1 //===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/BuiltinTypes.h"
10 #include "TypeDetail.h"
11 #include "mlir/IR/AffineExpr.h"
12 #include "mlir/IR/AffineMap.h"
13 #include "mlir/IR/BuiltinAttributes.h"
14 #include "mlir/IR/BuiltinDialect.h"
15 #include "mlir/IR/Diagnostics.h"
16 #include "mlir/IR/Dialect.h"
17 #include "mlir/IR/TensorEncoding.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/TypeSwitch.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 //===----------------------------------------------------------------------===//
28 /// Tablegen Type Definitions
29 //===----------------------------------------------------------------------===//
30 
31 #define GET_TYPEDEF_CLASSES
32 #include "mlir/IR/BuiltinTypes.cpp.inc"
33 
34 //===----------------------------------------------------------------------===//
35 /// Tablegen Interface Definitions
36 //===----------------------------------------------------------------------===//
37 
38 #include "mlir/IR/BuiltinTypeInterfaces.cpp.inc"
39 
40 //===----------------------------------------------------------------------===//
41 // BuiltinDialect
42 //===----------------------------------------------------------------------===//
43 
44 void BuiltinDialect::registerTypes() {
45   addTypes<
46 #define GET_TYPEDEF_LIST
47 #include "mlir/IR/BuiltinTypes.cpp.inc"
48       >();
49 }
50 
51 //===----------------------------------------------------------------------===//
52 /// ComplexType
53 //===----------------------------------------------------------------------===//
54 
55 /// Verify the construction of an integer type.
56 LogicalResult ComplexType::verify(function_ref<InFlightDiagnostic()> emitError,
57                                   Type elementType) {
58   if (!elementType.isIntOrFloat())
59     return emitError() << "invalid element type for complex";
60   return success();
61 }
62 
63 //===----------------------------------------------------------------------===//
64 // Integer Type
65 //===----------------------------------------------------------------------===//
66 
67 // static constexpr must have a definition (until in C++17 and inline variable).
68 constexpr unsigned IntegerType::kMaxWidth;
69 
70 /// Verify the construction of an integer type.
71 LogicalResult IntegerType::verify(function_ref<InFlightDiagnostic()> emitError,
72                                   unsigned width,
73                                   SignednessSemantics signedness) {
74   if (width > IntegerType::kMaxWidth) {
75     return emitError() << "integer bitwidth is limited to "
76                        << IntegerType::kMaxWidth << " bits";
77   }
78   return success();
79 }
80 
81 unsigned IntegerType::getWidth() const { return getImpl()->width; }
82 
83 IntegerType::SignednessSemantics IntegerType::getSignedness() const {
84   return getImpl()->signedness;
85 }
86 
87 IntegerType IntegerType::scaleElementBitwidth(unsigned scale) {
88   if (!scale)
89     return IntegerType();
90   return IntegerType::get(getContext(), scale * getWidth(), getSignedness());
91 }
92 
93 //===----------------------------------------------------------------------===//
94 // Float Type
95 //===----------------------------------------------------------------------===//
96 
97 unsigned FloatType::getWidth() {
98   if (isa<Float16Type, BFloat16Type>())
99     return 16;
100   if (isa<Float32Type>())
101     return 32;
102   if (isa<Float64Type>())
103     return 64;
104   if (isa<Float80Type>())
105     return 80;
106   if (isa<Float128Type>())
107     return 128;
108   llvm_unreachable("unexpected float type");
109 }
110 
111 /// Returns the floating semantics for the given type.
112 const llvm::fltSemantics &FloatType::getFloatSemantics() {
113   if (isa<BFloat16Type>())
114     return APFloat::BFloat();
115   if (isa<Float16Type>())
116     return APFloat::IEEEhalf();
117   if (isa<Float32Type>())
118     return APFloat::IEEEsingle();
119   if (isa<Float64Type>())
120     return APFloat::IEEEdouble();
121   if (isa<Float80Type>())
122     return APFloat::x87DoubleExtended();
123   if (isa<Float128Type>())
124     return APFloat::IEEEquad();
125   llvm_unreachable("non-floating point type used");
126 }
127 
128 FloatType FloatType::scaleElementBitwidth(unsigned scale) {
129   if (!scale)
130     return FloatType();
131   MLIRContext *ctx = getContext();
132   if (isF16() || isBF16()) {
133     if (scale == 2)
134       return FloatType::getF32(ctx);
135     if (scale == 4)
136       return FloatType::getF64(ctx);
137   }
138   if (isF32())
139     if (scale == 2)
140       return FloatType::getF64(ctx);
141   return FloatType();
142 }
143 
144 //===----------------------------------------------------------------------===//
145 // FunctionType
146 //===----------------------------------------------------------------------===//
147 
148 unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; }
149 
150 ArrayRef<Type> FunctionType::getInputs() const {
151   return getImpl()->getInputs();
152 }
153 
154 unsigned FunctionType::getNumResults() const { return getImpl()->numResults; }
155 
156 ArrayRef<Type> FunctionType::getResults() const {
157   return getImpl()->getResults();
158 }
159 
160 /// Helper to call a callback once on each index in the range
161 /// [0, `totalIndices`), *except* for the indices given in `indices`.
162 /// `indices` is allowed to have duplicates and can be in any order.
163 inline void iterateIndicesExcept(unsigned totalIndices,
164                                  ArrayRef<unsigned> indices,
165                                  function_ref<void(unsigned)> callback) {
166   llvm::BitVector skipIndices(totalIndices);
167   for (unsigned i : indices)
168     skipIndices.set(i);
169 
170   for (unsigned i = 0; i < totalIndices; ++i)
171     if (!skipIndices.test(i))
172       callback(i);
173 }
174 
175 /// Returns a new function type with the specified arguments and results
176 /// inserted.
177 FunctionType FunctionType::getWithArgsAndResults(
178     ArrayRef<unsigned> argIndices, TypeRange argTypes,
179     ArrayRef<unsigned> resultIndices, TypeRange resultTypes) {
180   assert(argIndices.size() == argTypes.size());
181   assert(resultIndices.size() == resultTypes.size());
182 
183   ArrayRef<Type> newInputTypes = getInputs();
184   SmallVector<Type, 4> newInputTypesBuffer;
185   if (!argIndices.empty()) {
186     const auto *fromIt = newInputTypes.begin();
187     for (auto it : llvm::zip(argIndices, argTypes)) {
188       const auto *toIt = newInputTypes.begin() + std::get<0>(it);
189       newInputTypesBuffer.append(fromIt, toIt);
190       newInputTypesBuffer.push_back(std::get<1>(it));
191       fromIt = toIt;
192     }
193     newInputTypesBuffer.append(fromIt, newInputTypes.end());
194     newInputTypes = newInputTypesBuffer;
195   }
196 
197   ArrayRef<Type> newResultTypes = getResults();
198   SmallVector<Type, 4> newResultTypesBuffer;
199   if (!resultIndices.empty()) {
200     const auto *fromIt = newResultTypes.begin();
201     for (auto it : llvm::zip(resultIndices, resultTypes)) {
202       const auto *toIt = newResultTypes.begin() + std::get<0>(it);
203       newResultTypesBuffer.append(fromIt, toIt);
204       newResultTypesBuffer.push_back(std::get<1>(it));
205       fromIt = toIt;
206     }
207     newResultTypesBuffer.append(fromIt, newResultTypes.end());
208     newResultTypes = newResultTypesBuffer;
209   }
210 
211   return FunctionType::get(getContext(), newInputTypes, newResultTypes);
212 }
213 
214 /// Returns a new function type without the specified arguments and results.
215 FunctionType
216 FunctionType::getWithoutArgsAndResults(ArrayRef<unsigned> argIndices,
217                                        ArrayRef<unsigned> resultIndices) {
218   ArrayRef<Type> newInputTypes = getInputs();
219   SmallVector<Type, 4> newInputTypesBuffer;
220   if (!argIndices.empty()) {
221     unsigned originalNumArgs = getNumInputs();
222     iterateIndicesExcept(originalNumArgs, argIndices, [&](unsigned i) {
223       newInputTypesBuffer.emplace_back(getInput(i));
224     });
225     newInputTypes = newInputTypesBuffer;
226   }
227 
228   ArrayRef<Type> newResultTypes = getResults();
229   SmallVector<Type, 4> newResultTypesBuffer;
230   if (!resultIndices.empty()) {
231     unsigned originalNumResults = getNumResults();
232     iterateIndicesExcept(originalNumResults, resultIndices, [&](unsigned i) {
233       newResultTypesBuffer.emplace_back(getResult(i));
234     });
235     newResultTypes = newResultTypesBuffer;
236   }
237 
238   return get(getContext(), newInputTypes, newResultTypes);
239 }
240 
241 void FunctionType::walkImmediateSubElements(
242     function_ref<void(Attribute)> walkAttrsFn,
243     function_ref<void(Type)> walkTypesFn) const {
244   for (Type type : llvm::concat<const Type>(getInputs(), getResults()))
245     walkTypesFn(type);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // OpaqueType
250 //===----------------------------------------------------------------------===//
251 
252 /// Verify the construction of an opaque type.
253 LogicalResult OpaqueType::verify(function_ref<InFlightDiagnostic()> emitError,
254                                  Identifier dialect, StringRef typeData) {
255   if (!Dialect::isValidNamespace(dialect.strref()))
256     return emitError() << "invalid dialect namespace '" << dialect << "'";
257 
258   // Check that the dialect is actually registered.
259   MLIRContext *context = dialect.getContext();
260   if (!context->allowsUnregisteredDialects() &&
261       !context->getLoadedDialect(dialect.strref())) {
262     return emitError()
263            << "`!" << dialect << "<\"" << typeData << "\">"
264            << "` type created with unregistered dialect. If this is "
265               "intended, please call allowUnregisteredDialects() on the "
266               "MLIRContext, or use -allow-unregistered-dialect with "
267               "mlir-opt";
268   }
269 
270   return success();
271 }
272 
273 //===----------------------------------------------------------------------===//
274 // ShapedType
275 //===----------------------------------------------------------------------===//
276 constexpr int64_t ShapedType::kDynamicSize;
277 constexpr int64_t ShapedType::kDynamicStrideOrOffset;
278 
279 ShapedType ShapedType::clone(ArrayRef<int64_t> shape, Type elementType) {
280   if (auto other = dyn_cast<MemRefType>()) {
281     MemRefType::Builder b(other);
282     b.setShape(shape);
283     b.setElementType(elementType);
284     return b;
285   }
286 
287   if (auto other = dyn_cast<UnrankedMemRefType>()) {
288     MemRefType::Builder b(shape, elementType);
289     b.setMemorySpace(other.getMemorySpace());
290     return b;
291   }
292 
293   if (isa<TensorType>())
294     return RankedTensorType::get(shape, elementType);
295 
296   if (isa<VectorType>())
297     return VectorType::get(shape, elementType);
298 
299   llvm_unreachable("Unhandled ShapedType clone case");
300 }
301 
302 ShapedType ShapedType::clone(ArrayRef<int64_t> shape) {
303   if (auto other = dyn_cast<MemRefType>()) {
304     MemRefType::Builder b(other);
305     b.setShape(shape);
306     return b;
307   }
308 
309   if (auto other = dyn_cast<UnrankedMemRefType>()) {
310     MemRefType::Builder b(shape, other.getElementType());
311     b.setShape(shape);
312     b.setMemorySpace(other.getMemorySpace());
313     return b;
314   }
315 
316   if (isa<TensorType>())
317     return RankedTensorType::get(shape, getElementType());
318 
319   if (isa<VectorType>())
320     return VectorType::get(shape, getElementType());
321 
322   llvm_unreachable("Unhandled ShapedType clone case");
323 }
324 
325 ShapedType ShapedType::clone(Type elementType) {
326   if (auto other = dyn_cast<MemRefType>()) {
327     MemRefType::Builder b(other);
328     b.setElementType(elementType);
329     return b;
330   }
331 
332   if (auto other = dyn_cast<UnrankedMemRefType>()) {
333     return UnrankedMemRefType::get(elementType, other.getMemorySpace());
334   }
335 
336   if (isa<TensorType>()) {
337     if (hasRank())
338       return RankedTensorType::get(getShape(), elementType);
339     return UnrankedTensorType::get(elementType);
340   }
341 
342   if (isa<VectorType>())
343     return VectorType::get(getShape(), elementType);
344 
345   llvm_unreachable("Unhandled ShapedType clone hit");
346 }
347 
348 Type ShapedType::getElementType() const {
349   return TypeSwitch<Type, Type>(*this)
350       .Case<VectorType, RankedTensorType, UnrankedTensorType, MemRefType,
351             UnrankedMemRefType>([](auto ty) { return ty.getElementType(); });
352 }
353 
354 unsigned ShapedType::getElementTypeBitWidth() const {
355   return getElementType().getIntOrFloatBitWidth();
356 }
357 
358 int64_t ShapedType::getNumElements() const {
359   assert(hasStaticShape() && "cannot get element count of dynamic shaped type");
360   auto shape = getShape();
361   int64_t num = 1;
362   for (auto dim : shape) {
363     num *= dim;
364     assert(num >= 0 && "integer overflow in element count computation");
365   }
366   return num;
367 }
368 
369 int64_t ShapedType::getRank() const {
370   assert(hasRank() && "cannot query rank of unranked shaped type");
371   return getShape().size();
372 }
373 
374 bool ShapedType::hasRank() const {
375   return !isa<UnrankedMemRefType, UnrankedTensorType>();
376 }
377 
378 int64_t ShapedType::getDimSize(unsigned idx) const {
379   assert(idx < getRank() && "invalid index for shaped type");
380   return getShape()[idx];
381 }
382 
383 bool ShapedType::isDynamicDim(unsigned idx) const {
384   assert(idx < getRank() && "invalid index for shaped type");
385   return isDynamic(getShape()[idx]);
386 }
387 
388 unsigned ShapedType::getDynamicDimIndex(unsigned index) const {
389   assert(index < getRank() && "invalid index");
390   assert(ShapedType::isDynamic(getDimSize(index)) && "invalid index");
391   return llvm::count_if(getShape().take_front(index), ShapedType::isDynamic);
392 }
393 
394 /// Get the number of bits require to store a value of the given shaped type.
395 /// Compute the value recursively since tensors are allowed to have vectors as
396 /// elements.
397 int64_t ShapedType::getSizeInBits() const {
398   assert(hasStaticShape() &&
399          "cannot get the bit size of an aggregate with a dynamic shape");
400 
401   auto elementType = getElementType();
402   if (elementType.isIntOrFloat())
403     return elementType.getIntOrFloatBitWidth() * getNumElements();
404 
405   if (auto complexType = elementType.dyn_cast<ComplexType>()) {
406     elementType = complexType.getElementType();
407     return elementType.getIntOrFloatBitWidth() * getNumElements() * 2;
408   }
409 
410   // Tensors can have vectors and other tensors as elements, other shaped types
411   // cannot.
412   assert(isa<TensorType>() && "unsupported element type");
413   assert((elementType.isa<VectorType, TensorType>()) &&
414          "unsupported tensor element type");
415   return getNumElements() * elementType.cast<ShapedType>().getSizeInBits();
416 }
417 
418 ArrayRef<int64_t> ShapedType::getShape() const {
419   if (auto vectorType = dyn_cast<VectorType>())
420     return vectorType.getShape();
421   if (auto tensorType = dyn_cast<RankedTensorType>())
422     return tensorType.getShape();
423   return cast<MemRefType>().getShape();
424 }
425 
426 int64_t ShapedType::getNumDynamicDims() const {
427   return llvm::count_if(getShape(), isDynamic);
428 }
429 
430 bool ShapedType::hasStaticShape() const {
431   return hasRank() && llvm::none_of(getShape(), isDynamic);
432 }
433 
434 bool ShapedType::hasStaticShape(ArrayRef<int64_t> shape) const {
435   return hasStaticShape() && getShape() == shape;
436 }
437 
438 //===----------------------------------------------------------------------===//
439 // VectorType
440 //===----------------------------------------------------------------------===//
441 
442 LogicalResult VectorType::verify(function_ref<InFlightDiagnostic()> emitError,
443                                  ArrayRef<int64_t> shape, Type elementType) {
444   if (shape.empty())
445     return emitError() << "vector types must have at least one dimension";
446 
447   if (!isValidElementType(elementType))
448     return emitError() << "vector elements must be int/index/float type";
449 
450   if (any_of(shape, [](int64_t i) { return i <= 0; }))
451     return emitError() << "vector types must have positive constant sizes";
452 
453   return success();
454 }
455 
456 VectorType VectorType::scaleElementBitwidth(unsigned scale) {
457   if (!scale)
458     return VectorType();
459   if (auto et = getElementType().dyn_cast<IntegerType>())
460     if (auto scaledEt = et.scaleElementBitwidth(scale))
461       return VectorType::get(getShape(), scaledEt);
462   if (auto et = getElementType().dyn_cast<FloatType>())
463     if (auto scaledEt = et.scaleElementBitwidth(scale))
464       return VectorType::get(getShape(), scaledEt);
465   return VectorType();
466 }
467 
468 void VectorType::walkImmediateSubElements(
469     function_ref<void(Attribute)> walkAttrsFn,
470     function_ref<void(Type)> walkTypesFn) const {
471   walkTypesFn(getElementType());
472 }
473 
474 //===----------------------------------------------------------------------===//
475 // TensorType
476 //===----------------------------------------------------------------------===//
477 
478 // Check if "elementType" can be an element type of a tensor.
479 static LogicalResult
480 checkTensorElementType(function_ref<InFlightDiagnostic()> emitError,
481                        Type elementType) {
482   if (!TensorType::isValidElementType(elementType))
483     return emitError() << "invalid tensor element type: " << elementType;
484   return success();
485 }
486 
487 /// Return true if the specified element type is ok in a tensor.
488 bool TensorType::isValidElementType(Type type) {
489   // Note: Non standard/builtin types are allowed to exist within tensor
490   // types. Dialects are expected to verify that tensor types have a valid
491   // element type within that dialect.
492   return type.isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType,
493                   IndexType>() ||
494          !type.getDialect().getNamespace().empty();
495 }
496 
497 //===----------------------------------------------------------------------===//
498 // RankedTensorType
499 //===----------------------------------------------------------------------===//
500 
501 LogicalResult
502 RankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError,
503                          ArrayRef<int64_t> shape, Type elementType,
504                          Attribute encoding) {
505   for (int64_t s : shape)
506     if (s < -1)
507       return emitError() << "invalid tensor dimension size";
508   if (auto v = encoding.dyn_cast_or_null<VerifiableTensorEncoding>())
509     if (failed(v.verifyEncoding(shape, elementType, emitError)))
510       return failure();
511   return checkTensorElementType(emitError, elementType);
512 }
513 
514 void RankedTensorType::walkImmediateSubElements(
515     function_ref<void(Attribute)> walkAttrsFn,
516     function_ref<void(Type)> walkTypesFn) const {
517   walkTypesFn(getElementType());
518 }
519 
520 //===----------------------------------------------------------------------===//
521 // UnrankedTensorType
522 //===----------------------------------------------------------------------===//
523 
524 LogicalResult
525 UnrankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError,
526                            Type elementType) {
527   return checkTensorElementType(emitError, elementType);
528 }
529 
530 void UnrankedTensorType::walkImmediateSubElements(
531     function_ref<void(Attribute)> walkAttrsFn,
532     function_ref<void(Type)> walkTypesFn) const {
533   walkTypesFn(getElementType());
534 }
535 
536 //===----------------------------------------------------------------------===//
537 // BaseMemRefType
538 //===----------------------------------------------------------------------===//
539 
540 Attribute BaseMemRefType::getMemorySpace() const {
541   if (auto rankedMemRefTy = dyn_cast<MemRefType>())
542     return rankedMemRefTy.getMemorySpace();
543   return cast<UnrankedMemRefType>().getMemorySpace();
544 }
545 
546 unsigned BaseMemRefType::getMemorySpaceAsInt() const {
547   if (auto rankedMemRefTy = dyn_cast<MemRefType>())
548     return rankedMemRefTy.getMemorySpaceAsInt();
549   return cast<UnrankedMemRefType>().getMemorySpaceAsInt();
550 }
551 
552 //===----------------------------------------------------------------------===//
553 // MemRefType
554 //===----------------------------------------------------------------------===//
555 
556 /// Given an `originalShape` and a `reducedShape` assumed to be a subset of
557 /// `originalShape` with some `1` entries erased, return the set of indices
558 /// that specifies which of the entries of `originalShape` are dropped to obtain
559 /// `reducedShape`. The returned mask can be applied as a projection to
560 /// `originalShape` to obtain the `reducedShape`. This mask is useful to track
561 /// which dimensions must be kept when e.g. compute MemRef strides under
562 /// rank-reducing operations. Return None if reducedShape cannot be obtained
563 /// by dropping only `1` entries in `originalShape`.
564 llvm::Optional<llvm::SmallDenseSet<unsigned>>
565 mlir::computeRankReductionMask(ArrayRef<int64_t> originalShape,
566                                ArrayRef<int64_t> reducedShape) {
567   size_t originalRank = originalShape.size(), reducedRank = reducedShape.size();
568   llvm::SmallDenseSet<unsigned> unusedDims;
569   unsigned reducedIdx = 0;
570   for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) {
571     // Greedily insert `originalIdx` if no match.
572     if (reducedIdx < reducedRank &&
573         originalShape[originalIdx] == reducedShape[reducedIdx]) {
574       reducedIdx++;
575       continue;
576     }
577 
578     unusedDims.insert(originalIdx);
579     // If no match on `originalIdx`, the `originalShape` at this dimension
580     // must be 1, otherwise we bail.
581     if (originalShape[originalIdx] != 1)
582       return llvm::None;
583   }
584   // The whole reducedShape must be scanned, otherwise we bail.
585   if (reducedIdx != reducedRank)
586     return llvm::None;
587   return unusedDims;
588 }
589 
590 bool mlir::detail::isSupportedMemorySpace(Attribute memorySpace) {
591   // Empty attribute is allowed as default memory space.
592   if (!memorySpace)
593     return true;
594 
595   // Supported built-in attributes.
596   if (memorySpace.isa<IntegerAttr, StringAttr, DictionaryAttr>())
597     return true;
598 
599   // Allow custom dialect attributes.
600   if (!::mlir::isa<BuiltinDialect>(memorySpace.getDialect()))
601     return true;
602 
603   return false;
604 }
605 
606 Attribute mlir::detail::wrapIntegerMemorySpace(unsigned memorySpace,
607                                                MLIRContext *ctx) {
608   if (memorySpace == 0)
609     return nullptr;
610 
611   return IntegerAttr::get(IntegerType::get(ctx, 64), memorySpace);
612 }
613 
614 Attribute mlir::detail::skipDefaultMemorySpace(Attribute memorySpace) {
615   IntegerAttr intMemorySpace = memorySpace.dyn_cast_or_null<IntegerAttr>();
616   if (intMemorySpace && intMemorySpace.getValue() == 0)
617     return nullptr;
618 
619   return memorySpace;
620 }
621 
622 unsigned mlir::detail::getMemorySpaceAsInt(Attribute memorySpace) {
623   if (!memorySpace)
624     return 0;
625 
626   assert(memorySpace.isa<IntegerAttr>() &&
627          "Using `getMemorySpaceInteger` with non-Integer attribute");
628 
629   return static_cast<unsigned>(memorySpace.cast<IntegerAttr>().getInt());
630 }
631 
632 MemRefType::Builder &
633 MemRefType::Builder::setMemorySpace(unsigned newMemorySpace) {
634   memorySpace =
635       wrapIntegerMemorySpace(newMemorySpace, elementType.getContext());
636   return *this;
637 }
638 
639 unsigned MemRefType::getMemorySpaceAsInt() const {
640   return detail::getMemorySpaceAsInt(getMemorySpace());
641 }
642 
643 LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError,
644                                  ArrayRef<int64_t> shape, Type elementType,
645                                  ArrayRef<AffineMap> affineMapComposition,
646                                  Attribute memorySpace) {
647   if (!BaseMemRefType::isValidElementType(elementType))
648     return emitError() << "invalid memref element type";
649 
650   // Negative sizes are not allowed except for `-1` that means dynamic size.
651   for (int64_t s : shape)
652     if (s < -1)
653       return emitError() << "invalid memref size";
654 
655   // Check that the structure of the composition is valid, i.e. that each
656   // subsequent affine map has as many inputs as the previous map has results.
657   // Take the dimensionality of the MemRef for the first map.
658   size_t dim = shape.size();
659   for (auto it : llvm::enumerate(affineMapComposition)) {
660     AffineMap map = it.value();
661     if (map.getNumDims() == dim) {
662       dim = map.getNumResults();
663       continue;
664     }
665     return emitError() << "memref affine map dimension mismatch between "
666                        << (it.index() == 0 ? Twine("memref rank")
667                                            : "affine map " + Twine(it.index()))
668                        << " and affine map" << it.index() + 1 << ": " << dim
669                        << " != " << map.getNumDims();
670   }
671 
672   if (!isSupportedMemorySpace(memorySpace)) {
673     return emitError() << "unsupported memory space Attribute";
674   }
675 
676   return success();
677 }
678 
679 void MemRefType::walkImmediateSubElements(
680     function_ref<void(Attribute)> walkAttrsFn,
681     function_ref<void(Type)> walkTypesFn) const {
682   walkTypesFn(getElementType());
683   walkAttrsFn(getMemorySpace());
684   for (AffineMap map : getAffineMaps())
685     walkAttrsFn(AffineMapAttr::get(map));
686 }
687 
688 //===----------------------------------------------------------------------===//
689 // UnrankedMemRefType
690 //===----------------------------------------------------------------------===//
691 
692 unsigned UnrankedMemRefType::getMemorySpaceAsInt() const {
693   return detail::getMemorySpaceAsInt(getMemorySpace());
694 }
695 
696 LogicalResult
697 UnrankedMemRefType::verify(function_ref<InFlightDiagnostic()> emitError,
698                            Type elementType, Attribute memorySpace) {
699   if (!BaseMemRefType::isValidElementType(elementType))
700     return emitError() << "invalid memref element type";
701 
702   if (!isSupportedMemorySpace(memorySpace))
703     return emitError() << "unsupported memory space Attribute";
704 
705   return success();
706 }
707 
708 // Fallback cases for terminal dim/sym/cst that are not part of a binary op (
709 // i.e. single term). Accumulate the AffineExpr into the existing one.
710 static void extractStridesFromTerm(AffineExpr e,
711                                    AffineExpr multiplicativeFactor,
712                                    MutableArrayRef<AffineExpr> strides,
713                                    AffineExpr &offset) {
714   if (auto dim = e.dyn_cast<AffineDimExpr>())
715     strides[dim.getPosition()] =
716         strides[dim.getPosition()] + multiplicativeFactor;
717   else
718     offset = offset + e * multiplicativeFactor;
719 }
720 
721 /// Takes a single AffineExpr `e` and populates the `strides` array with the
722 /// strides expressions for each dim position.
723 /// The convention is that the strides for dimensions d0, .. dn appear in
724 /// order to make indexing intuitive into the result.
725 static LogicalResult extractStrides(AffineExpr e,
726                                     AffineExpr multiplicativeFactor,
727                                     MutableArrayRef<AffineExpr> strides,
728                                     AffineExpr &offset) {
729   auto bin = e.dyn_cast<AffineBinaryOpExpr>();
730   if (!bin) {
731     extractStridesFromTerm(e, multiplicativeFactor, strides, offset);
732     return success();
733   }
734 
735   if (bin.getKind() == AffineExprKind::CeilDiv ||
736       bin.getKind() == AffineExprKind::FloorDiv ||
737       bin.getKind() == AffineExprKind::Mod)
738     return failure();
739 
740   if (bin.getKind() == AffineExprKind::Mul) {
741     auto dim = bin.getLHS().dyn_cast<AffineDimExpr>();
742     if (dim) {
743       strides[dim.getPosition()] =
744           strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor;
745       return success();
746     }
747     // LHS and RHS may both contain complex expressions of dims. Try one path
748     // and if it fails try the other. This is guaranteed to succeed because
749     // only one path may have a `dim`, otherwise this is not an AffineExpr in
750     // the first place.
751     if (bin.getLHS().isSymbolicOrConstant())
752       return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(),
753                             strides, offset);
754     return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(),
755                           strides, offset);
756   }
757 
758   if (bin.getKind() == AffineExprKind::Add) {
759     auto res1 =
760         extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset);
761     auto res2 =
762         extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset);
763     return success(succeeded(res1) && succeeded(res2));
764   }
765 
766   llvm_unreachable("unexpected binary operation");
767 }
768 
769 LogicalResult mlir::getStridesAndOffset(MemRefType t,
770                                         SmallVectorImpl<AffineExpr> &strides,
771                                         AffineExpr &offset) {
772   auto affineMaps = t.getAffineMaps();
773 
774   if (!affineMaps.empty() && affineMaps.back().getNumResults() != 1)
775     return failure();
776 
777   AffineMap m;
778   if (!affineMaps.empty()) {
779     m = affineMaps.back();
780     for (size_t i = affineMaps.size() - 1; i > 0; --i)
781       m = m.compose(affineMaps[i - 1]);
782     assert(!m.isIdentity() && "unexpected identity map");
783   }
784 
785   auto zero = getAffineConstantExpr(0, t.getContext());
786   auto one = getAffineConstantExpr(1, t.getContext());
787   offset = zero;
788   strides.assign(t.getRank(), zero);
789 
790   // Canonical case for empty map.
791   if (!m) {
792     // 0-D corner case, offset is already 0.
793     if (t.getRank() == 0)
794       return success();
795     auto stridedExpr =
796         makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext());
797     if (succeeded(extractStrides(stridedExpr, one, strides, offset)))
798       return success();
799     assert(false && "unexpected failure: extract strides in canonical layout");
800   }
801 
802   // Non-canonical case requires more work.
803   auto stridedExpr =
804       simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols());
805   if (failed(extractStrides(stridedExpr, one, strides, offset))) {
806     offset = AffineExpr();
807     strides.clear();
808     return failure();
809   }
810 
811   // Simplify results to allow folding to constants and simple checks.
812   unsigned numDims = m.getNumDims();
813   unsigned numSymbols = m.getNumSymbols();
814   offset = simplifyAffineExpr(offset, numDims, numSymbols);
815   for (auto &stride : strides)
816     stride = simplifyAffineExpr(stride, numDims, numSymbols);
817 
818   /// In practice, a strided memref must be internally non-aliasing. Test
819   /// against 0 as a proxy.
820   /// TODO: static cases can have more advanced checks.
821   /// TODO: dynamic cases would require a way to compare symbolic
822   /// expressions and would probably need an affine set context propagated
823   /// everywhere.
824   if (llvm::any_of(strides, [](AffineExpr e) {
825         return e == getAffineConstantExpr(0, e.getContext());
826       })) {
827     offset = AffineExpr();
828     strides.clear();
829     return failure();
830   }
831 
832   return success();
833 }
834 
835 LogicalResult mlir::getStridesAndOffset(MemRefType t,
836                                         SmallVectorImpl<int64_t> &strides,
837                                         int64_t &offset) {
838   AffineExpr offsetExpr;
839   SmallVector<AffineExpr, 4> strideExprs;
840   if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr)))
841     return failure();
842   if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>())
843     offset = cst.getValue();
844   else
845     offset = ShapedType::kDynamicStrideOrOffset;
846   for (auto e : strideExprs) {
847     if (auto c = e.dyn_cast<AffineConstantExpr>())
848       strides.push_back(c.getValue());
849     else
850       strides.push_back(ShapedType::kDynamicStrideOrOffset);
851   }
852   return success();
853 }
854 
855 void UnrankedMemRefType::walkImmediateSubElements(
856     function_ref<void(Attribute)> walkAttrsFn,
857     function_ref<void(Type)> walkTypesFn) const {
858   walkTypesFn(getElementType());
859   walkAttrsFn(getMemorySpace());
860 }
861 
862 //===----------------------------------------------------------------------===//
863 /// TupleType
864 //===----------------------------------------------------------------------===//
865 
866 /// Return the elements types for this tuple.
867 ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); }
868 
869 /// Accumulate the types contained in this tuple and tuples nested within it.
870 /// Note that this only flattens nested tuples, not any other container type,
871 /// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to
872 /// (i32, tensor<i32>, f32, i64)
873 void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) {
874   for (Type type : getTypes()) {
875     if (auto nestedTuple = type.dyn_cast<TupleType>())
876       nestedTuple.getFlattenedTypes(types);
877     else
878       types.push_back(type);
879   }
880 }
881 
882 /// Return the number of element types.
883 size_t TupleType::size() const { return getImpl()->size(); }
884 
885 void TupleType::walkImmediateSubElements(
886     function_ref<void(Attribute)> walkAttrsFn,
887     function_ref<void(Type)> walkTypesFn) const {
888   for (Type type : getTypes())
889     walkTypesFn(type);
890 }
891 
892 //===----------------------------------------------------------------------===//
893 // Type Utilities
894 //===----------------------------------------------------------------------===//
895 
896 AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides,
897                                            int64_t offset,
898                                            MLIRContext *context) {
899   AffineExpr expr;
900   unsigned nSymbols = 0;
901 
902   // AffineExpr for offset.
903   // Static case.
904   if (offset != MemRefType::getDynamicStrideOrOffset()) {
905     auto cst = getAffineConstantExpr(offset, context);
906     expr = cst;
907   } else {
908     // Dynamic case, new symbol for the offset.
909     auto sym = getAffineSymbolExpr(nSymbols++, context);
910     expr = sym;
911   }
912 
913   // AffineExpr for strides.
914   for (auto en : llvm::enumerate(strides)) {
915     auto dim = en.index();
916     auto stride = en.value();
917     assert(stride != 0 && "Invalid stride specification");
918     auto d = getAffineDimExpr(dim, context);
919     AffineExpr mult;
920     // Static case.
921     if (stride != MemRefType::getDynamicStrideOrOffset())
922       mult = getAffineConstantExpr(stride, context);
923     else
924       // Dynamic case, new symbol for each new stride.
925       mult = getAffineSymbolExpr(nSymbols++, context);
926     expr = expr + d * mult;
927   }
928 
929   return AffineMap::get(strides.size(), nSymbols, expr);
930 }
931 
932 /// Return a version of `t` with identity layout if it can be determined
933 /// statically that the layout is the canonical contiguous strided layout.
934 /// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of
935 /// `t` with simplified layout.
936 /// If `t` has multiple layout maps or a multi-result layout, just return `t`.
937 MemRefType mlir::canonicalizeStridedLayout(MemRefType t) {
938   auto affineMaps = t.getAffineMaps();
939   // Already in canonical form.
940   if (affineMaps.empty())
941     return t;
942 
943   // Can't reduce to canonical identity form, return in canonical form.
944   if (affineMaps.size() > 1 || affineMaps[0].getNumResults() > 1)
945     return t;
946 
947   // Corner-case for 0-D affine maps.
948   auto m = affineMaps[0];
949   if (m.getNumDims() == 0 && m.getNumSymbols() == 0) {
950     if (auto cst = m.getResult(0).dyn_cast<AffineConstantExpr>())
951       if (cst.getValue() == 0)
952         return MemRefType::Builder(t).setAffineMaps({});
953     return t;
954   }
955 
956   // 0-D corner case for empty shape that still have an affine map. Example:
957   // `memref<f32, affine_map<()[s0] -> (s0)>>`. This is a 1 element memref whose
958   // offset needs to remain, just return t.
959   if (t.getShape().empty())
960     return t;
961 
962   // If the canonical strided layout for the sizes of `t` is equal to the
963   // simplified layout of `t` we can just return an empty layout. Otherwise,
964   // just simplify the existing layout.
965   AffineExpr expr =
966       makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext());
967   auto simplifiedLayoutExpr =
968       simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols());
969   if (expr != simplifiedLayoutExpr)
970     return MemRefType::Builder(t).setAffineMaps({AffineMap::get(
971         m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)});
972   return MemRefType::Builder(t).setAffineMaps({});
973 }
974 
975 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes,
976                                                 ArrayRef<AffineExpr> exprs,
977                                                 MLIRContext *context) {
978   assert(!sizes.empty() && !exprs.empty() &&
979          "expected non-empty sizes and exprs");
980 
981   // Size 0 corner case is useful for canonicalizations.
982   if (llvm::is_contained(sizes, 0))
983     return getAffineConstantExpr(0, context);
984 
985   auto maps = AffineMap::inferFromExprList(exprs);
986   assert(!maps.empty() && "Expected one non-empty map");
987   unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols();
988 
989   AffineExpr expr;
990   bool dynamicPoisonBit = false;
991   int64_t runningSize = 1;
992   for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) {
993     int64_t size = std::get<1>(en);
994     // Degenerate case, no size =-> no stride
995     if (size == 0)
996       continue;
997     AffineExpr dimExpr = std::get<0>(en);
998     AffineExpr stride = dynamicPoisonBit
999                             ? getAffineSymbolExpr(nSymbols++, context)
1000                             : getAffineConstantExpr(runningSize, context);
1001     expr = expr ? expr + dimExpr * stride : dimExpr * stride;
1002     if (size > 0) {
1003       runningSize *= size;
1004       assert(runningSize > 0 && "integer overflow in size computation");
1005     } else {
1006       dynamicPoisonBit = true;
1007     }
1008   }
1009   return simplifyAffineExpr(expr, numDims, nSymbols);
1010 }
1011 
1012 /// Return a version of `t` with a layout that has all dynamic offset and
1013 /// strides. This is used to erase the static layout.
1014 MemRefType mlir::eraseStridedLayout(MemRefType t) {
1015   auto val = ShapedType::kDynamicStrideOrOffset;
1016   return MemRefType::Builder(t).setAffineMaps(makeStridedLinearLayoutMap(
1017       SmallVector<int64_t, 4>(t.getRank(), val), val, t.getContext()));
1018 }
1019 
1020 AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes,
1021                                                 MLIRContext *context) {
1022   SmallVector<AffineExpr, 4> exprs;
1023   exprs.reserve(sizes.size());
1024   for (auto dim : llvm::seq<unsigned>(0, sizes.size()))
1025     exprs.push_back(getAffineDimExpr(dim, context));
1026   return makeCanonicalStridedLayoutExpr(sizes, exprs, context);
1027 }
1028 
1029 /// Return true if the layout for `t` is compatible with strided semantics.
1030 bool mlir::isStrided(MemRefType t) {
1031   int64_t offset;
1032   SmallVector<int64_t, 4> strides;
1033   auto res = getStridesAndOffset(t, strides, offset);
1034   return succeeded(res);
1035 }
1036 
1037 /// Return the layout map in strided linear layout AffineMap form.
1038 /// Return null if the layout is not compatible with a strided layout.
1039 AffineMap mlir::getStridedLinearLayoutMap(MemRefType t) {
1040   int64_t offset;
1041   SmallVector<int64_t, 4> strides;
1042   if (failed(getStridesAndOffset(t, strides, offset)))
1043     return AffineMap();
1044   return makeStridedLinearLayoutMap(strides, offset, t.getContext());
1045 }
1046