1 //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/BuiltinTypes.h" 10 #include "TypeDetail.h" 11 #include "mlir/IR/AffineExpr.h" 12 #include "mlir/IR/AffineMap.h" 13 #include "mlir/IR/Diagnostics.h" 14 #include "mlir/IR/Dialect.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Sequence.h" 18 #include "llvm/ADT/Twine.h" 19 20 using namespace mlir; 21 using namespace mlir::detail; 22 23 //===----------------------------------------------------------------------===// 24 /// Tablegen Type Definitions 25 //===----------------------------------------------------------------------===// 26 27 #define GET_TYPEDEF_CLASSES 28 #include "mlir/IR/BuiltinTypes.cpp.inc" 29 30 //===----------------------------------------------------------------------===// 31 /// ComplexType 32 //===----------------------------------------------------------------------===// 33 34 /// Verify the construction of an integer type. 35 LogicalResult ComplexType::verifyConstructionInvariants(Location loc, 36 Type elementType) { 37 if (!elementType.isIntOrFloat()) 38 return emitError(loc, "invalid element type for complex"); 39 return success(); 40 } 41 42 //===----------------------------------------------------------------------===// 43 // Integer Type 44 //===----------------------------------------------------------------------===// 45 46 // static constexpr must have a definition (until in C++17 and inline variable). 47 constexpr unsigned IntegerType::kMaxWidth; 48 49 /// Verify the construction of an integer type. 50 LogicalResult 51 IntegerType::verifyConstructionInvariants(Location loc, unsigned width, 52 SignednessSemantics signedness) { 53 if (width > IntegerType::kMaxWidth) { 54 return emitError(loc) << "integer bitwidth is limited to " 55 << IntegerType::kMaxWidth << " bits"; 56 } 57 return success(); 58 } 59 60 unsigned IntegerType::getWidth() const { return getImpl()->width; } 61 62 IntegerType::SignednessSemantics IntegerType::getSignedness() const { 63 return getImpl()->signedness; 64 } 65 66 IntegerType IntegerType::scaleElementBitwidth(unsigned scale) { 67 if (!scale) 68 return IntegerType(); 69 return IntegerType::get(getContext(), scale * getWidth(), getSignedness()); 70 } 71 72 //===----------------------------------------------------------------------===// 73 // Float Type 74 //===----------------------------------------------------------------------===// 75 76 unsigned FloatType::getWidth() { 77 if (isa<Float16Type, BFloat16Type>()) 78 return 16; 79 if (isa<Float32Type>()) 80 return 32; 81 if (isa<Float64Type>()) 82 return 64; 83 if (isa<Float80Type>()) 84 return 80; 85 if (isa<Float128Type>()) 86 return 128; 87 llvm_unreachable("unexpected float type"); 88 } 89 90 /// Returns the floating semantics for the given type. 91 const llvm::fltSemantics &FloatType::getFloatSemantics() { 92 if (isa<BFloat16Type>()) 93 return APFloat::BFloat(); 94 if (isa<Float16Type>()) 95 return APFloat::IEEEhalf(); 96 if (isa<Float32Type>()) 97 return APFloat::IEEEsingle(); 98 if (isa<Float64Type>()) 99 return APFloat::IEEEdouble(); 100 if (isa<Float80Type>()) 101 return APFloat::x87DoubleExtended(); 102 if (isa<Float128Type>()) 103 return APFloat::IEEEquad(); 104 llvm_unreachable("non-floating point type used"); 105 } 106 107 FloatType FloatType::scaleElementBitwidth(unsigned scale) { 108 if (!scale) 109 return FloatType(); 110 MLIRContext *ctx = getContext(); 111 if (isF16() || isBF16()) { 112 if (scale == 2) 113 return FloatType::getF32(ctx); 114 if (scale == 4) 115 return FloatType::getF64(ctx); 116 } 117 if (isF32()) 118 if (scale == 2) 119 return FloatType::getF64(ctx); 120 return FloatType(); 121 } 122 123 //===----------------------------------------------------------------------===// 124 // FunctionType 125 //===----------------------------------------------------------------------===// 126 127 unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; } 128 129 ArrayRef<Type> FunctionType::getInputs() const { 130 return getImpl()->getInputs(); 131 } 132 133 unsigned FunctionType::getNumResults() const { return getImpl()->numResults; } 134 135 ArrayRef<Type> FunctionType::getResults() const { 136 return getImpl()->getResults(); 137 } 138 139 /// Helper to call a callback once on each index in the range 140 /// [0, `totalIndices`), *except* for the indices given in `indices`. 141 /// `indices` is allowed to have duplicates and can be in any order. 142 inline void iterateIndicesExcept(unsigned totalIndices, 143 ArrayRef<unsigned> indices, 144 function_ref<void(unsigned)> callback) { 145 llvm::BitVector skipIndices(totalIndices); 146 for (unsigned i : indices) 147 skipIndices.set(i); 148 149 for (unsigned i = 0; i < totalIndices; ++i) 150 if (!skipIndices.test(i)) 151 callback(i); 152 } 153 154 /// Returns a new function type without the specified arguments and results. 155 FunctionType 156 FunctionType::getWithoutArgsAndResults(ArrayRef<unsigned> argIndices, 157 ArrayRef<unsigned> resultIndices) { 158 ArrayRef<Type> newInputTypes = getInputs(); 159 SmallVector<Type, 4> newInputTypesBuffer; 160 if (!argIndices.empty()) { 161 unsigned originalNumArgs = getNumInputs(); 162 iterateIndicesExcept(originalNumArgs, argIndices, [&](unsigned i) { 163 newInputTypesBuffer.emplace_back(getInput(i)); 164 }); 165 newInputTypes = newInputTypesBuffer; 166 } 167 168 ArrayRef<Type> newResultTypes = getResults(); 169 SmallVector<Type, 4> newResultTypesBuffer; 170 if (!resultIndices.empty()) { 171 unsigned originalNumResults = getNumResults(); 172 iterateIndicesExcept(originalNumResults, resultIndices, [&](unsigned i) { 173 newResultTypesBuffer.emplace_back(getResult(i)); 174 }); 175 newResultTypes = newResultTypesBuffer; 176 } 177 178 return get(getContext(), newInputTypes, newResultTypes); 179 } 180 181 //===----------------------------------------------------------------------===// 182 // OpaqueType 183 //===----------------------------------------------------------------------===// 184 185 /// Verify the construction of an opaque type. 186 LogicalResult OpaqueType::verifyConstructionInvariants(Location loc, 187 Identifier dialect, 188 StringRef typeData) { 189 if (!Dialect::isValidNamespace(dialect.strref())) 190 return emitError(loc, "invalid dialect namespace '") << dialect << "'"; 191 return success(); 192 } 193 194 //===----------------------------------------------------------------------===// 195 // ShapedType 196 //===----------------------------------------------------------------------===// 197 constexpr int64_t ShapedType::kDynamicSize; 198 constexpr int64_t ShapedType::kDynamicStrideOrOffset; 199 200 Type ShapedType::getElementType() const { 201 return static_cast<ImplType *>(impl)->elementType; 202 } 203 204 unsigned ShapedType::getElementTypeBitWidth() const { 205 return getElementType().getIntOrFloatBitWidth(); 206 } 207 208 int64_t ShapedType::getNumElements() const { 209 assert(hasStaticShape() && "cannot get element count of dynamic shaped type"); 210 auto shape = getShape(); 211 int64_t num = 1; 212 for (auto dim : shape) 213 num *= dim; 214 return num; 215 } 216 217 int64_t ShapedType::getRank() const { 218 assert(hasRank() && "cannot query rank of unranked shaped type"); 219 return getShape().size(); 220 } 221 222 bool ShapedType::hasRank() const { 223 return !isa<UnrankedMemRefType, UnrankedTensorType>(); 224 } 225 226 int64_t ShapedType::getDimSize(unsigned idx) const { 227 assert(idx < getRank() && "invalid index for shaped type"); 228 return getShape()[idx]; 229 } 230 231 bool ShapedType::isDynamicDim(unsigned idx) const { 232 assert(idx < getRank() && "invalid index for shaped type"); 233 return isDynamic(getShape()[idx]); 234 } 235 236 unsigned ShapedType::getDynamicDimIndex(unsigned index) const { 237 assert(index < getRank() && "invalid index"); 238 assert(ShapedType::isDynamic(getDimSize(index)) && "invalid index"); 239 return llvm::count_if(getShape().take_front(index), ShapedType::isDynamic); 240 } 241 242 /// Get the number of bits require to store a value of the given shaped type. 243 /// Compute the value recursively since tensors are allowed to have vectors as 244 /// elements. 245 int64_t ShapedType::getSizeInBits() const { 246 assert(hasStaticShape() && 247 "cannot get the bit size of an aggregate with a dynamic shape"); 248 249 auto elementType = getElementType(); 250 if (elementType.isIntOrFloat()) 251 return elementType.getIntOrFloatBitWidth() * getNumElements(); 252 253 if (auto complexType = elementType.dyn_cast<ComplexType>()) { 254 elementType = complexType.getElementType(); 255 return elementType.getIntOrFloatBitWidth() * getNumElements() * 2; 256 } 257 258 // Tensors can have vectors and other tensors as elements, other shaped types 259 // cannot. 260 assert(isa<TensorType>() && "unsupported element type"); 261 assert((elementType.isa<VectorType, TensorType>()) && 262 "unsupported tensor element type"); 263 return getNumElements() * elementType.cast<ShapedType>().getSizeInBits(); 264 } 265 266 ArrayRef<int64_t> ShapedType::getShape() const { 267 if (auto vectorType = dyn_cast<VectorType>()) 268 return vectorType.getShape(); 269 if (auto tensorType = dyn_cast<RankedTensorType>()) 270 return tensorType.getShape(); 271 return cast<MemRefType>().getShape(); 272 } 273 274 int64_t ShapedType::getNumDynamicDims() const { 275 return llvm::count_if(getShape(), isDynamic); 276 } 277 278 bool ShapedType::hasStaticShape() const { 279 return hasRank() && llvm::none_of(getShape(), isDynamic); 280 } 281 282 bool ShapedType::hasStaticShape(ArrayRef<int64_t> shape) const { 283 return hasStaticShape() && getShape() == shape; 284 } 285 286 //===----------------------------------------------------------------------===// 287 // VectorType 288 //===----------------------------------------------------------------------===// 289 290 VectorType VectorType::get(ArrayRef<int64_t> shape, Type elementType) { 291 return Base::get(elementType.getContext(), shape, elementType); 292 } 293 294 VectorType VectorType::getChecked(Location location, ArrayRef<int64_t> shape, 295 Type elementType) { 296 return Base::getChecked(location, shape, elementType); 297 } 298 299 LogicalResult VectorType::verifyConstructionInvariants(Location loc, 300 ArrayRef<int64_t> shape, 301 Type elementType) { 302 if (shape.empty()) 303 return emitError(loc, "vector types must have at least one dimension"); 304 305 if (!isValidElementType(elementType)) 306 return emitError(loc, "vector elements must be int or float type"); 307 308 if (any_of(shape, [](int64_t i) { return i <= 0; })) 309 return emitError(loc, "vector types must have positive constant sizes"); 310 311 return success(); 312 } 313 314 ArrayRef<int64_t> VectorType::getShape() const { return getImpl()->getShape(); } 315 316 VectorType VectorType::scaleElementBitwidth(unsigned scale) { 317 if (!scale) 318 return VectorType(); 319 if (auto et = getElementType().dyn_cast<IntegerType>()) 320 if (auto scaledEt = et.scaleElementBitwidth(scale)) 321 return VectorType::get(getShape(), scaledEt); 322 if (auto et = getElementType().dyn_cast<FloatType>()) 323 if (auto scaledEt = et.scaleElementBitwidth(scale)) 324 return VectorType::get(getShape(), scaledEt); 325 return VectorType(); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // TensorType 330 //===----------------------------------------------------------------------===// 331 332 // Check if "elementType" can be an element type of a tensor. Emit errors if 333 // location is not nullptr. Returns failure if check failed. 334 static LogicalResult checkTensorElementType(Location location, 335 Type elementType) { 336 if (!TensorType::isValidElementType(elementType)) 337 return emitError(location, "invalid tensor element type: ") << elementType; 338 return success(); 339 } 340 341 /// Return true if the specified element type is ok in a tensor. 342 bool TensorType::isValidElementType(Type type) { 343 // Note: Non standard/builtin types are allowed to exist within tensor 344 // types. Dialects are expected to verify that tensor types have a valid 345 // element type within that dialect. 346 return type.isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType, 347 IndexType>() || 348 !type.getDialect().getNamespace().empty(); 349 } 350 351 //===----------------------------------------------------------------------===// 352 // RankedTensorType 353 //===----------------------------------------------------------------------===// 354 355 RankedTensorType RankedTensorType::get(ArrayRef<int64_t> shape, 356 Type elementType) { 357 return Base::get(elementType.getContext(), shape, elementType); 358 } 359 360 RankedTensorType RankedTensorType::getChecked(Location location, 361 ArrayRef<int64_t> shape, 362 Type elementType) { 363 return Base::getChecked(location, shape, elementType); 364 } 365 366 LogicalResult RankedTensorType::verifyConstructionInvariants( 367 Location loc, ArrayRef<int64_t> shape, Type elementType) { 368 for (int64_t s : shape) { 369 if (s < -1) 370 return emitError(loc, "invalid tensor dimension size"); 371 } 372 return checkTensorElementType(loc, elementType); 373 } 374 375 ArrayRef<int64_t> RankedTensorType::getShape() const { 376 return getImpl()->getShape(); 377 } 378 379 //===----------------------------------------------------------------------===// 380 // UnrankedTensorType 381 //===----------------------------------------------------------------------===// 382 383 UnrankedTensorType UnrankedTensorType::get(Type elementType) { 384 return Base::get(elementType.getContext(), elementType); 385 } 386 387 UnrankedTensorType UnrankedTensorType::getChecked(Location location, 388 Type elementType) { 389 return Base::getChecked(location, elementType); 390 } 391 392 LogicalResult 393 UnrankedTensorType::verifyConstructionInvariants(Location loc, 394 Type elementType) { 395 return checkTensorElementType(loc, elementType); 396 } 397 398 //===----------------------------------------------------------------------===// 399 // BaseMemRefType 400 //===----------------------------------------------------------------------===// 401 402 unsigned BaseMemRefType::getMemorySpace() const { 403 return static_cast<ImplType *>(impl)->memorySpace; 404 } 405 406 //===----------------------------------------------------------------------===// 407 // MemRefType 408 //===----------------------------------------------------------------------===// 409 410 /// Get or create a new MemRefType based on shape, element type, affine 411 /// map composition, and memory space. Assumes the arguments define a 412 /// well-formed MemRef type. Use getChecked to gracefully handle MemRefType 413 /// construction failures. 414 MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType, 415 ArrayRef<AffineMap> affineMapComposition, 416 unsigned memorySpace) { 417 auto result = getImpl(shape, elementType, affineMapComposition, memorySpace, 418 /*location=*/llvm::None); 419 assert(result && "Failed to construct instance of MemRefType."); 420 return result; 421 } 422 423 /// Get or create a new MemRefType based on shape, element type, affine 424 /// map composition, and memory space declared at the given location. 425 /// If the location is unknown, the last argument should be an instance of 426 /// UnknownLoc. If the MemRefType defined by the arguments would be 427 /// ill-formed, emits errors (to the handler registered with the context or to 428 /// the error stream) and returns nullptr. 429 MemRefType MemRefType::getChecked(Location location, ArrayRef<int64_t> shape, 430 Type elementType, 431 ArrayRef<AffineMap> affineMapComposition, 432 unsigned memorySpace) { 433 return getImpl(shape, elementType, affineMapComposition, memorySpace, 434 location); 435 } 436 437 /// Get or create a new MemRefType defined by the arguments. If the resulting 438 /// type would be ill-formed, return nullptr. If the location is provided, 439 /// emit detailed error messages. To emit errors when the location is unknown, 440 /// pass in an instance of UnknownLoc. 441 MemRefType MemRefType::getImpl(ArrayRef<int64_t> shape, Type elementType, 442 ArrayRef<AffineMap> affineMapComposition, 443 unsigned memorySpace, 444 Optional<Location> location) { 445 auto *context = elementType.getContext(); 446 447 if (!BaseMemRefType::isValidElementType(elementType)) 448 return emitOptionalError(location, "invalid memref element type"), 449 MemRefType(); 450 451 for (int64_t s : shape) { 452 // Negative sizes are not allowed except for `-1` that means dynamic size. 453 if (s < -1) 454 return emitOptionalError(location, "invalid memref size"), MemRefType(); 455 } 456 457 // Check that the structure of the composition is valid, i.e. that each 458 // subsequent affine map has as many inputs as the previous map has results. 459 // Take the dimensionality of the MemRef for the first map. 460 auto dim = shape.size(); 461 unsigned i = 0; 462 for (const auto &affineMap : affineMapComposition) { 463 if (affineMap.getNumDims() != dim) { 464 if (location) 465 emitError(*location) 466 << "memref affine map dimension mismatch between " 467 << (i == 0 ? Twine("memref rank") : "affine map " + Twine(i)) 468 << " and affine map" << i + 1 << ": " << dim 469 << " != " << affineMap.getNumDims(); 470 return nullptr; 471 } 472 473 dim = affineMap.getNumResults(); 474 ++i; 475 } 476 477 // Drop identity maps from the composition. 478 // This may lead to the composition becoming empty, which is interpreted as an 479 // implicit identity. 480 SmallVector<AffineMap, 2> cleanedAffineMapComposition; 481 for (const auto &map : affineMapComposition) { 482 if (map.isIdentity()) 483 continue; 484 cleanedAffineMapComposition.push_back(map); 485 } 486 487 return Base::get(context, shape, elementType, cleanedAffineMapComposition, 488 memorySpace); 489 } 490 491 ArrayRef<int64_t> MemRefType::getShape() const { return getImpl()->getShape(); } 492 493 ArrayRef<AffineMap> MemRefType::getAffineMaps() const { 494 return getImpl()->getAffineMaps(); 495 } 496 497 //===----------------------------------------------------------------------===// 498 // UnrankedMemRefType 499 //===----------------------------------------------------------------------===// 500 501 UnrankedMemRefType UnrankedMemRefType::get(Type elementType, 502 unsigned memorySpace) { 503 return Base::get(elementType.getContext(), elementType, memorySpace); 504 } 505 506 UnrankedMemRefType UnrankedMemRefType::getChecked(Location location, 507 Type elementType, 508 unsigned memorySpace) { 509 return Base::getChecked(location, elementType, memorySpace); 510 } 511 512 LogicalResult 513 UnrankedMemRefType::verifyConstructionInvariants(Location loc, Type elementType, 514 unsigned memorySpace) { 515 if (!BaseMemRefType::isValidElementType(elementType)) 516 return emitError(loc, "invalid memref element type"); 517 return success(); 518 } 519 520 // Fallback cases for terminal dim/sym/cst that are not part of a binary op ( 521 // i.e. single term). Accumulate the AffineExpr into the existing one. 522 static void extractStridesFromTerm(AffineExpr e, 523 AffineExpr multiplicativeFactor, 524 MutableArrayRef<AffineExpr> strides, 525 AffineExpr &offset) { 526 if (auto dim = e.dyn_cast<AffineDimExpr>()) 527 strides[dim.getPosition()] = 528 strides[dim.getPosition()] + multiplicativeFactor; 529 else 530 offset = offset + e * multiplicativeFactor; 531 } 532 533 /// Takes a single AffineExpr `e` and populates the `strides` array with the 534 /// strides expressions for each dim position. 535 /// The convention is that the strides for dimensions d0, .. dn appear in 536 /// order to make indexing intuitive into the result. 537 static LogicalResult extractStrides(AffineExpr e, 538 AffineExpr multiplicativeFactor, 539 MutableArrayRef<AffineExpr> strides, 540 AffineExpr &offset) { 541 auto bin = e.dyn_cast<AffineBinaryOpExpr>(); 542 if (!bin) { 543 extractStridesFromTerm(e, multiplicativeFactor, strides, offset); 544 return success(); 545 } 546 547 if (bin.getKind() == AffineExprKind::CeilDiv || 548 bin.getKind() == AffineExprKind::FloorDiv || 549 bin.getKind() == AffineExprKind::Mod) 550 return failure(); 551 552 if (bin.getKind() == AffineExprKind::Mul) { 553 auto dim = bin.getLHS().dyn_cast<AffineDimExpr>(); 554 if (dim) { 555 strides[dim.getPosition()] = 556 strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor; 557 return success(); 558 } 559 // LHS and RHS may both contain complex expressions of dims. Try one path 560 // and if it fails try the other. This is guaranteed to succeed because 561 // only one path may have a `dim`, otherwise this is not an AffineExpr in 562 // the first place. 563 if (bin.getLHS().isSymbolicOrConstant()) 564 return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(), 565 strides, offset); 566 return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(), 567 strides, offset); 568 } 569 570 if (bin.getKind() == AffineExprKind::Add) { 571 auto res1 = 572 extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset); 573 auto res2 = 574 extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset); 575 return success(succeeded(res1) && succeeded(res2)); 576 } 577 578 llvm_unreachable("unexpected binary operation"); 579 } 580 581 LogicalResult mlir::getStridesAndOffset(MemRefType t, 582 SmallVectorImpl<AffineExpr> &strides, 583 AffineExpr &offset) { 584 auto affineMaps = t.getAffineMaps(); 585 // For now strides are only computed on a single affine map with a single 586 // result (i.e. the closed subset of linearization maps that are compatible 587 // with striding semantics). 588 // TODO: support more forms on a per-need basis. 589 if (affineMaps.size() > 1) 590 return failure(); 591 if (affineMaps.size() == 1 && affineMaps[0].getNumResults() != 1) 592 return failure(); 593 594 auto zero = getAffineConstantExpr(0, t.getContext()); 595 auto one = getAffineConstantExpr(1, t.getContext()); 596 offset = zero; 597 strides.assign(t.getRank(), zero); 598 599 AffineMap m; 600 if (!affineMaps.empty()) { 601 m = affineMaps.front(); 602 assert(!m.isIdentity() && "unexpected identity map"); 603 } 604 605 // Canonical case for empty map. 606 if (!m) { 607 // 0-D corner case, offset is already 0. 608 if (t.getRank() == 0) 609 return success(); 610 auto stridedExpr = 611 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 612 if (succeeded(extractStrides(stridedExpr, one, strides, offset))) 613 return success(); 614 assert(false && "unexpected failure: extract strides in canonical layout"); 615 } 616 617 // Non-canonical case requires more work. 618 auto stridedExpr = 619 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 620 if (failed(extractStrides(stridedExpr, one, strides, offset))) { 621 offset = AffineExpr(); 622 strides.clear(); 623 return failure(); 624 } 625 626 // Simplify results to allow folding to constants and simple checks. 627 unsigned numDims = m.getNumDims(); 628 unsigned numSymbols = m.getNumSymbols(); 629 offset = simplifyAffineExpr(offset, numDims, numSymbols); 630 for (auto &stride : strides) 631 stride = simplifyAffineExpr(stride, numDims, numSymbols); 632 633 /// In practice, a strided memref must be internally non-aliasing. Test 634 /// against 0 as a proxy. 635 /// TODO: static cases can have more advanced checks. 636 /// TODO: dynamic cases would require a way to compare symbolic 637 /// expressions and would probably need an affine set context propagated 638 /// everywhere. 639 if (llvm::any_of(strides, [](AffineExpr e) { 640 return e == getAffineConstantExpr(0, e.getContext()); 641 })) { 642 offset = AffineExpr(); 643 strides.clear(); 644 return failure(); 645 } 646 647 return success(); 648 } 649 650 LogicalResult mlir::getStridesAndOffset(MemRefType t, 651 SmallVectorImpl<int64_t> &strides, 652 int64_t &offset) { 653 AffineExpr offsetExpr; 654 SmallVector<AffineExpr, 4> strideExprs; 655 if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr))) 656 return failure(); 657 if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>()) 658 offset = cst.getValue(); 659 else 660 offset = ShapedType::kDynamicStrideOrOffset; 661 for (auto e : strideExprs) { 662 if (auto c = e.dyn_cast<AffineConstantExpr>()) 663 strides.push_back(c.getValue()); 664 else 665 strides.push_back(ShapedType::kDynamicStrideOrOffset); 666 } 667 return success(); 668 } 669 670 //===----------------------------------------------------------------------===// 671 /// TupleType 672 //===----------------------------------------------------------------------===// 673 674 /// Return the elements types for this tuple. 675 ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); } 676 677 /// Accumulate the types contained in this tuple and tuples nested within it. 678 /// Note that this only flattens nested tuples, not any other container type, 679 /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to 680 /// (i32, tensor<i32>, f32, i64) 681 void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) { 682 for (Type type : getTypes()) { 683 if (auto nestedTuple = type.dyn_cast<TupleType>()) 684 nestedTuple.getFlattenedTypes(types); 685 else 686 types.push_back(type); 687 } 688 } 689 690 /// Return the number of element types. 691 size_t TupleType::size() const { return getImpl()->size(); } 692 693 //===----------------------------------------------------------------------===// 694 // Type Utilities 695 //===----------------------------------------------------------------------===// 696 697 AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides, 698 int64_t offset, 699 MLIRContext *context) { 700 AffineExpr expr; 701 unsigned nSymbols = 0; 702 703 // AffineExpr for offset. 704 // Static case. 705 if (offset != MemRefType::getDynamicStrideOrOffset()) { 706 auto cst = getAffineConstantExpr(offset, context); 707 expr = cst; 708 } else { 709 // Dynamic case, new symbol for the offset. 710 auto sym = getAffineSymbolExpr(nSymbols++, context); 711 expr = sym; 712 } 713 714 // AffineExpr for strides. 715 for (auto en : llvm::enumerate(strides)) { 716 auto dim = en.index(); 717 auto stride = en.value(); 718 assert(stride != 0 && "Invalid stride specification"); 719 auto d = getAffineDimExpr(dim, context); 720 AffineExpr mult; 721 // Static case. 722 if (stride != MemRefType::getDynamicStrideOrOffset()) 723 mult = getAffineConstantExpr(stride, context); 724 else 725 // Dynamic case, new symbol for each new stride. 726 mult = getAffineSymbolExpr(nSymbols++, context); 727 expr = expr + d * mult; 728 } 729 730 return AffineMap::get(strides.size(), nSymbols, expr); 731 } 732 733 /// Return a version of `t` with identity layout if it can be determined 734 /// statically that the layout is the canonical contiguous strided layout. 735 /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of 736 /// `t` with simplified layout. 737 /// If `t` has multiple layout maps or a multi-result layout, just return `t`. 738 MemRefType mlir::canonicalizeStridedLayout(MemRefType t) { 739 auto affineMaps = t.getAffineMaps(); 740 // Already in canonical form. 741 if (affineMaps.empty()) 742 return t; 743 744 // Can't reduce to canonical identity form, return in canonical form. 745 if (affineMaps.size() > 1 || affineMaps[0].getNumResults() > 1) 746 return t; 747 748 // If the canonical strided layout for the sizes of `t` is equal to the 749 // simplified layout of `t` we can just return an empty layout. Otherwise, 750 // just simplify the existing layout. 751 AffineExpr expr = 752 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 753 auto m = affineMaps[0]; 754 auto simplifiedLayoutExpr = 755 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 756 if (expr != simplifiedLayoutExpr) 757 return MemRefType::Builder(t).setAffineMaps({AffineMap::get( 758 m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)}); 759 return MemRefType::Builder(t).setAffineMaps({}); 760 } 761 762 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 763 ArrayRef<AffineExpr> exprs, 764 MLIRContext *context) { 765 // Size 0 corner case is useful for canonicalizations. 766 if (llvm::is_contained(sizes, 0)) 767 return getAffineConstantExpr(0, context); 768 769 auto maps = AffineMap::inferFromExprList(exprs); 770 assert(!maps.empty() && "Expected one non-empty map"); 771 unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols(); 772 773 AffineExpr expr; 774 bool dynamicPoisonBit = false; 775 int64_t runningSize = 1; 776 for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) { 777 int64_t size = std::get<1>(en); 778 // Degenerate case, no size =-> no stride 779 if (size == 0) 780 continue; 781 AffineExpr dimExpr = std::get<0>(en); 782 AffineExpr stride = dynamicPoisonBit 783 ? getAffineSymbolExpr(nSymbols++, context) 784 : getAffineConstantExpr(runningSize, context); 785 expr = expr ? expr + dimExpr * stride : dimExpr * stride; 786 if (size > 0) 787 runningSize *= size; 788 else 789 dynamicPoisonBit = true; 790 } 791 return simplifyAffineExpr(expr, numDims, nSymbols); 792 } 793 794 /// Return a version of `t` with a layout that has all dynamic offset and 795 /// strides. This is used to erase the static layout. 796 MemRefType mlir::eraseStridedLayout(MemRefType t) { 797 auto val = ShapedType::kDynamicStrideOrOffset; 798 return MemRefType::Builder(t).setAffineMaps(makeStridedLinearLayoutMap( 799 SmallVector<int64_t, 4>(t.getRank(), val), val, t.getContext())); 800 } 801 802 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 803 MLIRContext *context) { 804 SmallVector<AffineExpr, 4> exprs; 805 exprs.reserve(sizes.size()); 806 for (auto dim : llvm::seq<unsigned>(0, sizes.size())) 807 exprs.push_back(getAffineDimExpr(dim, context)); 808 return makeCanonicalStridedLayoutExpr(sizes, exprs, context); 809 } 810 811 /// Return true if the layout for `t` is compatible with strided semantics. 812 bool mlir::isStrided(MemRefType t) { 813 int64_t offset; 814 SmallVector<int64_t, 4> stridesAndOffset; 815 auto res = getStridesAndOffset(t, stridesAndOffset, offset); 816 return succeeded(res); 817 } 818