
762   // Negative sizes are not allowed except for `-1` that means dynamic size.
763   for (int64_t s : shape)
764     if (s < -1)
765       return emitError() << "invalid memref size";
766 
767   assert(layout && "missing layout specification");
768   if (failed(layout.verifyLayout(shape, emitError)))
769     return failure();
770 
771   if (!isSupportedMemorySpace(memorySpace))
772     return emitError() << "unsupported memory space Attribute";
773 
774   return success();
775 }
776 
777 void MemRefType::walkImmediateSubElements(
778     function_ref<void(Attribute)> walkAttrsFn,
779     function_ref<void(Type)> walkTypesFn) const {
780   walkTypesFn(getElementType());
781   if (!getLayout().isIdentity())
782     walkAttrsFn(getLayout());
783   walkAttrsFn(getMemorySpace());
784 }
785 
786 //===----------------------------------------------------------------------===//
787 // UnrankedMemRefType
788 //===----------------------------------------------------------------------===//
789 
790 unsigned UnrankedMemRefType::getMemorySpaceAsInt() const {
791   return detail::getMemorySpaceAsInt(getMemorySpace());
792 }
793 
794 LogicalResult
795 UnrankedMemRefType::verify(function_ref<InFlightDiagnostic()> emitError,
796                            Type elementType, Attribute memorySpace) {
797   if (!BaseMemRefType::isValidElementType(elementType))
798     return emitError() << "invalid memref element type";
799 
800   if (!isSupportedMemorySpace(memorySpace))
801     return emitError() << "unsupported memory space Attribute";
802 
803   return success();
804 }
805 
806 // Fallback cases for terminal dim/sym/cst that are not part of a binary op (
807 // i.e. single term). Accumulate the AffineExpr into the existing one.
808 static void extractStridesFromTerm(AffineExpr e,
809                                    AffineExpr multiplicativeFactor,
810                                    MutableArrayRef<AffineExpr> strides,
811                                    AffineExpr &offset) {
812   if (auto dim = e.dyn_cast<AffineDimExpr>())
813     strides[dim.getPosition()] =
814         strides[dim.getPosition()] + multiplicativeFactor;
815   else
816     offset = offset + e * multiplicativeFactor;
817 }
818 
819 /// Takes a single AffineExpr `e` and populates the `strides` array with the
820 /// strides expressions for each dim position.
821 /// The convention is that the strides for dimensions d0, .. dn appear in
822 /// order to make indexing intuitive into the result.
823 static LogicalResult extractStrides(AffineExpr e,
824                                     AffineExpr multiplicativeFactor,
825                                     MutableArrayRef<AffineExpr> strides,
826                                     AffineExpr &offset) {
827   auto bin = e.dyn_cast<AffineBinaryOpExpr>();
828   if (!bin) {
829     extractStridesFromTerm(e, multiplicativeFactor, strides, offset);
830     return success();
831   }
832 
833   if (bin.getKind() == AffineExprKind::CeilDiv ||
834       bin.getKind() == AffineExprKind::FloorDiv ||
835       bin.getKind() == AffineExprKind::Mod)
836     return failure();
837 
838   if (bin.getKind() == AffineExprKind::Mul) {
839     auto dim = bin.getLHS().dyn_cast<AffineDimExpr>();
840     if (dim) {
841       strides[dim.getPosition()] =
842           strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor;
843       return success();
844     }
845     // LHS and RHS may both contain complex expressions of dims. Try one path
846     // and if it fails try the other. This is guaranteed to succeed because
847     // only one path may have a `dim`, otherwise this is not an AffineExpr in
848     // the first place.
849     if (bin.getLHS().isSymbolicOrConstant())
850       return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(),
851                             strides, offset);
852     return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(),
853                           strides, offset);
854   }
855 
856   if (bin.getKind() == AffineExprKind::Add) {
857     auto res1 =
858         extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset);
859     auto res2 =
860         extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset);
861     return success(succeeded(res1) && succeeded(res2));
862   }
863 
864   llvm_unreachable("unexpected binary operation");
865 }
866 
867 LogicalResult mlir::getStridesAndOffset(MemRefType t,
868                                         SmallVectorImpl<AffineExpr> &strides,
869                                         AffineExpr &offset) {
870   AffineMap m = t.getLayout().getAffineMap();
871 
872   if (m.getNumResults() != 1 && !m.isIdentity())
873     return failure();
874 
875   auto zero = getAffineConstantExpr(0, t.getContext());
876   auto one = getAffineConstantExpr(1, t.getContext());
877   offset = zero;
878   strides.assign(t.getRank(), zero);
879 
880   // Canonical case for empty map.
881   if (m.isIdentity()) {
882     // 0-D corner case, offset is already 0.
883     if (t.getRank() == 0)
884       return success();
885     auto stridedExpr =
886         makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext());
887     if (succeeded(extractStrides(stridedExpr, one, strides, offset)))
888       return success();
889     assert(false && "unexpected failure: extract strides in canonical layout");
890   }
891 
892   // Non-canonical case requires more work.
893   auto stridedExpr =
894       simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols());
895   if (failed(extractStrides(stridedExpr, one, strides, offset))) {
896     offset = AffineExpr();
897     strides.clear();
898     return failure();
899   }
900 
901   // Simplify results to allow folding to constants and simple checks.
902   unsigned numDims = m.getNumDims();
903   unsigned numSymbols = m.getNumSymbols();
904   offset = simplifyAffineExpr(offset, numDims, numSymbols);
905   for (auto &stride : strides)
906     stride = simplifyAffineExpr(stride, numDims, numSymbols);
907 
908   /// In practice, a strided memref must be internally non-aliasing. Test
909   /// against 0 as a proxy.
910   /// TODO: static cases can have more advanced checks.
911   /// TODO: dynamic cases would require a way to compare symbolic
912   /// expressions and would probably need an affine set context propagated
913   /// everywhere.
914   if (llvm::any_of(strides, [](AffineExpr e) {
915         return e == getAffineConstantExpr(0, e.getContext());
916       })) {
917     offset = AffineExpr();
918     strides.clear();
919     return failure();
920   }
921 
922   return success();
923 }
924 
925 LogicalResult mlir::getStridesAndOffset(MemRefType t,
926                                         SmallVectorImpl<int64_t> &strides,
927                                         int64_t &offset) {
928   AffineExpr offsetExpr;
929   SmallVector<AffineExpr, 4> strideExprs;
930   if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr)))
931     return failure();
932   if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>())
933     offset = cst.getValue();
934   else
935     offset = ShapedType::kDynamicStrideOrOffset;
936   for (auto e : strideExprs) {
937     if (auto c = e.dyn_cast<AffineConstantExpr>())
938       strides.push_back(c.getValue());
939     else
940       strides.push_back(ShapedType::kDynamicStrideOrOffset);
941   }
942   return success();
943 }
944 
945 void UnrankedMemRefType::walkImmediateSubElements(
946     function_ref<void(Attribute)> walkAttrsFn,
947     function_ref<void(Type)> walkTypesFn) const {
948   walkTypesFn(getElementType());
949   walkAttrsFn(getMemorySpace());
950 }
951 
952 //===----------------------------------------------------------------------===//
953 /// TupleType
954 //===----------------------------------------------------------------------===//
955 
956 /// Return the elements types for this tuple.
957 ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); }
958 
959 /// Accumulate the types contained in this tuple and tuples nested within it.
960 /// Note that this only flattens nested tuples, not any other container type,
961 /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to
962 /// (i32, tensor<i32>, f32, i64)
963 void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) {
964   for (Type type : getTypes()) {
965     if (auto nestedTuple = type.dyn_cast<TupleType>())
966       nestedTuple.getFlattenedTypes(types);
967     else
968       types.push_back(type);
969   }
970 }
971 
972 /// Return the number of element types.
973 size_t TupleType::size() const { return getImpl()->size(); }
974 
975 void TupleType::walkImmediateSubElements(
976     function_ref<void(Attribute)> walkAttrsFn,
977     function_ref<void(Type)> walkTypesFn) const {
978   for (Type type : getTypes())
979     walkTypesFn(type);
980 }
981 
982 //===----------------------------------------------------------------------===//
983 // Type Utilities
984 //===----------------------------------------------------------------------===//
985 
986 AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides,
987                                            int64_t offset,
988                                            MLIRContext *context) {
989   AffineExpr expr;
990   unsigned nSymbols = 0;
991 
992   // AffineExpr for offset.
993   // Static case.
994   if (offset != MemRefType::getDynamicStrideOrOffset()) {
995     auto cst = getAffineConstantExpr(offset, context);
996     expr = cst;
997   } else {
998     // Dynamic case, new symbol for the offset.
999     auto sym = getAffineSymbolExpr(nSymbols++, context);
1000     expr = sym;
1001   }
1002 
1003   // AffineExpr for strides.
1004   for (auto en : llvm::enumerate(strides)) {
1005     auto dim = en.index();
1006     auto stride = en.value();
1007     assert(stride != 0 && "Invalid stride specification");
1008     auto d = getAffineDimExpr(dim, context);
1009     AffineExpr mult;
1010     // Static case.
1011     if (stride != MemRefType::getDynamicStrideOrOffset())
1012       mult = getAffineConstantExpr(stride, context);
1013     else
1014       // Dynamic case, new symbol for each new stride.
1015       mult = getAffineSymbolExpr(nSymbols++, context);
1016     expr = expr + d * mult;
1017   }
1018 
1019   return AffineMap::get(strides.size(), nSymbols, expr);
1020 }
1021 
1022 /// Return a version of `t` with identity layout if it can be determined
1023 /// statically that the layout is the canonical contiguous strided layout.
1024 /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of
1025 /// `t` with simplified layout.
1026 /// If `t` has multiple layout maps or a multi-result layout, just return `t`.
1027 MemRefType mlir::canonicalizeStridedLayout(MemRefType t) {
1028   AffineMap m = t.getLayout().getAffineMap();
1029 
1030   // Already in canonical form.
1031   if (m.isIdentity())
1032     return t;
1033 
1034   // Can't reduce to canonical identity form, return in canonical form.
1035   if (m.getNumResults() > 1)
1036     return t;
1037 
1038   // Corner-case for 0-D affine maps.
1039   if (m.getNumDims() == 0 && m.getNumSymbols() == 0) {
1040     if (auto cst = m.getResult(0).dyn_cast<AffineConstantExpr>())
1041       if (cst.getValue() == 0)
1042         return MemRefType::Builder(t).setLayout({});
1043     return t;
1044   }
1045 
1046   // 0-D corner case for empty shape that still have an affine map. Example:
1047   // `memref<f32, affine_map<()[s0] -> (s0)>>`. This is a 1 element memref whose
1048   // offset needs to remain, just return t.
1049   if (t.getShape().empty())
1050     return t;
1051 
1052   // If the canonical strided layout for the sizes of `t` is equal to the
1053   // simplified layout of `t` we can just return an empty layout. Otherwise,
1054   // just simplify the existing layout.
1055   AffineExpr expr =
1056       makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext());
1057   auto simplifiedLayoutExpr =
1058       simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols());
1059   if (expr != simplifiedLayoutExpr)
1060     return MemRefType::Builder(t).setLayout(AffineMapAttr::get(AffineMap::get(
1061         m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)));
1062   return MemRefType::Builder(t).setLayout({});
1063 }
1064 
1065 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes,
1066                                                 ArrayRef<AffineExpr> exprs,
1067                                                 MLIRContext *context) {
1068   assert(!sizes.empty() && !exprs.empty() &&
1069          "expected non-empty sizes and exprs");
1070 
1071   // Size 0 corner case is useful for canonicalizations.
1072   if (llvm::is_contained(sizes, 0))
1073     return getAffineConstantExpr(0, context);
1074 
1075   auto maps = AffineMap::inferFromExprList(exprs);
1076   assert(!maps.empty() && "Expected one non-empty map");
1077   unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols();
1078 
1079   AffineExpr expr;
1080   bool dynamicPoisonBit = false;
1081   int64_t runningSize = 1;
1082   for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) {
1083     int64_t size = std::get<1>(en);
1084     // Degenerate case, no size =-> no stride
1085     if (size == 0)
1086       continue;
1087     AffineExpr dimExpr = std::get<0>(en);
1088     AffineExpr stride = dynamicPoisonBit
1089                             ? getAffineSymbolExpr(nSymbols++, context)
1090                             : getAffineConstantExpr(runningSize, context);
1091     expr = expr ? expr + dimExpr * stride : dimExpr * stride;
1092     if (size > 0) {
1093       runningSize *= size;
1094       assert(runningSize > 0 && "integer overflow in size computation");
1095     } else {
1096       dynamicPoisonBit = true;
1097     }
1098   }
1099   return simplifyAffineExpr(expr, numDims, nSymbols);
1100 }
1101 
1102 /// Return a version of `t` with a layout that has all dynamic offset and
1103 /// strides. This is used to erase the static layout.
1104 MemRefType mlir::eraseStridedLayout(MemRefType t) {
1105   auto val = ShapedType::kDynamicStrideOrOffset;
1106   return MemRefType::Builder(t).setLayout(
1107       AffineMapAttr::get(makeStridedLinearLayoutMap(
1108           SmallVector<int64_t, 4>(t.getRank(), val), val, t.getContext())));
1109 }
1110 
1111 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes,
1112                                                 MLIRContext *context) {
1113   SmallVector<AffineExpr, 4> exprs;
1114   exprs.reserve(sizes.size());
1115   for (auto dim : llvm::seq<unsigned>(0, sizes.size()))
1116     exprs.push_back(getAffineDimExpr(dim, context));
1117   return makeCanonicalStridedLayoutExpr(sizes, exprs, context);
1118 }
1119 
1120 /// Return true if the layout for `t` is compatible with strided semantics.
1121 bool mlir::isStrided(MemRefType t) {
1122   int64_t offset;
1123   SmallVector<int64_t, 4> strides;
1124   auto res = getStridesAndOffset(t, strides, offset);
1125   return succeeded(res);
1126 }
1127 
1128 /// Return the layout map in strided linear layout AffineMap form.
1129 /// Return null if the layout is not compatible with a strided layout.
1130 AffineMap mlir::getStridedLinearLayoutMap(MemRefType t) {
1131   int64_t offset;
1132   SmallVector<int64_t, 4> strides;
1133   if (failed(getStridesAndOffset(t, strides, offset)))
1134     return AffineMap();
1135   return makeStridedLinearLayoutMap(strides, offset, t.getContext());
1136 }
1137