1 //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/BuiltinTypes.h" 10 #include "TypeDetail.h" 11 #include "mlir/IR/AffineExpr.h" 12 #include "mlir/IR/AffineMap.h" 13 #include "mlir/IR/Diagnostics.h" 14 #include "mlir/IR/Dialect.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Sequence.h" 18 #include "llvm/ADT/Twine.h" 19 20 using namespace mlir; 21 using namespace mlir::detail; 22 23 //===----------------------------------------------------------------------===// 24 /// Tablegen Type Definitions 25 //===----------------------------------------------------------------------===// 26 27 #define GET_TYPEDEF_CLASSES 28 #include "mlir/IR/BuiltinTypes.cpp.inc" 29 30 //===----------------------------------------------------------------------===// 31 /// ComplexType 32 //===----------------------------------------------------------------------===// 33 34 ComplexType ComplexType::get(Type elementType) { 35 return Base::get(elementType.getContext(), elementType); 36 } 37 38 ComplexType ComplexType::getChecked(Location location, Type elementType) { 39 return Base::getChecked(location, elementType); 40 } 41 42 /// Verify the construction of an integer type. 43 LogicalResult ComplexType::verifyConstructionInvariants(Location loc, 44 Type elementType) { 45 if (!elementType.isIntOrFloat()) 46 return emitError(loc, "invalid element type for complex"); 47 return success(); 48 } 49 50 Type ComplexType::getElementType() { return getImpl()->elementType; } 51 52 //===----------------------------------------------------------------------===// 53 // Integer Type 54 //===----------------------------------------------------------------------===// 55 56 // static constexpr must have a definition (until in C++17 and inline variable). 57 constexpr unsigned IntegerType::kMaxWidth; 58 59 /// Verify the construction of an integer type. 60 LogicalResult 61 IntegerType::verifyConstructionInvariants(Location loc, unsigned width, 62 SignednessSemantics signedness) { 63 if (width > IntegerType::kMaxWidth) { 64 return emitError(loc) << "integer bitwidth is limited to " 65 << IntegerType::kMaxWidth << " bits"; 66 } 67 return success(); 68 } 69 70 unsigned IntegerType::getWidth() const { return getImpl()->width; } 71 72 IntegerType::SignednessSemantics IntegerType::getSignedness() const { 73 return getImpl()->signedness; 74 } 75 76 IntegerType IntegerType::scaleElementBitwidth(unsigned scale) { 77 if (!scale) 78 return IntegerType(); 79 return IntegerType::get(getContext(), scale * getWidth(), getSignedness()); 80 } 81 82 //===----------------------------------------------------------------------===// 83 // Float Type 84 //===----------------------------------------------------------------------===// 85 86 unsigned FloatType::getWidth() { 87 if (isa<Float16Type, BFloat16Type>()) 88 return 16; 89 if (isa<Float32Type>()) 90 return 32; 91 if (isa<Float64Type>()) 92 return 64; 93 llvm_unreachable("unexpected float type"); 94 } 95 96 /// Returns the floating semantics for the given type. 97 const llvm::fltSemantics &FloatType::getFloatSemantics() { 98 if (isa<BFloat16Type>()) 99 return APFloat::BFloat(); 100 if (isa<Float16Type>()) 101 return APFloat::IEEEhalf(); 102 if (isa<Float32Type>()) 103 return APFloat::IEEEsingle(); 104 if (isa<Float64Type>()) 105 return APFloat::IEEEdouble(); 106 llvm_unreachable("non-floating point type used"); 107 } 108 109 FloatType FloatType::scaleElementBitwidth(unsigned scale) { 110 if (!scale) 111 return FloatType(); 112 MLIRContext *ctx = getContext(); 113 if (isF16() || isBF16()) { 114 if (scale == 2) 115 return FloatType::getF32(ctx); 116 if (scale == 4) 117 return FloatType::getF64(ctx); 118 } 119 if (isF32()) 120 if (scale == 2) 121 return FloatType::getF64(ctx); 122 return FloatType(); 123 } 124 125 //===----------------------------------------------------------------------===// 126 // FunctionType 127 //===----------------------------------------------------------------------===// 128 129 FunctionType FunctionType::get(MLIRContext *context, TypeRange inputs, 130 TypeRange results) { 131 return Base::get(context, inputs, results); 132 } 133 134 unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; } 135 136 ArrayRef<Type> FunctionType::getInputs() const { 137 return getImpl()->getInputs(); 138 } 139 140 unsigned FunctionType::getNumResults() const { return getImpl()->numResults; } 141 142 ArrayRef<Type> FunctionType::getResults() const { 143 return getImpl()->getResults(); 144 } 145 146 /// Helper to call a callback once on each index in the range 147 /// [0, `totalIndices`), *except* for the indices given in `indices`. 148 /// `indices` is allowed to have duplicates and can be in any order. 149 inline void iterateIndicesExcept(unsigned totalIndices, 150 ArrayRef<unsigned> indices, 151 function_ref<void(unsigned)> callback) { 152 llvm::BitVector skipIndices(totalIndices); 153 for (unsigned i : indices) 154 skipIndices.set(i); 155 156 for (unsigned i = 0; i < totalIndices; ++i) 157 if (!skipIndices.test(i)) 158 callback(i); 159 } 160 161 /// Returns a new function type without the specified arguments and results. 162 FunctionType 163 FunctionType::getWithoutArgsAndResults(ArrayRef<unsigned> argIndices, 164 ArrayRef<unsigned> resultIndices) { 165 ArrayRef<Type> newInputTypes = getInputs(); 166 SmallVector<Type, 4> newInputTypesBuffer; 167 if (!argIndices.empty()) { 168 unsigned originalNumArgs = getNumInputs(); 169 iterateIndicesExcept(originalNumArgs, argIndices, [&](unsigned i) { 170 newInputTypesBuffer.emplace_back(getInput(i)); 171 }); 172 newInputTypes = newInputTypesBuffer; 173 } 174 175 ArrayRef<Type> newResultTypes = getResults(); 176 SmallVector<Type, 4> newResultTypesBuffer; 177 if (!resultIndices.empty()) { 178 unsigned originalNumResults = getNumResults(); 179 iterateIndicesExcept(originalNumResults, resultIndices, [&](unsigned i) { 180 newResultTypesBuffer.emplace_back(getResult(i)); 181 }); 182 newResultTypes = newResultTypesBuffer; 183 } 184 185 return get(getContext(), newInputTypes, newResultTypes); 186 } 187 188 //===----------------------------------------------------------------------===// 189 // OpaqueType 190 //===----------------------------------------------------------------------===// 191 192 OpaqueType OpaqueType::get(MLIRContext *context, Identifier dialect, 193 StringRef typeData) { 194 return Base::get(context, dialect, typeData); 195 } 196 197 OpaqueType OpaqueType::getChecked(Location location, Identifier dialect, 198 StringRef typeData) { 199 return Base::getChecked(location, dialect, typeData); 200 } 201 202 /// Returns the dialect namespace of the opaque type. 203 Identifier OpaqueType::getDialectNamespace() const { 204 return getImpl()->dialectNamespace; 205 } 206 207 /// Returns the raw type data of the opaque type. 208 StringRef OpaqueType::getTypeData() const { return getImpl()->typeData; } 209 210 /// Verify the construction of an opaque type. 211 LogicalResult OpaqueType::verifyConstructionInvariants(Location loc, 212 Identifier dialect, 213 StringRef typeData) { 214 if (!Dialect::isValidNamespace(dialect.strref())) 215 return emitError(loc, "invalid dialect namespace '") << dialect << "'"; 216 return success(); 217 } 218 219 //===----------------------------------------------------------------------===// 220 // ShapedType 221 //===----------------------------------------------------------------------===// 222 constexpr int64_t ShapedType::kDynamicSize; 223 constexpr int64_t ShapedType::kDynamicStrideOrOffset; 224 225 Type ShapedType::getElementType() const { 226 return static_cast<ImplType *>(impl)->elementType; 227 } 228 229 unsigned ShapedType::getElementTypeBitWidth() const { 230 return getElementType().getIntOrFloatBitWidth(); 231 } 232 233 int64_t ShapedType::getNumElements() const { 234 assert(hasStaticShape() && "cannot get element count of dynamic shaped type"); 235 auto shape = getShape(); 236 int64_t num = 1; 237 for (auto dim : shape) 238 num *= dim; 239 return num; 240 } 241 242 int64_t ShapedType::getRank() const { return getShape().size(); } 243 244 bool ShapedType::hasRank() const { 245 return !isa<UnrankedMemRefType, UnrankedTensorType>(); 246 } 247 248 int64_t ShapedType::getDimSize(unsigned idx) const { 249 assert(idx < getRank() && "invalid index for shaped type"); 250 return getShape()[idx]; 251 } 252 253 bool ShapedType::isDynamicDim(unsigned idx) const { 254 assert(idx < getRank() && "invalid index for shaped type"); 255 return isDynamic(getShape()[idx]); 256 } 257 258 unsigned ShapedType::getDynamicDimIndex(unsigned index) const { 259 assert(index < getRank() && "invalid index"); 260 assert(ShapedType::isDynamic(getDimSize(index)) && "invalid index"); 261 return llvm::count_if(getShape().take_front(index), ShapedType::isDynamic); 262 } 263 264 /// Get the number of bits require to store a value of the given shaped type. 265 /// Compute the value recursively since tensors are allowed to have vectors as 266 /// elements. 267 int64_t ShapedType::getSizeInBits() const { 268 assert(hasStaticShape() && 269 "cannot get the bit size of an aggregate with a dynamic shape"); 270 271 auto elementType = getElementType(); 272 if (elementType.isIntOrFloat()) 273 return elementType.getIntOrFloatBitWidth() * getNumElements(); 274 275 if (auto complexType = elementType.dyn_cast<ComplexType>()) { 276 elementType = complexType.getElementType(); 277 return elementType.getIntOrFloatBitWidth() * getNumElements() * 2; 278 } 279 280 // Tensors can have vectors and other tensors as elements, other shaped types 281 // cannot. 282 assert(isa<TensorType>() && "unsupported element type"); 283 assert((elementType.isa<VectorType, TensorType>()) && 284 "unsupported tensor element type"); 285 return getNumElements() * elementType.cast<ShapedType>().getSizeInBits(); 286 } 287 288 ArrayRef<int64_t> ShapedType::getShape() const { 289 if (auto vectorType = dyn_cast<VectorType>()) 290 return vectorType.getShape(); 291 if (auto tensorType = dyn_cast<RankedTensorType>()) 292 return tensorType.getShape(); 293 return cast<MemRefType>().getShape(); 294 } 295 296 int64_t ShapedType::getNumDynamicDims() const { 297 return llvm::count_if(getShape(), isDynamic); 298 } 299 300 bool ShapedType::hasStaticShape() const { 301 return hasRank() && llvm::none_of(getShape(), isDynamic); 302 } 303 304 bool ShapedType::hasStaticShape(ArrayRef<int64_t> shape) const { 305 return hasStaticShape() && getShape() == shape; 306 } 307 308 //===----------------------------------------------------------------------===// 309 // VectorType 310 //===----------------------------------------------------------------------===// 311 312 VectorType VectorType::get(ArrayRef<int64_t> shape, Type elementType) { 313 return Base::get(elementType.getContext(), shape, elementType); 314 } 315 316 VectorType VectorType::getChecked(Location location, ArrayRef<int64_t> shape, 317 Type elementType) { 318 return Base::getChecked(location, shape, elementType); 319 } 320 321 LogicalResult VectorType::verifyConstructionInvariants(Location loc, 322 ArrayRef<int64_t> shape, 323 Type elementType) { 324 if (shape.empty()) 325 return emitError(loc, "vector types must have at least one dimension"); 326 327 if (!isValidElementType(elementType)) 328 return emitError(loc, "vector elements must be int or float type"); 329 330 if (any_of(shape, [](int64_t i) { return i <= 0; })) 331 return emitError(loc, "vector types must have positive constant sizes"); 332 333 return success(); 334 } 335 336 ArrayRef<int64_t> VectorType::getShape() const { return getImpl()->getShape(); } 337 338 VectorType VectorType::scaleElementBitwidth(unsigned scale) { 339 if (!scale) 340 return VectorType(); 341 if (auto et = getElementType().dyn_cast<IntegerType>()) 342 if (auto scaledEt = et.scaleElementBitwidth(scale)) 343 return VectorType::get(getShape(), scaledEt); 344 if (auto et = getElementType().dyn_cast<FloatType>()) 345 if (auto scaledEt = et.scaleElementBitwidth(scale)) 346 return VectorType::get(getShape(), scaledEt); 347 return VectorType(); 348 } 349 350 //===----------------------------------------------------------------------===// 351 // TensorType 352 //===----------------------------------------------------------------------===// 353 354 // Check if "elementType" can be an element type of a tensor. Emit errors if 355 // location is not nullptr. Returns failure if check failed. 356 static LogicalResult checkTensorElementType(Location location, 357 Type elementType) { 358 if (!TensorType::isValidElementType(elementType)) 359 return emitError(location, "invalid tensor element type: ") << elementType; 360 return success(); 361 } 362 363 /// Return true if the specified element type is ok in a tensor. 364 bool TensorType::isValidElementType(Type type) { 365 // Note: Non standard/builtin types are allowed to exist within tensor 366 // types. Dialects are expected to verify that tensor types have a valid 367 // element type within that dialect. 368 return type.isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType, 369 IndexType>() || 370 !type.getDialect().getNamespace().empty(); 371 } 372 373 //===----------------------------------------------------------------------===// 374 // RankedTensorType 375 //===----------------------------------------------------------------------===// 376 377 RankedTensorType RankedTensorType::get(ArrayRef<int64_t> shape, 378 Type elementType) { 379 return Base::get(elementType.getContext(), shape, elementType); 380 } 381 382 RankedTensorType RankedTensorType::getChecked(Location location, 383 ArrayRef<int64_t> shape, 384 Type elementType) { 385 return Base::getChecked(location, shape, elementType); 386 } 387 388 LogicalResult RankedTensorType::verifyConstructionInvariants( 389 Location loc, ArrayRef<int64_t> shape, Type elementType) { 390 for (int64_t s : shape) { 391 if (s < -1) 392 return emitError(loc, "invalid tensor dimension size"); 393 } 394 return checkTensorElementType(loc, elementType); 395 } 396 397 ArrayRef<int64_t> RankedTensorType::getShape() const { 398 return getImpl()->getShape(); 399 } 400 401 //===----------------------------------------------------------------------===// 402 // UnrankedTensorType 403 //===----------------------------------------------------------------------===// 404 405 UnrankedTensorType UnrankedTensorType::get(Type elementType) { 406 return Base::get(elementType.getContext(), elementType); 407 } 408 409 UnrankedTensorType UnrankedTensorType::getChecked(Location location, 410 Type elementType) { 411 return Base::getChecked(location, elementType); 412 } 413 414 LogicalResult 415 UnrankedTensorType::verifyConstructionInvariants(Location loc, 416 Type elementType) { 417 return checkTensorElementType(loc, elementType); 418 } 419 420 //===----------------------------------------------------------------------===// 421 // BaseMemRefType 422 //===----------------------------------------------------------------------===// 423 424 unsigned BaseMemRefType::getMemorySpace() const { 425 return static_cast<ImplType *>(impl)->memorySpace; 426 } 427 428 //===----------------------------------------------------------------------===// 429 // MemRefType 430 //===----------------------------------------------------------------------===// 431 432 /// Get or create a new MemRefType based on shape, element type, affine 433 /// map composition, and memory space. Assumes the arguments define a 434 /// well-formed MemRef type. Use getChecked to gracefully handle MemRefType 435 /// construction failures. 436 MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType, 437 ArrayRef<AffineMap> affineMapComposition, 438 unsigned memorySpace) { 439 auto result = getImpl(shape, elementType, affineMapComposition, memorySpace, 440 /*location=*/llvm::None); 441 assert(result && "Failed to construct instance of MemRefType."); 442 return result; 443 } 444 445 /// Get or create a new MemRefType based on shape, element type, affine 446 /// map composition, and memory space declared at the given location. 447 /// If the location is unknown, the last argument should be an instance of 448 /// UnknownLoc. If the MemRefType defined by the arguments would be 449 /// ill-formed, emits errors (to the handler registered with the context or to 450 /// the error stream) and returns nullptr. 451 MemRefType MemRefType::getChecked(Location location, ArrayRef<int64_t> shape, 452 Type elementType, 453 ArrayRef<AffineMap> affineMapComposition, 454 unsigned memorySpace) { 455 return getImpl(shape, elementType, affineMapComposition, memorySpace, 456 location); 457 } 458 459 /// Get or create a new MemRefType defined by the arguments. If the resulting 460 /// type would be ill-formed, return nullptr. If the location is provided, 461 /// emit detailed error messages. To emit errors when the location is unknown, 462 /// pass in an instance of UnknownLoc. 463 MemRefType MemRefType::getImpl(ArrayRef<int64_t> shape, Type elementType, 464 ArrayRef<AffineMap> affineMapComposition, 465 unsigned memorySpace, 466 Optional<Location> location) { 467 auto *context = elementType.getContext(); 468 469 if (!BaseMemRefType::isValidElementType(elementType)) 470 return emitOptionalError(location, "invalid memref element type"), 471 MemRefType(); 472 473 for (int64_t s : shape) { 474 // Negative sizes are not allowed except for `-1` that means dynamic size. 475 if (s < -1) 476 return emitOptionalError(location, "invalid memref size"), MemRefType(); 477 } 478 479 // Check that the structure of the composition is valid, i.e. that each 480 // subsequent affine map has as many inputs as the previous map has results. 481 // Take the dimensionality of the MemRef for the first map. 482 auto dim = shape.size(); 483 unsigned i = 0; 484 for (const auto &affineMap : affineMapComposition) { 485 if (affineMap.getNumDims() != dim) { 486 if (location) 487 emitError(*location) 488 << "memref affine map dimension mismatch between " 489 << (i == 0 ? Twine("memref rank") : "affine map " + Twine(i)) 490 << " and affine map" << i + 1 << ": " << dim 491 << " != " << affineMap.getNumDims(); 492 return nullptr; 493 } 494 495 dim = affineMap.getNumResults(); 496 ++i; 497 } 498 499 // Drop identity maps from the composition. 500 // This may lead to the composition becoming empty, which is interpreted as an 501 // implicit identity. 502 SmallVector<AffineMap, 2> cleanedAffineMapComposition; 503 for (const auto &map : affineMapComposition) { 504 if (map.isIdentity()) 505 continue; 506 cleanedAffineMapComposition.push_back(map); 507 } 508 509 return Base::get(context, shape, elementType, cleanedAffineMapComposition, 510 memorySpace); 511 } 512 513 ArrayRef<int64_t> MemRefType::getShape() const { return getImpl()->getShape(); } 514 515 ArrayRef<AffineMap> MemRefType::getAffineMaps() const { 516 return getImpl()->getAffineMaps(); 517 } 518 519 //===----------------------------------------------------------------------===// 520 // UnrankedMemRefType 521 //===----------------------------------------------------------------------===// 522 523 UnrankedMemRefType UnrankedMemRefType::get(Type elementType, 524 unsigned memorySpace) { 525 return Base::get(elementType.getContext(), elementType, memorySpace); 526 } 527 528 UnrankedMemRefType UnrankedMemRefType::getChecked(Location location, 529 Type elementType, 530 unsigned memorySpace) { 531 return Base::getChecked(location, elementType, memorySpace); 532 } 533 534 LogicalResult 535 UnrankedMemRefType::verifyConstructionInvariants(Location loc, Type elementType, 536 unsigned memorySpace) { 537 if (!BaseMemRefType::isValidElementType(elementType)) 538 return emitError(loc, "invalid memref element type"); 539 return success(); 540 } 541 542 // Fallback cases for terminal dim/sym/cst that are not part of a binary op ( 543 // i.e. single term). Accumulate the AffineExpr into the existing one. 544 static void extractStridesFromTerm(AffineExpr e, 545 AffineExpr multiplicativeFactor, 546 MutableArrayRef<AffineExpr> strides, 547 AffineExpr &offset) { 548 if (auto dim = e.dyn_cast<AffineDimExpr>()) 549 strides[dim.getPosition()] = 550 strides[dim.getPosition()] + multiplicativeFactor; 551 else 552 offset = offset + e * multiplicativeFactor; 553 } 554 555 /// Takes a single AffineExpr `e` and populates the `strides` array with the 556 /// strides expressions for each dim position. 557 /// The convention is that the strides for dimensions d0, .. dn appear in 558 /// order to make indexing intuitive into the result. 559 static LogicalResult extractStrides(AffineExpr e, 560 AffineExpr multiplicativeFactor, 561 MutableArrayRef<AffineExpr> strides, 562 AffineExpr &offset) { 563 auto bin = e.dyn_cast<AffineBinaryOpExpr>(); 564 if (!bin) { 565 extractStridesFromTerm(e, multiplicativeFactor, strides, offset); 566 return success(); 567 } 568 569 if (bin.getKind() == AffineExprKind::CeilDiv || 570 bin.getKind() == AffineExprKind::FloorDiv || 571 bin.getKind() == AffineExprKind::Mod) 572 return failure(); 573 574 if (bin.getKind() == AffineExprKind::Mul) { 575 auto dim = bin.getLHS().dyn_cast<AffineDimExpr>(); 576 if (dim) { 577 strides[dim.getPosition()] = 578 strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor; 579 return success(); 580 } 581 // LHS and RHS may both contain complex expressions of dims. Try one path 582 // and if it fails try the other. This is guaranteed to succeed because 583 // only one path may have a `dim`, otherwise this is not an AffineExpr in 584 // the first place. 585 if (bin.getLHS().isSymbolicOrConstant()) 586 return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(), 587 strides, offset); 588 return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(), 589 strides, offset); 590 } 591 592 if (bin.getKind() == AffineExprKind::Add) { 593 auto res1 = 594 extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset); 595 auto res2 = 596 extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset); 597 return success(succeeded(res1) && succeeded(res2)); 598 } 599 600 llvm_unreachable("unexpected binary operation"); 601 } 602 603 LogicalResult mlir::getStridesAndOffset(MemRefType t, 604 SmallVectorImpl<AffineExpr> &strides, 605 AffineExpr &offset) { 606 auto affineMaps = t.getAffineMaps(); 607 // For now strides are only computed on a single affine map with a single 608 // result (i.e. the closed subset of linearization maps that are compatible 609 // with striding semantics). 610 // TODO: support more forms on a per-need basis. 611 if (affineMaps.size() > 1) 612 return failure(); 613 if (affineMaps.size() == 1 && affineMaps[0].getNumResults() != 1) 614 return failure(); 615 616 auto zero = getAffineConstantExpr(0, t.getContext()); 617 auto one = getAffineConstantExpr(1, t.getContext()); 618 offset = zero; 619 strides.assign(t.getRank(), zero); 620 621 AffineMap m; 622 if (!affineMaps.empty()) { 623 m = affineMaps.front(); 624 assert(!m.isIdentity() && "unexpected identity map"); 625 } 626 627 // Canonical case for empty map. 628 if (!m) { 629 // 0-D corner case, offset is already 0. 630 if (t.getRank() == 0) 631 return success(); 632 auto stridedExpr = 633 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 634 if (succeeded(extractStrides(stridedExpr, one, strides, offset))) 635 return success(); 636 assert(false && "unexpected failure: extract strides in canonical layout"); 637 } 638 639 // Non-canonical case requires more work. 640 auto stridedExpr = 641 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 642 if (failed(extractStrides(stridedExpr, one, strides, offset))) { 643 offset = AffineExpr(); 644 strides.clear(); 645 return failure(); 646 } 647 648 // Simplify results to allow folding to constants and simple checks. 649 unsigned numDims = m.getNumDims(); 650 unsigned numSymbols = m.getNumSymbols(); 651 offset = simplifyAffineExpr(offset, numDims, numSymbols); 652 for (auto &stride : strides) 653 stride = simplifyAffineExpr(stride, numDims, numSymbols); 654 655 /// In practice, a strided memref must be internally non-aliasing. Test 656 /// against 0 as a proxy. 657 /// TODO: static cases can have more advanced checks. 658 /// TODO: dynamic cases would require a way to compare symbolic 659 /// expressions and would probably need an affine set context propagated 660 /// everywhere. 661 if (llvm::any_of(strides, [](AffineExpr e) { 662 return e == getAffineConstantExpr(0, e.getContext()); 663 })) { 664 offset = AffineExpr(); 665 strides.clear(); 666 return failure(); 667 } 668 669 return success(); 670 } 671 672 LogicalResult mlir::getStridesAndOffset(MemRefType t, 673 SmallVectorImpl<int64_t> &strides, 674 int64_t &offset) { 675 AffineExpr offsetExpr; 676 SmallVector<AffineExpr, 4> strideExprs; 677 if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr))) 678 return failure(); 679 if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>()) 680 offset = cst.getValue(); 681 else 682 offset = ShapedType::kDynamicStrideOrOffset; 683 for (auto e : strideExprs) { 684 if (auto c = e.dyn_cast<AffineConstantExpr>()) 685 strides.push_back(c.getValue()); 686 else 687 strides.push_back(ShapedType::kDynamicStrideOrOffset); 688 } 689 return success(); 690 } 691 692 //===----------------------------------------------------------------------===// 693 /// TupleType 694 //===----------------------------------------------------------------------===// 695 696 /// Get or create a new TupleType with the provided element types. Assumes the 697 /// arguments define a well-formed type. 698 TupleType TupleType::get(MLIRContext *context, TypeRange elementTypes) { 699 return Base::get(context, elementTypes); 700 } 701 702 /// Get or create an empty tuple type. 703 TupleType TupleType::get(MLIRContext *context) { return get(context, {}); } 704 705 /// Return the elements types for this tuple. 706 ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); } 707 708 /// Accumulate the types contained in this tuple and tuples nested within it. 709 /// Note that this only flattens nested tuples, not any other container type, 710 /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to 711 /// (i32, tensor<i32>, f32, i64) 712 void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) { 713 for (Type type : getTypes()) { 714 if (auto nestedTuple = type.dyn_cast<TupleType>()) 715 nestedTuple.getFlattenedTypes(types); 716 else 717 types.push_back(type); 718 } 719 } 720 721 /// Return the number of element types. 722 size_t TupleType::size() const { return getImpl()->size(); } 723 724 AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides, 725 int64_t offset, 726 MLIRContext *context) { 727 AffineExpr expr; 728 unsigned nSymbols = 0; 729 730 // AffineExpr for offset. 731 // Static case. 732 if (offset != MemRefType::getDynamicStrideOrOffset()) { 733 auto cst = getAffineConstantExpr(offset, context); 734 expr = cst; 735 } else { 736 // Dynamic case, new symbol for the offset. 737 auto sym = getAffineSymbolExpr(nSymbols++, context); 738 expr = sym; 739 } 740 741 // AffineExpr for strides. 742 for (auto en : llvm::enumerate(strides)) { 743 auto dim = en.index(); 744 auto stride = en.value(); 745 assert(stride != 0 && "Invalid stride specification"); 746 auto d = getAffineDimExpr(dim, context); 747 AffineExpr mult; 748 // Static case. 749 if (stride != MemRefType::getDynamicStrideOrOffset()) 750 mult = getAffineConstantExpr(stride, context); 751 else 752 // Dynamic case, new symbol for each new stride. 753 mult = getAffineSymbolExpr(nSymbols++, context); 754 expr = expr + d * mult; 755 } 756 757 return AffineMap::get(strides.size(), nSymbols, expr); 758 } 759 760 /// Return a version of `t` with identity layout if it can be determined 761 /// statically that the layout is the canonical contiguous strided layout. 762 /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of 763 /// `t` with simplified layout. 764 /// If `t` has multiple layout maps or a multi-result layout, just return `t`. 765 MemRefType mlir::canonicalizeStridedLayout(MemRefType t) { 766 auto affineMaps = t.getAffineMaps(); 767 // Already in canonical form. 768 if (affineMaps.empty()) 769 return t; 770 771 // Can't reduce to canonical identity form, return in canonical form. 772 if (affineMaps.size() > 1 || affineMaps[0].getNumResults() > 1) 773 return t; 774 775 // If the canonical strided layout for the sizes of `t` is equal to the 776 // simplified layout of `t` we can just return an empty layout. Otherwise, 777 // just simplify the existing layout. 778 AffineExpr expr = 779 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 780 auto m = affineMaps[0]; 781 auto simplifiedLayoutExpr = 782 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 783 if (expr != simplifiedLayoutExpr) 784 return MemRefType::Builder(t).setAffineMaps({AffineMap::get( 785 m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)}); 786 return MemRefType::Builder(t).setAffineMaps({}); 787 } 788 789 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 790 ArrayRef<AffineExpr> exprs, 791 MLIRContext *context) { 792 // Size 0 corner case is useful for canonicalizations. 793 if (llvm::is_contained(sizes, 0)) 794 return getAffineConstantExpr(0, context); 795 796 auto maps = AffineMap::inferFromExprList(exprs); 797 assert(!maps.empty() && "Expected one non-empty map"); 798 unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols(); 799 800 AffineExpr expr; 801 bool dynamicPoisonBit = false; 802 int64_t runningSize = 1; 803 for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) { 804 int64_t size = std::get<1>(en); 805 // Degenerate case, no size =-> no stride 806 if (size == 0) 807 continue; 808 AffineExpr dimExpr = std::get<0>(en); 809 AffineExpr stride = dynamicPoisonBit 810 ? getAffineSymbolExpr(nSymbols++, context) 811 : getAffineConstantExpr(runningSize, context); 812 expr = expr ? expr + dimExpr * stride : dimExpr * stride; 813 if (size > 0) 814 runningSize *= size; 815 else 816 dynamicPoisonBit = true; 817 } 818 return simplifyAffineExpr(expr, numDims, nSymbols); 819 } 820 821 /// Return a version of `t` with a layout that has all dynamic offset and 822 /// strides. This is used to erase the static layout. 823 MemRefType mlir::eraseStridedLayout(MemRefType t) { 824 auto val = ShapedType::kDynamicStrideOrOffset; 825 return MemRefType::Builder(t).setAffineMaps(makeStridedLinearLayoutMap( 826 SmallVector<int64_t, 4>(t.getRank(), val), val, t.getContext())); 827 } 828 829 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 830 MLIRContext *context) { 831 SmallVector<AffineExpr, 4> exprs; 832 exprs.reserve(sizes.size()); 833 for (auto dim : llvm::seq<unsigned>(0, sizes.size())) 834 exprs.push_back(getAffineDimExpr(dim, context)); 835 return makeCanonicalStridedLayoutExpr(sizes, exprs, context); 836 } 837 838 /// Return true if the layout for `t` is compatible with strided semantics. 839 bool mlir::isStrided(MemRefType t) { 840 int64_t offset; 841 SmallVector<int64_t, 4> stridesAndOffset; 842 auto res = getStridesAndOffset(t, stridesAndOffset, offset); 843 return succeeded(res); 844 } 845