1 //===- BuiltinAttributes.cpp - MLIR Builtin Attribute Classes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/BuiltinAttributes.h"
10 #include "AttributeDetail.h"
11 #include "mlir/IR/AffineMap.h"
12 #include "mlir/IR/BuiltinDialect.h"
13 #include "mlir/IR/Dialect.h"
14 #include "mlir/IR/IntegerSet.h"
15 #include "mlir/IR/Operation.h"
16 #include "mlir/IR/SymbolTable.h"
17 #include "mlir/IR/Types.h"
18 #include "mlir/Interfaces/DecodeAttributesInterfaces.h"
19 #include "llvm/ADT/APSInt.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/Support/Endian.h"
22 
23 using namespace mlir;
24 using namespace mlir::detail;
25 
26 //===----------------------------------------------------------------------===//
27 /// Tablegen Attribute Definitions
28 //===----------------------------------------------------------------------===//
29 
30 #define GET_ATTRDEF_CLASSES
31 #include "mlir/IR/BuiltinAttributes.cpp.inc"
32 
33 //===----------------------------------------------------------------------===//
34 // BuiltinDialect
35 //===----------------------------------------------------------------------===//
36 
37 void BuiltinDialect::registerAttributes() {
38   addAttributes<AffineMapAttr, ArrayAttr, DenseIntOrFPElementsAttr,
39                 DenseStringElementsAttr, DictionaryAttr, FloatAttr,
40                 SymbolRefAttr, IntegerAttr, IntegerSetAttr, OpaqueAttr,
41                 OpaqueElementsAttr, SparseElementsAttr, StringAttr, TypeAttr,
42                 UnitAttr>();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 // ArrayAttr
47 //===----------------------------------------------------------------------===//
48 
49 void ArrayAttr::walkImmediateSubElements(
50     function_ref<void(Attribute)> walkAttrsFn,
51     function_ref<void(Type)> walkTypesFn) const {
52   for (Attribute attr : getValue())
53     walkAttrsFn(attr);
54 }
55 
56 SubElementAttrInterface ArrayAttr::replaceImmediateSubAttribute(
57     ArrayRef<std::pair<size_t, Attribute>> replacements) const {
58   std::vector<Attribute> vector = getValue().vec();
59   for (auto &it : replacements) {
60     vector[it.first] = it.second;
61   }
62   return get(getContext(), vector);
63 }
64 
65 //===----------------------------------------------------------------------===//
66 // DictionaryAttr
67 //===----------------------------------------------------------------------===//
68 
69 /// Helper function that does either an in place sort or sorts from source array
70 /// into destination. If inPlace then storage is both the source and the
71 /// destination, else value is the source and storage destination. Returns
72 /// whether source was sorted.
73 template <bool inPlace>
74 static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
75                                SmallVectorImpl<NamedAttribute> &storage) {
76   // Specialize for the common case.
77   switch (value.size()) {
78   case 0:
79     // Zero already sorted.
80     if (!inPlace)
81       storage.clear();
82     break;
83   case 1:
84     // One already sorted but may need to be copied.
85     if (!inPlace)
86       storage.assign({value[0]});
87     break;
88   case 2: {
89     bool isSorted = value[0] < value[1];
90     if (inPlace) {
91       if (!isSorted)
92         std::swap(storage[0], storage[1]);
93     } else if (isSorted) {
94       storage.assign({value[0], value[1]});
95     } else {
96       storage.assign({value[1], value[0]});
97     }
98     return !isSorted;
99   }
100   default:
101     if (!inPlace)
102       storage.assign(value.begin(), value.end());
103     // Check to see they are sorted already.
104     bool isSorted = llvm::is_sorted(value);
105     // If not, do a general sort.
106     if (!isSorted)
107       llvm::array_pod_sort(storage.begin(), storage.end());
108     return !isSorted;
109   }
110   return false;
111 }
112 
113 /// Returns an entry with a duplicate name from the given sorted array of named
114 /// attributes. Returns llvm::None if all elements have unique names.
115 static Optional<NamedAttribute>
116 findDuplicateElement(ArrayRef<NamedAttribute> value) {
117   const Optional<NamedAttribute> none{llvm::None};
118   if (value.size() < 2)
119     return none;
120 
121   if (value.size() == 2)
122     return value[0].getName() == value[1].getName() ? value[0] : none;
123 
124   auto it = std::adjacent_find(value.begin(), value.end(),
125                                [](NamedAttribute l, NamedAttribute r) {
126                                  return l.getName() == r.getName();
127                                });
128   return it != value.end() ? *it : none;
129 }
130 
131 bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
132                           SmallVectorImpl<NamedAttribute> &storage) {
133   bool isSorted = dictionaryAttrSort</*inPlace=*/false>(value, storage);
134   assert(!findDuplicateElement(storage) &&
135          "DictionaryAttr element names must be unique");
136   return isSorted;
137 }
138 
139 bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
140   bool isSorted = dictionaryAttrSort</*inPlace=*/true>(array, array);
141   assert(!findDuplicateElement(array) &&
142          "DictionaryAttr element names must be unique");
143   return isSorted;
144 }
145 
146 Optional<NamedAttribute>
147 DictionaryAttr::findDuplicate(SmallVectorImpl<NamedAttribute> &array,
148                               bool isSorted) {
149   if (!isSorted)
150     dictionaryAttrSort</*inPlace=*/true>(array, array);
151   return findDuplicateElement(array);
152 }
153 
154 DictionaryAttr DictionaryAttr::get(MLIRContext *context,
155                                    ArrayRef<NamedAttribute> value) {
156   if (value.empty())
157     return DictionaryAttr::getEmpty(context);
158 
159   // We need to sort the element list to canonicalize it.
160   SmallVector<NamedAttribute, 8> storage;
161   if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
162     value = storage;
163   assert(!findDuplicateElement(value) &&
164          "DictionaryAttr element names must be unique");
165   return Base::get(context, value);
166 }
167 /// Construct a dictionary with an array of values that is known to already be
168 /// sorted by name and uniqued.
169 DictionaryAttr DictionaryAttr::getWithSorted(MLIRContext *context,
170                                              ArrayRef<NamedAttribute> value) {
171   if (value.empty())
172     return DictionaryAttr::getEmpty(context);
173   // Ensure that the attribute elements are unique and sorted.
174   assert(llvm::is_sorted(
175              value, [](NamedAttribute l, NamedAttribute r) { return l < r; }) &&
176          "expected attribute values to be sorted");
177   assert(!findDuplicateElement(value) &&
178          "DictionaryAttr element names must be unique");
179   return Base::get(context, value);
180 }
181 
182 /// Return the specified attribute if present, null otherwise.
183 Attribute DictionaryAttr::get(StringRef name) const {
184   auto it = impl::findAttrSorted(begin(), end(), name);
185   return it.second ? it.first->getValue() : Attribute();
186 }
187 Attribute DictionaryAttr::get(StringAttr name) const {
188   auto it = impl::findAttrSorted(begin(), end(), name);
189   return it.second ? it.first->getValue() : Attribute();
190 }
191 
192 /// Return the specified named attribute if present, None otherwise.
193 Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
194   auto it = impl::findAttrSorted(begin(), end(), name);
195   return it.second ? *it.first : Optional<NamedAttribute>();
196 }
197 Optional<NamedAttribute> DictionaryAttr::getNamed(StringAttr name) const {
198   auto it = impl::findAttrSorted(begin(), end(), name);
199   return it.second ? *it.first : Optional<NamedAttribute>();
200 }
201 
202 /// Return whether the specified attribute is present.
203 bool DictionaryAttr::contains(StringRef name) const {
204   return impl::findAttrSorted(begin(), end(), name).second;
205 }
206 bool DictionaryAttr::contains(StringAttr name) const {
207   return impl::findAttrSorted(begin(), end(), name).second;
208 }
209 
210 DictionaryAttr::iterator DictionaryAttr::begin() const {
211   return getValue().begin();
212 }
213 DictionaryAttr::iterator DictionaryAttr::end() const {
214   return getValue().end();
215 }
216 size_t DictionaryAttr::size() const { return getValue().size(); }
217 
218 DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) {
219   return Base::get(context, ArrayRef<NamedAttribute>());
220 }
221 
222 void DictionaryAttr::walkImmediateSubElements(
223     function_ref<void(Attribute)> walkAttrsFn,
224     function_ref<void(Type)> walkTypesFn) const {
225   for (const NamedAttribute &attr : getValue())
226     walkAttrsFn(attr.getValue());
227 }
228 
229 SubElementAttrInterface DictionaryAttr::replaceImmediateSubAttribute(
230     ArrayRef<std::pair<size_t, Attribute>> replacements) const {
231   std::vector<NamedAttribute> vec = getValue().vec();
232   for (auto &it : replacements)
233     vec[it.first].setValue(it.second);
234 
235   // The above only modifies the mapped value, but not the key, and therefore
236   // not the order of the elements. It remains sorted
237   return getWithSorted(getContext(), vec);
238 }
239 
240 //===----------------------------------------------------------------------===//
241 // StringAttr
242 //===----------------------------------------------------------------------===//
243 
244 StringAttr StringAttr::getEmptyStringAttrUnchecked(MLIRContext *context) {
245   return Base::get(context, "", NoneType::get(context));
246 }
247 
248 /// Twine support for StringAttr.
249 StringAttr StringAttr::get(MLIRContext *context, const Twine &twine) {
250   // Fast-path empty twine.
251   if (twine.isTriviallyEmpty())
252     return get(context);
253   SmallVector<char, 32> tempStr;
254   return Base::get(context, twine.toStringRef(tempStr), NoneType::get(context));
255 }
256 
257 /// Twine support for StringAttr.
258 StringAttr StringAttr::get(const Twine &twine, Type type) {
259   SmallVector<char, 32> tempStr;
260   return Base::get(type.getContext(), twine.toStringRef(tempStr), type);
261 }
262 
263 StringRef StringAttr::getValue() const { return getImpl()->value; }
264 
265 Dialect *StringAttr::getReferencedDialect() const {
266   return getImpl()->referencedDialect;
267 }
268 
269 //===----------------------------------------------------------------------===//
270 // FloatAttr
271 //===----------------------------------------------------------------------===//
272 
273 double FloatAttr::getValueAsDouble() const {
274   return getValueAsDouble(getValue());
275 }
276 double FloatAttr::getValueAsDouble(APFloat value) {
277   if (&value.getSemantics() != &APFloat::IEEEdouble()) {
278     bool losesInfo = false;
279     value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
280                   &losesInfo);
281   }
282   return value.convertToDouble();
283 }
284 
285 LogicalResult FloatAttr::verify(function_ref<InFlightDiagnostic()> emitError,
286                                 Type type, APFloat value) {
287   // Verify that the type is correct.
288   if (!type.isa<FloatType>())
289     return emitError() << "expected floating point type";
290 
291   // Verify that the type semantics match that of the value.
292   if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
293     return emitError()
294            << "FloatAttr type doesn't match the type implied by its value";
295   }
296   return success();
297 }
298 
299 //===----------------------------------------------------------------------===//
300 // SymbolRefAttr
301 //===----------------------------------------------------------------------===//
302 
303 SymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value,
304                                  ArrayRef<FlatSymbolRefAttr> nestedRefs) {
305   return get(StringAttr::get(ctx, value), nestedRefs);
306 }
307 
308 FlatSymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value) {
309   return get(ctx, value, {}).cast<FlatSymbolRefAttr>();
310 }
311 
312 FlatSymbolRefAttr SymbolRefAttr::get(StringAttr value) {
313   return get(value, {}).cast<FlatSymbolRefAttr>();
314 }
315 
316 FlatSymbolRefAttr SymbolRefAttr::get(Operation *symbol) {
317   auto symName =
318       symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
319   assert(symName && "value does not have a valid symbol name");
320   return SymbolRefAttr::get(symName);
321 }
322 
323 StringAttr SymbolRefAttr::getLeafReference() const {
324   ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
325   return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getAttr();
326 }
327 
328 //===----------------------------------------------------------------------===//
329 // IntegerAttr
330 //===----------------------------------------------------------------------===//
331 
332 int64_t IntegerAttr::getInt() const {
333   assert((getType().isIndex() || getType().isSignlessInteger()) &&
334          "must be signless integer");
335   return getValue().getSExtValue();
336 }
337 
338 int64_t IntegerAttr::getSInt() const {
339   assert(getType().isSignedInteger() && "must be signed integer");
340   return getValue().getSExtValue();
341 }
342 
343 uint64_t IntegerAttr::getUInt() const {
344   assert(getType().isUnsignedInteger() && "must be unsigned integer");
345   return getValue().getZExtValue();
346 }
347 
348 /// Return the value as an APSInt which carries the signed from the type of
349 /// the attribute.  This traps on signless integers types!
350 APSInt IntegerAttr::getAPSInt() const {
351   assert(!getType().isSignlessInteger() &&
352          "Signless integers don't carry a sign for APSInt");
353   return APSInt(getValue(), getType().isUnsignedInteger());
354 }
355 
356 LogicalResult IntegerAttr::verify(function_ref<InFlightDiagnostic()> emitError,
357                                   Type type, APInt value) {
358   if (IntegerType integerType = type.dyn_cast<IntegerType>()) {
359     if (integerType.getWidth() != value.getBitWidth())
360       return emitError() << "integer type bit width (" << integerType.getWidth()
361                          << ") doesn't match value bit width ("
362                          << value.getBitWidth() << ")";
363     return success();
364   }
365   if (type.isa<IndexType>())
366     return success();
367   return emitError() << "expected integer or index type";
368 }
369 
370 BoolAttr IntegerAttr::getBoolAttrUnchecked(IntegerType type, bool value) {
371   auto attr = Base::get(type.getContext(), type, APInt(/*numBits=*/1, value));
372   return attr.cast<BoolAttr>();
373 }
374 
375 //===----------------------------------------------------------------------===//
376 // BoolAttr
377 
378 bool BoolAttr::getValue() const {
379   auto *storage = reinterpret_cast<IntegerAttrStorage *>(impl);
380   return storage->value.getBoolValue();
381 }
382 
383 bool BoolAttr::classof(Attribute attr) {
384   IntegerAttr intAttr = attr.dyn_cast<IntegerAttr>();
385   return intAttr && intAttr.getType().isSignlessInteger(1);
386 }
387 
388 //===----------------------------------------------------------------------===//
389 // OpaqueAttr
390 //===----------------------------------------------------------------------===//
391 
392 LogicalResult OpaqueAttr::verify(function_ref<InFlightDiagnostic()> emitError,
393                                  StringAttr dialect, StringRef attrData,
394                                  Type type) {
395   if (!Dialect::isValidNamespace(dialect.strref()))
396     return emitError() << "invalid dialect namespace '" << dialect << "'";
397 
398   // Check that the dialect is actually registered.
399   MLIRContext *context = dialect.getContext();
400   if (!context->allowsUnregisteredDialects() &&
401       !context->getLoadedDialect(dialect.strref())) {
402     return emitError()
403            << "#" << dialect << "<\"" << attrData << "\"> : " << type
404            << " attribute created with unregistered dialect. If this is "
405               "intended, please call allowUnregisteredDialects() on the "
406               "MLIRContext, or use -allow-unregistered-dialect with "
407               "the MLIR opt tool used";
408   }
409 
410   return success();
411 }
412 
413 //===----------------------------------------------------------------------===//
414 // DenseElementsAttr Utilities
415 //===----------------------------------------------------------------------===//
416 
417 /// Get the bitwidth of a dense element type within the buffer.
418 /// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
419 static size_t getDenseElementStorageWidth(size_t origWidth) {
420   return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
421 }
422 static size_t getDenseElementStorageWidth(Type elementType) {
423   return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
424 }
425 
426 /// Set a bit to a specific value.
427 static void setBit(char *rawData, size_t bitPos, bool value) {
428   if (value)
429     rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
430   else
431     rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
432 }
433 
434 /// Return the value of the specified bit.
435 static bool getBit(const char *rawData, size_t bitPos) {
436   return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
437 }
438 
439 /// Copy actual `numBytes` data from `value` (APInt) to char array(`result`) for
440 /// BE format.
441 static void copyAPIntToArrayForBEmachine(APInt value, size_t numBytes,
442                                          char *result) {
443   assert(llvm::support::endian::system_endianness() == // NOLINT
444          llvm::support::endianness::big);              // NOLINT
445   assert(value.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
446 
447   // Copy the words filled with data.
448   // For example, when `value` has 2 words, the first word is filled with data.
449   // `value` (10 bytes, BE):|abcdefgh|------ij| ==> `result` (BE):|abcdefgh|--|
450   size_t numFilledWords = (value.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
451   std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
452               numFilledWords, result);
453   // Convert last word of APInt to LE format and store it in char
454   // array(`valueLE`).
455   // ex. last word of `value` (BE): |------ij|  ==> `valueLE` (LE): |ji------|
456   size_t lastWordPos = numFilledWords;
457   SmallVector<char, 8> valueLE(APInt::APINT_WORD_SIZE);
458   DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
459       reinterpret_cast<const char *>(value.getRawData()) + lastWordPos,
460       valueLE.begin(), APInt::APINT_BITS_PER_WORD, 1);
461   // Extract actual APInt data from `valueLE`, convert endianness to BE format,
462   // and store it in `result`.
463   // ex. `valueLE` (LE): |ji------|  ==> `result` (BE): |abcdefgh|ij|
464   DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
465       valueLE.begin(), result + lastWordPos,
466       (numBytes - lastWordPos) * CHAR_BIT, 1);
467 }
468 
469 /// Copy `numBytes` data from `inArray`(char array) to `result`(APINT) for BE
470 /// format.
471 static void copyArrayToAPIntForBEmachine(const char *inArray, size_t numBytes,
472                                          APInt &result) {
473   assert(llvm::support::endian::system_endianness() == // NOLINT
474          llvm::support::endianness::big);              // NOLINT
475   assert(result.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);
476 
477   // Copy the data that fills the word of `result` from `inArray`.
478   // For example, when `result` has 2 words, the first word will be filled with
479   // data. So, the first 8 bytes are copied from `inArray` here.
480   // `inArray` (10 bytes, BE): |abcdefgh|ij|
481   //                     ==> `result` (2 words, BE): |abcdefgh|--------|
482   size_t numFilledWords = (result.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
483   std::copy_n(
484       inArray, numFilledWords,
485       const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())));
486 
487   // Convert array data which will be last word of `result` to LE format, and
488   // store it in char array(`inArrayLE`).
489   // ex. `inArray` (last two bytes, BE): |ij|  ==> `inArrayLE` (LE): |ji------|
490   size_t lastWordPos = numFilledWords;
491   SmallVector<char, 8> inArrayLE(APInt::APINT_WORD_SIZE);
492   DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
493       inArray + lastWordPos, inArrayLE.begin(),
494       (numBytes - lastWordPos) * CHAR_BIT, 1);
495 
496   // Convert `inArrayLE` to BE format, and store it in last word of `result`.
497   // ex. `inArrayLE` (LE): |ji------|  ==> `result` (BE): |abcdefgh|------ij|
498   DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
499       inArrayLE.begin(),
500       const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())) +
501           lastWordPos,
502       APInt::APINT_BITS_PER_WORD, 1);
503 }
504 
505 /// Writes value to the bit position `bitPos` in array `rawData`.
506 static void writeBits(char *rawData, size_t bitPos, APInt value) {
507   size_t bitWidth = value.getBitWidth();
508 
509   // If the bitwidth is 1 we just toggle the specific bit.
510   if (bitWidth == 1)
511     return setBit(rawData, bitPos, value.isOneValue());
512 
513   // Otherwise, the bit position is guaranteed to be byte aligned.
514   assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
515   if (llvm::support::endian::system_endianness() ==
516       llvm::support::endianness::big) {
517     // Copy from `value` to `rawData + (bitPos / CHAR_BIT)`.
518     // Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
519     // work correctly in BE format.
520     // ex. `value` (2 words including 10 bytes)
521     // ==> BE: |abcdefgh|------ij|,  LE: |hgfedcba|ji------|
522     copyAPIntToArrayForBEmachine(value, llvm::divideCeil(bitWidth, CHAR_BIT),
523                                  rawData + (bitPos / CHAR_BIT));
524   } else {
525     std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
526                 llvm::divideCeil(bitWidth, CHAR_BIT),
527                 rawData + (bitPos / CHAR_BIT));
528   }
529 }
530 
531 /// Reads the next `bitWidth` bits from the bit position `bitPos` in array
532 /// `rawData`.
533 static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
534   // Handle a boolean bit position.
535   if (bitWidth == 1)
536     return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
537 
538   // Otherwise, the bit position must be 8-bit aligned.
539   assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
540   APInt result(bitWidth, 0);
541   if (llvm::support::endian::system_endianness() ==
542       llvm::support::endianness::big) {
543     // Copy from `rawData + (bitPos / CHAR_BIT)` to `result`.
544     // Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
545     // work correctly in BE format.
546     // ex. `result` (2 words including 10 bytes)
547     // ==> BE: |abcdefgh|------ij|,  LE: |hgfedcba|ji------| This function
548     copyArrayToAPIntForBEmachine(rawData + (bitPos / CHAR_BIT),
549                                  llvm::divideCeil(bitWidth, CHAR_BIT), result);
550   } else {
551     std::copy_n(rawData + (bitPos / CHAR_BIT),
552                 llvm::divideCeil(bitWidth, CHAR_BIT),
553                 const_cast<char *>(
554                     reinterpret_cast<const char *>(result.getRawData())));
555   }
556   return result;
557 }
558 
559 /// Returns true if 'values' corresponds to a splat, i.e. one element, or has
560 /// the same element count as 'type'.
561 template <typename Values>
562 static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
563   return (values.size() == 1) ||
564          (type.getNumElements() == static_cast<int64_t>(values.size()));
565 }
566 
567 //===----------------------------------------------------------------------===//
568 // DenseElementsAttr Iterators
569 //===----------------------------------------------------------------------===//
570 
571 //===----------------------------------------------------------------------===//
572 // AttributeElementIterator
573 
574 DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
575     DenseElementsAttr attr, size_t index)
576     : llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
577                                       Attribute, Attribute, Attribute>(
578           attr.getAsOpaquePointer(), index) {}
579 
580 Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
581   auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>();
582   Type eltTy = owner.getElementType();
583   if (auto intEltTy = eltTy.dyn_cast<IntegerType>())
584     return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
585   if (eltTy.isa<IndexType>())
586     return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
587   if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
588     IntElementIterator intIt(owner, index);
589     FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
590     return FloatAttr::get(eltTy, *floatIt);
591   }
592   if (auto complexTy = eltTy.dyn_cast<ComplexType>()) {
593     auto complexEltTy = complexTy.getElementType();
594     ComplexIntElementIterator complexIntIt(owner, index);
595     if (complexEltTy.isa<IntegerType>()) {
596       auto value = *complexIntIt;
597       auto real = IntegerAttr::get(complexEltTy, value.real());
598       auto imag = IntegerAttr::get(complexEltTy, value.imag());
599       return ArrayAttr::get(complexTy.getContext(),
600                             ArrayRef<Attribute>{real, imag});
601     }
602 
603     ComplexFloatElementIterator complexFloatIt(
604         complexEltTy.cast<FloatType>().getFloatSemantics(), complexIntIt);
605     auto value = *complexFloatIt;
606     auto real = FloatAttr::get(complexEltTy, value.real());
607     auto imag = FloatAttr::get(complexEltTy, value.imag());
608     return ArrayAttr::get(complexTy.getContext(),
609                           ArrayRef<Attribute>{real, imag});
610   }
611   if (owner.isa<DenseStringElementsAttr>()) {
612     ArrayRef<StringRef> vals = owner.getRawStringData();
613     return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
614   }
615   llvm_unreachable("unexpected element type");
616 }
617 
618 //===----------------------------------------------------------------------===//
619 // BoolElementIterator
620 
621 DenseElementsAttr::BoolElementIterator::BoolElementIterator(
622     DenseElementsAttr attr, size_t dataIndex)
623     : DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
624           attr.getRawData().data(), attr.isSplat(), dataIndex) {}
625 
626 bool DenseElementsAttr::BoolElementIterator::operator*() const {
627   return getBit(getData(), getDataIndex());
628 }
629 
630 //===----------------------------------------------------------------------===//
631 // IntElementIterator
632 
633 DenseElementsAttr::IntElementIterator::IntElementIterator(
634     DenseElementsAttr attr, size_t dataIndex)
635     : DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
636           attr.getRawData().data(), attr.isSplat(), dataIndex),
637       bitWidth(getDenseElementBitWidth(attr.getElementType())) {}
638 
639 APInt DenseElementsAttr::IntElementIterator::operator*() const {
640   return readBits(getData(),
641                   getDataIndex() * getDenseElementStorageWidth(bitWidth),
642                   bitWidth);
643 }
644 
645 //===----------------------------------------------------------------------===//
646 // ComplexIntElementIterator
647 
648 DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
649     DenseElementsAttr attr, size_t dataIndex)
650     : DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
651                                       std::complex<APInt>, std::complex<APInt>,
652                                       std::complex<APInt>>(
653           attr.getRawData().data(), attr.isSplat(), dataIndex) {
654   auto complexType = attr.getElementType().cast<ComplexType>();
655   bitWidth = getDenseElementBitWidth(complexType.getElementType());
656 }
657 
658 std::complex<APInt>
659 DenseElementsAttr::ComplexIntElementIterator::operator*() const {
660   size_t storageWidth = getDenseElementStorageWidth(bitWidth);
661   size_t offset = getDataIndex() * storageWidth * 2;
662   return {readBits(getData(), offset, bitWidth),
663           readBits(getData(), offset + storageWidth, bitWidth)};
664 }
665 
666 //===----------------------------------------------------------------------===//
667 // DenseElementsAttr
668 //===----------------------------------------------------------------------===//
669 
670 /// Method for support type inquiry through isa, cast and dyn_cast.
671 bool DenseElementsAttr::classof(Attribute attr) {
672   return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr>();
673 }
674 
675 DenseElementsAttr DenseElementsAttr::get(ShapedType type,
676                                          ArrayRef<Attribute> values) {
677   assert(hasSameElementsOrSplat(type, values));
678 
679   // If the element type is not based on int/float/index, assume it is a string
680   // type.
681   auto eltType = type.getElementType();
682   if (!type.getElementType().isIntOrIndexOrFloat()) {
683     SmallVector<StringRef, 8> stringValues;
684     stringValues.reserve(values.size());
685     for (Attribute attr : values) {
686       assert(attr.isa<StringAttr>() &&
687              "expected string value for non integer/index/float element");
688       stringValues.push_back(attr.cast<StringAttr>().getValue());
689     }
690     return get(type, stringValues);
691   }
692 
693   // Otherwise, get the raw storage width to use for the allocation.
694   size_t bitWidth = getDenseElementBitWidth(eltType);
695   size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
696 
697   // Compress the attribute values into a character buffer.
698   SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
699                             values.size());
700   APInt intVal;
701   for (unsigned i = 0, e = values.size(); i < e; ++i) {
702     assert(eltType == values[i].getType() &&
703            "expected attribute value to have element type");
704     if (eltType.isa<FloatType>())
705       intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
706     else if (eltType.isa<IntegerType, IndexType>())
707       intVal = values[i].cast<IntegerAttr>().getValue();
708     else
709       llvm_unreachable("unexpected element type");
710 
711     assert(intVal.getBitWidth() == bitWidth &&
712            "expected value to have same bitwidth as element type");
713     writeBits(data.data(), i * storageBitWidth, intVal);
714   }
715   return DenseIntOrFPElementsAttr::getRaw(type, data,
716                                           /*isSplat=*/(values.size() == 1));
717 }
718 
719 DenseElementsAttr DenseElementsAttr::get(ShapedType type,
720                                          ArrayRef<bool> values) {
721   assert(hasSameElementsOrSplat(type, values));
722   assert(type.getElementType().isInteger(1));
723 
724   std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
725   for (int i = 0, e = values.size(); i != e; ++i)
726     setBit(buff.data(), i, values[i]);
727   return DenseIntOrFPElementsAttr::getRaw(type, buff,
728                                           /*isSplat=*/(values.size() == 1));
729 }
730 
731 DenseElementsAttr DenseElementsAttr::get(ShapedType type,
732                                          ArrayRef<StringRef> values) {
733   assert(!type.getElementType().isIntOrFloat());
734   return DenseStringElementsAttr::get(type, values);
735 }
736 
737 /// Constructs a dense integer elements attribute from an array of APInt
738 /// values. Each APInt value is expected to have the same bitwidth as the
739 /// element type of 'type'.
740 DenseElementsAttr DenseElementsAttr::get(ShapedType type,
741                                          ArrayRef<APInt> values) {
742   assert(type.getElementType().isIntOrIndex());
743   assert(hasSameElementsOrSplat(type, values));
744   size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
745   return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
746                                           /*isSplat=*/(values.size() == 1));
747 }
748 DenseElementsAttr DenseElementsAttr::get(ShapedType type,
749                                          ArrayRef<std::complex<APInt>> values) {
750   ComplexType complex = type.getElementType().cast<ComplexType>();
751   assert(complex.getElementType().isa<IntegerType>());
752   assert(hasSameElementsOrSplat(type, values));
753   size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
754   ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
755                           values.size() * 2);
756   return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals,
757                                           /*isSplat=*/(values.size() == 1));
758 }
759 
760 // Constructs a dense float elements attribute from an array of APFloat
761 // values. Each APFloat value is expected to have the same bitwidth as the
762 // element type of 'type'.
763 DenseElementsAttr DenseElementsAttr::get(ShapedType type,
764                                          ArrayRef<APFloat> values) {
765   assert(type.getElementType().isa<FloatType>());
766   assert(hasSameElementsOrSplat(type, values));
767   size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
768   return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
769                                           /*isSplat=*/(values.size() == 1));
770 }
771 DenseElementsAttr
772 DenseElementsAttr::get(ShapedType type,
773                        ArrayRef<std::complex<APFloat>> values) {
774   ComplexType complex = type.getElementType().cast<ComplexType>();
775   assert(complex.getElementType().isa<FloatType>());
776   assert(hasSameElementsOrSplat(type, values));
777   ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
778                            values.size() * 2);
779   size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
780   return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals,
781                                           /*isSplat=*/(values.size() == 1));
782 }
783 
784 /// Construct a dense elements attribute from a raw buffer representing the
785 /// data for this attribute. Users should generally not use this methods as
786 /// the expected buffer format may not be a form the user expects.
787 DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type,
788                                                       ArrayRef<char> rawBuffer,
789                                                       bool isSplatBuffer) {
790   return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer);
791 }
792 
793 /// Returns true if the given buffer is a valid raw buffer for the given type.
794 bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
795                                          ArrayRef<char> rawBuffer,
796                                          bool &detectedSplat) {
797   size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
798   size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
799 
800   // Storage width of 1 is special as it is packed by the bit.
801   if (storageWidth == 1) {
802     // Check for a splat, or a buffer equal to the number of elements which
803     // consists of either all 0's or all 1's.
804     detectedSplat = false;
805     if (rawBuffer.size() == 1) {
806       auto rawByte = static_cast<uint8_t>(rawBuffer[0]);
807       if (rawByte == 0 || rawByte == 0xff) {
808         detectedSplat = true;
809         return true;
810       }
811     }
812     return rawBufferWidth == llvm::alignTo<8>(type.getNumElements());
813   }
814   // All other types are 8-bit aligned.
815   if ((detectedSplat = rawBufferWidth == storageWidth))
816     return true;
817   return rawBufferWidth == (storageWidth * type.getNumElements());
818 }
819 
820 /// Check the information for a C++ data type, check if this type is valid for
821 /// the current attribute. This method is used to verify specific type
822 /// invariants that the templatized 'getValues' method cannot.
823 static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
824                               bool isSigned) {
825   // Make sure that the data element size is the same as the type element width.
826   if (getDenseElementBitWidth(type) !=
827       static_cast<size_t>(dataEltSize * CHAR_BIT))
828     return false;
829 
830   // Check that the element type is either float or integer or index.
831   if (!isInt)
832     return type.isa<FloatType>();
833   if (type.isIndex())
834     return true;
835 
836   auto intType = type.dyn_cast<IntegerType>();
837   if (!intType)
838     return false;
839 
840   // Make sure signedness semantics is consistent.
841   if (intType.isSignless())
842     return true;
843   return intType.isSigned() ? isSigned : !isSigned;
844 }
845 
846 /// Defaults down the subclass implementation.
847 DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
848                                                    ArrayRef<char> data,
849                                                    int64_t dataEltSize,
850                                                    bool isInt, bool isSigned) {
851   return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
852                                                  isSigned);
853 }
854 DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
855                                                       ArrayRef<char> data,
856                                                       int64_t dataEltSize,
857                                                       bool isInt,
858                                                       bool isSigned) {
859   return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
860                                                     isInt, isSigned);
861 }
862 
863 bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
864                                           bool isSigned) const {
865   return ::isValidIntOrFloat(getElementType(), dataEltSize, isInt, isSigned);
866 }
867 bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
868                                        bool isSigned) const {
869   return ::isValidIntOrFloat(
870       getElementType().cast<ComplexType>().getElementType(), dataEltSize / 2,
871       isInt, isSigned);
872 }
873 
874 /// Returns true if this attribute corresponds to a splat, i.e. if all element
875 /// values are the same.
876 bool DenseElementsAttr::isSplat() const {
877   return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
878 }
879 
880 /// Return if the given complex type has an integer element type.
881 LLVM_ATTRIBUTE_UNUSED static bool isComplexOfIntType(Type type) {
882   return type.cast<ComplexType>().getElementType().isa<IntegerType>();
883 }
884 
885 auto DenseElementsAttr::getComplexIntValues() const
886     -> iterator_range_impl<ComplexIntElementIterator> {
887   assert(isComplexOfIntType(getElementType()) &&
888          "expected complex integral type");
889   return {getType(), ComplexIntElementIterator(*this, 0),
890           ComplexIntElementIterator(*this, getNumElements())};
891 }
892 auto DenseElementsAttr::complex_value_begin() const
893     -> ComplexIntElementIterator {
894   assert(isComplexOfIntType(getElementType()) &&
895          "expected complex integral type");
896   return ComplexIntElementIterator(*this, 0);
897 }
898 auto DenseElementsAttr::complex_value_end() const -> ComplexIntElementIterator {
899   assert(isComplexOfIntType(getElementType()) &&
900          "expected complex integral type");
901   return ComplexIntElementIterator(*this, getNumElements());
902 }
903 
904 /// Return the held element values as a range of APFloat. The element type of
905 /// this attribute must be of float type.
906 auto DenseElementsAttr::getFloatValues() const
907     -> iterator_range_impl<FloatElementIterator> {
908   auto elementType = getElementType().cast<FloatType>();
909   const auto &elementSemantics = elementType.getFloatSemantics();
910   return {getType(), FloatElementIterator(elementSemantics, raw_int_begin()),
911           FloatElementIterator(elementSemantics, raw_int_end())};
912 }
913 auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
914   auto elementType = getElementType().cast<FloatType>();
915   return FloatElementIterator(elementType.getFloatSemantics(), raw_int_begin());
916 }
917 auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
918   auto elementType = getElementType().cast<FloatType>();
919   return FloatElementIterator(elementType.getFloatSemantics(), raw_int_end());
920 }
921 
922 auto DenseElementsAttr::getComplexFloatValues() const
923     -> iterator_range_impl<ComplexFloatElementIterator> {
924   Type eltTy = getElementType().cast<ComplexType>().getElementType();
925   assert(eltTy.isa<FloatType>() && "expected complex float type");
926   const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics();
927   return {getType(),
928           {semantics, {*this, 0}},
929           {semantics, {*this, static_cast<size_t>(getNumElements())}}};
930 }
931 auto DenseElementsAttr::complex_float_value_begin() const
932     -> ComplexFloatElementIterator {
933   Type eltTy = getElementType().cast<ComplexType>().getElementType();
934   assert(eltTy.isa<FloatType>() && "expected complex float type");
935   return {eltTy.cast<FloatType>().getFloatSemantics(), {*this, 0}};
936 }
937 auto DenseElementsAttr::complex_float_value_end() const
938     -> ComplexFloatElementIterator {
939   Type eltTy = getElementType().cast<ComplexType>().getElementType();
940   assert(eltTy.isa<FloatType>() && "expected complex float type");
941   return {eltTy.cast<FloatType>().getFloatSemantics(),
942           {*this, static_cast<size_t>(getNumElements())}};
943 }
944 
945 /// Return the raw storage data held by this attribute.
946 ArrayRef<char> DenseElementsAttr::getRawData() const {
947   return static_cast<DenseIntOrFPElementsAttrStorage *>(impl)->data;
948 }
949 
950 ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
951   return static_cast<DenseStringElementsAttrStorage *>(impl)->data;
952 }
953 
954 /// Return a new DenseElementsAttr that has the same data as the current
955 /// attribute, but has been reshaped to 'newType'. The new type must have the
956 /// same total number of elements as well as element type.
957 DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
958   ShapedType curType = getType();
959   if (curType == newType)
960     return *this;
961 
962   assert(newType.getElementType() == curType.getElementType() &&
963          "expected the same element type");
964   assert(newType.getNumElements() == curType.getNumElements() &&
965          "expected the same number of elements");
966   return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat());
967 }
968 
969 /// Return a new DenseElementsAttr that has the same data as the current
970 /// attribute, but has bitcast elements such that it is now 'newType'. The new
971 /// type must have the same shape and element types of the same bitwidth as the
972 /// current type.
973 DenseElementsAttr DenseElementsAttr::bitcast(Type newElType) {
974   ShapedType curType = getType();
975   Type curElType = curType.getElementType();
976   if (curElType == newElType)
977     return *this;
978 
979   assert(getDenseElementBitWidth(newElType) ==
980              getDenseElementBitWidth(curElType) &&
981          "expected element types with the same bitwidth");
982   return DenseIntOrFPElementsAttr::getRaw(curType.clone(newElType),
983                                           getRawData(), isSplat());
984 }
985 
986 DenseElementsAttr
987 DenseElementsAttr::mapValues(Type newElementType,
988                              function_ref<APInt(const APInt &)> mapping) const {
989   return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
990 }
991 
992 DenseElementsAttr DenseElementsAttr::mapValues(
993     Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
994   return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
995 }
996 
997 ShapedType DenseElementsAttr::getType() const {
998   return Attribute::getType().cast<ShapedType>();
999 }
1000 
1001 Type DenseElementsAttr::getElementType() const {
1002   return getType().getElementType();
1003 }
1004 
1005 int64_t DenseElementsAttr::getNumElements() const {
1006   return getType().getNumElements();
1007 }
1008 
1009 //===----------------------------------------------------------------------===//
1010 // DenseIntOrFPElementsAttr
1011 //===----------------------------------------------------------------------===//
1012 
1013 /// Utility method to write a range of APInt values to a buffer.
1014 template <typename APRangeT>
1015 static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
1016                                 APRangeT &&values) {
1017   data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values));
1018   size_t offset = 0;
1019   for (auto it = values.begin(), e = values.end(); it != e;
1020        ++it, offset += storageWidth) {
1021     assert((*it).getBitWidth() <= storageWidth);
1022     writeBits(data.data(), offset, *it);
1023   }
1024 }
1025 
1026 /// Constructs a dense elements attribute from an array of raw APFloat values.
1027 /// Each APFloat value is expected to have the same bitwidth as the element
1028 /// type of 'type'. 'type' must be a vector or tensor with static shape.
1029 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
1030                                                    size_t storageWidth,
1031                                                    ArrayRef<APFloat> values,
1032                                                    bool isSplat) {
1033   std::vector<char> data;
1034   auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
1035   writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
1036   return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
1037 }
1038 
1039 /// Constructs a dense elements attribute from an array of raw APInt values.
1040 /// Each APInt value is expected to have the same bitwidth as the element type
1041 /// of 'type'.
1042 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
1043                                                    size_t storageWidth,
1044                                                    ArrayRef<APInt> values,
1045                                                    bool isSplat) {
1046   std::vector<char> data;
1047   writeAPIntsToBuffer(storageWidth, data, values);
1048   return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
1049 }
1050 
1051 DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
1052                                                    ArrayRef<char> data,
1053                                                    bool isSplat) {
1054   assert((type.isa<RankedTensorType, VectorType>()) &&
1055          "type must be ranked tensor or vector");
1056   assert(type.hasStaticShape() && "type must have static shape");
1057   return Base::get(type.getContext(), type, data, isSplat);
1058 }
1059 
1060 /// Overload of the raw 'get' method that asserts that the given type is of
1061 /// complex type. This method is used to verify type invariants that the
1062 /// templatized 'get' method cannot.
1063 DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
1064                                                           ArrayRef<char> data,
1065                                                           int64_t dataEltSize,
1066                                                           bool isInt,
1067                                                           bool isSigned) {
1068   assert(::isValidIntOrFloat(
1069       type.getElementType().cast<ComplexType>().getElementType(),
1070       dataEltSize / 2, isInt, isSigned));
1071 
1072   int64_t numElements = data.size() / dataEltSize;
1073   assert(numElements == 1 || numElements == type.getNumElements());
1074   return getRaw(type, data, /*isSplat=*/numElements == 1);
1075 }
1076 
1077 /// Overload of the 'getRaw' method that asserts that the given type is of
1078 /// integer type. This method is used to verify type invariants that the
1079 /// templatized 'get' method cannot.
1080 DenseElementsAttr
1081 DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
1082                                            int64_t dataEltSize, bool isInt,
1083                                            bool isSigned) {
1084   assert(
1085       ::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned));
1086 
1087   int64_t numElements = data.size() / dataEltSize;
1088   assert(numElements == 1 || numElements == type.getNumElements());
1089   return getRaw(type, data, /*isSplat=*/numElements == 1);
1090 }
1091 
1092 void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
1093     const char *inRawData, char *outRawData, size_t elementBitWidth,
1094     size_t numElements) {
1095   using llvm::support::ulittle16_t;
1096   using llvm::support::ulittle32_t;
1097   using llvm::support::ulittle64_t;
1098 
1099   assert(llvm::support::endian::system_endianness() == // NOLINT
1100          llvm::support::endianness::big);              // NOLINT
1101   // NOLINT to avoid warning message about replacing by static_assert()
1102 
1103   // Following std::copy_n always converts endianness on BE machine.
1104   switch (elementBitWidth) {
1105   case 16: {
1106     const ulittle16_t *inRawDataPos =
1107         reinterpret_cast<const ulittle16_t *>(inRawData);
1108     uint16_t *outDataPos = reinterpret_cast<uint16_t *>(outRawData);
1109     std::copy_n(inRawDataPos, numElements, outDataPos);
1110     break;
1111   }
1112   case 32: {
1113     const ulittle32_t *inRawDataPos =
1114         reinterpret_cast<const ulittle32_t *>(inRawData);
1115     uint32_t *outDataPos = reinterpret_cast<uint32_t *>(outRawData);
1116     std::copy_n(inRawDataPos, numElements, outDataPos);
1117     break;
1118   }
1119   case 64: {
1120     const ulittle64_t *inRawDataPos =
1121         reinterpret_cast<const ulittle64_t *>(inRawData);
1122     uint64_t *outDataPos = reinterpret_cast<uint64_t *>(outRawData);
1123     std::copy_n(inRawDataPos, numElements, outDataPos);
1124     break;
1125   }
1126   default: {
1127     size_t nBytes = elementBitWidth / CHAR_BIT;
1128     for (size_t i = 0; i < nBytes; i++)
1129       std::copy_n(inRawData + (nBytes - 1 - i), 1, outRawData + i);
1130     break;
1131   }
1132   }
1133 }
1134 
1135 void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine(
1136     ArrayRef<char> inRawData, MutableArrayRef<char> outRawData,
1137     ShapedType type) {
1138   size_t numElements = type.getNumElements();
1139   Type elementType = type.getElementType();
1140   if (ComplexType complexTy = elementType.dyn_cast<ComplexType>()) {
1141     elementType = complexTy.getElementType();
1142     numElements = numElements * 2;
1143   }
1144   size_t elementBitWidth = getDenseElementStorageWidth(elementType);
1145   assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT &&
1146          inRawData.size() <= outRawData.size());
1147   convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(),
1148                                   elementBitWidth, numElements);
1149 }
1150 
1151 //===----------------------------------------------------------------------===//
1152 // DenseFPElementsAttr
1153 //===----------------------------------------------------------------------===//
1154 
1155 template <typename Fn, typename Attr>
1156 static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
1157                                 Type newElementType,
1158                                 llvm::SmallVectorImpl<char> &data) {
1159   size_t bitWidth = getDenseElementBitWidth(newElementType);
1160   size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
1161 
1162   ShapedType newArrayType;
1163   if (inType.isa<RankedTensorType>())
1164     newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
1165   else if (inType.isa<UnrankedTensorType>())
1166     newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
1167   else if (inType.isa<VectorType>())
1168     newArrayType = VectorType::get(inType.getShape(), newElementType);
1169   else
1170     assert(newArrayType && "Unhandled tensor type");
1171 
1172   size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
1173   data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
1174 
1175   // Functor used to process a single element value of the attribute.
1176   auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
1177     auto newInt = mapping(value);
1178     assert(newInt.getBitWidth() == bitWidth);
1179     writeBits(data.data(), index * storageBitWidth, newInt);
1180   };
1181 
1182   // Check for the splat case.
1183   if (attr.isSplat()) {
1184     processElt(*attr.begin(), /*index=*/0);
1185     return newArrayType;
1186   }
1187 
1188   // Otherwise, process all of the element values.
1189   uint64_t elementIdx = 0;
1190   for (auto value : attr)
1191     processElt(value, elementIdx++);
1192   return newArrayType;
1193 }
1194 
1195 DenseElementsAttr DenseFPElementsAttr::mapValues(
1196     Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
1197   llvm::SmallVector<char, 8> elementData;
1198   auto newArrayType =
1199       mappingHelper(mapping, *this, getType(), newElementType, elementData);
1200 
1201   return getRaw(newArrayType, elementData, isSplat());
1202 }
1203 
1204 /// Method for supporting type inquiry through isa, cast and dyn_cast.
1205 bool DenseFPElementsAttr::classof(Attribute attr) {
1206   return attr.isa<DenseElementsAttr>() &&
1207          attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
1208 }
1209 
1210 //===----------------------------------------------------------------------===//
1211 // DenseIntElementsAttr
1212 //===----------------------------------------------------------------------===//
1213 
1214 DenseElementsAttr DenseIntElementsAttr::mapValues(
1215     Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
1216   llvm::SmallVector<char, 8> elementData;
1217   auto newArrayType =
1218       mappingHelper(mapping, *this, getType(), newElementType, elementData);
1219 
1220   return getRaw(newArrayType, elementData, isSplat());
1221 }
1222 
1223 /// Method for supporting type inquiry through isa, cast and dyn_cast.
1224 bool DenseIntElementsAttr::classof(Attribute attr) {
1225   return attr.isa<DenseElementsAttr>() &&
1226          attr.getType().cast<ShapedType>().getElementType().isIntOrIndex();
1227 }
1228 
1229 //===----------------------------------------------------------------------===//
1230 // OpaqueElementsAttr
1231 //===----------------------------------------------------------------------===//
1232 
1233 bool OpaqueElementsAttr::decode(ElementsAttr &result) {
1234   Dialect *dialect = getContext()->getLoadedDialect(getDialect());
1235   if (!dialect)
1236     return true;
1237   auto *interface =
1238       dialect->getRegisteredInterface<DialectDecodeAttributesInterface>();
1239   if (!interface)
1240     return true;
1241   return failed(interface->decode(*this, result));
1242 }
1243 
1244 LogicalResult
1245 OpaqueElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
1246                            StringAttr dialect, StringRef value,
1247                            ShapedType type) {
1248   if (!Dialect::isValidNamespace(dialect.strref()))
1249     return emitError() << "invalid dialect namespace '" << dialect << "'";
1250   return success();
1251 }
1252 
1253 //===----------------------------------------------------------------------===//
1254 // SparseElementsAttr
1255 //===----------------------------------------------------------------------===//
1256 
1257 /// Get a zero APFloat for the given sparse attribute.
1258 APFloat SparseElementsAttr::getZeroAPFloat() const {
1259   auto eltType = getElementType().cast<FloatType>();
1260   return APFloat(eltType.getFloatSemantics());
1261 }
1262 
1263 /// Get a zero APInt for the given sparse attribute.
1264 APInt SparseElementsAttr::getZeroAPInt() const {
1265   auto eltType = getElementType().cast<IntegerType>();
1266   return APInt::getZero(eltType.getWidth());
1267 }
1268 
1269 /// Get a zero attribute for the given attribute type.
1270 Attribute SparseElementsAttr::getZeroAttr() const {
1271   auto eltType = getElementType();
1272 
1273   // Handle floating point elements.
1274   if (eltType.isa<FloatType>())
1275     return FloatAttr::get(eltType, 0);
1276 
1277   // Handle string type.
1278   if (getValues().isa<DenseStringElementsAttr>())
1279     return StringAttr::get("", eltType);
1280 
1281   // Otherwise, this is an integer.
1282   return IntegerAttr::get(eltType, 0);
1283 }
1284 
1285 /// Flatten, and return, all of the sparse indices in this attribute in
1286 /// row-major order.
1287 std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
1288   std::vector<ptrdiff_t> flatSparseIndices;
1289 
1290   // The sparse indices are 64-bit integers, so we can reinterpret the raw data
1291   // as a 1-D index array.
1292   auto sparseIndices = getIndices();
1293   auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
1294   if (sparseIndices.isSplat()) {
1295     SmallVector<uint64_t, 8> indices(getType().getRank(),
1296                                      *sparseIndexValues.begin());
1297     flatSparseIndices.push_back(getFlattenedIndex(indices));
1298     return flatSparseIndices;
1299   }
1300 
1301   // Otherwise, reinterpret each index as an ArrayRef when flattening.
1302   auto numSparseIndices = sparseIndices.getType().getDimSize(0);
1303   size_t rank = getType().getRank();
1304   for (size_t i = 0, e = numSparseIndices; i != e; ++i)
1305     flatSparseIndices.push_back(getFlattenedIndex(
1306         {&*std::next(sparseIndexValues.begin(), i * rank), rank}));
1307   return flatSparseIndices;
1308 }
1309 
1310 LogicalResult
1311 SparseElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
1312                            ShapedType type, DenseIntElementsAttr sparseIndices,
1313                            DenseElementsAttr values) {
1314   ShapedType valuesType = values.getType();
1315   if (valuesType.getRank() != 1)
1316     return emitError() << "expected 1-d tensor for sparse element values";
1317 
1318   // Verify the indices and values shape.
1319   ShapedType indicesType = sparseIndices.getType();
1320   auto emitShapeError = [&]() {
1321     return emitError() << "expected shape ([" << type.getShape()
1322                        << "]); inferred shape of indices literal (["
1323                        << indicesType.getShape()
1324                        << "]); inferred shape of values literal (["
1325                        << valuesType.getShape() << "])";
1326   };
1327   // Verify indices shape.
1328   size_t rank = type.getRank(), indicesRank = indicesType.getRank();
1329   if (indicesRank == 2) {
1330     if (indicesType.getDimSize(1) != static_cast<int64_t>(rank))
1331       return emitShapeError();
1332   } else if (indicesRank != 1 || rank != 1) {
1333     return emitShapeError();
1334   }
1335   // Verify the values shape.
1336   int64_t numSparseIndices = indicesType.getDimSize(0);
1337   if (numSparseIndices != valuesType.getDimSize(0))
1338     return emitShapeError();
1339 
1340   // Verify that the sparse indices are within the value shape.
1341   auto emitIndexError = [&](unsigned indexNum, ArrayRef<uint64_t> index) {
1342     return emitError()
1343            << "sparse index #" << indexNum
1344            << " is not contained within the value shape, with index=[" << index
1345            << "], and type=" << type;
1346   };
1347 
1348   // Handle the case where the index values are a splat.
1349   auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
1350   if (sparseIndices.isSplat()) {
1351     SmallVector<uint64_t> indices(rank, *sparseIndexValues.begin());
1352     if (!ElementsAttr::isValidIndex(type, indices))
1353       return emitIndexError(0, indices);
1354     return success();
1355   }
1356 
1357   // Otherwise, reinterpret each index as an ArrayRef.
1358   for (size_t i = 0, e = numSparseIndices; i != e; ++i) {
1359     ArrayRef<uint64_t> index(&*std::next(sparseIndexValues.begin(), i * rank),
1360                              rank);
1361     if (!ElementsAttr::isValidIndex(type, index))
1362       return emitIndexError(i, index);
1363   }
1364 
1365   return success();
1366 }
1367 
1368 //===----------------------------------------------------------------------===//
1369 // TypeAttr
1370 //===----------------------------------------------------------------------===//
1371 
1372 void TypeAttr::walkImmediateSubElements(
1373     function_ref<void(Attribute)> walkAttrsFn,
1374     function_ref<void(Type)> walkTypesFn) const {
1375   walkTypesFn(getValue());
1376 }
1377