1 //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/BuiltinTypes.h" 10 #include "TypeDetail.h" 11 #include "mlir/IR/AffineExpr.h" 12 #include "mlir/IR/AffineMap.h" 13 #include "mlir/IR/BuiltinAttributes.h" 14 #include "mlir/IR/BuiltinDialect.h" 15 #include "mlir/IR/Diagnostics.h" 16 #include "mlir/IR/Dialect.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/Sequence.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/ADT/TypeSwitch.h" 22 23 using namespace mlir; 24 using namespace mlir::detail; 25 26 //===----------------------------------------------------------------------===// 27 /// Tablegen Type Definitions 28 //===----------------------------------------------------------------------===// 29 30 #define GET_TYPEDEF_CLASSES 31 #include "mlir/IR/BuiltinTypes.cpp.inc" 32 33 //===----------------------------------------------------------------------===// 34 // BuiltinDialect 35 //===----------------------------------------------------------------------===// 36 37 void BuiltinDialect::registerTypes() { 38 addTypes< 39 #define GET_TYPEDEF_LIST 40 #include "mlir/IR/BuiltinTypes.cpp.inc" 41 >(); 42 } 43 44 //===----------------------------------------------------------------------===// 45 /// ComplexType 46 //===----------------------------------------------------------------------===// 47 48 /// Verify the construction of an integer type. 49 LogicalResult ComplexType::verify(function_ref<InFlightDiagnostic()> emitError, 50 Type elementType) { 51 if (!elementType.isIntOrFloat()) 52 return emitError() << "invalid element type for complex"; 53 return success(); 54 } 55 56 //===----------------------------------------------------------------------===// 57 // Integer Type 58 //===----------------------------------------------------------------------===// 59 60 // static constexpr must have a definition (until in C++17 and inline variable). 61 constexpr unsigned IntegerType::kMaxWidth; 62 63 /// Verify the construction of an integer type. 64 LogicalResult IntegerType::verify(function_ref<InFlightDiagnostic()> emitError, 65 unsigned width, 66 SignednessSemantics signedness) { 67 if (width > IntegerType::kMaxWidth) { 68 return emitError() << "integer bitwidth is limited to " 69 << IntegerType::kMaxWidth << " bits"; 70 } 71 return success(); 72 } 73 74 unsigned IntegerType::getWidth() const { return getImpl()->width; } 75 76 IntegerType::SignednessSemantics IntegerType::getSignedness() const { 77 return getImpl()->signedness; 78 } 79 80 IntegerType IntegerType::scaleElementBitwidth(unsigned scale) { 81 if (!scale) 82 return IntegerType(); 83 return IntegerType::get(getContext(), scale * getWidth(), getSignedness()); 84 } 85 86 //===----------------------------------------------------------------------===// 87 // Float Type 88 //===----------------------------------------------------------------------===// 89 90 unsigned FloatType::getWidth() { 91 if (isa<Float16Type, BFloat16Type>()) 92 return 16; 93 if (isa<Float32Type>()) 94 return 32; 95 if (isa<Float64Type>()) 96 return 64; 97 if (isa<Float80Type>()) 98 return 80; 99 if (isa<Float128Type>()) 100 return 128; 101 llvm_unreachable("unexpected float type"); 102 } 103 104 /// Returns the floating semantics for the given type. 105 const llvm::fltSemantics &FloatType::getFloatSemantics() { 106 if (isa<BFloat16Type>()) 107 return APFloat::BFloat(); 108 if (isa<Float16Type>()) 109 return APFloat::IEEEhalf(); 110 if (isa<Float32Type>()) 111 return APFloat::IEEEsingle(); 112 if (isa<Float64Type>()) 113 return APFloat::IEEEdouble(); 114 if (isa<Float80Type>()) 115 return APFloat::x87DoubleExtended(); 116 if (isa<Float128Type>()) 117 return APFloat::IEEEquad(); 118 llvm_unreachable("non-floating point type used"); 119 } 120 121 FloatType FloatType::scaleElementBitwidth(unsigned scale) { 122 if (!scale) 123 return FloatType(); 124 MLIRContext *ctx = getContext(); 125 if (isF16() || isBF16()) { 126 if (scale == 2) 127 return FloatType::getF32(ctx); 128 if (scale == 4) 129 return FloatType::getF64(ctx); 130 } 131 if (isF32()) 132 if (scale == 2) 133 return FloatType::getF64(ctx); 134 return FloatType(); 135 } 136 137 //===----------------------------------------------------------------------===// 138 // FunctionType 139 //===----------------------------------------------------------------------===// 140 141 unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; } 142 143 ArrayRef<Type> FunctionType::getInputs() const { 144 return getImpl()->getInputs(); 145 } 146 147 unsigned FunctionType::getNumResults() const { return getImpl()->numResults; } 148 149 ArrayRef<Type> FunctionType::getResults() const { 150 return getImpl()->getResults(); 151 } 152 153 /// Helper to call a callback once on each index in the range 154 /// [0, `totalIndices`), *except* for the indices given in `indices`. 155 /// `indices` is allowed to have duplicates and can be in any order. 156 inline void iterateIndicesExcept(unsigned totalIndices, 157 ArrayRef<unsigned> indices, 158 function_ref<void(unsigned)> callback) { 159 llvm::BitVector skipIndices(totalIndices); 160 for (unsigned i : indices) 161 skipIndices.set(i); 162 163 for (unsigned i = 0; i < totalIndices; ++i) 164 if (!skipIndices.test(i)) 165 callback(i); 166 } 167 168 /// Returns a new function type without the specified arguments and results. 169 FunctionType 170 FunctionType::getWithoutArgsAndResults(ArrayRef<unsigned> argIndices, 171 ArrayRef<unsigned> resultIndices) { 172 ArrayRef<Type> newInputTypes = getInputs(); 173 SmallVector<Type, 4> newInputTypesBuffer; 174 if (!argIndices.empty()) { 175 unsigned originalNumArgs = getNumInputs(); 176 iterateIndicesExcept(originalNumArgs, argIndices, [&](unsigned i) { 177 newInputTypesBuffer.emplace_back(getInput(i)); 178 }); 179 newInputTypes = newInputTypesBuffer; 180 } 181 182 ArrayRef<Type> newResultTypes = getResults(); 183 SmallVector<Type, 4> newResultTypesBuffer; 184 if (!resultIndices.empty()) { 185 unsigned originalNumResults = getNumResults(); 186 iterateIndicesExcept(originalNumResults, resultIndices, [&](unsigned i) { 187 newResultTypesBuffer.emplace_back(getResult(i)); 188 }); 189 newResultTypes = newResultTypesBuffer; 190 } 191 192 return get(getContext(), newInputTypes, newResultTypes); 193 } 194 195 //===----------------------------------------------------------------------===// 196 // OpaqueType 197 //===----------------------------------------------------------------------===// 198 199 /// Verify the construction of an opaque type. 200 LogicalResult OpaqueType::verify(function_ref<InFlightDiagnostic()> emitError, 201 Identifier dialect, StringRef typeData) { 202 if (!Dialect::isValidNamespace(dialect.strref())) 203 return emitError() << "invalid dialect namespace '" << dialect << "'"; 204 205 // Check that the dialect is actually registered. 206 MLIRContext *context = dialect.getContext(); 207 if (!context->allowsUnregisteredDialects() && 208 !context->getLoadedDialect(dialect.strref())) { 209 return emitError() 210 << "`!" << dialect << "<\"" << typeData << "\">" 211 << "` type created with unregistered dialect. If this is " 212 "intended, please call allowUnregisteredDialects() on the " 213 "MLIRContext, or use -allow-unregistered-dialect with " 214 "mlir-opt"; 215 } 216 217 return success(); 218 } 219 220 //===----------------------------------------------------------------------===// 221 // ShapedType 222 //===----------------------------------------------------------------------===// 223 constexpr int64_t ShapedType::kDynamicSize; 224 constexpr int64_t ShapedType::kDynamicStrideOrOffset; 225 226 ShapedType ShapedType::clone(ArrayRef<int64_t> shape, Type elementType) { 227 if (auto other = dyn_cast<MemRefType>()) { 228 MemRefType::Builder b(other); 229 b.setShape(shape); 230 b.setElementType(elementType); 231 return b; 232 } 233 234 if (auto other = dyn_cast<UnrankedMemRefType>()) { 235 MemRefType::Builder b(shape, elementType); 236 b.setMemorySpace(other.getMemorySpace()); 237 return b; 238 } 239 240 if (isa<TensorType>()) 241 return RankedTensorType::get(shape, elementType); 242 243 if (isa<VectorType>()) 244 return VectorType::get(shape, elementType); 245 246 llvm_unreachable("Unhandled ShapedType clone case"); 247 } 248 249 ShapedType ShapedType::clone(ArrayRef<int64_t> shape) { 250 if (auto other = dyn_cast<MemRefType>()) { 251 MemRefType::Builder b(other); 252 b.setShape(shape); 253 return b; 254 } 255 256 if (auto other = dyn_cast<UnrankedMemRefType>()) { 257 MemRefType::Builder b(shape, other.getElementType()); 258 b.setShape(shape); 259 b.setMemorySpace(other.getMemorySpace()); 260 return b; 261 } 262 263 if (isa<TensorType>()) 264 return RankedTensorType::get(shape, getElementType()); 265 266 if (isa<VectorType>()) 267 return VectorType::get(shape, getElementType()); 268 269 llvm_unreachable("Unhandled ShapedType clone case"); 270 } 271 272 ShapedType ShapedType::clone(Type elementType) { 273 if (auto other = dyn_cast<MemRefType>()) { 274 MemRefType::Builder b(other); 275 b.setElementType(elementType); 276 return b; 277 } 278 279 if (auto other = dyn_cast<UnrankedMemRefType>()) { 280 return UnrankedMemRefType::get(elementType, other.getMemorySpace()); 281 } 282 283 if (isa<TensorType>()) { 284 if (hasRank()) 285 return RankedTensorType::get(getShape(), elementType); 286 return UnrankedTensorType::get(elementType); 287 } 288 289 if (isa<VectorType>()) 290 return VectorType::get(getShape(), elementType); 291 292 llvm_unreachable("Unhandled ShapedType clone hit"); 293 } 294 295 Type ShapedType::getElementType() const { 296 return TypeSwitch<Type, Type>(*this) 297 .Case<VectorType, RankedTensorType, UnrankedTensorType, MemRefType, 298 UnrankedMemRefType>([](auto ty) { return ty.getElementType(); }); 299 } 300 301 unsigned ShapedType::getElementTypeBitWidth() const { 302 return getElementType().getIntOrFloatBitWidth(); 303 } 304 305 int64_t ShapedType::getNumElements() const { 306 assert(hasStaticShape() && "cannot get element count of dynamic shaped type"); 307 auto shape = getShape(); 308 int64_t num = 1; 309 for (auto dim : shape) { 310 num *= dim; 311 assert(num >= 0 && "integer overflow in element count computation"); 312 } 313 return num; 314 } 315 316 int64_t ShapedType::getRank() const { 317 assert(hasRank() && "cannot query rank of unranked shaped type"); 318 return getShape().size(); 319 } 320 321 bool ShapedType::hasRank() const { 322 return !isa<UnrankedMemRefType, UnrankedTensorType>(); 323 } 324 325 int64_t ShapedType::getDimSize(unsigned idx) const { 326 assert(idx < getRank() && "invalid index for shaped type"); 327 return getShape()[idx]; 328 } 329 330 bool ShapedType::isDynamicDim(unsigned idx) const { 331 assert(idx < getRank() && "invalid index for shaped type"); 332 return isDynamic(getShape()[idx]); 333 } 334 335 unsigned ShapedType::getDynamicDimIndex(unsigned index) const { 336 assert(index < getRank() && "invalid index"); 337 assert(ShapedType::isDynamic(getDimSize(index)) && "invalid index"); 338 return llvm::count_if(getShape().take_front(index), ShapedType::isDynamic); 339 } 340 341 /// Get the number of bits require to store a value of the given shaped type. 342 /// Compute the value recursively since tensors are allowed to have vectors as 343 /// elements. 344 int64_t ShapedType::getSizeInBits() const { 345 assert(hasStaticShape() && 346 "cannot get the bit size of an aggregate with a dynamic shape"); 347 348 auto elementType = getElementType(); 349 if (elementType.isIntOrFloat()) 350 return elementType.getIntOrFloatBitWidth() * getNumElements(); 351 352 if (auto complexType = elementType.dyn_cast<ComplexType>()) { 353 elementType = complexType.getElementType(); 354 return elementType.getIntOrFloatBitWidth() * getNumElements() * 2; 355 } 356 357 // Tensors can have vectors and other tensors as elements, other shaped types 358 // cannot. 359 assert(isa<TensorType>() && "unsupported element type"); 360 assert((elementType.isa<VectorType, TensorType>()) && 361 "unsupported tensor element type"); 362 return getNumElements() * elementType.cast<ShapedType>().getSizeInBits(); 363 } 364 365 ArrayRef<int64_t> ShapedType::getShape() const { 366 if (auto vectorType = dyn_cast<VectorType>()) 367 return vectorType.getShape(); 368 if (auto tensorType = dyn_cast<RankedTensorType>()) 369 return tensorType.getShape(); 370 return cast<MemRefType>().getShape(); 371 } 372 373 int64_t ShapedType::getNumDynamicDims() const { 374 return llvm::count_if(getShape(), isDynamic); 375 } 376 377 bool ShapedType::hasStaticShape() const { 378 return hasRank() && llvm::none_of(getShape(), isDynamic); 379 } 380 381 bool ShapedType::hasStaticShape(ArrayRef<int64_t> shape) const { 382 return hasStaticShape() && getShape() == shape; 383 } 384 385 //===----------------------------------------------------------------------===// 386 // VectorType 387 //===----------------------------------------------------------------------===// 388 389 LogicalResult VectorType::verify(function_ref<InFlightDiagnostic()> emitError, 390 ArrayRef<int64_t> shape, Type elementType) { 391 if (shape.empty()) 392 return emitError() << "vector types must have at least one dimension"; 393 394 if (!isValidElementType(elementType)) 395 return emitError() << "vector elements must be int/index/float type"; 396 397 if (any_of(shape, [](int64_t i) { return i <= 0; })) 398 return emitError() << "vector types must have positive constant sizes"; 399 400 return success(); 401 } 402 403 VectorType VectorType::scaleElementBitwidth(unsigned scale) { 404 if (!scale) 405 return VectorType(); 406 if (auto et = getElementType().dyn_cast<IntegerType>()) 407 if (auto scaledEt = et.scaleElementBitwidth(scale)) 408 return VectorType::get(getShape(), scaledEt); 409 if (auto et = getElementType().dyn_cast<FloatType>()) 410 if (auto scaledEt = et.scaleElementBitwidth(scale)) 411 return VectorType::get(getShape(), scaledEt); 412 return VectorType(); 413 } 414 415 //===----------------------------------------------------------------------===// 416 // TensorType 417 //===----------------------------------------------------------------------===// 418 419 // Check if "elementType" can be an element type of a tensor. 420 static LogicalResult 421 checkTensorElementType(function_ref<InFlightDiagnostic()> emitError, 422 Type elementType) { 423 if (!TensorType::isValidElementType(elementType)) 424 return emitError() << "invalid tensor element type: " << elementType; 425 return success(); 426 } 427 428 /// Return true if the specified element type is ok in a tensor. 429 bool TensorType::isValidElementType(Type type) { 430 // Note: Non standard/builtin types are allowed to exist within tensor 431 // types. Dialects are expected to verify that tensor types have a valid 432 // element type within that dialect. 433 return type.isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType, 434 IndexType>() || 435 !type.getDialect().getNamespace().empty(); 436 } 437 438 //===----------------------------------------------------------------------===// 439 // RankedTensorType 440 //===----------------------------------------------------------------------===// 441 442 LogicalResult 443 RankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, 444 ArrayRef<int64_t> shape, Type elementType) { 445 for (int64_t s : shape) 446 if (s < -1) 447 return emitError() << "invalid tensor dimension size"; 448 return checkTensorElementType(emitError, elementType); 449 } 450 451 //===----------------------------------------------------------------------===// 452 // UnrankedTensorType 453 //===----------------------------------------------------------------------===// 454 455 LogicalResult 456 UnrankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError, 457 Type elementType) { 458 return checkTensorElementType(emitError, elementType); 459 } 460 461 //===----------------------------------------------------------------------===// 462 // BaseMemRefType 463 //===----------------------------------------------------------------------===// 464 465 Attribute BaseMemRefType::getMemorySpace() const { 466 if (auto rankedMemRefTy = dyn_cast<MemRefType>()) 467 return rankedMemRefTy.getMemorySpace(); 468 return cast<UnrankedMemRefType>().getMemorySpace(); 469 } 470 471 unsigned BaseMemRefType::getMemorySpaceAsInt() const { 472 if (auto rankedMemRefTy = dyn_cast<MemRefType>()) 473 return rankedMemRefTy.getMemorySpaceAsInt(); 474 return cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 475 } 476 477 //===----------------------------------------------------------------------===// 478 // MemRefType 479 //===----------------------------------------------------------------------===// 480 481 /// Given an `originalShape` and a `reducedShape` assumed to be a subset of 482 /// `originalShape` with some `1` entries erased, return the set of indices 483 /// that specifies which of the entries of `originalShape` are dropped to obtain 484 /// `reducedShape`. The returned mask can be applied as a projection to 485 /// `originalShape` to obtain the `reducedShape`. This mask is useful to track 486 /// which dimensions must be kept when e.g. compute MemRef strides under 487 /// rank-reducing operations. Return None if reducedShape cannot be obtained 488 /// by dropping only `1` entries in `originalShape`. 489 llvm::Optional<llvm::SmallDenseSet<unsigned>> 490 mlir::computeRankReductionMask(ArrayRef<int64_t> originalShape, 491 ArrayRef<int64_t> reducedShape) { 492 size_t originalRank = originalShape.size(), reducedRank = reducedShape.size(); 493 llvm::SmallDenseSet<unsigned> unusedDims; 494 unsigned reducedIdx = 0; 495 for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) { 496 // Greedily insert `originalIdx` if no match. 497 if (reducedIdx < reducedRank && 498 originalShape[originalIdx] == reducedShape[reducedIdx]) { 499 reducedIdx++; 500 continue; 501 } 502 503 unusedDims.insert(originalIdx); 504 // If no match on `originalIdx`, the `originalShape` at this dimension 505 // must be 1, otherwise we bail. 506 if (originalShape[originalIdx] != 1) 507 return llvm::None; 508 } 509 // The whole reducedShape must be scanned, otherwise we bail. 510 if (reducedIdx != reducedRank) 511 return llvm::None; 512 return unusedDims; 513 } 514 515 bool mlir::detail::isSupportedMemorySpace(Attribute memorySpace) { 516 // Empty attribute is allowed as default memory space. 517 if (!memorySpace) 518 return true; 519 520 // Supported built-in attributes. 521 if (memorySpace.isa<IntegerAttr, StringAttr, DictionaryAttr>()) 522 return true; 523 524 // Allow custom dialect attributes. 525 if (!::mlir::isa<BuiltinDialect>(memorySpace.getDialect())) 526 return true; 527 528 return false; 529 } 530 531 Attribute mlir::detail::wrapIntegerMemorySpace(unsigned memorySpace, 532 MLIRContext *ctx) { 533 if (memorySpace == 0) 534 return nullptr; 535 536 return IntegerAttr::get(IntegerType::get(ctx, 64), memorySpace); 537 } 538 539 Attribute mlir::detail::skipDefaultMemorySpace(Attribute memorySpace) { 540 IntegerAttr intMemorySpace = memorySpace.dyn_cast_or_null<IntegerAttr>(); 541 if (intMemorySpace && intMemorySpace.getValue() == 0) 542 return nullptr; 543 544 return memorySpace; 545 } 546 547 unsigned mlir::detail::getMemorySpaceAsInt(Attribute memorySpace) { 548 if (!memorySpace) 549 return 0; 550 551 assert(memorySpace.isa<IntegerAttr>() && 552 "Using `getMemorySpaceInteger` with non-Integer attribute"); 553 554 return static_cast<unsigned>(memorySpace.cast<IntegerAttr>().getInt()); 555 } 556 557 MemRefType::Builder & 558 MemRefType::Builder::setMemorySpace(unsigned newMemorySpace) { 559 memorySpace = 560 wrapIntegerMemorySpace(newMemorySpace, elementType.getContext()); 561 return *this; 562 } 563 564 unsigned MemRefType::getMemorySpaceAsInt() const { 565 return detail::getMemorySpaceAsInt(getMemorySpace()); 566 } 567 568 LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError, 569 ArrayRef<int64_t> shape, Type elementType, 570 ArrayRef<AffineMap> affineMapComposition, 571 Attribute memorySpace) { 572 if (!BaseMemRefType::isValidElementType(elementType)) 573 return emitError() << "invalid memref element type"; 574 575 // Negative sizes are not allowed except for `-1` that means dynamic size. 576 for (int64_t s : shape) 577 if (s < -1) 578 return emitError() << "invalid memref size"; 579 580 // Check that the structure of the composition is valid, i.e. that each 581 // subsequent affine map has as many inputs as the previous map has results. 582 // Take the dimensionality of the MemRef for the first map. 583 size_t dim = shape.size(); 584 for (auto it : llvm::enumerate(affineMapComposition)) { 585 AffineMap map = it.value(); 586 if (map.getNumDims() == dim) { 587 dim = map.getNumResults(); 588 continue; 589 } 590 return emitError() << "memref affine map dimension mismatch between " 591 << (it.index() == 0 ? Twine("memref rank") 592 : "affine map " + Twine(it.index())) 593 << " and affine map" << it.index() + 1 << ": " << dim 594 << " != " << map.getNumDims(); 595 } 596 597 if (!isSupportedMemorySpace(memorySpace)) { 598 return emitError() << "unsupported memory space Attribute"; 599 } 600 601 return success(); 602 } 603 604 //===----------------------------------------------------------------------===// 605 // UnrankedMemRefType 606 //===----------------------------------------------------------------------===// 607 608 unsigned UnrankedMemRefType::getMemorySpaceAsInt() const { 609 return detail::getMemorySpaceAsInt(getMemorySpace()); 610 } 611 612 LogicalResult 613 UnrankedMemRefType::verify(function_ref<InFlightDiagnostic()> emitError, 614 Type elementType, Attribute memorySpace) { 615 if (!BaseMemRefType::isValidElementType(elementType)) 616 return emitError() << "invalid memref element type"; 617 618 if (!isSupportedMemorySpace(memorySpace)) 619 return emitError() << "unsupported memory space Attribute"; 620 621 return success(); 622 } 623 624 // Fallback cases for terminal dim/sym/cst that are not part of a binary op ( 625 // i.e. single term). Accumulate the AffineExpr into the existing one. 626 static void extractStridesFromTerm(AffineExpr e, 627 AffineExpr multiplicativeFactor, 628 MutableArrayRef<AffineExpr> strides, 629 AffineExpr &offset) { 630 if (auto dim = e.dyn_cast<AffineDimExpr>()) 631 strides[dim.getPosition()] = 632 strides[dim.getPosition()] + multiplicativeFactor; 633 else 634 offset = offset + e * multiplicativeFactor; 635 } 636 637 /// Takes a single AffineExpr `e` and populates the `strides` array with the 638 /// strides expressions for each dim position. 639 /// The convention is that the strides for dimensions d0, .. dn appear in 640 /// order to make indexing intuitive into the result. 641 static LogicalResult extractStrides(AffineExpr e, 642 AffineExpr multiplicativeFactor, 643 MutableArrayRef<AffineExpr> strides, 644 AffineExpr &offset) { 645 auto bin = e.dyn_cast<AffineBinaryOpExpr>(); 646 if (!bin) { 647 extractStridesFromTerm(e, multiplicativeFactor, strides, offset); 648 return success(); 649 } 650 651 if (bin.getKind() == AffineExprKind::CeilDiv || 652 bin.getKind() == AffineExprKind::FloorDiv || 653 bin.getKind() == AffineExprKind::Mod) 654 return failure(); 655 656 if (bin.getKind() == AffineExprKind::Mul) { 657 auto dim = bin.getLHS().dyn_cast<AffineDimExpr>(); 658 if (dim) { 659 strides[dim.getPosition()] = 660 strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor; 661 return success(); 662 } 663 // LHS and RHS may both contain complex expressions of dims. Try one path 664 // and if it fails try the other. This is guaranteed to succeed because 665 // only one path may have a `dim`, otherwise this is not an AffineExpr in 666 // the first place. 667 if (bin.getLHS().isSymbolicOrConstant()) 668 return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(), 669 strides, offset); 670 return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(), 671 strides, offset); 672 } 673 674 if (bin.getKind() == AffineExprKind::Add) { 675 auto res1 = 676 extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset); 677 auto res2 = 678 extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset); 679 return success(succeeded(res1) && succeeded(res2)); 680 } 681 682 llvm_unreachable("unexpected binary operation"); 683 } 684 685 LogicalResult mlir::getStridesAndOffset(MemRefType t, 686 SmallVectorImpl<AffineExpr> &strides, 687 AffineExpr &offset) { 688 auto affineMaps = t.getAffineMaps(); 689 690 if (!affineMaps.empty() && affineMaps.back().getNumResults() != 1) 691 return failure(); 692 693 AffineMap m; 694 if (!affineMaps.empty()) { 695 m = affineMaps.back(); 696 for (size_t i = affineMaps.size() - 1; i > 0; --i) 697 m = m.compose(affineMaps[i - 1]); 698 assert(!m.isIdentity() && "unexpected identity map"); 699 } 700 701 auto zero = getAffineConstantExpr(0, t.getContext()); 702 auto one = getAffineConstantExpr(1, t.getContext()); 703 offset = zero; 704 strides.assign(t.getRank(), zero); 705 706 // Canonical case for empty map. 707 if (!m) { 708 // 0-D corner case, offset is already 0. 709 if (t.getRank() == 0) 710 return success(); 711 auto stridedExpr = 712 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 713 if (succeeded(extractStrides(stridedExpr, one, strides, offset))) 714 return success(); 715 assert(false && "unexpected failure: extract strides in canonical layout"); 716 } 717 718 // Non-canonical case requires more work. 719 auto stridedExpr = 720 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 721 if (failed(extractStrides(stridedExpr, one, strides, offset))) { 722 offset = AffineExpr(); 723 strides.clear(); 724 return failure(); 725 } 726 727 // Simplify results to allow folding to constants and simple checks. 728 unsigned numDims = m.getNumDims(); 729 unsigned numSymbols = m.getNumSymbols(); 730 offset = simplifyAffineExpr(offset, numDims, numSymbols); 731 for (auto &stride : strides) 732 stride = simplifyAffineExpr(stride, numDims, numSymbols); 733 734 /// In practice, a strided memref must be internally non-aliasing. Test 735 /// against 0 as a proxy. 736 /// TODO: static cases can have more advanced checks. 737 /// TODO: dynamic cases would require a way to compare symbolic 738 /// expressions and would probably need an affine set context propagated 739 /// everywhere. 740 if (llvm::any_of(strides, [](AffineExpr e) { 741 return e == getAffineConstantExpr(0, e.getContext()); 742 })) { 743 offset = AffineExpr(); 744 strides.clear(); 745 return failure(); 746 } 747 748 return success(); 749 } 750 751 LogicalResult mlir::getStridesAndOffset(MemRefType t, 752 SmallVectorImpl<int64_t> &strides, 753 int64_t &offset) { 754 AffineExpr offsetExpr; 755 SmallVector<AffineExpr, 4> strideExprs; 756 if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr))) 757 return failure(); 758 if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>()) 759 offset = cst.getValue(); 760 else 761 offset = ShapedType::kDynamicStrideOrOffset; 762 for (auto e : strideExprs) { 763 if (auto c = e.dyn_cast<AffineConstantExpr>()) 764 strides.push_back(c.getValue()); 765 else 766 strides.push_back(ShapedType::kDynamicStrideOrOffset); 767 } 768 return success(); 769 } 770 771 //===----------------------------------------------------------------------===// 772 /// TupleType 773 //===----------------------------------------------------------------------===// 774 775 /// Return the elements types for this tuple. 776 ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); } 777 778 /// Accumulate the types contained in this tuple and tuples nested within it. 779 /// Note that this only flattens nested tuples, not any other container type, 780 /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to 781 /// (i32, tensor<i32>, f32, i64) 782 void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) { 783 for (Type type : getTypes()) { 784 if (auto nestedTuple = type.dyn_cast<TupleType>()) 785 nestedTuple.getFlattenedTypes(types); 786 else 787 types.push_back(type); 788 } 789 } 790 791 /// Return the number of element types. 792 size_t TupleType::size() const { return getImpl()->size(); } 793 794 //===----------------------------------------------------------------------===// 795 // Type Utilities 796 //===----------------------------------------------------------------------===// 797 798 AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides, 799 int64_t offset, 800 MLIRContext *context) { 801 AffineExpr expr; 802 unsigned nSymbols = 0; 803 804 // AffineExpr for offset. 805 // Static case. 806 if (offset != MemRefType::getDynamicStrideOrOffset()) { 807 auto cst = getAffineConstantExpr(offset, context); 808 expr = cst; 809 } else { 810 // Dynamic case, new symbol for the offset. 811 auto sym = getAffineSymbolExpr(nSymbols++, context); 812 expr = sym; 813 } 814 815 // AffineExpr for strides. 816 for (auto en : llvm::enumerate(strides)) { 817 auto dim = en.index(); 818 auto stride = en.value(); 819 assert(stride != 0 && "Invalid stride specification"); 820 auto d = getAffineDimExpr(dim, context); 821 AffineExpr mult; 822 // Static case. 823 if (stride != MemRefType::getDynamicStrideOrOffset()) 824 mult = getAffineConstantExpr(stride, context); 825 else 826 // Dynamic case, new symbol for each new stride. 827 mult = getAffineSymbolExpr(nSymbols++, context); 828 expr = expr + d * mult; 829 } 830 831 return AffineMap::get(strides.size(), nSymbols, expr); 832 } 833 834 /// Return a version of `t` with identity layout if it can be determined 835 /// statically that the layout is the canonical contiguous strided layout. 836 /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of 837 /// `t` with simplified layout. 838 /// If `t` has multiple layout maps or a multi-result layout, just return `t`. 839 MemRefType mlir::canonicalizeStridedLayout(MemRefType t) { 840 auto affineMaps = t.getAffineMaps(); 841 // Already in canonical form. 842 if (affineMaps.empty()) 843 return t; 844 845 // Can't reduce to canonical identity form, return in canonical form. 846 if (affineMaps.size() > 1 || affineMaps[0].getNumResults() > 1) 847 return t; 848 849 // Corner-case for 0-D affine maps. 850 auto m = affineMaps[0]; 851 if (m.getNumDims() == 0 && m.getNumSymbols() == 0) { 852 if (auto cst = m.getResult(0).dyn_cast<AffineConstantExpr>()) 853 if (cst.getValue() == 0) 854 return MemRefType::Builder(t).setAffineMaps({}); 855 return t; 856 } 857 858 // 0-D corner case for empty shape that still have an affine map. Example: 859 // `memref<f32, affine_map<()[s0] -> (s0)>>`. This is a 1 element memref whose 860 // offset needs to remain, just return t. 861 if (t.getShape().empty()) 862 return t; 863 864 // If the canonical strided layout for the sizes of `t` is equal to the 865 // simplified layout of `t` we can just return an empty layout. Otherwise, 866 // just simplify the existing layout. 867 AffineExpr expr = 868 makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext()); 869 auto simplifiedLayoutExpr = 870 simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols()); 871 if (expr != simplifiedLayoutExpr) 872 return MemRefType::Builder(t).setAffineMaps({AffineMap::get( 873 m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)}); 874 return MemRefType::Builder(t).setAffineMaps({}); 875 } 876 877 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 878 ArrayRef<AffineExpr> exprs, 879 MLIRContext *context) { 880 assert(!sizes.empty() && !exprs.empty() && 881 "expected non-empty sizes and exprs"); 882 883 // Size 0 corner case is useful for canonicalizations. 884 if (llvm::is_contained(sizes, 0)) 885 return getAffineConstantExpr(0, context); 886 887 auto maps = AffineMap::inferFromExprList(exprs); 888 assert(!maps.empty() && "Expected one non-empty map"); 889 unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols(); 890 891 AffineExpr expr; 892 bool dynamicPoisonBit = false; 893 int64_t runningSize = 1; 894 for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) { 895 int64_t size = std::get<1>(en); 896 // Degenerate case, no size =-> no stride 897 if (size == 0) 898 continue; 899 AffineExpr dimExpr = std::get<0>(en); 900 AffineExpr stride = dynamicPoisonBit 901 ? getAffineSymbolExpr(nSymbols++, context) 902 : getAffineConstantExpr(runningSize, context); 903 expr = expr ? expr + dimExpr * stride : dimExpr * stride; 904 if (size > 0) { 905 runningSize *= size; 906 assert(runningSize > 0 && "integer overflow in size computation"); 907 } else { 908 dynamicPoisonBit = true; 909 } 910 } 911 return simplifyAffineExpr(expr, numDims, nSymbols); 912 } 913 914 /// Return a version of `t` with a layout that has all dynamic offset and 915 /// strides. This is used to erase the static layout. 916 MemRefType mlir::eraseStridedLayout(MemRefType t) { 917 auto val = ShapedType::kDynamicStrideOrOffset; 918 return MemRefType::Builder(t).setAffineMaps(makeStridedLinearLayoutMap( 919 SmallVector<int64_t, 4>(t.getRank(), val), val, t.getContext())); 920 } 921 922 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes, 923 MLIRContext *context) { 924 SmallVector<AffineExpr, 4> exprs; 925 exprs.reserve(sizes.size()); 926 for (auto dim : llvm::seq<unsigned>(0, sizes.size())) 927 exprs.push_back(getAffineDimExpr(dim, context)); 928 return makeCanonicalStridedLayoutExpr(sizes, exprs, context); 929 } 930 931 /// Return true if the layout for `t` is compatible with strided semantics. 932 bool mlir::isStrided(MemRefType t) { 933 int64_t offset; 934 SmallVector<int64_t, 4> strides; 935 auto res = getStridesAndOffset(t, strides, offset); 936 return succeeded(res); 937 } 938 939 /// Return the layout map in strided linear layout AffineMap form. 940 /// Return null if the layout is not compatible with a strided layout. 941 AffineMap mlir::getStridedLinearLayoutMap(MemRefType t) { 942 int64_t offset; 943 SmallVector<int64_t, 4> strides; 944 if (failed(getStridesAndOffset(t, strides, offset))) 945 return AffineMap(); 946 return makeStridedLinearLayoutMap(strides, offset, t.getContext()); 947 } 948