1 //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/BuiltinTypes.h" 10 #include "TypeDetail.h" 11 #include "mlir/IR/AffineExpr.h" 12 #include "mlir/IR/AffineMap.h" 13 #include "mlir/IR/BuiltinAttributes.h" 14 #include "mlir/IR/BuiltinDialect.h" 15 #include "mlir/IR/Diagnostics.h" 16 #include "mlir/IR/Dialect.h" 17 #include "mlir/IR/TensorEncoding.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/TypeSwitch.h" 23 24 using namespace mlir; 25 using namespace mlir::detail; 26 27 //===----------------------------------------------------------------------===// 28 /// Tablegen Type Definitions 29 //===----------------------------------------------------------------------===// 30 31 #define GET_TYPEDEF_CLASSES 32 #include "mlir/IR/BuiltinTypes.cpp.inc" 33 34 //===----------------------------------------------------------------------===// 35 /// Tablegen Interface Definitions 36 //===----------------------------------------------------------------------===// 37 38 #include "mlir/IR/BuiltinTypeInterfaces.cpp.inc" 39 40 //===----------------------------------------------------------------------===// 41 // BuiltinDialect 42 //===----------------------------------------------------------------------===// 43 44 void BuiltinDialect::registerTypes() { 45 addTypes< 46 #define GET_TYPEDEF_LIST 47 #include "mlir/IR/BuiltinTypes.cpp.inc" 48 >(); 49 } 50 51 //===----------------------------------------------------------------------===// 52 /// ComplexType 53 //===----------------------------------------------------------------------===// 54 55 /// Verify the construction of an integer type. 56 LogicalResult ComplexType::verify(function_ref<InFlightDiagnostic()> emitError, 57 Type elementType) { 58 if (!elementType.isIntOrFloat()) 59 return emitError() << "invalid element type for complex"; 60 return success(); 61 } 62 63 //===----------------------------------------------------------------------===// 64 // Integer Type 65 //===----------------------------------------------------------------------===// 66 67 // static constexpr must have a definition (until in C++17 and inline variable). 68 constexpr unsigned IntegerType::kMaxWidth; 69 70 /// Verify the construction of an integer type. 71 LogicalResult IntegerType::verify(function_ref<InFlightDiagnostic()> emitError, 72 unsigned width, 73 SignednessSemantics signedness) { 74 if (width > IntegerType::kMaxWidth) { 75 return emitError() << "integer bitwidth is limited to " 76 << IntegerType::kMaxWidth << " bits"; 77 } 78 return success(); 79 } 80 81 unsigned IntegerType::getWidth() const { return getImpl()->width; } 82 83 IntegerType::SignednessSemantics IntegerType::getSignedness() const { 84 return getImpl()->signedness; 85 } 86 87 IntegerType IntegerType::scaleElementBitwidth(unsigned scale) { 88 if (!scale) 89 return IntegerType(); 90 return IntegerType::get(getContext(), scale * getWidth(), getSignedness()); 91 } 92 93 //===----------------------------------------------------------------------===// 94 // Float Type 95 //===----------------------------------------------------------------------===// 96 97 unsigned FloatType::getWidth() { 98 if (isa<Float16Type, BFloat16Type>()) 99 return 16; 100 if (isa<Float32Type>()) 101 return 32; 102 if (isa<Float64Type>()) 103 return 64; 104 if (isa<Float80Type>()) 105 return 80; 106 if (isa<Float128Type>()) 107 return 128; 108 llvm_unreachable("unexpected float type"); 109 } 110 111 /// Returns the floating semantics for the given type. 112 const llvm::fltSemantics &FloatType::getFloatSemantics() { 113 if (isa<BFloat16Type>()) 114 return APFloat::BFloat(); 115 if (isa<Float16Type>()) 116 return APFloat::IEEEhalf(); 117 if (isa<Float32Type>()) 118 return APFloat::IEEEsingle(); 119 if (isa<Float64Type>()) 120 return APFloat::IEEEdouble(); 121 if (isa<Float80Type>()) 122 return APFloat::x87DoubleExtended(); 123 if (isa<Float128Type>()) 124 return APFloat::IEEEquad(); 125 llvm_unreachable("non-floating point type used"); 126 } 127 128 FloatType FloatType::scaleElementBitwidth(unsigned scale) { 129 if (!scale) 130 return FloatType(); 131 MLIRContext *ctx = getContext(); 132 if (isF16() || isBF16()) { 133 if (scale == 2) 134 return FloatType::getF32(ctx); 135 if (scale == 4) 136 return FloatType::getF64(ctx); 137 } 138 if (isF32()) 139 if (scale == 2) 140 return FloatType::getF64(ctx); 141 return FloatType(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // FunctionType 146 //===----------------------------------------------------------------------===// 147 148 unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; } 149 150 ArrayRef<Type> FunctionType::getInputs() const { 151 return getImpl()->getInputs(); 152 } 153 154 unsigned FunctionType::getNumResults() const { return getImpl()->numResults; } 155 156 ArrayRef<Type> FunctionType::getResults() const { 157 return getImpl()->getResults(); 158 } 159 160 /// Helper to call a callback once on each index in the range 161 /// [0, `totalIndices`), *except* for the indices given in `indices`. 162 /// `indices` is allowed to have duplicates and can be in any order. 163 inline void iterateIndicesExcept(unsigned totalIndices, 164 ArrayRef<unsigned> indices, 165 function_ref<void(unsigned)> callback) { 166 llvm::BitVector skipIndices(totalIndices); 167 for (unsigned i : indices) 168 skipIndices.set(i); 169 170 for (unsigned i = 0; i < totalIndices; ++i) 171 if (!skipIndices.test(i)) 172 callback(i); 173 } 174 175 /// Returns a new function type without the specified arguments and results. 176 FunctionType 177 FunctionType::getWithoutArgsAndResults(ArrayRef<unsigned> argIndices, 178 ArrayRef<unsigned> resultIndices) { 179 ArrayRef<Type> newInputTypes = getInputs(); 180 SmallVector<Type, 4> newInputTypesBuffer; 181 if (!argIndices.empty()) { 182 unsigned originalNumArgs = getNumInputs(); 183 iterateIndicesExcept(originalNumArgs, argIndices, [&](unsigned i) { 184 newInputTypesBuffer.emplace_back(getInput(i)); 185 }); 186 newInputTypes = newInputTypesBuffer; 187 } 188 189 ArrayRef<Type> newResultTypes = getResults(); 190 SmallVector<Type, 4> newResultTypesBuffer; 191 if (!resultIndices.empty()) { 192 unsigned originalNumResults = getNumResults(); 193 iterateIndicesExcept(originalNumResults, resultIndices, [&](unsigned i) { 194 newResultTypesBuffer.emplace_back(getResult(i)); 195 }); 196 newResultTypes = newResultTypesBuffer; 197 } 198 199 return get(getContext(), newInputTypes, newResultTypes); 200 } 201 202 //===----------------------------------------------------------------------===// 203 // OpaqueType 204 //===----------------------------------------------------------------------===// 205 206 /// Verify the construction of an opaque type. 207 LogicalResult OpaqueType::verify(function_ref<InFlightDiagnostic()> emitError, 208 Identifier dialect, StringRef typeData) { 209 if (!Dialect::isValidNamespace(dialect.strref())) 210 return emitError() << "invalid dialect namespace '" << dialect << "'"; 211 212 // Check that the dialect is actually registered. 213 MLIRContext *context = dialect.getContext(); 214 if (!context->allowsUnregisteredDialects() && 215 !context->getLoadedDialect(dialect.strref())) { 216 return emitError() 217 << "`!" << dialect << "<\"" << typeData << "\">" 218 << "` type created with unregistered dialect. If this is " 219 "intended, please call allowUnregisteredDialects() on the " 220 "MLIRContext, or use -allow-unregistered-dialect with " 221 "mlir-opt"; 222 } 223 224 return success(); 225 } 226 227 //===----------------------------------------------------------------------===// 228 // ShapedType 229 //===----------------------------------------------------------------------===// 230 constexpr int64_t ShapedType::kDynamicSize; 231 constexpr int64_t ShapedType::kDynamicStrideOrOffset; 232 233 ShapedType ShapedType::clone(ArrayRef<int64_t> shape, Type elementType) { 234 if (auto other = dyn_cast<MemRefType>()) { 235 MemRefType::Builder b(other); 236 b.setShape(shape); 237 b.setElementType(elementType); 238 return b; 239 } 240 241 if (auto other = dyn_cast<UnrankedMemRefType>()) { 242 MemRefType::Builder b(shape, elementType); 243 b.setMemorySpace(other.getMemorySpace()); 244 return b; 245 } 246 247 if (isa<TensorType>()) 248 return RankedTensorType::get(shape, elementType); 249 250 if (isa<VectorType>()) 251 return VectorType::get(shape, elementType); 252 253 llvm_unreachable("Unhandled ShapedType clone case"); 254 } 255 256 ShapedType ShapedType::clone(ArrayRef<int64_t> shape) { 257 if (auto other = dyn_cast<MemRefType>()) { 258 MemRefType::Builder b(other); 259 b.setShape(shape); 260 return b; 261 } 262 263 if (auto other = dyn_cast<UnrankedMemRefType>()) { 264 MemRefType::Builder b(shape, other.getElementType()); 265 b.setShape(shape); 266 b.setMemorySpace(other.getMemorySpace()); 267 return b; 268 } 269 270 if (isa<TensorType>()) 271 return RankedTensorType::get(shape, getElementType()); 272 273 if (isa<VectorType>()) 274 return VectorType::get(shape, getElementType()); 275 276 llvm_unreachable("Unhandled ShapedType clone case"); 277 } 278 279 ShapedType ShapedType::clone(Type elementType) { 280 if (auto other = dyn_cast<MemRefType>()) { 281 MemRefType::Builder b(other); 282 b.setElementType(elementType); 283 return b; 284 } 285 286 if (auto other = dyn_cast<UnrankedMemRefType>()) { 287 return UnrankedMemRefType::get(elementType, other.getMemorySpace()); 288 } 289 290 if (isa<TensorType>()) { 291 if (hasRank()) 292 return RankedTensorType::get(getShape(), elementType); 293 return UnrankedTensorType::get(elementType); 294 } 295 296 if (isa<VectorType>()) 297 return VectorType::get(getShape(), elementType); 298 299 llvm_unreachable("Unhandled ShapedType clone hit"); 300 } 301 302 Type ShapedType::getElementType() const { 303 return TypeSwitch<Type, Type>(*this) 304 .Case<VectorType, RankedTensorType, UnrankedTensorType, MemRefType, 305 UnrankedMemRefType>([](auto ty) { return ty.getElementType(); }); 306 } 307 308 unsigned ShapedType::getElementTypeBitWidth() const { 309 return getElementType().getIntOrFloatBitWidth(); 310 } 311 312 int64_t ShapedType::getNumElements() const { 313 assert(hasStaticShape() && "cannot get element count of dynamic shaped type"); 314 auto shape = getShape(); 315 int64_t num = 1; 316 for (auto dim : shape) { 317 num *= dim; 318 assert(num >= 0 && "integer overflow in element count computation"); 319 } 320 return num; 321 } 322 323 int64_t ShapedType::getRank() const { 324 assert(hasRank() && "cannot query rank of unranked shaped type"); 325 return getShape().size(); 326 } 327 328 bool ShapedType::hasRank() const { 329 return !isa<UnrankedMemRefType, UnrankedTensorType>(); 330 } 331 332 int64_t ShapedType::getDimSize(unsigned idx) const { 333 assert(idx < getRank() && "invalid index for shaped type"); 334 return getShape()[idx]; 335 } 336 337 bool ShapedType::isDynamicDim(unsigned idx) const { 338 assert(idx < getRank() && "invalid index for shaped type"); 339 return isDynamic(getShape()[idx]); 340 } 341 342 unsigned ShapedType::getDynamicDimIndex(unsigned index) const { 343 assert(index < getRank() && "invalid index"); 344 assert(ShapedType::isDynamic(getDimSize(index)) && "invalid index"); 345 return llvm::count_if(getShape().take_front(index), ShapedType::isDynamic); 346 } 347 348 /// Get the number of bits require to store a value of the given shaped type. 349 /// Compute the value recursively since tensors are allowed to have vectors as 350 /// elements. 351 int64_t ShapedType::getSizeInBits() const { 352 assert(hasStaticShape() && 353 "cannot get the bit size of an aggregate with a dynamic shape"); 354 355 auto elementType = getElementType(); 356 if (elementType.isIntOrFloat()) 357 return elementType.getIntOrFloatBitWidth() * getNumElements(); 358 359 if (auto complexType = elementType.dyn_cast<ComplexType>()) { 360 elementType = complexType.getElementType(); 361 return elementType.getIntOrFloatBitWidth() * getNumElements() * 2; 362 } 363 364 // Tensors can have vectors and other tensors as elements, other shaped types 365 // cannot. 366 assert(isa<TensorType>() && "unsupported element type"); 367 assert((elementType.isa<VectorType, TensorType>()) && 368 "unsupported tensor element type"); 369 return getNumElements() * elementType.cast<ShapedType>().getSizeInBits(); 370 } 371 372 ArrayRef<int64_t> ShapedType::getShape() const { 373 if (auto vectorType = dyn_cast<VectorType>()) 374 return vectorType.getShape(); 375 if (auto tensorType = dyn_cast<RankedTensorType>()) 376 return tensorType.getShape(); 377 return cast<MemRefType>().getShape(); 378 } 379 380 int64_t ShapedType::getNumDynamicDims() const { 381 return llvm::count_if(getShape(), isDynamic); 382 } 383 384 bool ShapedType::hasStaticShape() const { 385 return hasRank() && llvm::none_of(getShape(), isDynamic); 386 } 387 388 bool ShapedType::hasStaticShape(ArrayRef<int64_t> shape) const { 389 return hasStaticShape() && getShape() == shape; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // VectorType 394 //===----------------------------------------------------------------------===// 395 396 LogicalResult VectorType::verify(function_ref<InFlightDiagnostic()> emitError, 397 ArrayRef<int64_t> shape, Type elementType) { 398 if (shape.empty()) 399 return emitError() << "vector types must have at least one dimension"; 400 401 if (!isValidElementType(elementType)) 402 return emitError() << "vector elements must be int/index/float type"; 403 404 if (any_of(shape, [](int64_t i) { return i <= 0; })) 405 return emitError() << "vector types must have positive constant sizes"; 406 407 return success(); 408 } 409 410 VectorType VectorType::scaleElementBitwidth(unsigned scale) { 411 if (!scale) 412 return VectorType(); 413 if (auto et = getElementType().dyn_cast<IntegerType>()) 414 if (auto scaledEt = et.scaleElementBitwidth(scale)) 415 return VectorType::get(getShape(), scaledEt); 416 if (auto et = getElementType().dyn_cast<FloatType>()) 417 if (auto scaledEt = et.scaleElementBitwidth(scale)) 418 return VectorType::get(getShape(), scaledEt); 419 return VectorType(); 420 } 421 422 //===----------------------------------------------------------------------===// 423 // TensorType 424 //===----------------------------------------------------------------------===// 425 426 // Check if "elementType" can be an element type of a tensor. 427 static LogicalResult 428 checkTensorElementType(function_ref<InFlightDiagnostic()> emitError, 429 Type elementType) { 430 if (!TensorType::isValidElementType(elementType)) 431 return emitError() << "invalid tensor element type: " << elementType; 432 return success(); 433 } 434 435 /// Return true if the specified element type is ok in a tensor. 436 bool TensorType::isValidElementType(Type type) { 437 // Note: Non standard/builtin types are allowed to exist within tensor 438 // types. Dialects are expected to verify that tensor types have a valid 439 // element type within that dialect. 440 return type.isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType, 441 IndexType>() || 442 !type.getDialect().getNamespace().empty(); 443 } 444 445 //===----------------------------------------------------------------------===// 446 // RankedTensorType 447 //===----------------------------------------------------------------------===// 448 449 LogicalResult 450 RankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, 451 ArrayRef<int64_t> shape, Type elementType, 452 Attribute encoding) { 453 for (int64_t s : shape) 454 if (s < -1) 455 return emitError() << "invalid tensor dimension size"; 456 if (auto v = encoding.dyn_cast_or_null<VerifiableTensorEncoding>()) 457 if (failed(v.verifyEncoding(shape, elementType, emitError))) 458 return failure(); 459 return checkTensorElementType(emitError, elementType); 460 } 461 462 //===----------------------------------------------------------------------===// 463 // UnrankedTensorType 464 //===----------------------------------------------------------------------===// 465 466 LogicalResult 467 UnrankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, 468 Type elementType) { 469 return checkTensorElementType(emitError, elementType); 470 } 471 472 //===----------------------------------------------------------------------===// 473 // BaseMemRefType 474 //===----------------------------------------------------------------------===// 475 476 Attribute BaseMemRefType::getMemorySpace() const { 477 if (auto rankedMemRefTy = dyn_cast<MemRefType>()) 478 return rankedMemRefTy.getMemorySpace(); 479 return cast<UnrankedMemRefType>().getMemorySpace(); 480 } 481 482 unsigned BaseMemRefType::getMemorySpaceAsInt() const { 483 if (auto rankedMemRefTy = dyn_cast<MemRefType>()) 484 return rankedMemRefTy.getMemorySpaceAsInt(); 485 return cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 486 } 487 488 //===----------------------------------------------------------------------===// 489 // MemRefType 490 //===----------------------------------------------------------------------===// 491 492 /// Given an `originalShape` and a `reducedShape` assumed to be a subset of 493 /// `originalShape` with some `1` entries erased, return the set of indices 494 /// that specifies which of the entries of `originalShape` are dropped to obtain 495 /// `reducedShape`. The returned mask can be applied as a projection to 496 /// `originalShape` to obtain the `reducedShape`. This mask is useful to track 497 /// which dimensions must be kept when e.g. compute MemRef strides under 498 /// rank-reducing operations. Return None if reducedShape cannot be obtained 499 /// by dropping only `1` entries in `originalShape`. 500 llvm::Optional<llvm::SmallDenseSet<unsigned>> 501 mlir::computeRankReductionMask(ArrayRef<int64_t> originalShape, 502 ArrayRef<int64_t> reducedShape) { 503 size_t originalRank = originalShape.size(), reducedRank = reducedShape.size(); 504 llvm::SmallDenseSet<unsigned> unusedDims; 505 unsigned reducedIdx = 0; 506 for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) { 507 // Greedily insert `originalIdx` if no match. 508 if (reducedIdx < reducedRank && 509 originalShape[originalIdx] == reducedShape[reducedIdx]) { 510 reducedIdx++; 511 continue; 512 } 513 514 unusedDims.insert(originalIdx); 515 // If no match on `originalIdx`, the `originalShape` at this dimension 516 // must be 1, otherwise we bail. 517 if (originalShape[originalIdx] != 1) 518 return llvm::None; 519 } 520 // The whole reducedShape must be scanned, otherwise we bail. 521 if (reducedIdx != reducedRank) 522 return llvm::None; 523 return unusedDims; 524 } 525 526 bool mlir::detail::isSupportedMemorySpace(Attribute memorySpace) { 527 // Empty attribute is allowed as default memory space. 528 if (!memorySpace) 529 return true; 530 531 // Supported built-in attributes. 532 if (memorySpace.isa<IntegerAttr, StringAttr, DictionaryAttr>()) 533 return true; 534 535 // Allow custom dialect attributes. 536 if (!::mlir::isa<BuiltinDialect>(memorySpace.getDialect())) 537 return true; 538 539 return false; 540 } 541 542 Attribute mlir::detail::wrapIntegerMemorySpace(unsigned memorySpace, 543 MLIRContext *ctx) { 544 if (memorySpace == 0) 545 return nullptr; 546 547 return IntegerAttr::get(IntegerType::get(ctx, 64), memorySpace); 548 } 549 550 Attribute mlir::detail::skipDefaultMemorySpace(Attribute memorySpace) { 551 IntegerAttr intMemorySpace = memorySpace.dyn_cast_or_null<IntegerAttr>(); 552 if (intMemorySpace && intMemorySpace.getValue() == 0) 553 return nullptr; 554 555 return memorySpace; 556 } 557 558 unsigned mlir::detail::getMemorySpaceAsInt(Attribute memorySpace) { 559 if (!memorySpace) 560 return 0; 561 562 assert(memorySpace.isa<IntegerAttr>() && 563 "Using `getMemorySpaceInteger` with non-Integer attribute"); 564 565 return static_cast<unsigned>(memorySpace.cast<IntegerAttr>().getInt()); 566 } 567 568 MemRefType::Builder & 569 MemRefType::Builder::setMemorySpace(unsigned newMemorySpace) { 570 memorySpace = 571 wrapIntegerMemorySpace(newMemorySpace, elementType.getContext()); 572 return *this; 573 } 574 575 unsigned MemRefType::getMemorySpaceAsInt() const { 576 return detail::getMemorySpaceAsInt(getMemorySpace()); 577 } 578 579 LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError, 580 ArrayRef<int64_t> shape, Type elementType, 581 ArrayRef<AffineMap> affineMapComposition, 582 Attribute memorySpace) { 583 if (!BaseMemRefType::isValidElementType(elementType)) 584 return emitError() << "invalid memref element type"; 585 586 // Negative sizes are not allowed except for `-1` that means dynamic size. 587 for (int64_t s : shape) 588 if (s < -1) 589 return emitError() << "invalid memref size"; 590 591 // Check that the structure of the composition is valid, i.e. that each 592 // subsequent affine map has as many inputs as the previous map has results. 593 // Take the dimensionality of the MemRef for the first map. 594 size_t dim = shape.size(); 595 for (auto it : llvm::enumerate(affineMapComposition)) { 596 AffineMap map = it.value(); 597 if (map.getNumDims() == dim) { 598 dim = map.getNumResults(); 599 continue; 600 } 601 return emitError() << "memref affine map dimension mismatch between " 602 << (it.index() == 0 ? Twine("memref rank") 603 : "affine map " + Twine(it.index())) 604 << " and affine map" << it.index() + 1 << ": " << dim 605 << " != " << map.getNumDims(); 606 } 607 608 if (!isSupportedMemorySpace(memorySpace)) { 609 return emitError() << "unsupported memory space Attribute"; 610 } 611 612 return success(); 613 } 614 615 //===----------------------------------------------------------------------===// 616 // UnrankedMemRefType 617 //===----------------------------------------------------------------------===// 618 619 unsigned UnrankedMemRefType::getMemorySpaceAsInt() const { 620 return detail::getMemorySpaceAsInt(getMemorySpace()); 621 } 622 623 LogicalResult 624 UnrankedMemRefType::verify(function_ref<InFlightDiagnostic()> emitError, 625 Type elementType, Attribute memorySpace) { 626 if (!BaseMemRefType::isValidElementType(elementType)) 627 return emitError() << "invalid memref element type"; 628 629 if (!isSupportedMemorySpace(memorySpace)) 630 return emitError() << "unsupported memory space Attribute"; 631 632 return success(); 633 } 634 635 // Fallback cases for terminal dim/sym/cst that are not part of a binary op ( 636 // i.e. single term). Accumulate the AffineExpr into the existing one. 637 static void extractStridesFromTerm(AffineExpr e, 638 AffineExpr multiplicativeFactor, 639 MutableArrayRef<AffineExpr> strides, 640 AffineExpr &offset) { 641 if (auto dim = e.dyn_cast<AffineDimExpr>()) 642 strides[dim.getPosition()] = 643 strides[dim.getPosition()] + multiplicativeFactor; 644 else 645 offset = offset + e * multiplicativeFactor; 646 } 647 648 /// Takes a single AffineExpr `e` and populates the `strides` array with the 649 /// strides expressions for each dim position. 650 /// The convention is that the strides for dimensions d0, .. dn appear in 651 /// order to make indexing intuitive into the result. 652 static LogicalResult extractStrides(AffineExpr e, 653 AffineExpr multiplicativeFactor, 654 MutableArrayRef<AffineExpr> strides, 655 AffineExpr &offset) { 656 auto bin = e.dyn_cast<AffineBinaryOpExpr>(); 657 if (!bin) { 658 extractStridesFromTerm(e, multiplicativeFactor, strides, offset); 659 return success(); 660 } 661 662 if (bin.getKind() == AffineExprKind::CeilDiv || 663 bin.getKind() == AffineExprKind::FloorDiv || 664 bin.getKind() == AffineExprKind::Mod) 665 return failure(); 666 667 if (bin.getKind() == AffineExprKind::Mul) { 668 auto dim = bin.getLHS().dyn_cast<AffineDimExpr>(); 669 if (dim) { 670 strides[dim.getPosition()] = 671 strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor; 672 return success(); 673 } 674 // LHS and RHS may both contain complex expressions of dims. Try one path 675 // and if it fails try the other. This is guaranteed to succeed because 676 // only one path may have a `dim`, otherwise this is not an AffineExpr in 677 // the first place. 678 if (bin.getLHS().isSymbolicOrConstant()) 679 return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(), 680 strides, offset); 681 return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(), 682 strides, offset); 683 } 684 685 if (bin.getKind() == AffineExprKind::Add) { 686 auto res1 = 687 extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset); 688 auto res2 = 689 extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset); 690 return success(succeeded(res1) && succeeded(res2)); 691 } 692 693 llvm_unreachable("unexpected binary operation"); 694 } 695 696 LogicalResult mlir::getStridesAndOffset(MemRefType t, 697 SmallVectorImpl<AffineExpr> &strides, 698 AffineExpr &offset) { 699 auto affineMaps = t.getAffineMaps(); 700 701 if (!affineMaps.empty() && affineMaps.back().getNumResults() != 1) 702 return failure(); 703 704 AffineMap m; 705 if (!affineMaps.empty()) { 706 m = affineMaps.back(); 707 for (size_t i = affineMaps.size() - 1; i > 0; --i) 708 m = m.compose(affineMaps[i - 1]); 709 assert(!m.isIdentity() && "unexpected identity map"); 710 } 711 712 auto zero = getAffineConstantExpr(0, t.getContext()); 713 auto one = getAffineConstantExpr(1, t.getContext()); 714 offset = zero; 715 strides.assign(t.getRank(), zero); 716 717 // Canonical case for empty map. 718 if (!m) { 719 // 0-D corner case, offset is already 0. 720 if (t.getRank() == 0) 721 return success(); 722 auto stridedExpr = 723 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 724 if (succeeded(extractStrides(stridedExpr, one, strides, offset))) 725 return success(); 726 assert(false && "unexpected failure: extract strides in canonical layout"); 727 } 728 729 // Non-canonical case requires more work. 730 auto stridedExpr = 731 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 732 if (failed(extractStrides(stridedExpr, one, strides, offset))) { 733 offset = AffineExpr(); 734 strides.clear(); 735 return failure(); 736 } 737 738 // Simplify results to allow folding to constants and simple checks. 739 unsigned numDims = m.getNumDims(); 740 unsigned numSymbols = m.getNumSymbols(); 741 offset = simplifyAffineExpr(offset, numDims, numSymbols); 742 for (auto &stride : strides) 743 stride = simplifyAffineExpr(stride, numDims, numSymbols); 744 745 /// In practice, a strided memref must be internally non-aliasing. Test 746 /// against 0 as a proxy. 747 /// TODO: static cases can have more advanced checks. 748 /// TODO: dynamic cases would require a way to compare symbolic 749 /// expressions and would probably need an affine set context propagated 750 /// everywhere. 751 if (llvm::any_of(strides, [](AffineExpr e) { 752 return e == getAffineConstantExpr(0, e.getContext()); 753 })) { 754 offset = AffineExpr(); 755 strides.clear(); 756 return failure(); 757 } 758 759 return success(); 760 } 761 762 LogicalResult mlir::getStridesAndOffset(MemRefType t, 763 SmallVectorImpl<int64_t> &strides, 764 int64_t &offset) { 765 AffineExpr offsetExpr; 766 SmallVector<AffineExpr, 4> strideExprs; 767 if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr))) 768 return failure(); 769 if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>()) 770 offset = cst.getValue(); 771 else 772 offset = ShapedType::kDynamicStrideOrOffset; 773 for (auto e : strideExprs) { 774 if (auto c = e.dyn_cast<AffineConstantExpr>()) 775 strides.push_back(c.getValue()); 776 else 777 strides.push_back(ShapedType::kDynamicStrideOrOffset); 778 } 779 return success(); 780 } 781 782 //===----------------------------------------------------------------------===// 783 /// TupleType 784 //===----------------------------------------------------------------------===// 785 786 /// Return the elements types for this tuple. 787 ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); } 788 789 /// Accumulate the types contained in this tuple and tuples nested within it. 790 /// Note that this only flattens nested tuples, not any other container type, 791 /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to 792 /// (i32, tensor<i32>, f32, i64) 793 void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) { 794 for (Type type : getTypes()) { 795 if (auto nestedTuple = type.dyn_cast<TupleType>()) 796 nestedTuple.getFlattenedTypes(types); 797 else 798 types.push_back(type); 799 } 800 } 801 802 /// Return the number of element types. 803 size_t TupleType::size() const { return getImpl()->size(); } 804 805 //===----------------------------------------------------------------------===// 806 // Type Utilities 807 //===----------------------------------------------------------------------===// 808 809 AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides, 810 int64_t offset, 811 MLIRContext *context) { 812 AffineExpr expr; 813 unsigned nSymbols = 0; 814 815 // AffineExpr for offset. 816 // Static case. 817 if (offset != MemRefType::getDynamicStrideOrOffset()) { 818 auto cst = getAffineConstantExpr(offset, context); 819 expr = cst; 820 } else { 821 // Dynamic case, new symbol for the offset. 822 auto sym = getAffineSymbolExpr(nSymbols++, context); 823 expr = sym; 824 } 825 826 // AffineExpr for strides. 827 for (auto en : llvm::enumerate(strides)) { 828 auto dim = en.index(); 829 auto stride = en.value(); 830 assert(stride != 0 && "Invalid stride specification"); 831 auto d = getAffineDimExpr(dim, context); 832 AffineExpr mult; 833 // Static case. 834 if (stride != MemRefType::getDynamicStrideOrOffset()) 835 mult = getAffineConstantExpr(stride, context); 836 else 837 // Dynamic case, new symbol for each new stride. 838 mult = getAffineSymbolExpr(nSymbols++, context); 839 expr = expr + d * mult; 840 } 841 842 return AffineMap::get(strides.size(), nSymbols, expr); 843 } 844 845 /// Return a version of `t` with identity layout if it can be determined 846 /// statically that the layout is the canonical contiguous strided layout. 847 /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of 848 /// `t` with simplified layout. 849 /// If `t` has multiple layout maps or a multi-result layout, just return `t`. 850 MemRefType mlir::canonicalizeStridedLayout(MemRefType t) { 851 auto affineMaps = t.getAffineMaps(); 852 // Already in canonical form. 853 if (affineMaps.empty()) 854 return t; 855 856 // Can't reduce to canonical identity form, return in canonical form. 857 if (affineMaps.size() > 1 || affineMaps[0].getNumResults() > 1) 858 return t; 859 860 // Corner-case for 0-D affine maps. 861 auto m = affineMaps[0]; 862 if (m.getNumDims() == 0 && m.getNumSymbols() == 0) { 863 if (auto cst = m.getResult(0).dyn_cast<AffineConstantExpr>()) 864 if (cst.getValue() == 0) 865 return MemRefType::Builder(t).setAffineMaps({}); 866 return t; 867 } 868 869 // 0-D corner case for empty shape that still have an affine map. Example: 870 // `memref<f32, affine_map<()[s0] -> (s0)>>`. This is a 1 element memref whose 871 // offset needs to remain, just return t. 872 if (t.getShape().empty()) 873 return t; 874 875 // If the canonical strided layout for the sizes of `t` is equal to the 876 // simplified layout of `t` we can just return an empty layout. Otherwise, 877 // just simplify the existing layout. 878 AffineExpr expr = 879 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 880 auto simplifiedLayoutExpr = 881 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 882 if (expr != simplifiedLayoutExpr) 883 return MemRefType::Builder(t).setAffineMaps({AffineMap::get( 884 m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)}); 885 return MemRefType::Builder(t).setAffineMaps({}); 886 } 887 888 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 889 ArrayRef<AffineExpr> exprs, 890 MLIRContext *context) { 891 assert(!sizes.empty() && !exprs.empty() && 892 "expected non-empty sizes and exprs"); 893 894 // Size 0 corner case is useful for canonicalizations. 895 if (llvm::is_contained(sizes, 0)) 896 return getAffineConstantExpr(0, context); 897 898 auto maps = AffineMap::inferFromExprList(exprs); 899 assert(!maps.empty() && "Expected one non-empty map"); 900 unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols(); 901 902 AffineExpr expr; 903 bool dynamicPoisonBit = false; 904 int64_t runningSize = 1; 905 for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) { 906 int64_t size = std::get<1>(en); 907 // Degenerate case, no size =-> no stride 908 if (size == 0) 909 continue; 910 AffineExpr dimExpr = std::get<0>(en); 911 AffineExpr stride = dynamicPoisonBit 912 ? getAffineSymbolExpr(nSymbols++, context) 913 : getAffineConstantExpr(runningSize, context); 914 expr = expr ? expr + dimExpr * stride : dimExpr * stride; 915 if (size > 0) { 916 runningSize *= size; 917 assert(runningSize > 0 && "integer overflow in size computation"); 918 } else { 919 dynamicPoisonBit = true; 920 } 921 } 922 return simplifyAffineExpr(expr, numDims, nSymbols); 923 } 924 925 /// Return a version of `t` with a layout that has all dynamic offset and 926 /// strides. This is used to erase the static layout. 927 MemRefType mlir::eraseStridedLayout(MemRefType t) { 928 auto val = ShapedType::kDynamicStrideOrOffset; 929 return MemRefType::Builder(t).setAffineMaps(makeStridedLinearLayoutMap( 930 SmallVector<int64_t, 4>(t.getRank(), val), val, t.getContext())); 931 } 932 933 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 934 MLIRContext *context) { 935 SmallVector<AffineExpr, 4> exprs; 936 exprs.reserve(sizes.size()); 937 for (auto dim : llvm::seq<unsigned>(0, sizes.size())) 938 exprs.push_back(getAffineDimExpr(dim, context)); 939 return makeCanonicalStridedLayoutExpr(sizes, exprs, context); 940 } 941 942 /// Return true if the layout for `t` is compatible with strided semantics. 943 bool mlir::isStrided(MemRefType t) { 944 int64_t offset; 945 SmallVector<int64_t, 4> strides; 946 auto res = getStridesAndOffset(t, strides, offset); 947 return succeeded(res); 948 } 949 950 /// Return the layout map in strided linear layout AffineMap form. 951 /// Return null if the layout is not compatible with a strided layout. 952 AffineMap mlir::getStridedLinearLayoutMap(MemRefType t) { 953 int64_t offset; 954 SmallVector<int64_t, 4> strides; 955 if (failed(getStridesAndOffset(t, strides, offset))) 956 return AffineMap(); 957 return makeStridedLinearLayoutMap(strides, offset, t.getContext()); 958 } 959