1 //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/BuiltinTypes.h" 10 #include "TypeDetail.h" 11 #include "mlir/IR/AffineExpr.h" 12 #include "mlir/IR/AffineMap.h" 13 #include "mlir/IR/BuiltinAttributes.h" 14 #include "mlir/IR/BuiltinDialect.h" 15 #include "mlir/IR/Diagnostics.h" 16 #include "mlir/IR/Dialect.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/Sequence.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/ADT/TypeSwitch.h" 22 23 using namespace mlir; 24 using namespace mlir::detail; 25 26 //===----------------------------------------------------------------------===// 27 /// Tablegen Type Definitions 28 //===----------------------------------------------------------------------===// 29 30 #define GET_TYPEDEF_CLASSES 31 #include "mlir/IR/BuiltinTypes.cpp.inc" 32 33 //===----------------------------------------------------------------------===// 34 // BuiltinDialect 35 //===----------------------------------------------------------------------===// 36 37 void BuiltinDialect::registerTypes() { 38 addTypes< 39 #define GET_TYPEDEF_LIST 40 #include "mlir/IR/BuiltinTypes.cpp.inc" 41 >(); 42 } 43 44 //===----------------------------------------------------------------------===// 45 /// ComplexType 46 //===----------------------------------------------------------------------===// 47 48 /// Verify the construction of an integer type. 49 LogicalResult ComplexType::verify(function_ref<InFlightDiagnostic()> emitError, 50 Type elementType) { 51 if (!elementType.isIntOrFloat()) 52 return emitError() << "invalid element type for complex"; 53 return success(); 54 } 55 56 //===----------------------------------------------------------------------===// 57 // Integer Type 58 //===----------------------------------------------------------------------===// 59 60 // static constexpr must have a definition (until in C++17 and inline variable). 61 constexpr unsigned IntegerType::kMaxWidth; 62 63 /// Verify the construction of an integer type. 64 LogicalResult IntegerType::verify(function_ref<InFlightDiagnostic()> emitError, 65 unsigned width, 66 SignednessSemantics signedness) { 67 if (width > IntegerType::kMaxWidth) { 68 return emitError() << "integer bitwidth is limited to " 69 << IntegerType::kMaxWidth << " bits"; 70 } 71 return success(); 72 } 73 74 unsigned IntegerType::getWidth() const { return getImpl()->width; } 75 76 IntegerType::SignednessSemantics IntegerType::getSignedness() const { 77 return getImpl()->signedness; 78 } 79 80 IntegerType IntegerType::scaleElementBitwidth(unsigned scale) { 81 if (!scale) 82 return IntegerType(); 83 return IntegerType::get(getContext(), scale * getWidth(), getSignedness()); 84 } 85 86 //===----------------------------------------------------------------------===// 87 // Float Type 88 //===----------------------------------------------------------------------===// 89 90 unsigned FloatType::getWidth() { 91 if (isa<Float16Type, BFloat16Type>()) 92 return 16; 93 if (isa<Float32Type>()) 94 return 32; 95 if (isa<Float64Type>()) 96 return 64; 97 if (isa<Float80Type>()) 98 return 80; 99 if (isa<Float128Type>()) 100 return 128; 101 llvm_unreachable("unexpected float type"); 102 } 103 104 /// Returns the floating semantics for the given type. 105 const llvm::fltSemantics &FloatType::getFloatSemantics() { 106 if (isa<BFloat16Type>()) 107 return APFloat::BFloat(); 108 if (isa<Float16Type>()) 109 return APFloat::IEEEhalf(); 110 if (isa<Float32Type>()) 111 return APFloat::IEEEsingle(); 112 if (isa<Float64Type>()) 113 return APFloat::IEEEdouble(); 114 if (isa<Float80Type>()) 115 return APFloat::x87DoubleExtended(); 116 if (isa<Float128Type>()) 117 return APFloat::IEEEquad(); 118 llvm_unreachable("non-floating point type used"); 119 } 120 121 FloatType FloatType::scaleElementBitwidth(unsigned scale) { 122 if (!scale) 123 return FloatType(); 124 MLIRContext *ctx = getContext(); 125 if (isF16() || isBF16()) { 126 if (scale == 2) 127 return FloatType::getF32(ctx); 128 if (scale == 4) 129 return FloatType::getF64(ctx); 130 } 131 if (isF32()) 132 if (scale == 2) 133 return FloatType::getF64(ctx); 134 return FloatType(); 135 } 136 137 //===----------------------------------------------------------------------===// 138 // FunctionType 139 //===----------------------------------------------------------------------===// 140 141 unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; } 142 143 ArrayRef<Type> FunctionType::getInputs() const { 144 return getImpl()->getInputs(); 145 } 146 147 unsigned FunctionType::getNumResults() const { return getImpl()->numResults; } 148 149 ArrayRef<Type> FunctionType::getResults() const { 150 return getImpl()->getResults(); 151 } 152 153 /// Helper to call a callback once on each index in the range 154 /// [0, `totalIndices`), *except* for the indices given in `indices`. 155 /// `indices` is allowed to have duplicates and can be in any order. 156 inline void iterateIndicesExcept(unsigned totalIndices, 157 ArrayRef<unsigned> indices, 158 function_ref<void(unsigned)> callback) { 159 llvm::BitVector skipIndices(totalIndices); 160 for (unsigned i : indices) 161 skipIndices.set(i); 162 163 for (unsigned i = 0; i < totalIndices; ++i) 164 if (!skipIndices.test(i)) 165 callback(i); 166 } 167 168 /// Returns a new function type without the specified arguments and results. 169 FunctionType 170 FunctionType::getWithoutArgsAndResults(ArrayRef<unsigned> argIndices, 171 ArrayRef<unsigned> resultIndices) { 172 ArrayRef<Type> newInputTypes = getInputs(); 173 SmallVector<Type, 4> newInputTypesBuffer; 174 if (!argIndices.empty()) { 175 unsigned originalNumArgs = getNumInputs(); 176 iterateIndicesExcept(originalNumArgs, argIndices, [&](unsigned i) { 177 newInputTypesBuffer.emplace_back(getInput(i)); 178 }); 179 newInputTypes = newInputTypesBuffer; 180 } 181 182 ArrayRef<Type> newResultTypes = getResults(); 183 SmallVector<Type, 4> newResultTypesBuffer; 184 if (!resultIndices.empty()) { 185 unsigned originalNumResults = getNumResults(); 186 iterateIndicesExcept(originalNumResults, resultIndices, [&](unsigned i) { 187 newResultTypesBuffer.emplace_back(getResult(i)); 188 }); 189 newResultTypes = newResultTypesBuffer; 190 } 191 192 return get(getContext(), newInputTypes, newResultTypes); 193 } 194 195 //===----------------------------------------------------------------------===// 196 // OpaqueType 197 //===----------------------------------------------------------------------===// 198 199 /// Verify the construction of an opaque type. 200 LogicalResult OpaqueType::verify(function_ref<InFlightDiagnostic()> emitError, 201 Identifier dialect, StringRef typeData) { 202 if (!Dialect::isValidNamespace(dialect.strref())) 203 return emitError() << "invalid dialect namespace '" << dialect << "'"; 204 return success(); 205 } 206 207 //===----------------------------------------------------------------------===// 208 // ShapedType 209 //===----------------------------------------------------------------------===// 210 constexpr int64_t ShapedType::kDynamicSize; 211 constexpr int64_t ShapedType::kDynamicStrideOrOffset; 212 213 ShapedType ShapedType::clone(ArrayRef<int64_t> shape, Type elementType) { 214 if (auto other = dyn_cast<MemRefType>()) { 215 MemRefType::Builder b(other); 216 b.setShape(shape); 217 b.setElementType(elementType); 218 return b; 219 } 220 221 if (auto other = dyn_cast<UnrankedMemRefType>()) { 222 MemRefType::Builder b(shape, elementType); 223 b.setMemorySpace(other.getMemorySpace()); 224 return b; 225 } 226 227 if (isa<TensorType>()) 228 return RankedTensorType::get(shape, elementType); 229 230 if (isa<VectorType>()) 231 return VectorType::get(shape, elementType); 232 233 llvm_unreachable("Unhandled ShapedType clone case"); 234 } 235 236 ShapedType ShapedType::clone(ArrayRef<int64_t> shape) { 237 if (auto other = dyn_cast<MemRefType>()) { 238 MemRefType::Builder b(other); 239 b.setShape(shape); 240 return b; 241 } 242 243 if (auto other = dyn_cast<UnrankedMemRefType>()) { 244 MemRefType::Builder b(shape, other.getElementType()); 245 b.setShape(shape); 246 b.setMemorySpace(other.getMemorySpace()); 247 return b; 248 } 249 250 if (isa<TensorType>()) 251 return RankedTensorType::get(shape, getElementType()); 252 253 if (isa<VectorType>()) 254 return VectorType::get(shape, getElementType()); 255 256 llvm_unreachable("Unhandled ShapedType clone case"); 257 } 258 259 ShapedType ShapedType::clone(Type elementType) { 260 if (auto other = dyn_cast<MemRefType>()) { 261 MemRefType::Builder b(other); 262 b.setElementType(elementType); 263 return b; 264 } 265 266 if (auto other = dyn_cast<UnrankedMemRefType>()) { 267 return UnrankedMemRefType::get(elementType, other.getMemorySpace()); 268 } 269 270 if (isa<TensorType>()) { 271 if (hasRank()) 272 return RankedTensorType::get(getShape(), elementType); 273 return UnrankedTensorType::get(elementType); 274 } 275 276 if (isa<VectorType>()) 277 return VectorType::get(getShape(), elementType); 278 279 llvm_unreachable("Unhandled ShapedType clone hit"); 280 } 281 282 Type ShapedType::getElementType() const { 283 return TypeSwitch<Type, Type>(*this) 284 .Case<VectorType, RankedTensorType, UnrankedTensorType, MemRefType, 285 UnrankedMemRefType>([](auto ty) { return ty.getElementType(); }); 286 } 287 288 unsigned ShapedType::getElementTypeBitWidth() const { 289 return getElementType().getIntOrFloatBitWidth(); 290 } 291 292 int64_t ShapedType::getNumElements() const { 293 assert(hasStaticShape() && "cannot get element count of dynamic shaped type"); 294 auto shape = getShape(); 295 int64_t num = 1; 296 for (auto dim : shape) { 297 num *= dim; 298 assert(num >= 0 && "integer overflow in element count computation"); 299 } 300 return num; 301 } 302 303 int64_t ShapedType::getRank() const { 304 assert(hasRank() && "cannot query rank of unranked shaped type"); 305 return getShape().size(); 306 } 307 308 bool ShapedType::hasRank() const { 309 return !isa<UnrankedMemRefType, UnrankedTensorType>(); 310 } 311 312 int64_t ShapedType::getDimSize(unsigned idx) const { 313 assert(idx < getRank() && "invalid index for shaped type"); 314 return getShape()[idx]; 315 } 316 317 bool ShapedType::isDynamicDim(unsigned idx) const { 318 assert(idx < getRank() && "invalid index for shaped type"); 319 return isDynamic(getShape()[idx]); 320 } 321 322 unsigned ShapedType::getDynamicDimIndex(unsigned index) const { 323 assert(index < getRank() && "invalid index"); 324 assert(ShapedType::isDynamic(getDimSize(index)) && "invalid index"); 325 return llvm::count_if(getShape().take_front(index), ShapedType::isDynamic); 326 } 327 328 /// Get the number of bits require to store a value of the given shaped type. 329 /// Compute the value recursively since tensors are allowed to have vectors as 330 /// elements. 331 int64_t ShapedType::getSizeInBits() const { 332 assert(hasStaticShape() && 333 "cannot get the bit size of an aggregate with a dynamic shape"); 334 335 auto elementType = getElementType(); 336 if (elementType.isIntOrFloat()) 337 return elementType.getIntOrFloatBitWidth() * getNumElements(); 338 339 if (auto complexType = elementType.dyn_cast<ComplexType>()) { 340 elementType = complexType.getElementType(); 341 return elementType.getIntOrFloatBitWidth() * getNumElements() * 2; 342 } 343 344 // Tensors can have vectors and other tensors as elements, other shaped types 345 // cannot. 346 assert(isa<TensorType>() && "unsupported element type"); 347 assert((elementType.isa<VectorType, TensorType>()) && 348 "unsupported tensor element type"); 349 return getNumElements() * elementType.cast<ShapedType>().getSizeInBits(); 350 } 351 352 ArrayRef<int64_t> ShapedType::getShape() const { 353 if (auto vectorType = dyn_cast<VectorType>()) 354 return vectorType.getShape(); 355 if (auto tensorType = dyn_cast<RankedTensorType>()) 356 return tensorType.getShape(); 357 return cast<MemRefType>().getShape(); 358 } 359 360 int64_t ShapedType::getNumDynamicDims() const { 361 return llvm::count_if(getShape(), isDynamic); 362 } 363 364 bool ShapedType::hasStaticShape() const { 365 return hasRank() && llvm::none_of(getShape(), isDynamic); 366 } 367 368 bool ShapedType::hasStaticShape(ArrayRef<int64_t> shape) const { 369 return hasStaticShape() && getShape() == shape; 370 } 371 372 //===----------------------------------------------------------------------===// 373 // VectorType 374 //===----------------------------------------------------------------------===// 375 376 LogicalResult VectorType::verify(function_ref<InFlightDiagnostic()> emitError, 377 ArrayRef<int64_t> shape, Type elementType) { 378 if (shape.empty()) 379 return emitError() << "vector types must have at least one dimension"; 380 381 if (!isValidElementType(elementType)) 382 return emitError() << "vector elements must be int or float type"; 383 384 if (any_of(shape, [](int64_t i) { return i <= 0; })) 385 return emitError() << "vector types must have positive constant sizes"; 386 387 return success(); 388 } 389 390 VectorType VectorType::scaleElementBitwidth(unsigned scale) { 391 if (!scale) 392 return VectorType(); 393 if (auto et = getElementType().dyn_cast<IntegerType>()) 394 if (auto scaledEt = et.scaleElementBitwidth(scale)) 395 return VectorType::get(getShape(), scaledEt); 396 if (auto et = getElementType().dyn_cast<FloatType>()) 397 if (auto scaledEt = et.scaleElementBitwidth(scale)) 398 return VectorType::get(getShape(), scaledEt); 399 return VectorType(); 400 } 401 402 //===----------------------------------------------------------------------===// 403 // TensorType 404 //===----------------------------------------------------------------------===// 405 406 // Check if "elementType" can be an element type of a tensor. 407 static LogicalResult 408 checkTensorElementType(function_ref<InFlightDiagnostic()> emitError, 409 Type elementType) { 410 if (!TensorType::isValidElementType(elementType)) 411 return emitError() << "invalid tensor element type: " << elementType; 412 return success(); 413 } 414 415 /// Return true if the specified element type is ok in a tensor. 416 bool TensorType::isValidElementType(Type type) { 417 // Note: Non standard/builtin types are allowed to exist within tensor 418 // types. Dialects are expected to verify that tensor types have a valid 419 // element type within that dialect. 420 return type.isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType, 421 IndexType>() || 422 !type.getDialect().getNamespace().empty(); 423 } 424 425 //===----------------------------------------------------------------------===// 426 // RankedTensorType 427 //===----------------------------------------------------------------------===// 428 429 LogicalResult 430 RankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, 431 ArrayRef<int64_t> shape, Type elementType) { 432 for (int64_t s : shape) 433 if (s < -1) 434 return emitError() << "invalid tensor dimension size"; 435 return checkTensorElementType(emitError, elementType); 436 } 437 438 //===----------------------------------------------------------------------===// 439 // UnrankedTensorType 440 //===----------------------------------------------------------------------===// 441 442 LogicalResult 443 UnrankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, 444 Type elementType) { 445 return checkTensorElementType(emitError, elementType); 446 } 447 448 //===----------------------------------------------------------------------===// 449 // BaseMemRefType 450 //===----------------------------------------------------------------------===// 451 452 Attribute BaseMemRefType::getMemorySpace() const { 453 if (auto rankedMemRefTy = dyn_cast<MemRefType>()) 454 return rankedMemRefTy.getMemorySpace(); 455 return cast<UnrankedMemRefType>().getMemorySpace(); 456 } 457 458 unsigned BaseMemRefType::getMemorySpaceAsInt() const { 459 if (auto rankedMemRefTy = dyn_cast<MemRefType>()) 460 return rankedMemRefTy.getMemorySpaceAsInt(); 461 return cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 462 } 463 464 //===----------------------------------------------------------------------===// 465 // MemRefType 466 //===----------------------------------------------------------------------===// 467 468 /// Given an `originalShape` and a `reducedShape` assumed to be a subset of 469 /// `originalShape` with some `1` entries erased, return the set of indices 470 /// that specifies which of the entries of `originalShape` are dropped to obtain 471 /// `reducedShape`. The returned mask can be applied as a projection to 472 /// `originalShape` to obtain the `reducedShape`. This mask is useful to track 473 /// which dimensions must be kept when e.g. compute MemRef strides under 474 /// rank-reducing operations. Return None if reducedShape cannot be obtained 475 /// by dropping only `1` entries in `originalShape`. 476 llvm::Optional<llvm::SmallDenseSet<unsigned>> 477 mlir::computeRankReductionMask(ArrayRef<int64_t> originalShape, 478 ArrayRef<int64_t> reducedShape) { 479 size_t originalRank = originalShape.size(), reducedRank = reducedShape.size(); 480 llvm::SmallDenseSet<unsigned> unusedDims; 481 unsigned reducedIdx = 0; 482 for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) { 483 // Greedily insert `originalIdx` if no match. 484 if (reducedIdx < reducedRank && 485 originalShape[originalIdx] == reducedShape[reducedIdx]) { 486 reducedIdx++; 487 continue; 488 } 489 490 unusedDims.insert(originalIdx); 491 // If no match on `originalIdx`, the `originalShape` at this dimension 492 // must be 1, otherwise we bail. 493 if (originalShape[originalIdx] != 1) 494 return llvm::None; 495 } 496 // The whole reducedShape must be scanned, otherwise we bail. 497 if (reducedIdx != reducedRank) 498 return llvm::None; 499 return unusedDims; 500 } 501 502 bool mlir::detail::isSupportedMemorySpace(Attribute memorySpace) { 503 // Empty attribute is allowed as default memory space. 504 if (!memorySpace) 505 return true; 506 507 // Supported built-in attributes. 508 if (memorySpace.isa<IntegerAttr, StringAttr, DictionaryAttr>()) 509 return true; 510 511 // Allow custom dialect attributes. 512 if (!::mlir::isa<BuiltinDialect>(memorySpace.getDialect())) 513 return true; 514 515 return false; 516 } 517 518 Attribute mlir::detail::wrapIntegerMemorySpace(unsigned memorySpace, 519 MLIRContext *ctx) { 520 if (memorySpace == 0) 521 return nullptr; 522 523 return IntegerAttr::get(IntegerType::get(ctx, 64), memorySpace); 524 } 525 526 Attribute mlir::detail::skipDefaultMemorySpace(Attribute memorySpace) { 527 IntegerAttr intMemorySpace = memorySpace.dyn_cast_or_null<IntegerAttr>(); 528 if (intMemorySpace && intMemorySpace.getValue() == 0) 529 return nullptr; 530 531 return memorySpace; 532 } 533 534 unsigned mlir::detail::getMemorySpaceAsInt(Attribute memorySpace) { 535 if (!memorySpace) 536 return 0; 537 538 assert(memorySpace.isa<IntegerAttr>() && 539 "Using `getMemorySpaceInteger` with non-Integer attribute"); 540 541 return static_cast<unsigned>(memorySpace.cast<IntegerAttr>().getInt()); 542 } 543 544 MemRefType::Builder & 545 MemRefType::Builder::setMemorySpace(unsigned newMemorySpace) { 546 memorySpace = 547 wrapIntegerMemorySpace(newMemorySpace, elementType.getContext()); 548 return *this; 549 } 550 551 unsigned MemRefType::getMemorySpaceAsInt() const { 552 return detail::getMemorySpaceAsInt(getMemorySpace()); 553 } 554 555 LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError, 556 ArrayRef<int64_t> shape, Type elementType, 557 ArrayRef<AffineMap> affineMapComposition, 558 Attribute memorySpace) { 559 if (!BaseMemRefType::isValidElementType(elementType)) 560 return emitError() << "invalid memref element type"; 561 562 // Negative sizes are not allowed except for `-1` that means dynamic size. 563 for (int64_t s : shape) 564 if (s < -1) 565 return emitError() << "invalid memref size"; 566 567 // Check that the structure of the composition is valid, i.e. that each 568 // subsequent affine map has as many inputs as the previous map has results. 569 // Take the dimensionality of the MemRef for the first map. 570 size_t dim = shape.size(); 571 for (auto it : llvm::enumerate(affineMapComposition)) { 572 AffineMap map = it.value(); 573 if (map.getNumDims() == dim) { 574 dim = map.getNumResults(); 575 continue; 576 } 577 return emitError() << "memref affine map dimension mismatch between " 578 << (it.index() == 0 ? Twine("memref rank") 579 : "affine map " + Twine(it.index())) 580 << " and affine map" << it.index() + 1 << ": " << dim 581 << " != " << map.getNumDims(); 582 } 583 584 if (!isSupportedMemorySpace(memorySpace)) { 585 return emitError() << "unsupported memory space Attribute"; 586 } 587 588 return success(); 589 } 590 591 //===----------------------------------------------------------------------===// 592 // UnrankedMemRefType 593 //===----------------------------------------------------------------------===// 594 595 unsigned UnrankedMemRefType::getMemorySpaceAsInt() const { 596 return detail::getMemorySpaceAsInt(getMemorySpace()); 597 } 598 599 LogicalResult 600 UnrankedMemRefType::verify(function_ref<InFlightDiagnostic()> emitError, 601 Type elementType, Attribute memorySpace) { 602 if (!BaseMemRefType::isValidElementType(elementType)) 603 return emitError() << "invalid memref element type"; 604 605 if (!isSupportedMemorySpace(memorySpace)) 606 return emitError() << "unsupported memory space Attribute"; 607 608 return success(); 609 } 610 611 // Fallback cases for terminal dim/sym/cst that are not part of a binary op ( 612 // i.e. single term). Accumulate the AffineExpr into the existing one. 613 static void extractStridesFromTerm(AffineExpr e, 614 AffineExpr multiplicativeFactor, 615 MutableArrayRef<AffineExpr> strides, 616 AffineExpr &offset) { 617 if (auto dim = e.dyn_cast<AffineDimExpr>()) 618 strides[dim.getPosition()] = 619 strides[dim.getPosition()] + multiplicativeFactor; 620 else 621 offset = offset + e * multiplicativeFactor; 622 } 623 624 /// Takes a single AffineExpr `e` and populates the `strides` array with the 625 /// strides expressions for each dim position. 626 /// The convention is that the strides for dimensions d0, .. dn appear in 627 /// order to make indexing intuitive into the result. 628 static LogicalResult extractStrides(AffineExpr e, 629 AffineExpr multiplicativeFactor, 630 MutableArrayRef<AffineExpr> strides, 631 AffineExpr &offset) { 632 auto bin = e.dyn_cast<AffineBinaryOpExpr>(); 633 if (!bin) { 634 extractStridesFromTerm(e, multiplicativeFactor, strides, offset); 635 return success(); 636 } 637 638 if (bin.getKind() == AffineExprKind::CeilDiv || 639 bin.getKind() == AffineExprKind::FloorDiv || 640 bin.getKind() == AffineExprKind::Mod) 641 return failure(); 642 643 if (bin.getKind() == AffineExprKind::Mul) { 644 auto dim = bin.getLHS().dyn_cast<AffineDimExpr>(); 645 if (dim) { 646 strides[dim.getPosition()] = 647 strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor; 648 return success(); 649 } 650 // LHS and RHS may both contain complex expressions of dims. Try one path 651 // and if it fails try the other. This is guaranteed to succeed because 652 // only one path may have a `dim`, otherwise this is not an AffineExpr in 653 // the first place. 654 if (bin.getLHS().isSymbolicOrConstant()) 655 return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(), 656 strides, offset); 657 return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(), 658 strides, offset); 659 } 660 661 if (bin.getKind() == AffineExprKind::Add) { 662 auto res1 = 663 extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset); 664 auto res2 = 665 extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset); 666 return success(succeeded(res1) && succeeded(res2)); 667 } 668 669 llvm_unreachable("unexpected binary operation"); 670 } 671 672 LogicalResult mlir::getStridesAndOffset(MemRefType t, 673 SmallVectorImpl<AffineExpr> &strides, 674 AffineExpr &offset) { 675 auto affineMaps = t.getAffineMaps(); 676 677 if (!affineMaps.empty() && affineMaps.back().getNumResults() != 1) 678 return failure(); 679 680 AffineMap m; 681 if (!affineMaps.empty()) { 682 m = affineMaps.back(); 683 for (size_t i = affineMaps.size() - 1; i > 0; --i) 684 m = m.compose(affineMaps[i - 1]); 685 assert(!m.isIdentity() && "unexpected identity map"); 686 } 687 688 auto zero = getAffineConstantExpr(0, t.getContext()); 689 auto one = getAffineConstantExpr(1, t.getContext()); 690 offset = zero; 691 strides.assign(t.getRank(), zero); 692 693 // Canonical case for empty map. 694 if (!m) { 695 // 0-D corner case, offset is already 0. 696 if (t.getRank() == 0) 697 return success(); 698 auto stridedExpr = 699 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 700 if (succeeded(extractStrides(stridedExpr, one, strides, offset))) 701 return success(); 702 assert(false && "unexpected failure: extract strides in canonical layout"); 703 } 704 705 // Non-canonical case requires more work. 706 auto stridedExpr = 707 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 708 if (failed(extractStrides(stridedExpr, one, strides, offset))) { 709 offset = AffineExpr(); 710 strides.clear(); 711 return failure(); 712 } 713 714 // Simplify results to allow folding to constants and simple checks. 715 unsigned numDims = m.getNumDims(); 716 unsigned numSymbols = m.getNumSymbols(); 717 offset = simplifyAffineExpr(offset, numDims, numSymbols); 718 for (auto &stride : strides) 719 stride = simplifyAffineExpr(stride, numDims, numSymbols); 720 721 /// In practice, a strided memref must be internally non-aliasing. Test 722 /// against 0 as a proxy. 723 /// TODO: static cases can have more advanced checks. 724 /// TODO: dynamic cases would require a way to compare symbolic 725 /// expressions and would probably need an affine set context propagated 726 /// everywhere. 727 if (llvm::any_of(strides, [](AffineExpr e) { 728 return e == getAffineConstantExpr(0, e.getContext()); 729 })) { 730 offset = AffineExpr(); 731 strides.clear(); 732 return failure(); 733 } 734 735 return success(); 736 } 737 738 LogicalResult mlir::getStridesAndOffset(MemRefType t, 739 SmallVectorImpl<int64_t> &strides, 740 int64_t &offset) { 741 AffineExpr offsetExpr; 742 SmallVector<AffineExpr, 4> strideExprs; 743 if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr))) 744 return failure(); 745 if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>()) 746 offset = cst.getValue(); 747 else 748 offset = ShapedType::kDynamicStrideOrOffset; 749 for (auto e : strideExprs) { 750 if (auto c = e.dyn_cast<AffineConstantExpr>()) 751 strides.push_back(c.getValue()); 752 else 753 strides.push_back(ShapedType::kDynamicStrideOrOffset); 754 } 755 return success(); 756 } 757 758 //===----------------------------------------------------------------------===// 759 /// TupleType 760 //===----------------------------------------------------------------------===// 761 762 /// Return the elements types for this tuple. 763 ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); } 764 765 /// Accumulate the types contained in this tuple and tuples nested within it. 766 /// Note that this only flattens nested tuples, not any other container type, 767 /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to 768 /// (i32, tensor<i32>, f32, i64) 769 void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) { 770 for (Type type : getTypes()) { 771 if (auto nestedTuple = type.dyn_cast<TupleType>()) 772 nestedTuple.getFlattenedTypes(types); 773 else 774 types.push_back(type); 775 } 776 } 777 778 /// Return the number of element types. 779 size_t TupleType::size() const { return getImpl()->size(); } 780 781 //===----------------------------------------------------------------------===// 782 // Type Utilities 783 //===----------------------------------------------------------------------===// 784 785 AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides, 786 int64_t offset, 787 MLIRContext *context) { 788 AffineExpr expr; 789 unsigned nSymbols = 0; 790 791 // AffineExpr for offset. 792 // Static case. 793 if (offset != MemRefType::getDynamicStrideOrOffset()) { 794 auto cst = getAffineConstantExpr(offset, context); 795 expr = cst; 796 } else { 797 // Dynamic case, new symbol for the offset. 798 auto sym = getAffineSymbolExpr(nSymbols++, context); 799 expr = sym; 800 } 801 802 // AffineExpr for strides. 803 for (auto en : llvm::enumerate(strides)) { 804 auto dim = en.index(); 805 auto stride = en.value(); 806 assert(stride != 0 && "Invalid stride specification"); 807 auto d = getAffineDimExpr(dim, context); 808 AffineExpr mult; 809 // Static case. 810 if (stride != MemRefType::getDynamicStrideOrOffset()) 811 mult = getAffineConstantExpr(stride, context); 812 else 813 // Dynamic case, new symbol for each new stride. 814 mult = getAffineSymbolExpr(nSymbols++, context); 815 expr = expr + d * mult; 816 } 817 818 return AffineMap::get(strides.size(), nSymbols, expr); 819 } 820 821 /// Return a version of `t` with identity layout if it can be determined 822 /// statically that the layout is the canonical contiguous strided layout. 823 /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of 824 /// `t` with simplified layout. 825 /// If `t` has multiple layout maps or a multi-result layout, just return `t`. 826 MemRefType mlir::canonicalizeStridedLayout(MemRefType t) { 827 auto affineMaps = t.getAffineMaps(); 828 // Already in canonical form. 829 if (affineMaps.empty()) 830 return t; 831 832 // Can't reduce to canonical identity form, return in canonical form. 833 if (affineMaps.size() > 1 || affineMaps[0].getNumResults() > 1) 834 return t; 835 836 // Corner-case for 0-D affine maps. 837 auto m = affineMaps[0]; 838 if (m.getNumDims() == 0 && m.getNumSymbols() == 0) { 839 if (auto cst = m.getResult(0).dyn_cast<AffineConstantExpr>()) 840 if (cst.getValue() == 0) 841 return MemRefType::Builder(t).setAffineMaps({}); 842 return t; 843 } 844 845 // 0-D corner case for empty shape that still have an affine map. Example: 846 // `memref<f32, affine_map<()[s0] -> (s0)>>`. This is a 1 element memref whose 847 // offset needs to remain, just return t. 848 if (t.getShape().empty()) 849 return t; 850 851 // If the canonical strided layout for the sizes of `t` is equal to the 852 // simplified layout of `t` we can just return an empty layout. Otherwise, 853 // just simplify the existing layout. 854 AffineExpr expr = 855 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 856 auto simplifiedLayoutExpr = 857 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 858 if (expr != simplifiedLayoutExpr) 859 return MemRefType::Builder(t).setAffineMaps({AffineMap::get( 860 m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)}); 861 return MemRefType::Builder(t).setAffineMaps({}); 862 } 863 864 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 865 ArrayRef<AffineExpr> exprs, 866 MLIRContext *context) { 867 assert(!sizes.empty() && !exprs.empty() && 868 "expected non-empty sizes and exprs"); 869 870 // Size 0 corner case is useful for canonicalizations. 871 if (llvm::is_contained(sizes, 0)) 872 return getAffineConstantExpr(0, context); 873 874 auto maps = AffineMap::inferFromExprList(exprs); 875 assert(!maps.empty() && "Expected one non-empty map"); 876 unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols(); 877 878 AffineExpr expr; 879 bool dynamicPoisonBit = false; 880 int64_t runningSize = 1; 881 for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) { 882 int64_t size = std::get<1>(en); 883 // Degenerate case, no size =-> no stride 884 if (size == 0) 885 continue; 886 AffineExpr dimExpr = std::get<0>(en); 887 AffineExpr stride = dynamicPoisonBit 888 ? getAffineSymbolExpr(nSymbols++, context) 889 : getAffineConstantExpr(runningSize, context); 890 expr = expr ? expr + dimExpr * stride : dimExpr * stride; 891 if (size > 0) { 892 runningSize *= size; 893 assert(runningSize > 0 && "integer overflow in size computation"); 894 } else { 895 dynamicPoisonBit = true; 896 } 897 } 898 return simplifyAffineExpr(expr, numDims, nSymbols); 899 } 900 901 /// Return a version of `t` with a layout that has all dynamic offset and 902 /// strides. This is used to erase the static layout. 903 MemRefType mlir::eraseStridedLayout(MemRefType t) { 904 auto val = ShapedType::kDynamicStrideOrOffset; 905 return MemRefType::Builder(t).setAffineMaps(makeStridedLinearLayoutMap( 906 SmallVector<int64_t, 4>(t.getRank(), val), val, t.getContext())); 907 } 908 909 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 910 MLIRContext *context) { 911 SmallVector<AffineExpr, 4> exprs; 912 exprs.reserve(sizes.size()); 913 for (auto dim : llvm::seq<unsigned>(0, sizes.size())) 914 exprs.push_back(getAffineDimExpr(dim, context)); 915 return makeCanonicalStridedLayoutExpr(sizes, exprs, context); 916 } 917 918 /// Return true if the layout for `t` is compatible with strided semantics. 919 bool mlir::isStrided(MemRefType t) { 920 int64_t offset; 921 SmallVector<int64_t, 4> strides; 922 auto res = getStridesAndOffset(t, strides, offset); 923 return succeeded(res); 924 } 925 926 /// Return the layout map in strided linear layout AffineMap form. 927 /// Return null if the layout is not compatible with a strided layout. 928 AffineMap mlir::getStridedLinearLayoutMap(MemRefType t) { 929 int64_t offset; 930 SmallVector<int64_t, 4> strides; 931 if (failed(getStridesAndOffset(t, strides, offset))) 932 return AffineMap(); 933 return makeStridedLinearLayoutMap(strides, offset, t.getContext()); 934 } 935