1 //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/BuiltinTypes.h" 10 #include "TypeDetail.h" 11 #include "mlir/IR/AffineExpr.h" 12 #include "mlir/IR/AffineMap.h" 13 #include "mlir/IR/BuiltinAttributes.h" 14 #include "mlir/IR/BuiltinDialect.h" 15 #include "mlir/IR/Diagnostics.h" 16 #include "mlir/IR/Dialect.h" 17 #include "mlir/IR/TensorEncoding.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/TypeSwitch.h" 23 24 using namespace mlir; 25 using namespace mlir::detail; 26 27 //===----------------------------------------------------------------------===// 28 /// Tablegen Type Definitions 29 //===----------------------------------------------------------------------===// 30 31 #define GET_TYPEDEF_CLASSES 32 #include "mlir/IR/BuiltinTypes.cpp.inc" 33 34 //===----------------------------------------------------------------------===// 35 /// Tablegen Interface Definitions 36 //===----------------------------------------------------------------------===// 37 38 #include "mlir/IR/BuiltinTypeInterfaces.cpp.inc" 39 40 //===----------------------------------------------------------------------===// 41 // BuiltinDialect 42 //===----------------------------------------------------------------------===// 43 44 void BuiltinDialect::registerTypes() { 45 addTypes< 46 #define GET_TYPEDEF_LIST 47 #include "mlir/IR/BuiltinTypes.cpp.inc" 48 >(); 49 } 50 51 //===----------------------------------------------------------------------===// 52 /// ComplexType 53 //===----------------------------------------------------------------------===// 54 55 /// Verify the construction of an integer type. 56 LogicalResult ComplexType::verify(function_ref<InFlightDiagnostic()> emitError, 57 Type elementType) { 58 if (!elementType.isIntOrFloat()) 59 return emitError() << "invalid element type for complex"; 60 return success(); 61 } 62 63 //===----------------------------------------------------------------------===// 64 // Integer Type 65 //===----------------------------------------------------------------------===// 66 67 // static constexpr must have a definition (until in C++17 and inline variable). 68 constexpr unsigned IntegerType::kMaxWidth; 69 70 /// Verify the construction of an integer type. 71 LogicalResult IntegerType::verify(function_ref<InFlightDiagnostic()> emitError, 72 unsigned width, 73 SignednessSemantics signedness) { 74 if (width > IntegerType::kMaxWidth) { 75 return emitError() << "integer bitwidth is limited to " 76 << IntegerType::kMaxWidth << " bits"; 77 } 78 return success(); 79 } 80 81 unsigned IntegerType::getWidth() const { return getImpl()->width; } 82 83 IntegerType::SignednessSemantics IntegerType::getSignedness() const { 84 return getImpl()->signedness; 85 } 86 87 IntegerType IntegerType::scaleElementBitwidth(unsigned scale) { 88 if (!scale) 89 return IntegerType(); 90 return IntegerType::get(getContext(), scale * getWidth(), getSignedness()); 91 } 92 93 //===----------------------------------------------------------------------===// 94 // Float Type 95 //===----------------------------------------------------------------------===// 96 97 unsigned FloatType::getWidth() { 98 if (isa<Float16Type, BFloat16Type>()) 99 return 16; 100 if (isa<Float32Type>()) 101 return 32; 102 if (isa<Float64Type>()) 103 return 64; 104 if (isa<Float80Type>()) 105 return 80; 106 if (isa<Float128Type>()) 107 return 128; 108 llvm_unreachable("unexpected float type"); 109 } 110 111 /// Returns the floating semantics for the given type. 112 const llvm::fltSemantics &FloatType::getFloatSemantics() { 113 if (isa<BFloat16Type>()) 114 return APFloat::BFloat(); 115 if (isa<Float16Type>()) 116 return APFloat::IEEEhalf(); 117 if (isa<Float32Type>()) 118 return APFloat::IEEEsingle(); 119 if (isa<Float64Type>()) 120 return APFloat::IEEEdouble(); 121 if (isa<Float80Type>()) 122 return APFloat::x87DoubleExtended(); 123 if (isa<Float128Type>()) 124 return APFloat::IEEEquad(); 125 llvm_unreachable("non-floating point type used"); 126 } 127 128 FloatType FloatType::scaleElementBitwidth(unsigned scale) { 129 if (!scale) 130 return FloatType(); 131 MLIRContext *ctx = getContext(); 132 if (isF16() || isBF16()) { 133 if (scale == 2) 134 return FloatType::getF32(ctx); 135 if (scale == 4) 136 return FloatType::getF64(ctx); 137 } 138 if (isF32()) 139 if (scale == 2) 140 return FloatType::getF64(ctx); 141 return FloatType(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // FunctionType 146 //===----------------------------------------------------------------------===// 147 148 unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; } 149 150 ArrayRef<Type> FunctionType::getInputs() const { 151 return getImpl()->getInputs(); 152 } 153 154 unsigned FunctionType::getNumResults() const { return getImpl()->numResults; } 155 156 ArrayRef<Type> FunctionType::getResults() const { 157 return getImpl()->getResults(); 158 } 159 160 /// Helper to call a callback once on each index in the range 161 /// [0, `totalIndices`), *except* for the indices given in `indices`. 162 /// `indices` is allowed to have duplicates and can be in any order. 163 inline void iterateIndicesExcept(unsigned totalIndices, 164 ArrayRef<unsigned> indices, 165 function_ref<void(unsigned)> callback) { 166 llvm::BitVector skipIndices(totalIndices); 167 for (unsigned i : indices) 168 skipIndices.set(i); 169 170 for (unsigned i = 0; i < totalIndices; ++i) 171 if (!skipIndices.test(i)) 172 callback(i); 173 } 174 175 /// Returns a new function type with the specified arguments and results 176 /// inserted. 177 FunctionType FunctionType::getWithArgsAndResults( 178 ArrayRef<unsigned> argIndices, TypeRange argTypes, 179 ArrayRef<unsigned> resultIndices, TypeRange resultTypes) { 180 assert(argIndices.size() == argTypes.size()); 181 assert(resultIndices.size() == resultTypes.size()); 182 183 ArrayRef<Type> newInputTypes = getInputs(); 184 SmallVector<Type, 4> newInputTypesBuffer; 185 if (!argIndices.empty()) { 186 const auto *fromIt = newInputTypes.begin(); 187 for (auto it : llvm::zip(argIndices, argTypes)) { 188 const auto *toIt = newInputTypes.begin() + std::get<0>(it); 189 newInputTypesBuffer.append(fromIt, toIt); 190 newInputTypesBuffer.push_back(std::get<1>(it)); 191 fromIt = toIt; 192 } 193 newInputTypesBuffer.append(fromIt, newInputTypes.end()); 194 newInputTypes = newInputTypesBuffer; 195 } 196 197 ArrayRef<Type> newResultTypes = getResults(); 198 SmallVector<Type, 4> newResultTypesBuffer; 199 if (!resultIndices.empty()) { 200 const auto *fromIt = newResultTypes.begin(); 201 for (auto it : llvm::zip(resultIndices, resultTypes)) { 202 const auto *toIt = newResultTypes.begin() + std::get<0>(it); 203 newResultTypesBuffer.append(fromIt, toIt); 204 newResultTypesBuffer.push_back(std::get<1>(it)); 205 fromIt = toIt; 206 } 207 newResultTypesBuffer.append(fromIt, newResultTypes.end()); 208 newResultTypes = newResultTypesBuffer; 209 } 210 211 return FunctionType::get(getContext(), newInputTypes, newResultTypes); 212 } 213 214 /// Returns a new function type without the specified arguments and results. 215 FunctionType 216 FunctionType::getWithoutArgsAndResults(ArrayRef<unsigned> argIndices, 217 ArrayRef<unsigned> resultIndices) { 218 ArrayRef<Type> newInputTypes = getInputs(); 219 SmallVector<Type, 4> newInputTypesBuffer; 220 if (!argIndices.empty()) { 221 unsigned originalNumArgs = getNumInputs(); 222 iterateIndicesExcept(originalNumArgs, argIndices, [&](unsigned i) { 223 newInputTypesBuffer.emplace_back(getInput(i)); 224 }); 225 newInputTypes = newInputTypesBuffer; 226 } 227 228 ArrayRef<Type> newResultTypes = getResults(); 229 SmallVector<Type, 4> newResultTypesBuffer; 230 if (!resultIndices.empty()) { 231 unsigned originalNumResults = getNumResults(); 232 iterateIndicesExcept(originalNumResults, resultIndices, [&](unsigned i) { 233 newResultTypesBuffer.emplace_back(getResult(i)); 234 }); 235 newResultTypes = newResultTypesBuffer; 236 } 237 238 return get(getContext(), newInputTypes, newResultTypes); 239 } 240 241 void FunctionType::walkImmediateSubElements( 242 function_ref<void(Attribute)> walkAttrsFn, 243 function_ref<void(Type)> walkTypesFn) const { 244 for (Type type : llvm::concat<const Type>(getInputs(), getResults())) 245 walkTypesFn(type); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // OpaqueType 250 //===----------------------------------------------------------------------===// 251 252 /// Verify the construction of an opaque type. 253 LogicalResult OpaqueType::verify(function_ref<InFlightDiagnostic()> emitError, 254 Identifier dialect, StringRef typeData) { 255 if (!Dialect::isValidNamespace(dialect.strref())) 256 return emitError() << "invalid dialect namespace '" << dialect << "'"; 257 258 // Check that the dialect is actually registered. 259 MLIRContext *context = dialect.getContext(); 260 if (!context->allowsUnregisteredDialects() && 261 !context->getLoadedDialect(dialect.strref())) { 262 return emitError() 263 << "`!" << dialect << "<\"" << typeData << "\">" 264 << "` type created with unregistered dialect. If this is " 265 "intended, please call allowUnregisteredDialects() on the " 266 "MLIRContext, or use -allow-unregistered-dialect with " 267 "the MLIR opt tool used"; 268 } 269 270 return success(); 271 } 272 273 //===----------------------------------------------------------------------===// 274 // ShapedType 275 //===----------------------------------------------------------------------===// 276 constexpr int64_t ShapedType::kDynamicSize; 277 constexpr int64_t ShapedType::kDynamicStrideOrOffset; 278 279 ShapedType ShapedType::clone(ArrayRef<int64_t> shape, Type elementType) { 280 if (auto other = dyn_cast<MemRefType>()) { 281 MemRefType::Builder b(other); 282 b.setShape(shape); 283 b.setElementType(elementType); 284 return b; 285 } 286 287 if (auto other = dyn_cast<UnrankedMemRefType>()) { 288 MemRefType::Builder b(shape, elementType); 289 b.setMemorySpace(other.getMemorySpace()); 290 return b; 291 } 292 293 if (isa<TensorType>()) 294 return RankedTensorType::get(shape, elementType); 295 296 if (isa<VectorType>()) 297 return VectorType::get(shape, elementType); 298 299 llvm_unreachable("Unhandled ShapedType clone case"); 300 } 301 302 ShapedType ShapedType::clone(ArrayRef<int64_t> shape) { 303 if (auto other = dyn_cast<MemRefType>()) { 304 MemRefType::Builder b(other); 305 b.setShape(shape); 306 return b; 307 } 308 309 if (auto other = dyn_cast<UnrankedMemRefType>()) { 310 MemRefType::Builder b(shape, other.getElementType()); 311 b.setShape(shape); 312 b.setMemorySpace(other.getMemorySpace()); 313 return b; 314 } 315 316 if (isa<TensorType>()) 317 return RankedTensorType::get(shape, getElementType()); 318 319 if (isa<VectorType>()) 320 return VectorType::get(shape, getElementType()); 321 322 llvm_unreachable("Unhandled ShapedType clone case"); 323 } 324 325 ShapedType ShapedType::clone(Type elementType) { 326 if (auto other = dyn_cast<MemRefType>()) { 327 MemRefType::Builder b(other); 328 b.setElementType(elementType); 329 return b; 330 } 331 332 if (auto other = dyn_cast<UnrankedMemRefType>()) { 333 return UnrankedMemRefType::get(elementType, other.getMemorySpace()); 334 } 335 336 if (isa<TensorType>()) { 337 if (hasRank()) 338 return RankedTensorType::get(getShape(), elementType); 339 return UnrankedTensorType::get(elementType); 340 } 341 342 if (isa<VectorType>()) 343 return VectorType::get(getShape(), elementType); 344 345 llvm_unreachable("Unhandled ShapedType clone hit"); 346 } 347 348 Type ShapedType::getElementType() const { 349 return TypeSwitch<Type, Type>(*this) 350 .Case<VectorType, RankedTensorType, UnrankedTensorType, MemRefType, 351 UnrankedMemRefType>([](auto ty) { return ty.getElementType(); }); 352 } 353 354 unsigned ShapedType::getElementTypeBitWidth() const { 355 return getElementType().getIntOrFloatBitWidth(); 356 } 357 358 int64_t ShapedType::getNumElements() const { 359 assert(hasStaticShape() && "cannot get element count of dynamic shaped type"); 360 auto shape = getShape(); 361 int64_t num = 1; 362 for (auto dim : shape) { 363 num *= dim; 364 assert(num >= 0 && "integer overflow in element count computation"); 365 } 366 return num; 367 } 368 369 int64_t ShapedType::getRank() const { 370 assert(hasRank() && "cannot query rank of unranked shaped type"); 371 return getShape().size(); 372 } 373 374 bool ShapedType::hasRank() const { 375 return !isa<UnrankedMemRefType, UnrankedTensorType>(); 376 } 377 378 int64_t ShapedType::getDimSize(unsigned idx) const { 379 assert(idx < getRank() && "invalid index for shaped type"); 380 return getShape()[idx]; 381 } 382 383 bool ShapedType::isDynamicDim(unsigned idx) const { 384 assert(idx < getRank() && "invalid index for shaped type"); 385 return isDynamic(getShape()[idx]); 386 } 387 388 unsigned ShapedType::getDynamicDimIndex(unsigned index) const { 389 assert(index < getRank() && "invalid index"); 390 assert(ShapedType::isDynamic(getDimSize(index)) && "invalid index"); 391 return llvm::count_if(getShape().take_front(index), ShapedType::isDynamic); 392 } 393 394 /// Get the number of bits require to store a value of the given shaped type. 395 /// Compute the value recursively since tensors are allowed to have vectors as 396 /// elements. 397 int64_t ShapedType::getSizeInBits() const { 398 assert(hasStaticShape() && 399 "cannot get the bit size of an aggregate with a dynamic shape"); 400 401 auto elementType = getElementType(); 402 if (elementType.isIntOrFloat()) 403 return elementType.getIntOrFloatBitWidth() * getNumElements(); 404 405 if (auto complexType = elementType.dyn_cast<ComplexType>()) { 406 elementType = complexType.getElementType(); 407 return elementType.getIntOrFloatBitWidth() * getNumElements() * 2; 408 } 409 410 // Tensors can have vectors and other tensors as elements, other shaped types 411 // cannot. 412 assert(isa<TensorType>() && "unsupported element type"); 413 assert((elementType.isa<VectorType, TensorType>()) && 414 "unsupported tensor element type"); 415 return getNumElements() * elementType.cast<ShapedType>().getSizeInBits(); 416 } 417 418 ArrayRef<int64_t> ShapedType::getShape() const { 419 if (auto vectorType = dyn_cast<VectorType>()) 420 return vectorType.getShape(); 421 if (auto tensorType = dyn_cast<RankedTensorType>()) 422 return tensorType.getShape(); 423 return cast<MemRefType>().getShape(); 424 } 425 426 int64_t ShapedType::getNumDynamicDims() const { 427 return llvm::count_if(getShape(), isDynamic); 428 } 429 430 bool ShapedType::hasStaticShape() const { 431 return hasRank() && llvm::none_of(getShape(), isDynamic); 432 } 433 434 bool ShapedType::hasStaticShape(ArrayRef<int64_t> shape) const { 435 return hasStaticShape() && getShape() == shape; 436 } 437 438 //===----------------------------------------------------------------------===// 439 // VectorType 440 //===----------------------------------------------------------------------===// 441 442 LogicalResult VectorType::verify(function_ref<InFlightDiagnostic()> emitError, 443 ArrayRef<int64_t> shape, Type elementType) { 444 if (shape.empty()) 445 return emitError() << "vector types must have at least one dimension"; 446 447 if (!isValidElementType(elementType)) 448 return emitError() << "vector elements must be int/index/float type"; 449 450 if (any_of(shape, [](int64_t i) { return i <= 0; })) 451 return emitError() << "vector types must have positive constant sizes"; 452 453 return success(); 454 } 455 456 VectorType VectorType::scaleElementBitwidth(unsigned scale) { 457 if (!scale) 458 return VectorType(); 459 if (auto et = getElementType().dyn_cast<IntegerType>()) 460 if (auto scaledEt = et.scaleElementBitwidth(scale)) 461 return VectorType::get(getShape(), scaledEt); 462 if (auto et = getElementType().dyn_cast<FloatType>()) 463 if (auto scaledEt = et.scaleElementBitwidth(scale)) 464 return VectorType::get(getShape(), scaledEt); 465 return VectorType(); 466 } 467 468 void VectorType::walkImmediateSubElements( 469 function_ref<void(Attribute)> walkAttrsFn, 470 function_ref<void(Type)> walkTypesFn) const { 471 walkTypesFn(getElementType()); 472 } 473 474 //===----------------------------------------------------------------------===// 475 // TensorType 476 //===----------------------------------------------------------------------===// 477 478 // Check if "elementType" can be an element type of a tensor. 479 static LogicalResult 480 checkTensorElementType(function_ref<InFlightDiagnostic()> emitError, 481 Type elementType) { 482 if (!TensorType::isValidElementType(elementType)) 483 return emitError() << "invalid tensor element type: " << elementType; 484 return success(); 485 } 486 487 /// Return true if the specified element type is ok in a tensor. 488 bool TensorType::isValidElementType(Type type) { 489 // Note: Non standard/builtin types are allowed to exist within tensor 490 // types. Dialects are expected to verify that tensor types have a valid 491 // element type within that dialect. 492 return type.isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType, 493 IndexType>() || 494 !llvm::isa<BuiltinDialect>(type.getDialect()); 495 } 496 497 //===----------------------------------------------------------------------===// 498 // RankedTensorType 499 //===----------------------------------------------------------------------===// 500 501 LogicalResult 502 RankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, 503 ArrayRef<int64_t> shape, Type elementType, 504 Attribute encoding) { 505 for (int64_t s : shape) 506 if (s < -1) 507 return emitError() << "invalid tensor dimension size"; 508 if (auto v = encoding.dyn_cast_or_null<VerifiableTensorEncoding>()) 509 if (failed(v.verifyEncoding(shape, elementType, emitError))) 510 return failure(); 511 return checkTensorElementType(emitError, elementType); 512 } 513 514 void RankedTensorType::walkImmediateSubElements( 515 function_ref<void(Attribute)> walkAttrsFn, 516 function_ref<void(Type)> walkTypesFn) const { 517 walkTypesFn(getElementType()); 518 if (Attribute encoding = getEncoding()) 519 walkAttrsFn(encoding); 520 } 521 522 //===----------------------------------------------------------------------===// 523 // UnrankedTensorType 524 //===----------------------------------------------------------------------===// 525 526 LogicalResult 527 UnrankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, 528 Type elementType) { 529 return checkTensorElementType(emitError, elementType); 530 } 531 532 void UnrankedTensorType::walkImmediateSubElements( 533 function_ref<void(Attribute)> walkAttrsFn, 534 function_ref<void(Type)> walkTypesFn) const { 535 walkTypesFn(getElementType()); 536 } 537 538 //===----------------------------------------------------------------------===// 539 // BaseMemRefType 540 //===----------------------------------------------------------------------===// 541 542 Attribute BaseMemRefType::getMemorySpace() const { 543 if (auto rankedMemRefTy = dyn_cast<MemRefType>()) 544 return rankedMemRefTy.getMemorySpace(); 545 return cast<UnrankedMemRefType>().getMemorySpace(); 546 } 547 548 unsigned BaseMemRefType::getMemorySpaceAsInt() const { 549 if (auto rankedMemRefTy = dyn_cast<MemRefType>()) 550 return rankedMemRefTy.getMemorySpaceAsInt(); 551 return cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 552 } 553 554 //===----------------------------------------------------------------------===// 555 // MemRefType 556 //===----------------------------------------------------------------------===// 557 558 /// Given an `originalShape` and a `reducedShape` assumed to be a subset of 559 /// `originalShape` with some `1` entries erased, return the set of indices 560 /// that specifies which of the entries of `originalShape` are dropped to obtain 561 /// `reducedShape`. The returned mask can be applied as a projection to 562 /// `originalShape` to obtain the `reducedShape`. This mask is useful to track 563 /// which dimensions must be kept when e.g. compute MemRef strides under 564 /// rank-reducing operations. Return None if reducedShape cannot be obtained 565 /// by dropping only `1` entries in `originalShape`. 566 llvm::Optional<llvm::SmallDenseSet<unsigned>> 567 mlir::computeRankReductionMask(ArrayRef<int64_t> originalShape, 568 ArrayRef<int64_t> reducedShape) { 569 size_t originalRank = originalShape.size(), reducedRank = reducedShape.size(); 570 llvm::SmallDenseSet<unsigned> unusedDims; 571 unsigned reducedIdx = 0; 572 for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) { 573 // Greedily insert `originalIdx` if no match. 574 if (reducedIdx < reducedRank && 575 originalShape[originalIdx] == reducedShape[reducedIdx]) { 576 reducedIdx++; 577 continue; 578 } 579 580 unusedDims.insert(originalIdx); 581 // If no match on `originalIdx`, the `originalShape` at this dimension 582 // must be 1, otherwise we bail. 583 if (originalShape[originalIdx] != 1) 584 return llvm::None; 585 } 586 // The whole reducedShape must be scanned, otherwise we bail. 587 if (reducedIdx != reducedRank) 588 return llvm::None; 589 return unusedDims; 590 } 591 592 bool mlir::detail::isSupportedMemorySpace(Attribute memorySpace) { 593 // Empty attribute is allowed as default memory space. 594 if (!memorySpace) 595 return true; 596 597 // Supported built-in attributes. 598 if (memorySpace.isa<IntegerAttr, StringAttr, DictionaryAttr>()) 599 return true; 600 601 // Allow custom dialect attributes. 602 if (!::mlir::isa<BuiltinDialect>(memorySpace.getDialect())) 603 return true; 604 605 return false; 606 } 607 608 Attribute mlir::detail::wrapIntegerMemorySpace(unsigned memorySpace, 609 MLIRContext *ctx) { 610 if (memorySpace == 0) 611 return nullptr; 612 613 return IntegerAttr::get(IntegerType::get(ctx, 64), memorySpace); 614 } 615 616 Attribute mlir::detail::skipDefaultMemorySpace(Attribute memorySpace) { 617 IntegerAttr intMemorySpace = memorySpace.dyn_cast_or_null<IntegerAttr>(); 618 if (intMemorySpace && intMemorySpace.getValue() == 0) 619 return nullptr; 620 621 return memorySpace; 622 } 623 624 unsigned mlir::detail::getMemorySpaceAsInt(Attribute memorySpace) { 625 if (!memorySpace) 626 return 0; 627 628 assert(memorySpace.isa<IntegerAttr>() && 629 "Using `getMemorySpaceInteger` with non-Integer attribute"); 630 631 return static_cast<unsigned>(memorySpace.cast<IntegerAttr>().getInt()); 632 } 633 634 MemRefType::Builder & 635 MemRefType::Builder::setMemorySpace(unsigned newMemorySpace) { 636 memorySpace = 637 wrapIntegerMemorySpace(newMemorySpace, elementType.getContext()); 638 return *this; 639 } 640 641 unsigned MemRefType::getMemorySpaceAsInt() const { 642 return detail::getMemorySpaceAsInt(getMemorySpace()); 643 } 644 645 LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError, 646 ArrayRef<int64_t> shape, Type elementType, 647 ArrayRef<AffineMap> affineMapComposition, 648 Attribute memorySpace) { 649 if (!BaseMemRefType::isValidElementType(elementType)) 650 return emitError() << "invalid memref element type"; 651 652 // Negative sizes are not allowed except for `-1` that means dynamic size. 653 for (int64_t s : shape) 654 if (s < -1) 655 return emitError() << "invalid memref size"; 656 657 // Check that the structure of the composition is valid, i.e. that each 658 // subsequent affine map has as many inputs as the previous map has results. 659 // Take the dimensionality of the MemRef for the first map. 660 size_t dim = shape.size(); 661 for (auto it : llvm::enumerate(affineMapComposition)) { 662 AffineMap map = it.value(); 663 if (map.getNumDims() == dim) { 664 dim = map.getNumResults(); 665 continue; 666 } 667 return emitError() << "memref affine map dimension mismatch between " 668 << (it.index() == 0 ? Twine("memref rank") 669 : "affine map " + Twine(it.index())) 670 << " and affine map" << it.index() + 1 << ": " << dim 671 << " != " << map.getNumDims(); 672 } 673 674 if (!isSupportedMemorySpace(memorySpace)) { 675 return emitError() << "unsupported memory space Attribute"; 676 } 677 678 return success(); 679 } 680 681 void MemRefType::walkImmediateSubElements( 682 function_ref<void(Attribute)> walkAttrsFn, 683 function_ref<void(Type)> walkTypesFn) const { 684 walkTypesFn(getElementType()); 685 walkAttrsFn(getMemorySpace()); 686 for (AffineMap map : getAffineMaps()) 687 walkAttrsFn(AffineMapAttr::get(map)); 688 } 689 690 //===----------------------------------------------------------------------===// 691 // UnrankedMemRefType 692 //===----------------------------------------------------------------------===// 693 694 unsigned UnrankedMemRefType::getMemorySpaceAsInt() const { 695 return detail::getMemorySpaceAsInt(getMemorySpace()); 696 } 697 698 LogicalResult 699 UnrankedMemRefType::verify(function_ref<InFlightDiagnostic()> emitError, 700 Type elementType, Attribute memorySpace) { 701 if (!BaseMemRefType::isValidElementType(elementType)) 702 return emitError() << "invalid memref element type"; 703 704 if (!isSupportedMemorySpace(memorySpace)) 705 return emitError() << "unsupported memory space Attribute"; 706 707 return success(); 708 } 709 710 // Fallback cases for terminal dim/sym/cst that are not part of a binary op ( 711 // i.e. single term). Accumulate the AffineExpr into the existing one. 712 static void extractStridesFromTerm(AffineExpr e, 713 AffineExpr multiplicativeFactor, 714 MutableArrayRef<AffineExpr> strides, 715 AffineExpr &offset) { 716 if (auto dim = e.dyn_cast<AffineDimExpr>()) 717 strides[dim.getPosition()] = 718 strides[dim.getPosition()] + multiplicativeFactor; 719 else 720 offset = offset + e * multiplicativeFactor; 721 } 722 723 /// Takes a single AffineExpr `e` and populates the `strides` array with the 724 /// strides expressions for each dim position. 725 /// The convention is that the strides for dimensions d0, .. dn appear in 726 /// order to make indexing intuitive into the result. 727 static LogicalResult extractStrides(AffineExpr e, 728 AffineExpr multiplicativeFactor, 729 MutableArrayRef<AffineExpr> strides, 730 AffineExpr &offset) { 731 auto bin = e.dyn_cast<AffineBinaryOpExpr>(); 732 if (!bin) { 733 extractStridesFromTerm(e, multiplicativeFactor, strides, offset); 734 return success(); 735 } 736 737 if (bin.getKind() == AffineExprKind::CeilDiv || 738 bin.getKind() == AffineExprKind::FloorDiv || 739 bin.getKind() == AffineExprKind::Mod) 740 return failure(); 741 742 if (bin.getKind() == AffineExprKind::Mul) { 743 auto dim = bin.getLHS().dyn_cast<AffineDimExpr>(); 744 if (dim) { 745 strides[dim.getPosition()] = 746 strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor; 747 return success(); 748 } 749 // LHS and RHS may both contain complex expressions of dims. Try one path 750 // and if it fails try the other. This is guaranteed to succeed because 751 // only one path may have a `dim`, otherwise this is not an AffineExpr in 752 // the first place. 753 if (bin.getLHS().isSymbolicOrConstant()) 754 return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(), 755 strides, offset); 756 return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(), 757 strides, offset); 758 } 759 760 if (bin.getKind() == AffineExprKind::Add) { 761 auto res1 = 762 extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset); 763 auto res2 = 764 extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset); 765 return success(succeeded(res1) && succeeded(res2)); 766 } 767 768 llvm_unreachable("unexpected binary operation"); 769 } 770 771 LogicalResult mlir::getStridesAndOffset(MemRefType t, 772 SmallVectorImpl<AffineExpr> &strides, 773 AffineExpr &offset) { 774 auto affineMaps = t.getAffineMaps(); 775 776 if (!affineMaps.empty() && affineMaps.back().getNumResults() != 1) 777 return failure(); 778 779 AffineMap m; 780 if (!affineMaps.empty()) { 781 m = affineMaps.back(); 782 for (size_t i = affineMaps.size() - 1; i > 0; --i) 783 m = m.compose(affineMaps[i - 1]); 784 assert(!m.isIdentity() && "unexpected identity map"); 785 } 786 787 auto zero = getAffineConstantExpr(0, t.getContext()); 788 auto one = getAffineConstantExpr(1, t.getContext()); 789 offset = zero; 790 strides.assign(t.getRank(), zero); 791 792 // Canonical case for empty map. 793 if (!m) { 794 // 0-D corner case, offset is already 0. 795 if (t.getRank() == 0) 796 return success(); 797 auto stridedExpr = 798 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 799 if (succeeded(extractStrides(stridedExpr, one, strides, offset))) 800 return success(); 801 assert(false && "unexpected failure: extract strides in canonical layout"); 802 } 803 804 // Non-canonical case requires more work. 805 auto stridedExpr = 806 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 807 if (failed(extractStrides(stridedExpr, one, strides, offset))) { 808 offset = AffineExpr(); 809 strides.clear(); 810 return failure(); 811 } 812 813 // Simplify results to allow folding to constants and simple checks. 814 unsigned numDims = m.getNumDims(); 815 unsigned numSymbols = m.getNumSymbols(); 816 offset = simplifyAffineExpr(offset, numDims, numSymbols); 817 for (auto &stride : strides) 818 stride = simplifyAffineExpr(stride, numDims, numSymbols); 819 820 /// In practice, a strided memref must be internally non-aliasing. Test 821 /// against 0 as a proxy. 822 /// TODO: static cases can have more advanced checks. 823 /// TODO: dynamic cases would require a way to compare symbolic 824 /// expressions and would probably need an affine set context propagated 825 /// everywhere. 826 if (llvm::any_of(strides, [](AffineExpr e) { 827 return e == getAffineConstantExpr(0, e.getContext()); 828 })) { 829 offset = AffineExpr(); 830 strides.clear(); 831 return failure(); 832 } 833 834 return success(); 835 } 836 837 LogicalResult mlir::getStridesAndOffset(MemRefType t, 838 SmallVectorImpl<int64_t> &strides, 839 int64_t &offset) { 840 AffineExpr offsetExpr; 841 SmallVector<AffineExpr, 4> strideExprs; 842 if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr))) 843 return failure(); 844 if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>()) 845 offset = cst.getValue(); 846 else 847 offset = ShapedType::kDynamicStrideOrOffset; 848 for (auto e : strideExprs) { 849 if (auto c = e.dyn_cast<AffineConstantExpr>()) 850 strides.push_back(c.getValue()); 851 else 852 strides.push_back(ShapedType::kDynamicStrideOrOffset); 853 } 854 return success(); 855 } 856 857 void UnrankedMemRefType::walkImmediateSubElements( 858 function_ref<void(Attribute)> walkAttrsFn, 859 function_ref<void(Type)> walkTypesFn) const { 860 walkTypesFn(getElementType()); 861 walkAttrsFn(getMemorySpace()); 862 } 863 864 //===----------------------------------------------------------------------===// 865 /// TupleType 866 //===----------------------------------------------------------------------===// 867 868 /// Return the elements types for this tuple. 869 ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); } 870 871 /// Accumulate the types contained in this tuple and tuples nested within it. 872 /// Note that this only flattens nested tuples, not any other container type, 873 /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to 874 /// (i32, tensor<i32>, f32, i64) 875 void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) { 876 for (Type type : getTypes()) { 877 if (auto nestedTuple = type.dyn_cast<TupleType>()) 878 nestedTuple.getFlattenedTypes(types); 879 else 880 types.push_back(type); 881 } 882 } 883 884 /// Return the number of element types. 885 size_t TupleType::size() const { return getImpl()->size(); } 886 887 void TupleType::walkImmediateSubElements( 888 function_ref<void(Attribute)> walkAttrsFn, 889 function_ref<void(Type)> walkTypesFn) const { 890 for (Type type : getTypes()) 891 walkTypesFn(type); 892 } 893 894 //===----------------------------------------------------------------------===// 895 // Type Utilities 896 //===----------------------------------------------------------------------===// 897 898 AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides, 899 int64_t offset, 900 MLIRContext *context) { 901 AffineExpr expr; 902 unsigned nSymbols = 0; 903 904 // AffineExpr for offset. 905 // Static case. 906 if (offset != MemRefType::getDynamicStrideOrOffset()) { 907 auto cst = getAffineConstantExpr(offset, context); 908 expr = cst; 909 } else { 910 // Dynamic case, new symbol for the offset. 911 auto sym = getAffineSymbolExpr(nSymbols++, context); 912 expr = sym; 913 } 914 915 // AffineExpr for strides. 916 for (auto en : llvm::enumerate(strides)) { 917 auto dim = en.index(); 918 auto stride = en.value(); 919 assert(stride != 0 && "Invalid stride specification"); 920 auto d = getAffineDimExpr(dim, context); 921 AffineExpr mult; 922 // Static case. 923 if (stride != MemRefType::getDynamicStrideOrOffset()) 924 mult = getAffineConstantExpr(stride, context); 925 else 926 // Dynamic case, new symbol for each new stride. 927 mult = getAffineSymbolExpr(nSymbols++, context); 928 expr = expr + d * mult; 929 } 930 931 return AffineMap::get(strides.size(), nSymbols, expr); 932 } 933 934 /// Return a version of `t` with identity layout if it can be determined 935 /// statically that the layout is the canonical contiguous strided layout. 936 /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of 937 /// `t` with simplified layout. 938 /// If `t` has multiple layout maps or a multi-result layout, just return `t`. 939 MemRefType mlir::canonicalizeStridedLayout(MemRefType t) { 940 auto affineMaps = t.getAffineMaps(); 941 // Already in canonical form. 942 if (affineMaps.empty()) 943 return t; 944 945 // Can't reduce to canonical identity form, return in canonical form. 946 if (affineMaps.size() > 1 || affineMaps[0].getNumResults() > 1) 947 return t; 948 949 // Corner-case for 0-D affine maps. 950 auto m = affineMaps[0]; 951 if (m.getNumDims() == 0 && m.getNumSymbols() == 0) { 952 if (auto cst = m.getResult(0).dyn_cast<AffineConstantExpr>()) 953 if (cst.getValue() == 0) 954 return MemRefType::Builder(t).setAffineMaps({}); 955 return t; 956 } 957 958 // 0-D corner case for empty shape that still have an affine map. Example: 959 // `memref<f32, affine_map<()[s0] -> (s0)>>`. This is a 1 element memref whose 960 // offset needs to remain, just return t. 961 if (t.getShape().empty()) 962 return t; 963 964 // If the canonical strided layout for the sizes of `t` is equal to the 965 // simplified layout of `t` we can just return an empty layout. Otherwise, 966 // just simplify the existing layout. 967 AffineExpr expr = 968 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 969 auto simplifiedLayoutExpr = 970 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 971 if (expr != simplifiedLayoutExpr) 972 return MemRefType::Builder(t).setAffineMaps({AffineMap::get( 973 m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)}); 974 return MemRefType::Builder(t).setAffineMaps({}); 975 } 976 977 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 978 ArrayRef<AffineExpr> exprs, 979 MLIRContext *context) { 980 assert(!sizes.empty() && !exprs.empty() && 981 "expected non-empty sizes and exprs"); 982 983 // Size 0 corner case is useful for canonicalizations. 984 if (llvm::is_contained(sizes, 0)) 985 return getAffineConstantExpr(0, context); 986 987 auto maps = AffineMap::inferFromExprList(exprs); 988 assert(!maps.empty() && "Expected one non-empty map"); 989 unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols(); 990 991 AffineExpr expr; 992 bool dynamicPoisonBit = false; 993 int64_t runningSize = 1; 994 for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) { 995 int64_t size = std::get<1>(en); 996 // Degenerate case, no size =-> no stride 997 if (size == 0) 998 continue; 999 AffineExpr dimExpr = std::get<0>(en); 1000 AffineExpr stride = dynamicPoisonBit 1001 ? getAffineSymbolExpr(nSymbols++, context) 1002 : getAffineConstantExpr(runningSize, context); 1003 expr = expr ? expr + dimExpr * stride : dimExpr * stride; 1004 if (size > 0) { 1005 runningSize *= size; 1006 assert(runningSize > 0 && "integer overflow in size computation"); 1007 } else { 1008 dynamicPoisonBit = true; 1009 } 1010 } 1011 return simplifyAffineExpr(expr, numDims, nSymbols); 1012 } 1013 1014 /// Return a version of `t` with a layout that has all dynamic offset and 1015 /// strides. This is used to erase the static layout. 1016 MemRefType mlir::eraseStridedLayout(MemRefType t) { 1017 auto val = ShapedType::kDynamicStrideOrOffset; 1018 return MemRefType::Builder(t).setAffineMaps(makeStridedLinearLayoutMap( 1019 SmallVector<int64_t, 4>(t.getRank(), val), val, t.getContext())); 1020 } 1021 1022 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 1023 MLIRContext *context) { 1024 SmallVector<AffineExpr, 4> exprs; 1025 exprs.reserve(sizes.size()); 1026 for (auto dim : llvm::seq<unsigned>(0, sizes.size())) 1027 exprs.push_back(getAffineDimExpr(dim, context)); 1028 return makeCanonicalStridedLayoutExpr(sizes, exprs, context); 1029 } 1030 1031 /// Return true if the layout for `t` is compatible with strided semantics. 1032 bool mlir::isStrided(MemRefType t) { 1033 int64_t offset; 1034 SmallVector<int64_t, 4> strides; 1035 auto res = getStridesAndOffset(t, strides, offset); 1036 return succeeded(res); 1037 } 1038 1039 /// Return the layout map in strided linear layout AffineMap form. 1040 /// Return null if the layout is not compatible with a strided layout. 1041 AffineMap mlir::getStridedLinearLayoutMap(MemRefType t) { 1042 int64_t offset; 1043 SmallVector<int64_t, 4> strides; 1044 if (failed(getStridesAndOffset(t, strides, offset))) 1045 return AffineMap(); 1046 return makeStridedLinearLayoutMap(strides, offset, t.getContext()); 1047 } 1048